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Abstract – We illustrate, through a series of prototypical examples, that linear parity-time (PT )
symmetric lattices with spatially extended gain/loss are generically unstable, for any non-zero
value of the gain/loss coefficient. Our examples include a parabolic real potential with a linear
imaginary part and the cases of no real and piecewise constant or linear imaginary potentials.
On the other hand, this instability can be avoided and the spectrum can be real for localized
or compact PT -symmetric potentials. The linear lattices are analyzed through discrete Fourier
transform techniques complemented by numerical computations.
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Introduction. – PT -symmetric quantum systems [1]
(see also the review [2]) have emerged as an intriguing
complex generalization of conventional quantum mechan-
ics and have been a focus for numerous investigations
in theoretical physics and applied mathematics. The key
premise is that fundamental physical symmetries, such as
parity P and time reversal T , may be sufficient (in suitable
parametric regimes) to ensure that the eigenvalues of the
Hamiltonian are real. Thus, PT -symmetric Hamiltonians
provide an alternative to the standard postulate that the
Hamiltonian operator must be Hermitian. For Hamiltoni-
ans associated with a one-dimensional Schrödinger oper-
ator with a complex potential V (x), the constraint of
PT -symmetry requires that the potential satisfy V (x) =
V̄ (−x), i.e., V (x) has a symmetric real part and an anti-
symmetric imaginary part.
Recently, the proposal that PT -symmetric systems can

be physically implemented in the framework of optics [3],
was subsequently realized in experiments utilizing active
or passive PT -dimers [4] and periodic lattices [5]. Similar
proposals for the existence of a leaking dimer (in the pres-
ence of nonlinearity) have been formulated in the atomic
setting of Bose-Hubbard models [6]. Further experimen-
tal investigations were concerned with electrical analogs of
the linear PT -symmetric system [7]. Theoretical investiga-
tions have rapidly followed by examining such dimer-type
settings [8–10] and generalizations thereof, including those

where the gain/loss contributions appear in a balanced
form in front of the nonlinear term [11–13].
Although dimers have been the principal workhorse

on which the investigation of an array of PT -symmetric
systems has been based, there are various works where
more elements were considered [14,15]. PT -symmetric
solitons were studied in full nonlinear lattices with
a diatomic structure [16–18]. On the other hand, for
the array of PT -symmetric dimers, it is known that
the PT -phase transition occurs at gain/loss coefficient
approaching zero when the number of lattice sites goes to
infinity [19]. In other words, infinite PT -symmetric
lattices are linearly unstable and discrete solitons cannot
be robust in such lattices, contrary to their counterparts
in continuous models with periodic potentials [13,20].
The purpose of the present work is to showcase the

dramatic differences between some prototypical discrete
and continuum PT -symmetric systems. In particular, we
show that linear PT -symmetric lattices with extended
gain/loss are generically unstable in the sense that the
eigenvalues of their associated Hamiltonians are typically
complex even if they are known to be purely real for Hamil-
tonians associated with the continuum analogue of the
lattice. Our flagship example will be the standard quan-
tum harmonic oscillator incorporating a purely imaginary
linear potential [21]. After discretization, the spectrum of
the discrete Schrödinger operator includes infinitely many
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complex eigenvalues, no matter how small the gain/loss
coefficient is.
Other examples include the discrete Schrödinger opera-

tor with no real potential, and piecewise constant or linear
imaginary potentials. For these examples, we also show
that either infinitely many isolated eigenvalues or contin-
uous spectral bands are complex inducing generic insta-
bility of linear PT -symmetric lattices in the presence of
spatially extended gain/loss.
Nevertheless, we also briefly touch upon a setting where

an infinite lattice bearing PT -symmetry can have a real
spectrum. This concerns the case of localized or compact
potentials. For example, a PT -symmetric dimer embedded
within the infinite lattice still enjoys real spectrum for
sufficiently small gain/loss coefficient [11,22]. Therefore,
localized or compact gain/loss may avoid the generic
instability scenario, which we study here for lattices with
spatially extended gain/loss.

A potential with a parabolic real part and a

linear imaginary part. – We start with the spectrum of
the discrete Schrödinger operator with the potential Vn =
n2+ iγn (cf. ref. [21] for the continuous version of this
problem). Since Vn = V̄−n, the potential is PT -symmetric.
The relevant eigenvalue problem reads

Eun =− (un+1+un−1− 2un)+
(

n2+ iγn
)

un. (1)

Because the real part of the potential Vn is bounded from
below and confining as n→∞, the spectrum of the linear
lattice (1) is purely discrete [23]. The continuous version
of the linear lattice (1) takes the form

L=− d
2

dx2
+(x2+ iγx) =− d

2

dx2
+
(

x+ i
γ

2

)2

+
γ2

4
.

We now use the change of variable x→ x+ iγ/2 (which
does not affect the decay of the eigenfunctions since the
latter Hermite-Gauss functions are entire functions in the
complex plane). Then, the eigenvalue problem for L is
tantamount to the quantum harmonic oscillator that has
a purely real spectrum of eigenvalues located at E =
2m+1+ γ2/4 for an integer m� 0 [21].
On the contrary, as shown in fig. 1 (top), the discrete

case is significantly different in that the spectrum is
predominantly complex. The figure illustrates that, for
different values of γ, there are only a few eigenvalues on the
real axis and an infinite number of complex eigenvalues.
The smaller the value of γ, the more eigenvalues are
located on the real axis, but it is always a finite number
for any γ �= 0. The spectrum of the lattice (1) is of course
real for the Hermitian case of γ = 0.
To confirm these numerical findings with analytic

theory, we introduce the discrete Fourier transform:

un =
1

2π

∫ π

−π

û(k)e−ikndk. (2)
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Fig. 1: (Color online) Top panel: eigenvalues of the linear
lattice (1), for the cases of γ = 1 (blue circles), γ = 0.5 (red
stars) and γ = 0.05 (green diamonds). The inset shows a blowup
in the neighborhood of the smallest eigenvalues, highlighting
the existence of one real eigenvalue for γ = 1 and three real
eigenvalues for the other two cases. Bottom panel: trace of the
monodromy matrix Δ(E) and the levels of 2 cosh(πγ) for the
three values of γ.

Applying the discrete Fourier transform to the linear
lattice (1) yields the differential equation in Fourier space:

d2û

dk2
+ γ
dû

dk
+ [E− 2+2 cos(k)] û(k) = 0, (3)

where we are looking for 2π-periodic functions û(k).
Applying the transformation v̂(k) = û(k)eγk/2, we obtain
the Mathieu equation:

d2v̂

dk2
+

[

E− 2− γ
2

4
+2 cos(k)

]

v̂= 0. (4)

Now we have v̂(k+2π) = eπγ v̂(k), that is, we are looking
for the Floquet multiplier µ∗ = e

πγ of the monodromy
matrix associated with the Mathieu equation (4).
As is well known [24], the Floquet multiplier µ(E)

is determined from the trace of the monodromy matrix
Δ(E) = µ(E)+µ(E)−1. The function Δ diverges to posi-
tive infinity as E→−∞ and oscillates between values
above 2 and below −2 for E > 0. Moreover, the local
maxima and minima of Δ(E) approach rapidly ±2 as
E→∞, because the cos(k) potential in (4) is smooth.
The trace of the monodromy matrix Δ(E) is shown in

fig. 1 (bottom) together with constant levels of 2 cosh(πγ)
for the three values of γ. For any given γ > 0, there are
finitely many real roots E of equation µ(E) = µ∗ and the
number of real roots grows as γ→ 0 (it always includes
at least one real root). For instance, we have one root for
γ = 1 and three roots for γ = 0.5 and γ = 0.05. All other
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Fig. 2: (Color online) Eigenvalues of the linear lattice (5), for
the cases of γ = 1 (top) and γ = 0.1 (bottom); the inset in the
top panel shows the difference between the imaginary parts of
adjacent eigenvalues.

roots (infinitely many) are complex-valued. These roots
bifurcate to complex numbers via saddle-node bifurcations
when µ∗ is increased from 1 (corresponding to γ = 0) as γ
is increased.

A potential with no real part and a linear

imaginary part. – Let us now drop the parabolic real
potential and consider the linear eigenvalue problem:

Eun =− (un+1+un−1− 2un)+ iγnun. (5)

Applying the discrete Fourier transform (2) yields the
first-order differential equation in Fourier space:

γ
dû

dk
+ [E− 2+2 cos(k)] û= 0. (6)

This equation can be exactly solved:

û(k) = û(0)eγ
−1[(2−E)k−2 sin(k)]. (7)

The 2π-periodicity of the discrete Fourier transform û(k)
gives now the eigenvalues E = 2+ iγm, where m is an
arbitrary integer. Hence, all the eigenvalues have an
equidistant structure along the line Re(E) = 2 and again
there are infinitely many complex eigenvalues.
This conclusion can be checked directly from the differ-

ence equation (5). If E0 is an eigenvalue, then E0+ iγm is
also an eigenvalue for any integer m thanks to the discrete
group of symmetry of the linear lattice (5) with respect to
translations in n. Also E0 = 2 is always an eigenvalue with
the eigenvector un = i

nIn(2γ
−1), where In is the modified

Bessel function. Note that the eigenvector is decaying in
n because In(2γ

−1)→ 0 as n→±∞ for fixed γ > 0.
The sequence of equidistant eigenvalues along the line

Re(E) = 2 is illustrated in fig. 2 for γ = 1 (top) and

γ = 0.1 (bottom). For γ = 1, we find that the equidistant
eigenvalues E = 2+ iγm are the only eigenvalues of the
linear lattice (5). For smaller values of γ, we discover a
new phenomenon, i.e., the appearance of additional parts
of the spectrum of the linear lattice (5). For γ = 0.1, the
spectrum consists of the continuous spectrum that fills
space between two curves to the right and left of the line
Re(E) = 2. For smaller values of γ, the relevant spectral
“rectangle” keeps expanding along the real parts and
contracting along the imaginary parts. The latter effect
is induced by the finite-size truncation effects, because
the spectrum of the infinite lattice always includes the
equidistant eigenvalues E = 2+ iγm. The limit γ→ 0 is
a singular limit of the differential equation (6), when
the only spectrum of the linear lattice (5) with γ = 0 is
continuous and located on the real axis at [0, 4].
We now prove that the sequence of equidistant eigenval-

ues along the line Re(E) = 2 is the only part of spectrum
of the linear lattice (5) for sufficiently large values of γ.
Let E = 2+ γλ and rewrite the spectral problem (5) in
the perturbed form:

(λ− in)un =−γ−1 (un+1+un−1) . (8)

The limit γ→∞ corresponds to the limit of weak coupling
of the lattice and recovers the sequence of eigenvalues
at λ= im for an integer m. Now, let λ be any complex
number different from {im}m∈Z. Rewriting (8) as u=
γ−1K(λ)u, we can see that the operator K(λ) is bounded
and therefore, there exists a sufficiently large value of γ
such that this λ cannot be in the spectrum of the linear
lattice (8). At the same time, λ= im for any integer m
is a simple eigenvalue for γ =∞ that persists at λ= im
for any large γ. This analytical argument shows that
no continuous spectrum exists for sufficiently large γ,
so that there is a finite value of γ = γ0, for which a
bifurcation occurs in the spectrum of the linear lattice (5).
Mathematical analysis of this bifurcation is beyond the
scope of this work.

A potential with no real part and a piecewise

constant imaginary part. – Let us now consider the
piecewise constant potential in the linear eigenvalue
problem:

Eun =− (un+1+un−1− 2un)+ iγsign(n)un. (9)

To solve this linear problem, we introduce θ(E) as a
complex-valued root of the dispersion relation

E = 2− 2 cos(θ)+ iγ. (10)

Since cos(θ) is 2π-periodic and even, the root of the
dispersion relation (10) is uniquely determined in the semi-
opened half-strip Re(θ)∈ [−π, π) and Im(θ)> 0 for any
γ > 0 and E ∈C with Im(E) �= γ. Note that Im(θ) = 0
if Im(E) = γ. For any Im(E) �= γ, the eigenstates of the
linear lattice (9) are represented by the exponentially
decaying function

un =

{

eiθ(E)n, n� 0,

eiθ
∗(E)n, n� 0,

(11)
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where θ∗(E) is found from (10) with the change γ→−γ
(and the same E). The linear lattice (9) is satisfied for
any n �= 0, whereas the equation at n= 0 gives another
constraint on θ(E):

e−iθ(E)− e−iθ∗(E) = iγ. (12)

If Re(E) �= 2, we find from (10) and (12) that Im(θ(E)) =
Im(θ̄(E)), which is impossible because they have opposite
signs, hence Re(E) = 2. Further studies of this system
of equations with Re(E) = 2 show that the only solution
exists for Im(E) = 0 and corresponds to

θ(E) =−π
2
+ iarcsin

(γ

2

)

. (13)

This construction gives the only eigenvalue of the linear
lattice (9). In addition, there are always two branches
of the continuous spectrum located at Im(E) =±γ for
Re(E)∈ [0, 4], which correspond to the oscillatory non-
decaying eigenfunctions with θ(E)∈R. We conclude that
the only eigenvalue of the linear lattice (9) is stable, but
the branches of the continuous spectrum are nevertheless
unstable for any non-zero value of γ.
Figure 3 shows eigenvalues of the truncated linear

lattice (9) for γ = 0.03 (top) and γ = 0.06 (bottom). At a
first glance, it seems that the numerical eigenvalues do not
correspond to the analytical results above (one eigenvalue
at E = 2 and the continuous spectrum at Im(E) =±γ
for Re(E)∈ [0, 4]). However, this is an artifact of the
truncation of the infinite lattice by a finite number N of
lattice sites subject to the Dirichlet end point conditions.
When N is increased from N = 400 (stars) to N = 800
(dots), the numerical eigenvalues are strongly affected and
move towards the location of spectrum for the infinite
lattice (9).
Note that the spectrum of the linear lattice (9) is very

different from the spectrum of the linear lattice of dimers:

Eun =− (un+1+un−1− 2un)+ iγ(−1)nun. (14)

As is well known [16,18,19], the spectrum of the linear
lattice of dimers (14) is purely continuous and located at

E = 2±
√

4 sin2
(

θ

2

)

− γ2, θ ∈ [−π, π], (15)

which still shows instability for any non-zero value of γ
because of the Fourier modes with θ close to 0.

A potential with a localized PT -symmetric part.
– Lastly, we mention briefly an example in which the PT -
symmetric potential is localized in space, i.e.,

Vn = sech
2(n/M) (1+ iγ tanh(n/M)) , (16)

where the parameter M denotes the width of the poten-
tial. If γ = 0, the linear eigenvalue problem with the
real potential (16) admits a continuous spectrum for
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Fig. 3: (Color online) Eigenvalues of the linear lattice (9), for
the cases of γ = 0.03 (top) and γ = 0.06 (bottom).

E ∈ [0, 4] and a finite number of simple eigenvalues for
E > 4 (because Vn � 0, no eigenvalues appear for E < 0 for
γ = 0.) When γ is small but non-zero, all simple eigenval-
ues persist in PT -symmetric potentials by the perturba-
tion theory similar to the one considered in [15]. On the
other hand, since the potential Vn decays exponentially
as |n| →∞, the continuous spectrum is not affected by
the relatively compact perturbations and is determined
by the oscillatory non-decaying eigenfunctions with real θ
and E(θ) = 2− 2cos(θ)∈ [0, 4]. Thus, we conclude that the
spectrum of the linear eigenvalue problem with the PT -
symmetric potential (16) is real at least for small γ > 0.
Figure 4 shows the spectrum of the truncated linear

lattice with the potential (16) for M = 10 and γ = 0.02
(top) or γ = 0.1 (bottom). Simple eigenvalues for E > 4
persist on the real axis for small values of γ. Although
it seems that the continuous spectrum becomes complex
near E = 0, this is again a numerical artifact, as adding
more lattice sites N reduces the imaginary part of the
eigenvalues in the truncated lattice. As N increases, we
anticipate that the eigenvalues approach the real segment
[0, 4] for the spectrum of the linear lattice with the
potential (16).
Note that the same conclusion holds also for the

compact PT -symmetric potentials such as the one corre-
sponding to the embedded PT -symmetric defect [11,22]:

Vn = iγ(δn,0− δn,1)un, (17)

where δn,m is the Kronecker delta function. In this case,
the eigenvalue spectrum spans again the interval [0, 4] for
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Fig. 4: (Color online) Eigenvalues of the linear lattice with
the potential (16) for M = 10 and γ = 0.02 (top) or γ = 0.1
(bottom).

all values of γ ∈ [−
√
2,
√
2] in the infinite lattice size (i.e.,

N →∞) limit. As an interesting aside, we mention that
the critical point in this case (γ =

√
2) is different from

the critical point (of γ = 1) for the PT -phase transition
of a single dimer. In any case, we conclude that the
compact support of the PT -symmetric defect enables
a genuinely real spectrum at least for small values of
gain/loss coefficient in the infinite lattice limit, as was the
case for the potential with the localized PT -symmetric
part.

Conclusions. – We have considered the effect of
discreteness on the spectral properties of linear PT -
symmetric systems, characterized by spatially extended
gain/loss and have contrasted these to the continuous PT -
symmetric systems. We found that discreteness features
generic instability of linear PT -symmetric lattices with
extended gain/loss that can be unveiled by means of
Fourier techniques, in conjunction with suitable analysis
of the resulting differential equations in Fourier space.
We have also illustrated some remarkable differences in
spectra between the finite lattice with N sites and the
infinite lattice with N →∞.
The considered models with extended gain/loss featured

generic instability properties that emerge essentially as
soon as γ �= 0, i.e., their PT -phase transition occurs
at γ = 0 for all these linear lattices. Notice that the
instability cannot be avoided in the respective nonlinear

settings, since the PT -phase transition is a purely linear
phenomenon, and nonlinearity cannot arrest the exponen-
tial growth of the unstable eigenstates. Nevertheless, this
instability can be dramatically avoided if the gain/loss are
instead localized or compact: in this case, a purely real
spectrum of the infinite linear lattice can persist for small
values of the gain/loss coefficient γ.
There are many interesting directions for future stud-

ies. First, providing a sharp criterion about the existence
of real eigenvalues in infinite lattices depending on the
localization rate of the PT -symmetric potentials would
be an extremely interesting condition both from a mathe-
matical and from a physical perspective. Furthermore, the
difference in spectra between finite vs. infinite lattices is
another problem that merits additional investigation. It
would also be interesting to extend these considerations
to higher-dimensional lattices.
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