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(Communicated by Catherine Sulem)

Abstract. We show that the peaked periodic traveling wave of the reduced
Ostrovsky equations with quadratic and cubic nonlinearity is spectrally unsta-
ble in the space of square integrable periodic functions with zero mean and the
same period. We discover that the spectrum of a linearized operator at the
peaked periodic wave completely covers a closed vertical strip of the complex
plane. In order to obtain this instability, we prove an abstract result on spec-

tra of operators under compact perturbations. This justifies the truncation of
the linearized operator at the peaked periodic wave to its differential part for
which the spectrum is then computed explicitly.

1. Introduction

The Ostrovsky equation with quadratic nonlinearity was originally derived by
L.A. Ostrovsky [18] to model small-amplitude long waves in a rotating fluid of finite
depth. The same approximation was extended to internal gravity waves, in which
case the underlying equation includes the cubic nonlinearity and is referred to as
the modified Ostrovsky equation [9, 11, 19]. When the high-frequency dispersion is
neglected, the reduced Ostrovsky equation can be written in the form

(1.1) ut + uux = ∂−1
x u,

whereas the reduced modified Ostrovsky equation takes the form

(1.2) ut + u2ux = ∂−1
x u.

For both equations (1.1) and (1.2), periodic waves of the normalized period 2π
are considered in the Sobolev space of 2π-periodic functions denoted by Hs

per ≡
Hs

per(−π, π) for some s ≥ 0. The subspace of Hs
per for 2π-periodic functions with

zero mean is denoted by Ḣs
per. The operator ∂−1

x : Ḣs
per → Ḣs+1

per denotes the
anti-derivative with zero mean.

Local well-posedness of the Cauchy problem for the reduced Ostrovsky equations
(1.1) and (1.2) can be shown in Ḣs

per with s > 3
2 [16,21]. For sufficiently large initial

data, the local solutions break in finite time, similar to the inviscid Burgers equation
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[5, 10, 16]. For sufficiently small initial data, the local solutions are continued for
all times [12].

Traveling wave solutions of the reduced Ostrovsky equations are of the form
u(x, t) = U(x− ct), where z = x− ct is the traveling wave coordinate and c is the
wave speed. The wave profile U(z) satisfies the integral-differential equation in the
form

(1.3)

{
[c− U(z)p]U ′(z) + (∂−1

z U)(z) = 0, ∀ z ∈ (−π, π) with U(z) �= c,
U(−π) = U(π),

∫ π

−π
U(z)dz = 0,

where p = 1 for (1.1) and p = 2 for (1.2).
Smooth solutions to the boundary-value problem (1.3) exist for c ∈ (1, c∗), where

c∗ is uniquely defined; see [7] (and [1] for a generalization). For c ∈ (1, c∗) smooth
solutions satisfy U(z) < c for every z ∈ [−π, π], and the boundary-value problem
(1.3) can be equivalently rewritten in the differential form

(1.4)

{
d
dz

[
(c− U(z)p)dUdz

]
+ U(z) = 0, for every z ∈ [−π, π],

U(−π) = U(π), U ′(−π) = U ′(π).

At c = c∗ solutions to the boundary-value problem (1.3) are peaked at the points
z = ±π where U(±π) = c∗. Uniqueness and Lipschitz continuity of the peaked
solutions to the boundary-value problem (1.3) were proven in [8] for p = 1 (see [1,4]
for a generalization). We denote this unique (up to translation) peaked solution by
U∗(z).

For p = 1, the peaked wave U∗(z) exists at the wave speed c∗ = π2

9 and is given
by

(1.5) U∗(z) =
1

18
(3z2 − π2), for z ∈ [−π, π],

periodically continued beyond [−π, π]. It was already obtained in the original paper

[18]. For p = 2, the peaked wave U∗(z) exists at the wave speed c∗ = π2

8 and is
given by

(1.6) U∗(z) =
1√
2

(
|z| − π

2

)
, for z ∈ [−π, π],

periodically continued beyond [−π, π]; see [17]. In both cases, U∗ ∈ Ḣs
per for s <

3
2

with a finite jump discontinuity of the first derivative at z = ±π for (1.5) and at
z = 0,±π for (1.6).

Smooth periodic waves of the quasi-linear differential equation in (1.4) can be
obtained equivalently from a semi-linear differential equation by means of the fol-
lowing change of coordinates [6, 13, 14]:

(1.7) U(z) = u(ξ), z =

∫ ξ

0

[c− u(s)p] ds.

The smooth periodic waves with profile u satisfy the differential equation

(1.8)
d2u

dξ2
+ [c− u(ξ)p]u(ξ) = 0.

Although all periodic solutions of differential equation (1.8) are smooth, the coordi-
nate transformation (1.7) fails to be invertible if u(ξ) = c for some ξ. Singularities
in the coordinate transformation are related to the appearance of the peaked solu-
tions in the boundary-value problem (1.3).
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Spectral stability of smooth periodic waves with respect to perturbations of
the same period was proven both for (1.1) and (1.2) in [7, 14]. The analysis of
[7] relies on the standard variational formulation of the periodic waves as critical
points of energy subject to fixed momentum. The analysis of [14] relies on the
coordinate transformation (1.7), which reduces the spectral stability problem of
the form ∂xLv = λv with the self-adjoint operator L = c−Up+∂−2

z to the spectral
problem of the form Mv = λ∂ξv with the self-adjoint operator M = c − up + ∂2

ξ .

The spectral problem Mv = λ∂ξv has been studied before in [22] (see also [15]
for a generalization). Orbital stability of smooth periodic waves with respect to
perturbations of any period multiple to the wave period was proven in [6] by using
higher-order conserved quantities of the reduced Ostrovsky equations (1.1) and
(1.2).

The peaked periodic waves are, informally speaking, located at the boundary
between global and breaking solutions in the reduced Ostrovsky equations. If the
initial data u0 is smooth, it was shown that global solutions of (1.1) exist ifm0(x) :=
1 − 3u′′

0(x) > 0 for every x and wave breaking occurs if m0(x) is sign-indefinite

[10, 12], whereas global solutions of (1.2) exist if m0(x) := 1 −
√
2|u′

0(x)| > 0 for
every x and wave breaking occurs if m0(x) is sign-indefinite [5]. Substituting U∗
instead of u0 yields m0(x) = 0 almost everywhere except at the peaks. Thus, it is
natural to expect that the peaked periodic waves are unstable in the time evolution
of the reduced Ostrovsky equations.

In [8] we proved that the unique peaked solution (1.5) of the reduced Ostrovsky
equation (1.1) is linearly unstable with respect to square integrable perturbations
with zero mean and the same period. This was done by obtaining sharp bounds
on the exponential growth of the L2 norm of the perturbations in the linearized
time-evolution problem vt = ∂zLv. No claims regarding the spectral instability of
the peaked periodic wave were made in [8]. In [14], explicit solutions of the spectral
stability problemMv = λ∂ξv were constructed, but since this construction violated
the periodic boundary conditions on the perturbation term, it did not provide an
answer to the spectral stability question.

The main goal of this paper is to show that the peaked periodic wave U∗ is
spectrally unstable with respect to square integrable perturbations with zero mean
and the same period. We achieve this for both versions of the reduced Ostrovsky
equations (1.1) and (1.2) with the peaked periodic waves U∗ given in (1.5) and
(1.6), respectively. We discover an unusual instability of the peaked periodic wave:
the spectrum of the linearized operator A = ∂zL in the space of 2π-periodic mean-
zero functions completely covers a closed vertical strip of the complex plane, as
depicted in Figure 1 for the reduced Ostrovsky equation (1.1). The right boundary
of this vertical strip with Re(λ) = π

6 coincides with the sharp growth rate of the
exponentially growing perturbations obtained in [8] for the peaked wave U∗ given
by (1.5). The vertical strip remains invariant when the spectrum of A is defined
in the space of subharmonic and localized perturbations; see Remark 4. A similar
instability with the spectrum lying in a vertical strip was discovered in [20] in the
context of linearization around double periodic steady state solutions of the 2D
Euler equations.

Let us recall the following standard definition (see Definition 6.1.9 in [2]).
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Figure 1. The spectrum of the linearized operator A at the
peaked periodic wave U∗ given by (1.5) completely covers a closed
vertical strip in the complex plane with zero being the only eigen-
value. This shows that the peaked wave is spectrally unstable with
respect to coperiodic perturbations.

Definition 1. Let A be a linear operator on a Banach space X with dom(A) ⊂ X.
The complex plane C is decomposed into the following two sets:

(1) The resolvent set

ρ(A) =
{
λ ∈ C : ker(A− λI) = {0}, ran(A− λI) = X, (A− λI)−1 : X → X

is bounded
}
.

(2) The spectrum

σ(A) = C \ρ(A),

which is further decomposed into the following three disjoint sets:
(a) the point spectrum

σp(A) = {λ ∈ σ(A) : ker(A− λI) �= {0}},
(b) the residual spectrum

σr(A) = {λ ∈ σ(A) : ker(A− λI) = {0}, ran(A− λI) �= X},
(c) the continuous spectrum

σc(A) = {λ ∈ σ(A) : ker(A−λI) = {0}, ran(A−λI) = X, (A−λI)−1 : X → X

is unbounded}.

In order to prove the spectral instability of the peaked periodic waves, we proceed
as follows. We first show that the point spectrum of the linearized operator A
consists of only the zero eigenvalue; see Lemma 1. We then observe thatA is the sum
of the linearization A0 of the quasi-linear part of the equation and a nonlocal term,
which we may view as a compact perturbation K. The truncated spectral problem
for A0 is then transformed to a problem on the line by a change of coordinates
in Lemma 2. This facilitates the explicit computation of the spectrum of A0 in
Lemmas 3 and 4. Finally, we justify the truncation of the linearized operator to
its differential part by verifying the assumptions of the following abstract result,
which is proven in the appendix.
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Theorem 1. Let A : dom(A) ⊂ X → X and A0 : dom(A0) ⊂ X → X be linear
operators on Hilbert space X with the same domain dom(A0) = dom(A) such that
A−A0 = K is a compact operator in X. Assume that the intersections σp(A)∩ρ(A0)
and σp(A0) ∩ ρ(A) are empty. Then, σ(A) = σ(A0).

The proof of nonlinear instability of the peaked periodic waves is still open for
the reduced Ostrovsky equations (1.1) and (1.2). One of the main obstacles for
nonlinear stability analysis is the lack of well-posedness results for initial data in
Ḣs

per with s < 3
2 , which would include the peaked periodic waves U∗ given by (1.5)

and (1.6). Another obstacle is the discrepancy between the domain of the linearized

operator A = ∂zL = ∂z(c∗ − Up
∗ ) + ∂−1

z in L̇2
per and the Sobolev space Ḣ1

per: while
the former allows finite jumps of perturbations at the peaks, the latter requires
continuity of perturbations across the peaks; see Remark 3.

The paper is organized as follows. The linearized operator A is studied in Section
2, where the main results for the peaked periodic waves U∗ given by (1.5) and (1.6)
are formulated. The proofs of the main results are contained in Sections 3 and 4.
The appendix contains the proof of Theorem 1.

2. Main results

Linearizing (1.1) or (1.2) about the peaked traveling wave U∗(x− c∗t) with the
perturbation v(t, x− c∗t) yields an evolution problem of the form

(2.1) vt = Av,

where the operator A : dom(A) ⊂ L̇2
per → L̇2

per is defined by

(2.2) (Av)(z) := ∂z [(c∗ − U∗(z)
p)v(z)] + ∂−1

z v(z), z ∈ (−π, π),

with maximal domain

(2.3) dom(A) =
{
v ∈ L̇2

per : ∂z [(c∗ − Up
∗ )v] ∈ L̇2

per

}
,

where either p = 1 for (1.1) or p = 2 for (1.2).
The linearized operator (2.2) can be written as A = A0+K, where the truncated

operator A0 : dom(A0) ⊂ L̇2
per → L̇2

per is defined by

(2.4) (A0v)(z) := ∂z [(c∗ − U∗(z)
p)v(z)] , z ∈ (−π, π),

with the same domain dom(A0) = dom(A) and K := ∂−1
z is a compact (Hilbert-

Schmidt) operator in L̇2
per with spectrum σ(K) = {in−1, n ∈ Z \ {0}}.

By using Definition 1, we introduce the following notion of spectral stability for
the traveling wave U∗.

Definition 2. The traveling wave U∗ is said to be spectrally stable if σ(A) ⊂ iR.
Otherwise, it is said to be spectrally unstable.

The following two theorems present the main results of this paper.

Theorem 2. Consider the operator A given by (2.2) on L̇2
per with dom(A) given

by (2.3) for p = 1 and U∗ as in (1.5). Then,

(2.5) σ(A) =
{
λ ∈ C : −π

6
≤ Re(λ) ≤ π

6

}
.

Consequently, the peaked wave U∗ is spectrally unstable in the reduced Ostrovsky
equation (1.1).
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Theorem 3. Consider the operator A given by (2.2) on L̇2
per with dom(A) given

by (2.3) for p = 2 and U∗ in (1.6). Then,

(2.6) σ(A) =
{
λ ∈ C : −π

4
≤ Re(λ) ≤ π

4

}
.

Consequently, the peaked wave U∗ is spectrally unstable in the reduced modified
Ostrovsky equation (1.2).

Remark 1. One can find the explicit eigenvector for 0 ∈ σ(A) thanks to the trans-

lational symmetry implying AU ′
∗ = 0, where U ′

∗ ∈ dom(A) ⊂ L̇2
per. Therefore,

0 ∈ σp(A). We show in Lemmas 1 and 5 that σp(A) = {0}.

Remark 2. We are not able to distinguish between residual and continuous spec-
trums in σ(A)\{0}. This is because we truncate the operator A to an operator A0

with the same domain and use the result of Theorem 1. For the operator A0 we
prove in Lemmas 2, 3, 4, and 6 that σp(A0) is empty and σr(A0) is the open vertical
strip in (2.5) and (2.6), whereas σc(A0) is the boundary of that vertical strip.

Remark 3. The Sobolev space Ḣ1
per is continuously embedded into dom(A) in the

sense that there exists C > 0 such that for every f ∈ Ḣ1
per, we have ∂z [(c∗ − Up

∗ )f ] ∈
L̇2
per with the bound

‖∂z [(c∗ − Up
∗ )f ] ‖L2

per
≤ C‖f‖H1

per
.

However, Ḣ1
per is not equivalent to dom(A) because piecewise continuous functions

with finite jump discontinuities at the points z where c∗ − Up
∗ (z) vanishes belong

to dom(A) but do not belong to Ḣ1
per. For example, the eigenvector U ′

∗ ∈ dom(A)

for 0 ∈ σp(A) does not belong to Ḣ1
per.

3. Proof of Theorem 2

For the peaked periodic wave U∗ in (1.5) in the case p = 1, we write explicitly

(3.1) c∗ − U∗(z) =
1

6

[
π2 − z2

]
, z ∈ [−π, π].

The eigenvector for 0 ∈ σp(A) is given by

(3.2) U ′
∗(z) =

1

3
z, z ∈ (−π, π).

The proof of Theorem 2 can be divided into four steps.

Step 1 (Point spectrum of A). If λ ∈ σp(A), then there exists f ∈ dom(A), f �= 0,
such that Af = λf . It follows from Remark 1 that 0 ∈ σp(A) with the eigenvector
U ′
∗ in (3.2). The following result shows that no other eigenvalues of σp(A) exist.

Lemma 1. σp(A) = {0}.

Proof. First we note that if f ∈ dom(A), then f ∈ H1(−π, π) so that f ∈ C0(−π, π)
by Sobolev embedding. Bootstrapping arguments for Af = λf immediately yield
that f ∈ C∞(−π, π); hence the spectral problem Af = λf for f ∈ dom(A) can be
differentiated once in z to yield the second-order differential equation

(3.3) (π2 − z2)f ′′(z)− 4zf ′(z) + 4f(z) = 6λf ′(z), z ∈ (−π, π).
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One solution is available in closed form: f1(z) = 2z + 3λ. In order to obtain the
second linearly independent solution, we write f2(z) = (2z+3λ)g(z) and derive the
following equation for g:

(3.4) (π2−z2)(2z+3λ)g′′(z)+2
[
2(π2 − z2)− (2z + 3λ)2

]
g′(z) = 0, z ∈ (−π, π).

This equation can be integrated once to obtain

(3.5) g′(z) =
g0

(π2 − z2)2(2z + 3λ)2

(
π + z

π − z

) 3λ
π

, z ∈ (−π, π),

where g0 is a constant of integration. Computing the limits z → ±π shows that if
±2π + 3λ �= 0, then

g′(z) ∼
{

(π − z)−
3λ
π −2, z → π,

(π + z)
3λ
π −2, z → −π.

This sharp asymptotical behavior shows that (π2 − z2)g′(z) /∈ L2(−π, π), even if
g ∈ L2(−π, π). Therefore, for every λ ∈ C with ±2π + 3λ �= 0, the second solution

f2(z) does not belong to dom(A) ⊂ L̇2
per because of the divergences as z → ±π.

For ±2π + 3λ = 0, the explicit expression (3.5) yields

g′(z) =
g0

4(π2 − z2)2(π ± z)2
, z ∈ (−π, π),

which still implies that f2 does not belong to dom(A) ⊂ L̇2
per. Hence, for every

λ ∈ C, if f ∈ dom(A) ⊂ L̇2
per is a solution to Af = λf , then f is proportional

to f1(z) = 2z + 3λ only. The zero-mass constraint
∫ π

−π
f1(z)dz = 0 required for

f1 ∈ L̇2
per yields λ = 0, so that f1(z) = 2z = 6U ′

∗(z) given by (3.2). No other λ ∈ C

such that a nonzero solution f of Af = λf belongs to dom(A) ⊂ L̇2
per exists. �

Step 2 (Truncation of A). By using (3.1), A0 in (2.4) is rewritten in the explicit
form

(3.6) (A0v)(z) =
1

6
∂z

[
(π2 − z2)v(z)

]
, z ∈ (−π, π).

Inserting the expression (3.1) in the transformation formula (1.7) for p = 1 yields

(3.7)
d z

d ξ
=

1

6
(π2 − z2),

which we can solve to find that

(3.8) z = π tanh

(
πξ

6

)
,

where the constant of integration is defined without loss of generality from the
condition that z = 0 at ξ = 0. By using the explicit transformation formula (3.8),
we can rewrite the spectral problem A0v = λv in an equivalent but more convenient
form.

Lemma 2. The spectral problem A0v = λv with A0 : dom(A0) ⊂ L̇2
per → L̇2

per

given by (3.6) is equivalent to the spectral problem B0w = μw with

(3.9) μ =
6

π
λ,
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where B0 : dom(B0) ⊂ L̃2(R) → L̃2(R) is the linear operator given by

(3.10) (B0w)(y) := ∂yw(y)− tanh(y)w(y), y ∈ R,

with maximal domain

(3.11) dom(B0) =
{
w ∈ L̃2(R) : (∂y − tanh y)w ∈ L̃2(R)

}
= H1(R) ∩ L̃2(R),

where L̃2(R) is the constrained L2 space given by

(3.12) L̃2(R) := {w ∈ L2(R) : 〈w,ϕ〉 = 0}
with ϕ(y) := sech(y).

Proof. We first show that v ∈ L2(−π, π) if and only if w ∈ L2(R). To this end, we

use the substitution rule with (3.8), set y := πξ
6 , and write v(z) = cosh(y)w(y) to

obtain that∫ π

−π

v2(z) d z = π

∫ ∞

−∞
v2(π tanh y) sech2(y) d y = π

∫ ∞

−∞
w2(y) d y.

Similarly, the zero-mean constraint in L̇2
per is transformed to

0 =

∫ π

−π

v(z)dz = π

∫ ∞

−∞
v(π tanh y) sech2(y) d y = π

∫ ∞

−∞
w(y)sech(y)dy.

Therefore, v ∈ L̇2
per if and only if w ∈ L̃2(R). Furthermore, we verify that

∂z
[
(π2 − z2)v

]
∈ L2(−π, π)

if and only if

∂yw − tanh(y)w ∈ L2(R).

Next we note that B0w ∈ L̃2(R) for every w ∈ H1(R), since

〈B0w,ϕ〉 =
∫
R

[w′(y)− tanh(y)w(y)] sech(y)dy =

∫
R

d

dy
[w(y)sech(y)] dy = 0.

(3.13)

This implies that the constraint 〈B0w,ϕ〉 = 0 is identically satisfied for every w ∈
H1(R). Moreover, if w ∈ L2(R) and [∂y−tanh(y)]w ∈ L2(R), then w ∈ H1(R). The

above arguments show that B0 is closed in L̃2(R) and dom(B0) = H1(R) ∩ L̃2(R).
Hence, the spectral problems for A0 and B0 are equivalent to each other, and the
spectral parameters λ and μ are related by the transformation formula (3.9). �

Step 3 (Spectrum of the truncated operator A0). In view of the equivalence of
the spectral problems of A0 and B0 proven in Lemma 2, we proceed to study the
spectrum of B0 in L̃2(R). The following two lemmas characterize the spectrum of
B0.

Lemma 3. The point spectrum of B0 is empty.

Proof. Let μ ∈ C and w ∈ ker(B0 − μI); i.e., w satisfies the first-order differential
equation

dw

dy
= μw(y) + tanh(y)w(y).

Solving this homogeneous equation yields

w(y) = C cosh(y)eμy
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where C is arbitrary. We have w(y) ∼ e(μ±1)y as y → ±∞, and hence the two
exponential functions decay to zero as y → ±∞ in two disjoint sets of C for μ.
Hence, w ∈ dom(B0) ⊂ L̃2(R) if and only if C = 0 for every μ ∈ C. We conclude
that w = 0, so σp(B0) = ∅. �

Lemma 4. The residual spectrum of B0 is

(3.14) σr(B0) = {μ ∈ C : −1 < Re(μ) < 1} ,

whereas the continuous spectrum of B0 is

(3.15) σc(B0) = {μ ∈ C : Re(μ) = ±1} .

Proof. Let f ∈ L̃2(R), μ ∈ C, and consider the resolvent equation (B0 −μI)w = f ,
i.e.

(3.16)
dw

dy
− tanh(y)w(y)− μw(y) = f(y).

Since the spectrum σ(B0) is invariant under translations along the imaginary axis,
it suffices to study equation (3.16) for μ ∈ R; see also Theorem 3.13 in [3]. In what
follows, we will study for which μ ∈ R the resolvent equation (3.16) has a solution
w in dom(B0). Note that if μ �= 0 and w ∈ H1(R) is a solution to (3.16), then
the constraint 〈f, ϕ〉 = 0 implies that 〈w,ϕ〉 = 0, so that w ∈ H1(R) implies that

w ∈ dom(B0) = H1(R) ∩ L̃2(R). On the other hand, if μ = 0 and w ∈ H1(R)
is a solution to (3.16), then the constraint 〈w,ϕ〉 = 0 is needed to ensure that
w ∈ dom(B0).

Solving the first-order inhomogeneous equation (3.16) by variation of parameters
yields

(3.17) w(y) = cosh(y)eμy
[
C +

∫ y

0

e−μy′
sech(y′)f(y′) d y′

]
,

from which we infer that w ∈ H1
loc(R). However, we also need to consider the

behavior of w(y) as y → ±∞ to ensure that w ∈ dom(B0).
Let us first show that the half line I+ := {μ ∈ R : μ > 1} belongs to the

resolvent set of B0. Since e(μ+1)y diverges as y → +∞ for every μ ∈ I+, we define
C in (3.17) by

(3.18) C := −
∫ ∞

0

e−μy′
sech(y′)f(y′) d y′,

so that the unique solution (3.17) can be rewritten as

(3.19) w(y) =

∫ y

+∞
eμ(y−y′) cosh(y)

cosh(y′)
f(y′) d y′.

The following two equivalent representations will be useful in the estimates below:

cosh(y)

cosh(y′)
=

1 + e2y

1 + e2y′ e
y′−y(3.20)

=
1 + e−2y

1 + e−2y′ e
y−y′

.(3.21)

Let f = fχ{y>0}+fχ{y<0}, where χS is the characteristic function on the set S ⊂ R,
and define w± by (3.19) with f replaced by fχ{±y>0} so that w = w++w−. Using
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(3.20) for y < 0 and (3.21) for y > 0, we obtain

for y < 0 : |w+(y)| ≤
∫ +∞

0

e−(μ−1)(y′−y)|f(y′)|dy′

and

for y > 0 : |w+(y)| ≤ 2

∫ +∞

y

e−(μ+1)(y′−y)|f(y′)|dy′.

By the Cauchy–Schwarz inequality for y < 0 and by the generalized Young’s in-
equality for y > 0, we obtain

‖w+‖L2(R−) ≤ ‖e−(μ−1)·‖L2(R+)‖f‖L2(R+)‖e(μ−1)·‖L2(R−) ≤
1

2(μ− 1)
‖f‖L2(R+)

and

‖w+‖L2(R+) ≤ 2‖e−(μ+1)·‖L1(R+)‖f‖L2(R+) ≤
2

μ+ 1
‖f‖L2(R+).

On the other hand, w−(y) = 0 for y > 0 and

y < 0 : |w−(y)| ≤ 2

∫ 0

y

e−(μ−1)(y′−y)|f(y′)|dy′,

where the representation (3.20) has been used. By the generalized Young’s inequal-
ity, we obtain

‖w−‖L2(R) ≤ 2‖e−(μ−1)·‖L1(R+)‖f‖L2(R−) ≤
2

μ− 1
‖f‖L2(R−).

Putting these bounds together yields

(3.22) ‖w‖L2(R) ≤ Cμ‖f‖L2(R),

where the constant Cμ > 0 depends on μ and is bounded for every μ > 1. Thus, we
have showed that I+ ∈ ρ(B0). Similarly, one can show that I− := {μ∈R : μ<−1}
also belongs to the resolvent set of B0 due to the same bound (3.22) for every
μ ∈ I−. Hence, I+ ∪ I− � ρ(B0). It remains to show that [−1, 1] � σ(B0). More
precisely, we show that μ ∈ σr(B0) if μ ∈ (−1, 1) and μ ∈ σc(B0) if μ = ±1. We
use again the explicit solution w ∈ H1

loc(R) given in (3.17).

If μ ∈ (−1, 1), then the exponential functions e(μ+1)y and e(μ−1)y do not decay
to zero as y → +∞ and y → −∞, respectively. Therefore, to ensure decay of w(y)
as y → ±∞, the constant C in (3.17) would have to be defined twice:

(3.23) C = −
∫ ∞

0

e−μy′
sech(y′)f(y′) d y′ =

∫ 0

−∞
e−μy′

sech(y′)f(y′)dy′.

This implies that f ∈ L̃2(R) would have to satisfy an additional constraint

(3.24)

∫
R

e−μy′
sech(y′)f(y′)dy′ = 0,

which is different from 〈f, ϕ〉 = 0 if μ �= 0. Fix μ ∈ R such that μ ∈ (−1, 1) and

μ �= 0. If f ∈ L̃2(R) satisfies (3.24), then there exists a solution w ∈ dom(B0) to the
resolvent equation (3.16), since the previous analysis has shown that the solution w

given by (3.17) with (3.23) decays to zero at infinity. If f ∈ L̃2(R) does not satisfy

(3.24), then no such solution w ∈ dom(B0) exists. Hence, there exist f ∈ L̇2(R)

such that for all w ∈ dom(B0) we have (B0−μI)w �= f , i.e., ran(B0−μI) � L̃2(R).
This implies that this μ belongs to σr(B0).
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In the special case μ = 0, the constraint (3.24) coincides with 〈f, ϕ〉 = 0. For
μ = 0 the unique solution (3.17) with C as in (3.18) can be rewritten as

(3.25) w(y) =

∫ y

∞

cosh(y)

cosh(y′)
f(y′) d y′.

If 〈f, ϕ〉 = 0, then the solution (3.25) belongs to H1(R). The constraint 〈w,ϕ〉 = 0,
however, is satisfied only under the additional constraint

(3.26)

∫
R

∫ y

∞
sech(y′)f(y′) d y′ d y = 0.

Therefore, for μ = 0, there exists no solution w ∈ dom(B0) to the resolvent equation

(3.16) unless f ∈ L̃2(R) satisfies (3.26). This implies again that ran(B0) � L̃2(R)
and so 0 ∈ σr(B0). All together we have established that σr(B0) is given by (3.14).

Finally, if μ = ±1, one of the two exponential functions e(μ+1)y and e(μ−1)y

in (3.17) does not decay to zero both as y → +∞ and y → −∞. Moreover, the
improper integral in (3.17) does not converge for f ∈ L2(R), f /∈ L1(R) because

e±y′
sech(y′) → 2 as y′ → ±∞. Therefore, the solution w in (3.17) does not decay

to zero and does not belong to dom(B0) independently on the constraint on C,

and hence (B0 − μI)−1 : L̃2(R) → L̃2(R) is unbounded. We conclude that such μ
belongs to σc(B0) given by (3.15). �

Corollary 1. The spectrum of A0 completely covers the closed vertical strip given
by

(3.27) σ(A0) =
{
λ ∈ C : −π

6
≤ Re(λ) ≤ π

6

}
.

Proof. The result follows from Lemmas 2, 3, and 4. �

Step 4 (Justification of the truncation). In this last step, we verify that the assump-
tions of the abstract Theorem 1 hold for our operators. Indeed, by Lemmas 2 and
3, we have σp(A0) = σp(B0) = ∅. Therefore, ρ(A)∩σp(A0) = ∅. Moreover, Lemma
1 states that σp(A) = {0}; hence Corollary 1 implies that ρ(A0) ∩ σp(A) = ∅.
Therefore, we may conclude from Theorem 1 that σ(A) = σ(A0), which together
with (3.27) yields (2.5). This finishes the proof of Theorem 2.

Remark 4. We can generalize our instability result from coperiodic perturbations to
subharmonic and localized perturbations by analyzing the Floquet-Bloch spectrum.
In particular, we find that the spectrum of A remains invariant with respect to the
Floquet exponent k in the following decomposition:

v(z) = eikzp(z),

where p(z + 2π) = p(z) and k ∈ [− 1
2 ,

1
2 ]. By setting z = π tanh(y), v(z) =

cosh(y)w(y) as in Lemma 2, we rewrite the resolvent equation (3.16) in the fol-
lowing form:

dq

dy
− tanh(y)q(y) + ikπ sech2(y)q(y)− μq(y) = g(y),

with q(y) = e−ikπ tanh(y)w(y) and g(y) = e−ikπ tanh(y)f(y). The general solution of
this differential equation is obtained from (3.17) and given by

q(y) = cosh(y)eμy−ikπ tanh(y)

[
C +

∫ y

0

e−μy′+ikπ tanh(y′)sech(y′)g(y′) d y′
]
.
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Since k is real, the analysis of this solution is exactly the same as that of (3.17) in
the proof of Lemma 4. The estimates are independent of k; therefore the spectrum
of the linearized operator A remains the same when the co-periodic perturbations
are replaced by subharmonic or localized perturbations.

Remark 5. If the constraint in (3.12) is dropped, one can define the differential

operator B̃0 : H1(R) ⊂ L2(R) → L2(R), where B̃0 has the same differential ex-
pression as B0 in (3.10). The proofs of Lemmas 3 and 4 are extended with little

modifications to show that σp(B̃0) = ∅, σr(B̃0) = σr(B0), and σc(B̃0) = σc(B0). In

addition, the same location of the spectrum of B̃0 follows by Lemma 6.2.6 in [2].

Indeed, the adjoint operator B̃∗
0 : H1(R) ⊂ L2(R) → L2(R) is defined by

(B̃∗
0w)(y) := −∂yw(y)− tanh(y)w(y), y ∈ R,

and the exact solution of the differential equation

−dw

dy
− tanh(y)w(y) = μw(y)

is given by

w(y) = Ce−μysech(y),

where C is arbitrary. From the decay of exponential functions, we verify directly
that σp(B̃

∗
0) is given by (3.14) and σc(B̃

∗
0) is given by (3.15). However, since

σp(B̃0) = ∅, Lemma 6.2.6 in [2] implies that σr(B̃
∗
0) = ∅, σp(B̃

∗
0) = σr(B̃0), and

σc(B̃
∗
0) = σc(B̃0), which is in agreement with the location of σr(B̃0) and σc(B̃0)

obtained from direct computation.

4. Proof of Theorem 3

For the peaked periodic wave U∗ in (1.6) in the case p = 2, we write explicitly

(4.1) c∗ − U2
∗ (z) =

1

2
|z| (π − |z|) , z ∈ [−π, π].

The eigenvector for 0 ∈ σp(A) is given by

(4.2) U ′
∗(z) =

1√
2
sign(z), z ∈ (−π, π).

We follow the same four steps as in the proof of Theorem 2. Note that now there
exist two peaks of the periodic wave (1.6) on the 2π-period: one is located at
z = ±π, and the other one is located at z = 0. This modifies the proofs of Lemmas
1 and 2 in Steps 1 and 2, whereas Steps 3 and 4 are exactly as in the case p = 1.

Step 1 (Point spectrum of A). The following lemma is an adaptation of Lemma 1
for the case p = 2.

Lemma 5. σp(A) = {0}.

Proof. If f ∈ dom(A), then f ∈ H1(−π, 0) ∩ H1(0, π) so that f ∈ C0(−π, 0) ∩
C0(0, π) by Sobolev embedding. Bootstrapping arguments for Af = λf immedi-
ately yield that f ∈ C∞(−π, 0) ∩ C∞(0, π). Hence, the spectral problem Af = λf
for f ∈ dom(A) can be differentiated once in z on (−π, 0) and (0, π) to yield the
second-order differential equation

(4.3) |z|(π − |z|)f ′′(z) + 2sign(z)(π − 2|z|)f ′(z) = 2λf ′(z), z ∈ (−π, 0) ∪ (0, π).
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Integrating (4.3) separately for ±z ∈ (0, π) yields

(4.4) f ′(z) =
g±

z2(π − |z|)2

(
z

π − |z|

)± 2λ
π

, ±z ∈ (0, π),

where g± are constants of integration. Computing the limits z → 0 and z → ±π
similarly to the proof of Lemma 1 shows that |z|(π−|z|)f ′(z) belongs to L2(−π, 0)∩
L2(0, π) if and only if g+ = g− = 0. In this case, f(z) = f± for ±z ∈ (0, π) with

constant f± and the zero-mass constraint
∫ π

−π
f(z)dz = 0 required for f ∈ L̇2

per

yields f± = ±f0 with only one scaling constant f0. Hence the only solution of

Af = λf with f ∈ dom(A) ⊂ L̇2
per is given by f(z) = f0 sign(z) =

√
2f0U

′
∗(z)

given by (4.2). Inspecting A in (2.2) with p = 2 shows that (Af)(z) is even in z,
whereas λf(z) is odd in z. Hence, λ = 0 is the only admissible value of λ for this
solution. No other λ ∈ C exists such that a nonzero solution f of Af = λf belongs
to dom(A) ⊂ L̇2

per. �

Step 2 (Truncation of A). By using (4.1), A0 in (2.4) is rewritten in the explicit
form

(4.5) (A0v)(z) =
1

2
∂z [|z|(π − |z|)v(z)] , z ∈ (−π, π).

The explicit expression (4.1) in the transformation formula (1.7) for p = 2 yields

(4.6)
d z

d ξ
=

1

2
|z|(π − |z|).

Both z = ±π and z = 0 are critical points of (4.6), so the interval [−π, π] cannot
be mapped bijectively to R as in the case p = 1. However, we are able to map the
half-intervals [−π, 0] and [0, π] between the two peaks separately to R. These maps
are given explicitly as the solutions of (4.6) by

(4.7) z = z+(ξ) :=
πe

πξ
2

1 + e
πξ
2

for z ∈ [0, π], and

(4.8) z = z−(ξ) := − π

1 + e
πξ
2

,

for z ∈ [−π, 0], where the constants of integration are defined without loss of
generality from the conditions z±(0) = ±π

2 . The following is an adaptation of
Lemma 2 when p = 2.

Lemma 6. The spectral problem A0v = λv with A0 : dom(A0) ⊂ L̇2
per → L̇2

per

given by (4.5) is equivalent to the spectral problem B0w = μw with

(4.9) μ =
4

π
λ,

where B0 : dom(B0) ⊂ L̃2(R) → L̃2(R) is the same linear operator as is given in
(3.10) with the domain (3.11).

Proof. First, we consider the problem on the half-interval [0, π]. By setting y := π
4 ξ

and v(z+) = cosh(y)w+(y), we obtain by the substitution rule and using (4.7) that∫ π

0

v2(z) d z =
π

2

∫ ∞

−∞
v2(z+) sech

2(y) d y =
π

2

∫ ∞

−∞
w2

+(y) d y;
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hence v ∈ L2(0, π) if and only if w+ ∈ L2(R). Similarly, we verify that

∂z [z(π − z)v] ∈ L2(0, π)

if and only if

∂yw+ − tanh(y)w+ ∈ L2(R).

Next, we consider the problem on the half-interval [−π, 0]. By setting v(z−) =
cosh(y)w−(y) and using (4.8), we obtain by the same computations that v ∈
L2(−π, 0) if and only if w− ∈ L2(R), whereas

∂z [z(π + z)v] ∈ L2(−π, 0)

if and only if

∂yw− − tanh(y)w− ∈ L2(R).

The zero-mean constraint in L̇2
per is transformed as follows:

0 =

∫ π

−π

v(z)dz =
π

2

∫
R

[v(z−) + v(z+)] sech
2(y)dy

=
π

2

∫
R

[w−(y) + w+(y)] sech(y)dy.

Therefore, v ∈ L̇2
per if and only if w ∈ L̃2(R), where w := w+ + w− and L̃2(R) is

defined by (3.12). In view of (3.13) we find that B0w ∈ L̃2(R) for w = w+ +w− ∈
H1(R). Considering the differential equation A0v = λv on the half-intervals [−π, 0]
and [0, π], we use the relations v(z±) = cosh(y)w±(y), the chain rule, and the
transformation formula (4.9) to obtain the equation B0w± = μw±, where the dif-
ferential expression for B0 is given by (3.10). By the linear superposition principle,

w ∈ dom(B0) ⊂ L̃2(R) defined by (3.11) satisfies the same equation B0w = μw
as w+ and w−. Hence, the spectral problems for A0 and B0 are equivalent to
each other, and the spectral parameters λ and μ are related by the transformation
formula (4.9). �

Step 3 (Spectrum of the truncated operator A0). Since the operator B0 in Lemma
6 is identical with the one in Lemma 2, the results of Lemmas 3 and 4 apply directly
to the case p = 2 and give the following result.

Corollary 2. The spectrum of A0 completely covers the closed vertical strip given
by

(4.10) σ(A0) =
{
λ ∈ C : −π

4
≤ Re(λ) ≤ π

4

}
.

Step 4 (Justification of the truncation). In this last step, we verify that the as-
sumptions of the abstract Theorem 1 hold also in the case p = 2. Since σp(A0) = ∅,
ρ(A) ∩ σp(A0) = ∅. Furthermore, Lemma 5 states that σp(A) = {0}; hence Corol-
lary 2 implies that ρ(A0)∩σp(A) = ∅. Therefore, we may conclude from Theorem 1
that σ(A) = σ(A0), which together with (4.10) yields (2.6). This finishes the proof
of Theorem 3.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

SPECTRAL INSTABILITY OF THE PEAKED PERIODIC WAVE 5123

Appendix: Proof of Theorem 1

Assume that λ ∈ σ(A0) but λ ∈ ρ(A). Hence, for every f ∈ dom(A), we can
write

(A.1) f = (A− λI)−1(K +A0 − λI)f,

where (A − λI)−1 : X → X is a bounded operator. The operator (A − λI)−1K :
X → X is compact as a composition of bounded and compact operators. Therefore,
the spectrum of I − (A − λI)−1K in X consists of eigenvalues accumulating at 1.
Therefore, the Fredholm alternative holds: (i) either this operator is invertible for
this λ with a bounded inverse or (ii) there exists f0 ∈ dom(A), f0 �= 0, such that
f0 = (A− λI)−1Kf0.

In the case (i), we can rewrite (A.1) for every f ∈ dom(A) in the form

(A.2) f = (I − (A− λI)−1K)−1(A− λI)−1(A0 − λI)f,

from which we obtain a contradiction against the assumption λ ∈ σ(A0). Indeed, if
λ ∈ σp(A0), then there exists f0 ∈ dom(A0), f0 �= 0, such that (A0 − λI)f0 = 0, in
which case equation (A.2) yields that f0 = 0, a contradiction. On the other hand,
if λ ∈ σr(A0), then there exists g0 ∈ X such that g0 /∈ ran(A0 − λI). This is in
contradiction with (A.2) since for every g0 ∈ X, there exists a unique f0 ∈ dom(A)
such that

(A− λI)(I − (A− λI)−1K)f0 = g0 = (A0 − λI)f0.

Finally, if λ ∈ σc(A0), then for f ∈ dom(A0) we let g := (A0−λI)f ∈ X and obtain
from (A.2) that

(A.3) ‖f‖X = ‖(I − (A− λI)−1K)−1(A− λI)−1g‖X ≤ C‖g‖X
for some C > 0. Since λ ∈ σc(A0), we have ran(A0 − λI) = X for this λ, and since
f ∈ dom(A0) is arbitrary, the bound (A.3) implies that for every g ∈ X,

‖(A0 − λI)−1g‖X ≤ C‖g‖X ,

in contradiction with the assumption λ ∈ σc(A0).
In the case (ii), there exists f0 ∈ dom(A), f0 �= 0, such that f0 = (A−λI)−1Kf0,

and hence we can rewrite (A.1) for this f0 as

(A− λI)−1(A0 − λI)f0 = 0.

Therefore, we have (A0 − λI)f0 = 0, and hence λ ∈ σp(A0), in contradiction with
the assumption that the intersection σp(A0) ∩ ρ(A) is empty.

Thus, if λ ∈ σ(A0), then λ ∈ σ(A). Since A0 − A = −K and the previous
argument does not depend on the sign of K, the reverse statement is true. Hence,
σ(A) = σ(A0). �
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