
INSTABILITY OF THE PEAKED TRAVELING WAVE
IN A LOCAL MODEL FOR SHALLOW WATER WAVES
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Abstract. The traveling wave with the peaked profile arises in the limit of the family
of traveling waves with the smooth profiles. We study the linear and nonlinear stability
of the peaked traveling wave by using a local model for shallow water waves, which is
related to the Hunter–Saxton equation. The evolution problem is well-defined in the
function space H1

per ∩ W 1,∞, where we derive the linearized equations of motion and
study the nonlinear evolution of co-periodic perturbations to the peaked periodic wave by
using methods of characteristics. Within the linearized equations, we prove the spectral
instability of the peaked traveling wave from the spectrum of the linearized operator in
a Hilbert space, which completely covers the closed vertical strip with a specific half-
width. Within the nonlinear equations, we prove the nonlinear instability of the peaked
traveling wave by showing that the gradient of perturbations grow at the wave peak.
By using numerical approximations of the smooth traveling waves and the spectrum of
their associated linearized operator, we show that the spectral instability of the peaked
traveling wave cannot be obtained in the limit along the family of the spectrally stable
smooth traveling waves.

1. Introduction

Instabilities of steadily propagating waves with the periodic profiles on a fluid surface,
called Stokes waves, have been recently explored within Euler’s equations in many com-
putational details due to advanced numerical algorithms with high precision and accuracy
[14, 15, 16, 29]. As the Stokes waves become steeper, they become increasingly unstable
with respect to co-periodic perturbations, since the spectral stability problem admits more
isolated unstable eigenvalues that bifurcate from the origin due to coalescence of pairs of
purely imaginary eigenvalues and splitting into pairs of real eigenvalues [15, 29]. It is
believed that the stability of the limiting Stokes waves with the peaked profile [3, 43, 45]
can be concluded by studying eigenvalues of the spectral stability problem for the Stokes
waves with the smooth profiles. A similar cascade of instabilities near the limit to the
periodic wave with the maximal height is observed in other nonlocal wave models such as
the Whitham equation [7].

The purpose of this paper is to study the linear and nonlinear instability of the trav-
eling waves with the peaked profile within a local model for evolution of surface water
waves:

2cηtx = (c2 − 2η)ηxx − (ηx)
2 + η, (1.1)
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where η = η(t, x) is the surface elevation and c > 0 is the wave speed. The subscripts
denote partial derivatives of η in t and x. We study 2π-periodic solutions in x and denote
the 2π-periodic domain as T so that η(t, x) : R× T→ R.

The local model (1.1) without the last term was derived in [26] for the dynamics of
direction fields and has been referred to as the Hunter–Saxton equation [27]. The same
model (1.1) was also discussed in [1, 2] in the connection to the high-frequency limit of
the Camassa–Holm equation, one of the toy models for the physics of fluids with smooth
and peaked traveling waves:

uτ − uτξξ + kuξ + 3uuξ = 2uξuξξ + uuξξξ, (1.2)

where u = u(τ, ξ) is the horizontal velocity and k > 0 is the parameter. By using the
transformation

u(τ, ξ) = 2η(t, x), t = 2cε−1τ, x = ε−1(ξ − c2τ), k = ε−2, (1.3)

we keep only the leading-order terms at the formal O(ε−3) order. After integrating the
leading-order terms once in x with zero integration constant, the Camassa–Holm equation
(1.2) is reduced to the Hunter–Saxton equation (1.1) in the high-frequency limit ε→ 0.

The particular form of the local model (1.1) was suggested in [37] based on the refor-
mulation of Euler’s equations after a conformal transformation of the fluid domain with
variable surface to a fixed rectangular domain and a formal truncation of the model near
the traveling wave, see Appendix A in [37]. In this context, x is the horizontal coor-
dinate of the rectangular domain after the conformal transformation and t is the time
variable defined in the traveling frame moving with the speed c. The traveling waves of
Euler’s equations correspond to the time-independent solutions of the local model (1.1).
The local model (1.1) represents the nonlocal Babenko equation [4] for traveling waves
in shallow fluid after a transformation similar to the high-frequency limit (1.3) for the
Camassa-Holm equation (1.2), see Appendix B in [37].

Integrability of the local model (1.1) was established in [25] together with other peaked
wave equations such as the reduced Ostrovsky and short-pulse equations. Some traveling
wave solutions of these peaked wave equations were studied with Hirota’s bilinear method
in [41] and with the dynamical system methods in [37]. Local wellposedness in Sobolev
spaces for sufficiently smooth solutions has been proven in [46].

The Hunter–Saxton equation (1.1) and the Camassa–Holm equation (1.2) have the
traveling periodic waves with the smooth, peaked, and cusped profiles such that the
families of smooth and cusped profiles are connected at the limiting wave with the peaked
profile [19, 33, 37]. In the Camassa–Holm equation (1.2), smooth traveling waves are
linearly and nonlinearly stable [13, 17, 19, 32, 34, 39], whereas the peaked traveling waves
are linearly and nonlinearly unstable in the W 1,∞ norm [31, 40, 42], despite the fact that
the perturbations do not grow in the H1 norm [11, 12, 35, 36]. In the Hunter–Saxton
equation (1.1), the linear stability of the smooth periodic waves was proven in [37]. The
linear and nonlinear instability of the limiting periodic wave with the peaked profile in
H1

per ∩ W 1,∞ is the main result of the present study. Stability of the cusped traveling
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waves is an open problem for both models due to the lack of local well-posedness of the
initial-value problem in the function spaces to which the cusped profiles belong.

For completeness, we also mention relevant results on the existence and stability of
traveling periodic waves in the reduced Ostrovsky equation

(vt + vvx)x = v, (1.4)

which is very similar to the Hunter–Saxton equation (1.1) rewritten in the form

(2cηt − c2ηx + 2ηηx)x = η + (ηx)
2. (1.5)

Linear and nonlinear stability of the smooth traveling periodic waves were obtained for
the reduced Ostrovsky equation (1.4) in [20, 23, 28]. Uniqueness of the traveling periodic
waves with the peaked profiles was shown in [5, 21], the results of which rule out the
existence of the traveling periodic waves with the cusped profiles stated incorrectly in
[24]. The linear instability of the peaked traveling periodic waves was proven in [21, 22].

We note that the spectral stability problem Lψ = λψ′ with a self-adjoint operator L
in a Hilbert space, considered in [44], appears naturally for the Hunter–Saxton equation
(1.5) linearized at the traveling periodic waves, with L being a Hessian operator defined
by the variational characterization of the traveling periodic waves, see (2.5) and (4.1)
below. In the context of the reduced Ostrovsky equation (1.4), the same spectral stability
problem Lψ = λψ′ with a different Hessian operator L is obtained after the hodograph
transformation [23, 24, 44].

In a similar context of the cubic Novikov equation, smooth traveling waves were found
to be linearly and nonlinearly stable [18], whereas the peaked traveling waves were shown
to be linearly and nonlinearly unstable in the W 1,∞ norm [10, 30] despite the perturbations
do not grow in the H1 ∩W 1,4 norm [8, 9].

We now describe the main results and the organization of the paper.

Section 2 presents the local well-posedness result in H1
per(T) ∩W 1,∞(T) suitable for

waves with the peaked profiles, see Theorem 1 below, as well as the conserved quantities
useful in the analysis of stability of traveling waves with both smooth and peaked profiles.

Section 3 introduces the traveling waves with the smooth and peaked profiles, see
Figure 1. Linearized equations of motion for the traveling waves are derived in Section
4. For the smooth profiles, the spectral stability problem is equivalent to Lψ = λψ′ with
a self-adjoint operator L in a Hilbert space considered in [44], see equation (4.1). For
the peaked profiles, the spectral stability problem Lψ = λψ′ becomes singular and the
proper linearization is based on the local well-posedness result for the time evolution in
H1

per(T) ∩W 1,∞(T), see equation (4.7). For the spectral theory in Hilbert spaces, it is
more convenient to consider the linearized operator for the traveling wave with the peaked
profile in the class of functions broader than the function space needed for the local well-
posedness results. This gives us the linearized operator A : D ⊂ L2(T)→ L2(T) given by
(4.14) and (4.15).

Sections 5 and 6 contain the spectral analysis of the linearized operator A : D ⊂
L2(T) → L2(T) and its truncation to the unbounded local differential part A0 : D ⊂
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L2(T) → L2(T). In both cases, we obtain the exact location of the point spectrum and
the resolvent set separated by the boundary which belongs to the spectrum, see Theorems
2 and 3 below. Since the spectrum is located in the closed vertical strip symmetrically
with respect to iR with a nonzero half-width of the strip, we conclude that the peaked
traveling wave is spectrally unstable in a Hilbert space L2(T).

The nonlinear instability result for the peaked traveling wave is proven in Section 7,
see Theorem 4, by using the method of characteristics. To define the nonlinear evolution
and to use the method of characteristics, we again consider perturbations to the peaked
traveling wave in the function space H1

per(T)∩W 1,∞(T), which is a subset of the function
space where the spectral instability has been proven. As a result, the nonlinear instability
result is not trivially concluded from the spectral instability result. One of the main
difficulties in establishing the nonlinear instability of the peaked traveling waves in the
Hilbert space H1

per(T) is that the initial-value problem associated with equation (1.5)

cannot be solved using the semigroup approach for initial data in H1
per(T), compared to

initial data in smoother Sobolev spaces for the smooth traveling waves [46]. To prove the
nonlinear instability of the peaked traveling wave, we show that the W 1,∞ norm of the
perturbation grows in time. However, we do not know if the H1

per norm of the perturbation
grows or stays bounded, compared to the case of the Camassa–Holm equation [12, 35].

Section 8 contains numerical approximations of the periodic waves with the smooth
profiles and eigenvalues of the corresponding Hessian operator L in the spectral stability
problem Lψ = λψ′. We show that the spectral instability of the peaked wave cannot be
obtained in the limit along the family of the spectrally stable smooth waves. This further
emphasizes that the stability analysis of the smooth and peaked traveling waves is very
different from each other.

2. Evolution and conserved quantities

Taking the mean value of the local model (1.5) for the C1-smooth 2π-periodic solutions
η ∈ C1(R× T) and integrating by parts yields the constraint∮ [

η + (∂xη)2
]
dx = 0. (2.1)

Let Π0 : L2(T)→ L2(T)|{1}⊥ be a projection operator to the periodic functions with zero
mean. The local model (1.5) can be written in the evolution form

2c∂tη = (c2 − 2η)∂xη + Π0∂
−1
x Π0

[
(∂xη)2 + η

]
, (2.2)

where Π0∂
−1
x Π0 : L2(T)→ L2(T)|{1}⊥ is uniquely defined on the periodic functions under

the zero-mean constraint. The local well-posedness result suitable for solutions with the
peaked profiles is given by the following theorem.

Theorem 1. For every η0 ∈ H1
per(T)∩W 1,∞(T), there exist τ0 > 0 and a unique solution

η ∈ C0((−τ0, τ0), H1
per(T) ∩ W 1,∞(T)) ∩ C1((−τ0, τ0), L2(T) ∩ L∞(T)) of the evolution
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equation (2.2) with η(0, ·) = η0, which is also continuous with respect to the initial data
η0 ∈ H1

per(T) ∩W 1,∞(T).

Proof. The evolution equation (2.2) is a nonlocal version of the inviscid Burgers equation
2c∂tη = (c2 − 2η)∂xη. Since

‖Π0∂
−1
x Π0

[
η + (∂xη)2

]
‖L2 ≤ ‖η + (∂xη)2‖L2 ≤ ‖η‖L2 + ‖∂xη‖L∞‖∂xη‖L2 ,

‖Π0∂
−1
x Π0

[
η + (∂xη)2

]
‖L∞ ≤ ‖η + (∂xη)2‖L1 ≤

√
2π‖η‖L2 + ‖∂xη‖2L2 ,

‖∂xΠ0∂
−1
x Π0

[
η + (∂xη)2

]
‖L2∩L∞ ≤ ‖η + (∂xη)2‖L2∩L∞ ≤ ‖η‖L2∩L∞ + ‖∂xη‖L∞‖∂xη‖L2∩L∞ ,

the nonlocal term Π0∂
−1
x Π0 [η + (∂xη)2] is a bounded operator from a ball in H1

per(T) ∩
W 1,∞(T) to H1

per(T) ∩W 1,∞(T). Local well-posedness in H1
per(T) ∩W 1,∞(T) follows by

using the method of characteristics. �

Remark 1. The same argument can be used to establish the local well-posedness of the
evolution equation (2.2) in smooth Sobolev spaces Hs

per(T) with s > 3
2
, see [46]. The smooth

Sobolev spaces are continuously embedded into the function space H1
per(T) ∩W 1,∞(T).

The mass, momentum, and energy conservation of the evolution equation (2.2) are
obtained for the smooth solution η ∈ C0((−τ0, τ0), Hs

per(T)) with s > 3
2
. Multiplying (1.1)

by ∂xη, and integrating over the period, yields conservation of the momentum

Q(η) :=
1

2

∮
(∂xη)2dx, (2.3)

and in view of the constraint (2.1), also conservation of the mass

M(η) :=

∮
ηdx. (2.4)

Furthermore, writing (2.2) in the Hamiltonian form

2c∂tη = −Π0∂
−1
x Π0

[
c2Q′(η)−H ′(η)

]
, (2.5)

where

H(η) :=
1

2

∮ [
η2 + 2η(∂xη)2

]
dx, (2.6)

yields conservation of the energy H(η).

Remark 2. Due to integrability of the local model (1.1), higher-order conserved quantities
exist. Nevertheless, conservation of Q(η), M(η), and H(η) is sufficient for the existence
and stability analysis of the traveling waves with the smooth and peaked profiles.

3. Traveling wave with the smooth and peaked profiles

A traveling wave with the speed c and the smooth profile η ∈ C∞per(T) corresponds
to the time-independent solution of the local model (1.1) found from the second-order
differential equation

(c2 − 2η)η′′ − (η′)2 + η = 0, x ∈ T. (3.1)
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This equation is integrable with the first-order invariant

E(η, η′) =
1

2
(c2 − 2η)(η′)2 +

1

2
η2 = E , (3.2)

the value of which is independent of x.

It was shown in [37] that the family of smooth 2π-periodic solutions η ∈ C∞per(T) exists

for c ∈ (1, c∗) with c∗ := π
2
√
2
. The peaked profile η∗ ∈ C0

per(T) ∩W 1,∞(T) corresponds to

c = c∗ and is given explicitly as

η∗(x) =
1

16
(π2 − 4π|x|+ 2x2), x ∈ [−π, π], (3.3)

extended as a 2π-periodic function on T. It is easy to verify the validity of η∗ in (3.3) as
a solution of (3.1) for x ∈ [−π, 0) ∪ (0, π] with

max
x∈T

η∗(x) = η∗(0) =
c2∗
2
.

The peaked profile η∗ ∈ C0
per(T)∩W 1,∞(T) corresponds to the marginal value of Ec := c4

8

in (3.2), which separates the smooth profiles for E ∈ (0, Ec) and the cusped profiles for
E ∈ (Ec,∞). The value of c = c∗ is selected by setting the period of the peaked profile to
2π. The slope of the peaked profile η∗ has a finite jump discontinuity at x = 0 since

η′∗(x) = −1

4
(π − |x|)sign(x) x ∈ [−π, π], (3.4)

which implies that η′∗(0
+) − η′∗(0

−) = −π
2
. By using the Dirac delta distribution δ0 at

x = 0, we can express the finite jump discontinuity of η′∗(x) as the Dirac delta singularity
of the second derivative at x = 0:

η′′∗(x) =
1

4
− π

2
δ0, x ∈ [−π, π]. (3.5)

It can be checked through explicit computations that the periodic solution with the peaked
profile (3.3) satisfies the constraint (2.1).

Figure 1 presents the periodic profiles η of the traveling waves for two values of c
in (1, c∗) and for c = c∗ (left) as well as the dependence of the wave amplitude ‖η‖L∞
versus c (right). The wave profiles were approximated numerically, see Section 8. The
peaked profile η∗ is shown by a dashed line on the left panel and the corresponding value
c∗ is shown by a dashed vertical line on the right panel. The family of periodic waves is
continued past c = c∗ with the cusped profiles for c ∈ (c∗, c∞), where c∞ is numerically
computed (dashed-dotted line) [37].

Remark 3. In the context of Babenko’s equation [4] for the fluid of infinite depth, it is
shown in [38] that the peaked profiles with the local behavior as in (3.4) do not exist after the
conformal transformation of the fluid domain. Nevertheless, the existence of the peaked
profiles is well established for the local evolution equations such as the Hunter–Saxton
equation (1.1), the Camassa–Holm equation (1.2), and the reduced Ostrovsky equation
(1.4) with x being the horizontal coordinate of the original fluid domain.
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Figure 1. (a) The solid lines represent the smooth profiles η for c =
1.03, 1.07. The dashed line represents the peaked profile η∗ for c = c∗.
(b) The wave amplitude versus the wave speed c for smooth profiles in
(1, c∗) and cusped profiles in (c∗, c∞), where c∗ ≈ 1.1107 (dashed line) and
c∞ ≈ 1.1850 (dashed-dotted line).

4. Linearization at the smooth and peaked traveling waves

Let η ∈ C∞per(T) be the spatial profile of the smooth traveling waves for c ∈ (1, c∗).
The second-order equation (3.1) is equivalent to the Euler–Lagrange equation

H ′(η)− c2Q′(η) = 0.

Adding a perturbation ζ(t, x) to η(x) and linearizing the evolution equation (2.5), we
obtain the linearized equation in the form

2c∂tζ = −Π0∂
−1
x Π0Lζ, L := −∂x(c2 − 2η)∂x + (2η′′ − 1), (4.1)

where L : H2
per(T) ⊂ L2(T) → L2(T) is the Hessian operator for c2Q(η) − H(η) at the

profile η ∈ C∞per(T). As c → c∗ and η → η∗ ∈ C0
per(T) ∩W 1,∞(T), the Hessian operator

becomes singular since

2η′′∗(x)− 1 = −1

2
− πδ0, x ∈ [−π, π].

This suggests that the linearized equation (4.1) breaks at the peaked traveling wave. We
need to be careful to linearize the evolution equation (2.5) about the traveling wave with
the peaked profile η∗ by working in the function space H1

per(T)∩W 1,∞(T), where the local
well-posedness is established by Theorem 1.

To get the proper linearization near the peaked profile η∗, we note the following result,
which is obtained verbatim from the analysis of [40, 42].
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Lemma 1. [40, 42] Consider a local solution η ∈ C0((−τ0, τ0), H1
per(T) ∩ W 1,∞(T)) of

Theorem 1, and assume that there exists ξ(t) such that

lim
x→ξ(t)−

∂xη(t, x) 6= lim
x→ξ(t)+

∂xη(t, x), t ∈ (−τ0, τ0).

Then, ξ ∈ C1((−τ0, τ0)) satisfies

ξ′(t) = − 1

2c
(c2 − 2η(t, ξ(t))), t ∈ (−τ0, τ0). (4.2)

In order to consider a local solution η ∈ C0((−τ0, τ0), H1
per(T) ∩ W 1,∞(T)) of the

evolution equation (2.2) in a local neighborhood of the traveling wave with the peaked
profile (3.3), we define the decomposition

η(t, x) = η∗(x− ξ(t)) + ζ(t, x− ξ(t)), (4.3)

where we assume that the only peak of η(t, ·) on T is located at x = ξ(t) for some
t ∈ (−τ0, τ0). The peak location ξ(t) moves with the local characteristic speed of the
inviscid Burgers equation, as in Lemma 1. Substituting (4.3) into (2.2) with c = c∗ and
using (4.2) yields the evolution problem for the perturbation term ζ(t, x):

2c∗∂tζ = (c2∗ − 2η∗)∂xζ − 2(ζ − ζ|x=0)(η
′
∗ + ∂xζ) + Π0∂

−1
x Π0

[
ζ + 2η′∗∂xζ + (∂xζ)2

]
, (4.4)

where we have translated x− ξ(t) into x on T. Truncation of the evolution equation (4.4)
by the linear terms in ζ yields the linearized equation

2c∗∂tζ = (c2∗ − 2η∗)∂xζ − 2η′∗(ζ − ζ|x=0) + Π0∂
−1
x Π0 [ζ + 2η′∗∂xζ] , (4.5)

subject to the linearized constraint∮
[ζ + 2η′∗∂xζ]dx = 0. (4.6)

The next result gives the equivalent form of the linearized evolution.

Lemma 2. The linearized equation (4.5) is equivalently written in the form

2c∗∂tζ = (c2∗ − 2η∗)∂xζ −
1

π

∮
η′∗ζdx+

1

2
Π0∂

−1
x Π0ζ, (4.7)

where both
∮
ζdx and ζ|x=0 are constant in t and satisfies the constraint

ζ|x=0 = − 1

2π

∮
ζdx, (4.8)

Proof. The constraint (4.8) is obtained by subtituting (3.4) into (4.6), and integrating the
second term in (4.6) by parts. To simplify the linearized equation (4.5), we use (3.5) and
write

ζ + 2η′∗∂xζ = 2∂x(η
′
∗ζ) +

1

2
ζ + πδ0ζ. (4.9)

This transforms the linearized equation (4.5) to the form

2c∗∂tζ = (c2∗− 2η∗)∂xζ −
1

π

∮
η′∗ζdx+ 2η′∗ζ|x=0 +

1

2
Π0∂

−1
x Π0ζ +πζ|x=0Π0∂

−1
x Π0δ0. (4.10)
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By using Fourier series, we get

δ0 =
1

2π

∑
n∈Z

einx,

so that

Π0∂
−1
x Π0δ0 = Π0∂

−1
x

(
δ0 −

1

2π

)
=

∑
n∈Z\{0}

1

2πin
einx.

On the other hand, it follows from (3.5) that

η′′∗(x) =
1

4
− π

2
δ0 = −1

4

∑
n∈Z\{0}

einx,

which yields

η′∗(x) = −
∑

n∈Z\{0}

1

4in
einx.

Hence, the two terms with ζ|x=0 in (4.10) cancels out as

2η′∗ + πΠ0∂
−1
x Π0δ0 = 0, (4.11)

and the linearized equation (4.10) can be written in the form (4.7).

Finally, we show that both
∮
ζdx and ζ|x=0 are constant in t. The conservation of∮

ζdx follows by taking the mean value of (4.7), with the account of the projection term
− 1
π

∮
η′∗ζdx. The conservation of ζ|x=0 is shown by taking the limit x → 0 since if

ζ =
∑

n∈Z ζne
inx, then

1

π

∮
η′∗ζdx =

1

π

∑
n∈Z\{0}

ζn

∮
η′∗(x)einxdx

= − 1

π

∑
n∈Z\{0}

ζn

 ∑
m∈Z\{0}

1

4im

∮
ei(n+m)xdx


=

∑
n∈Z\{0}

ζn
2in

(4.12)

and

lim
x→0

1

2
Π0∂

−1
x Π0ζ = lim

x→0

1

2

∑
n∈Z\{0}

ζnΠ0∂
−1
x einx =

∑
n∈Z\{0}

ζn
2in

, (4.13)

from which it follow that 2c lim
x→0

∂tζ(t, x) = 0 and the value of ζ|x=0 is preserved in time. �

The linearized equation (4.7) of Lemma 2 is defined by the linearized operator A :
Dom(A) ⊂ L2(T)→ L2(T) given by

Af := (c2∗ − 2η∗)∂xf −
1

π

∮
η′∗fdx+

1

2
Π0∂

−1
x Π0f, (4.14)
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where

Dom(A) :=
{
f ∈ L2(T) : (c2∗ − 2η∗)f

′ ∈ L2(T)
}
≡ D. (4.15)

Remark 4. The local well-posedness result of Theorem 1 suggests that we should consider
the linear operator A : H1

per(T) ∩W 1,∞(T) ⊂ L2(T) ∩ L∞(T) → L2(T) ∩ L∞(T) with the
same definition of A as in (4.14). However, for the spectral stability theory, it is more
convenient to work in a Hilbert space L2(T) for which the domain of A is given by (4.15).

We denote the spectrum of A : D ⊂ L2(T) → L2(T) by σ(A). According to the
standard definition (Definition 6.1.9 in [6]), the spectrum σ(A) is further divided into
three disjoint sets of the point spectrum σp(A), the residual spectrum σr(A), and the
continuous spectrum σc(A) with the resolvent set denoted by ρ(A) = C\σ(A).

Remark 5. By using (2.1), (3.4), (3.5), and c∗ = π
2
√
2
, we obtain

Aη′∗ = (c2∗ − 2η∗)η
′′
∗ −

1

π

∮
(η′∗)

2dx+
1

2
Π0η∗

= −π
2

(c2∗ − 2η∗)δ0 +
1

4
(c2∗ − 2η∗)−

1

π

∮
(η′∗)

2dx+
1

2
η∗ −

1

4π

∮
η∗dx

= −π
2

(c2∗ − 2η∗)δ0 +
π2

32
− 3

4π

∮
(η′∗)

2dx

= −π
2

(c2∗ − 2η∗)δ0,

so that Aη′∗ = 0 in L2(T). Similarly, we have η′∗ ∈ D so that 0 ∈ σp(A). However, η′∗ /∈
C0

per(T), hence η′∗ /∈ H1
per(T)∩W 1,∞(T). Thus, H1

per(T)∩W 1,∞(T) is embedded into D but

is not equivalent to D. The spectral theory of the linear operator A : D ⊂ L2(T)→ L2(T)
is developed in a wider space of functions than the space needed for the local well-posedness
of the evolution equation (2.2).

5. Truncated linearized equation

The following lemma allows us to truncate the linearized operator (4.14)–(4.15).

Lemma 3. The linear operator K := 1
2
Π0∂

−1
x Π0 : L2(T)→ L2(T) is a compact (Hilbert–

Schmidt) operator.

Proof. By the Fourier theory, we have

σ(K) = σp(K) =

{
1

2n
, n ∈ Z\{0}

}
.

Since eigenvalues of σp(K) are square summable, K : L2(T) → L2(T) is a compact
(Hilbert–Schmidt) operator. �



INSTABILITY OF THE PEAKED TRAVELING WAVE 11

Using Lemma 3, we see that A = A0 +K, where K is a compact perturbation of the
unbounded truncated operator A0 : Dom(A0) ⊂ L2(T)→ L2(T) given by

A0f := (c2∗ − 2η∗)∂xf −
1

π

∮
η′∗(x)f(x)dx, (5.1)

with the same Dom(A0) = Dom(A) = D. The constraint in the definition of A0 ensures
that ∮

(A0f)(x)dx = 0 if f ∈ D. (5.2)

The spectrum of A0 can be analyzed similar to the work [22]. In fact, since

c2∗ − 2η∗(x) =
1

4
[π2 − (π − |x|)2], x ∈ [−π, π],

extended as a 2π-periodic function on T, we define the change of coordinates x 7→ z by

dx

dz
=

1

4
x(2π − x), x ∈ [0, 2π], (5.3)

where the interval [0, 2π] is located between the two consequent peaks on the periodic
domain T. Solving the differential equation (5.3) with x(0) = π yields

x(z) = π + π tanh
(πz

4

)
, (5.4)

which is an invertible mapping R 3 z 7→ x ∈ [0, 2π]. The following lemma shows that the
spectrum of the operator A0 : D ⊂ L2(T)→ L2(T) can be found from the spectrum of a
simpler linear operator defined on the infinite line R.

Lemma 4. The spectrum of the truncated operator A0 : D ⊂ L2(T)→ L2(T) is equivalent
to the spectrum of the linear operator D0 : H1(R) ⊂ L2(R)→ L2(R) given by

D0h := ∂zh+
π

4
tanh

(πz
4

)
h+

π

4
w(z)

∫
R
w′(z)h(z)dz, (5.5)

where w(z) := sech
(
πz
4

)
. The constraint (5.2) is equivalent to the constraint 〈w,D0h〉 = 0,

which holds for every h ∈ H1(R), where 〈·, ·〉 is the standard inner product in L2(R) with
the induced norm ‖ · ‖.

Proof. Using the transformation (5.4), we obtain A0f = B0g, where g(z) = f(x) and
B0 : Dom(B0) ⊂ L2

w(R)→ L2
w(R) is given by

B0g := ∂zg +
π

4

∫
R
w(z)w′(z)g(z)dz (5.6)

and
Dom(B0) :=

{
g ∈ L2

w(R) : g′ ∈ L2
w(R)

}
≡ H1

w(R),

with the weight w(z) := sech
(
πz
4

)
. Here the exponentially weighted spaces L2

w(R) and
H1
w(R) are defined with the squared norms:

‖g‖2L2
w

=

∫
R
w2(z)|g(z)|2dz, ‖g‖2H1

w
=

∫
R
w2(z)

(
|g′(z)|2 + |g(z)|2

)
dz
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and the inner product in L2
w(R) is defined by

〈g1, g2〉L2
w

=

∫
R
w2(z)g1(z)g2(z)dz.

The constraint (5.2) is equivalent to the constraint 〈1, B0g〉L2
w

= 0, which holds for every
g ∈ H1

w(R). By using the change of variables h(z) = w(z)g(z), we get B0g = w−1D0h and
〈1, B0g〉L2

w
= 〈w,D0h〉 = 0, where D0 : H1(R) ⊂ L2(R)→ L2(R) is given by (5.5). �

The following theorem prescribes the spectrum of the truncated operator A0 : D ⊂
L2(T)→ L2(T) given by (5.1).

Theorem 2. The spectrum of A0 : D ⊂ L2(T) → L2(T) completely covers the closed
vertical strip given by

σ(A0) =
{
λ ∈ C : −π

4
≤ Re(λ) ≤ π

4

}
. (5.7)

Proof. We obtain σp(A0) and ρ(A0) as

σp(A0) =
{
λ ∈ C : −π

4
< Re(λ) <

π

4

}
, (5.8)

ρ(A0) =
{
λ ∈ C : |Re(λ)| > π

4

}
. (5.9)

Since σ(A0) is a closed set and ρ(A0) is an open set, the closure of the open region (5.8)
yields (5.7).

σp(A0): By Lemma 4, it is equivalent to consider σp(D0), where D0 : H1(R) ⊂ L2(R)→
L2(R) is given by (5.5). Let h ∈ H1(R) be a solution of D0h = λh for some λ ∈ C. Then,
h = h(z) satisfies

h′(z) +
π

4
tanh

(πz
4

)
h(z) +

π

4
w(z)〈w′, h〉 = λh(z), z ∈ R, (5.10)

subject to the orthogonality condition λ〈w, h〉 = 0. Substitution h(z) = h̃(z)w(z) reduces
(5.10) to the form

h̃′(z) +
π

4
〈ww′, h̃〉 = λh̃(z), z ∈ R, (5.11)

subject to the orthogonality condition λ〈w2, h̃〉 = 0.

For λ = 0, the general solution of equation (5.11) is h̃(z) = c1 + c2z, where (c1, c2) are
arbitrary constants. This yields the general solution h(z) = (c1 + c2z)w(z) of equation
(5.10) for λ = 0. Since h ∈ H1(R), then 0 ∈ σp(D0).

For λ 6= 0, the general solution of equation (5.11) is a scalar multiplier of the particular
solution

h̃(z) = eλz +
π

4λ
〈ww′, eλz〉, (5.12)

where the inner product is defined for |Re(λ)| < π
2
. Since

π

8
‖w‖2 =

1

2

∫
R

sech2(z)dz = 1,



INSTABILITY OF THE PEAKED TRAVELING WAVE 13

the orthogonality condition λ〈w2, h̃〉 = 0 is satisfied for the solution (5.12). Integration
by parts and transformation back to h yields the solution

h(z) = eλzw(z)− π

8
w(z)〈w2, eλz〉,

which show that h ∈ H1(R) if and only if |Re(λ)| < π
4
, so that σp(A0) = σp(D0) is given

by (5.8).

ρ(A0): By Lemma 4, it is equivalent to consider ρ(D0). Let h ∈ H1(R) be a solution

of (D0 − λ)h = f for some λ ∈ C and f ∈ L2(R). Then, h = h(z) satisfies

h′(z) +
π

4
tanh

(πz
4

)
h(z) +

π

4
w(z)〈w′, h〉 = λh(z) + f(z), z ∈ R. (5.13)

Since 〈w,D0h〉 = 0, we have λ〈w, h〉 + 〈w, f〉 = 0. Multiplying equation (5.13) by h̄,
integrating over R, adding complex conjugation, and dividing by 2 yields

π

4
〈tanh

(πz
4

)
h, h〉+

π

4
Re〈h,w〉〈w′, h〉 = Re(λ)‖h‖2 + Re〈h, f〉.

By Cauchy–Schwarz inequality and the constraint λ̄〈h,w〉+ 〈f, w〉 = 0, we obtain(
Re(λ)− π

4

)
‖h‖2 ≤ Re(λ)‖h‖2 − π

4
〈tanh

(πz
4

)
h, h〉

= −Re〈h, f〉 − Re
π

4λ̄
〈f, w〉〈w′, h〉

≤
(

1 +
π‖w‖‖w′‖

4|λ|

)
‖h‖‖f‖

and (
−Re(λ)− π

4

)
‖h‖2 ≤ −Re(λ)‖h‖2 +

π

4
〈tanh

(πz
4

)
h, h〉

= Re〈h, f〉+ Re
π

4λ̄
〈f, w〉〈w′, h〉

≤
(

1 +
π‖w‖‖w′‖

4|λ|

)
‖h‖‖f‖.

This yields the bound

‖h‖ ≤ (1 + ‖w‖‖w′‖) ‖f‖
|Re(λ)| − π

4

, for |Re(λ)| > π

4
.

Hence, {λ ∈ C : |Re(λ)| > π
4
} belongs to ρ(D0), but since σ(D0) is a closed set and ρ(D0)

is an open set, then {λ ∈ C : |Re(λ)| > π
4
} is equivalent to ρ(D0) in view of the location

of σp(D0). This completes the proof of ρ(A0) = ρ(D0) given by (5.9). �
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6. Full linearized evolution

The full linearized evolution is defined by the linear operator A : D ⊂ L2(T)→ L2(T)
given by (4.14). The following theorem prescribes the spectrum of A.

Theorem 3. The spectrum of A : D ⊂ L2(T) → L2(T) completely covers the closed
vertical strip given by

σ(A) =
{
λ ∈ C : −π

4
≤ Re(λ) ≤ π

4

}
. (6.1)

Proof. Again, we obtain σp(A) and ρ(A) as

σp(A) =
{
λ ∈ C : −π

4
< Re(λ) <

π

4

}
= σp(A0), (6.2)

ρ(A) =
{
λ ∈ C : |Re(λ)| > π

4

}
= ρ(A0). (6.3)

Since σ(A) is a closed set and ρ(A) is an open set, the closure of the open region (6.2)
yields (6.1).

σp(A): Let f ∈ D be a solution of Af = λf for some λ ∈ C. Then, f = f(x) satisfies

1

4
x(2π − x)f ′(x) +

1

4π

∫ 2π

0

(π − x)f(x)dx+
1

2
Π0∂

−1
x Π0f = λf(x), 0 < x < 2π. (6.4)

subject to the orthogonality condition λ
∫ 2π

0
f(x)dx = 0.

If f ∈ D, then f ∈ L2(T) and (c2∗ − 2η∗)f
′ ∈ L2(T) so that lim

x→0+
f(x) and lim

x→2π−
f(x)

may not be defined. Nevertheless, since c2∗ − 2η∗(x) 6= 0 for x ∈ (0, 2π), we have
f ∈ C0(0, 2π). Bootstrapping arguments for equation (6.4) imply that f ∈ C∞(0, 2π).
Differentiating (6.4) in x yields the second-order differential equation

1

4
x(2π−x)f ′′(x)+

1

2
(π−x)f ′(x)+

1

2
f(x)− 1

4π

∫ 2π

0

f(x)dx = λf ′(x), 0 < x < 2π. (6.5)

If λ 6= 0, then
∫ 2π

0
f(x)dx = 0 so that equation (6.5) can be rewritten in the form

1

4
x(2π − x)f ′′(x) +

1

2
(π − x)f ′(x) +

1

2
f(x) = λf ′(x), 0 < x < 2π. (6.6)

One solution of (6.6) is obtained explicitly as f1(x) = 2λ − π + x. The second linearly
independent solution f2(x) of (6.6) is obtained from the Wronskian

f1(x)f ′2(x)− f ′1(x)f2(x) = W (x), (6.7)

where W (x) satisfies the first-order differential equation by Abel’s theorem:

W ′(x) =
2(2λ− π + x)

x(2π − x)
W (x). (6.8)
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Integrating (6.8) yields

W (x) =
π2

x(2π − x)

(
x

2π − x

) 2λ
π

, (6.9)

where the constant of integration has been normalized by the condition W (π) = 1. It
follows from (6.7) and (6.9) that if λ 6= 0, then f2(x) satisfies the following asymptotic
limits

f2(x) ∼
{
x

2λ
π , λ 6= π

2
,

1, λ = π
2

as x→ 0+

and

f2(x) ∼
{

(2π − x)−
2λ
π , λ 6= −π

2
,

1, λ = −π
2

as x→ (2π)−.

On the other hand, f1, f2 ∈ C∞(0, 2π) for every λ ∈ C.

If |Re(λ)| < π
4
, then f2 ∈ L2(T) and (c2∗ − η∗)f ′2 ∈ L2(T), so that f(x) = c1f1(x) +

c2f2(x) belongs to D for every (c1, c2) ∈ R2. Satisfying the constraint
∫ 2π

0
f(x)dx = 0 for

λ 6= 0 yields a one-parameter family of solutions f ∈ D of (6.4) for every λ ∈ σp(A)\{0},
where σp(A) is given by (6.2).

If λ = 0, then equation (6.5) contains a constant term. Without the constant term

− 1
4π

∫ 2π

0
f(x)dx, the two homogeneous solutions f1, f2 ∈ D are given by

f1(x) = x− π, f2(x) =
1

2π
(x− π) ln

x

2π − x
− 1,

However, only f1 satisfies (6.5) since
∫ 2π

0
f1(x)dx = 0. On the other hand, it is easy to

see that f(x) = 1 is also a solution of (6.5). Thus, there exists a two-parameter family of
solutions f = c1(x− π) + c2 ∈ D of equation (6.4) for λ = 0, so that 0 ∈ σp(A).

Finally, if |Re(λ)| ≥ π
4
, then f2 /∈ L2(T) due to the asymptotic limits as x → 0+ and

x → (2π)−. On the other hand,
∫ 2π

0
f1(x)dx = 4πλ 6= 0 for λ 6= 0, so that there exist no

nonzero solutions f ∈ D of equation (6.4) for every λ /∈ σp(A). This completes the proof
of σp(A) given by (6.2).

ρ(A): Let f ∈ D be a solution of the resolvent equation (A − λ)f = g for g ∈ L2(T)
rewritten in the form:

(c2∗ − 2η∗)∂xf −
1

π

∮
η′∗fdx+

1

2
Π0∂

−1
x Π0f − λf = g, x ∈ T. (6.10)

Since
∮
Afdx = 0, we get −λ

∮
fdx =

∮
gdx. Taking into account that Π0∂

−1
x Π0 is a

skew-adjoint operator in L2(T), we multiply (6.10) by f̄ , integrate over T, add a complex
conjugate equation, and divide by 2 to obtain

Re〈f, (c2∗ − 2η∗)∂xf〉 − Re(λ)‖f‖2 − 1

π
Re〈f, 1〉〈η′∗, f〉 = Re〈f, g〉.
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Integrating by parts in the first term and using −λ̄〈f, 1〉 = 〈g, 1〉 for λ 6= 0, we obtain

〈η′∗f, f〉 − Re(λ)‖f‖2 + Re
〈η′∗, f〉〈g, 1〉

πλ̄
= Re〈f, g〉.

Since −π
4
≤ η′∗(x) ≤ π

4
for x ∈ [0, 2π], we get by Cauchy–Schwarz inequality that(

Re(λ)− π

4

)
‖f‖2 ≤ Re(λ)‖f‖2 − 〈η′∗f, f〉

= −Re〈f, g〉+ Re
〈η′∗, f〉〈g, 1〉

πλ̄

≤

(
1 +

√
2π‖η′∗‖
π|λ|

)
‖g‖‖f‖

and (
−Re(λ)− π

4

)
‖f‖2 ≤ −Re(λ)‖f‖2 + 〈η′∗f, f〉

= Re〈f, g〉 − Re
〈η′∗, f〉〈g, 1〉

πλ̄

≤

(
1 +

√
2π‖η′∗‖
π|λ|

)
‖g‖‖f‖.

This yields the bound

‖f‖ ≤

(
1 +

4
√

2π‖η′∗‖
π2

)
‖g‖

|Re(λ)| − π
4

, for |Re(λ)| > π

4
.

Hence, {λ ∈ C : |Re(λ)| > π
4
} belongs to ρ(A), but since σ(A) is a closed set and ρ(A) is

an open set, then {λ ∈ C : |Re(λ)| > π
4
} is equivalent to ρ(A) in view of the location of

σp(A) in (6.2). This completes the proof of ρ(A) given by (6.3). �

Remark 6. Since the intersections of σp(A) ∩ ρ(A0) and σp(A0) ∩ ρ(A) are empty, as
follows from (5.8), (5.9), (6.2), and (6.3), the result σ(A) = σ(A0) also follows by The-
orem 1 in [22]. Computations in the proof of Theorem 3 do not rely on the truncated
operator A0 : D ⊂ L2(T)→ L2(T) introduced and studied in Section 5. We included these
computations anyway to emphasize that the linear instability of the peaked traveling wave
is induced by the quasilinear part of the inviscid Burgers equation and that the disper-
sion term of the Hunter–Saxton equation (1.5) does not play the role. This has been the
main property of the linear instability of the peaked traveling wave in the Camassa–Holm
equation (1.2) [31, 40, 42], the reduced Ostrovsky equation (1.4) [21, 22], and the Novikov
equation [10, 30].

7. Nonlinear evolution

We shall now derive the nonlinear instability result for the peaked traveling wave by
using the nonlinear evolution equation (4.4). With the help of equations (4.9) and (4.11)
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in Lemma 2, we rewrite the nonlinear evolution equation (4.4) in the equivalent form:

2c∗∂tζ = (c2∗ − 2η∗)∂xζ − 2(ζ − ζ|x=0)∂xζ −
1

π

∮
η′∗ζdx+

1

2
Π0∂

−1
x Π0

[
ζ + 2(∂xζ)2

]
. (7.1)

After applying the transformation (4.3) and integrating by parts using (3.5), the original
constraint (2.1) becomes

0 =

∮ [
ζ + 2η′∗∂xζ + (∂xζ)2

]
dx =

1

2

∮ [
ζ + 2(∂xζ)2

]
dx+ πζ|x=0. (7.2)

The following lemma identifies two conserved quantities of the evolution equation (7.1),
whose sum yields the constraint (7.2).

Lemma 5. Consider a local solution ζ ∈ C0((−τ0, τ0), H1
per(T)∩W 1,∞(T)) of the evolution

equation (7.1) for some τ0 > 0. Then∮
ζdx and ζ|x=0 +

1

π

∮
(∂xζ)2dx (7.3)

are conserved for t ∈ (−τ0, τ0).

Proof. The conservation of
∮
ζdx is shown by taking the mean value of the evolution

equation (7.1), while the conservation of ζ|x=0 + 1
π

∮
(∂xζ)2dx follows from the constraint

(7.2). We can also show the latter conservation directly as follows. For smooth solutions,
we differentiate equation (7.1) and obtain

2c∗∂t∂xζ = (c2∗ − 2η∗)∂
2
xζ − 2η′∗∂xζ − 2(ζ − ζ|x=0)∂

2
xζ − 2(∂xζ)2

+
1

2
(ζ + 2(∂xζ)2)− 1

4π

∮
(ζ + 2(∂xζ)2)dx (7.4)

Multiplying (7.4) by ∂xζ and integrating in x over T yields

c∗
d

dt

∮
(∂xζ)2dx = −

∮
η′∗(∂xζ)2dx. (7.5)

Furthermore, taking the limit x→ 0 in equation (7.1) as in (4.12) and (4.13), we get

2c∗ lim
x→0

∂tζ = lim
x→0

Π0∂
−1
x Π0(∂xζ)2 =

2

π

∮
η′∗(∂xζ)2dx. (7.6)

By adding (7.5) divided by π and (7.6) divided by 2, we verify conservation of ζ|x=0 +
1
π

∮
(∂xζ)2dx. By Sobolev’s embedding of H1

per(T) into C0
per(T), we have well-defined

ζ|x=0 ∈ C0(−τ0, τ0). Hence, the conserved quantities (7.3) are well-defined for the lo-
cal solution ζ ∈ C0((−τ0, τ0), H1

per(T) ∩W 1,∞(T)). �

Based on the conserved quantity ζ|x=0 + 1
π

∮
(∂xζ)2dx, we obtain the nonlinear insta-

bility of the peaked traveling wave given by the following theorem.
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Theorem 4. For every δ > 0 there exists ζ0 ∈ H1
per(T) ∩W 1,∞(T) satisfying

‖ζ0‖H1
per
≤ δ2, ‖ζ0‖W 1,∞ ≤ δ, (7.7)

such that the unique local solution ζ ∈ C0((−τ0, τ0), H1
per(T) ∩W 1,∞(T)) of the evolution

equation (7.1) with ζ|t=0 = ζ0 satisfies

‖ζ(t0, ·)‖W 1,∞ = 1, (7.8)

for some t0 ∈ (0, τ0).

Proof. The proof follows by the method of characteristics which works for every local
solution ζ ∈ C0((−τ0, τ0), H1

per(T) ∩W 1,∞(T)) of the evolution equation (7.1). Let x =
X(t, s) be the family of characteristic curves for (t, s) ∈ (−τ0, τ0)× (0, 2π) obtained from{

2c∗∂tX(t, s) = −(c2∗ − 2η∗(X)) + 2(ζ(t,X)− ζ(t, 0)),
X(0, s) = s.

(7.9)

Since the vector field of the initial-value problem (7.9) is Lipschitz for the local solution ζ ∈
C0((−τ0, τ0), H1

per(T)∩W 1,∞(T)), there is a unique solution for X ∈ C1((−τ0, τ0)×(0, 2π))
such that X(t, 0) = 0 and X(t, 2π) = 2π. Since [0, 2π] is the fundamental period of T, we
also get ζ(t, 0) = ζ(t, 2π). By solving the linear equation for ∂sX(t, s), we get

∂sX(t, s) = exp

(
1

c∗

∫ t

0

[η′∗(X(t′, s)) + ∂xζ(t′, X(t′, s))] dt′
)
,

from which it follows that ∂sX(t, s) > 0 for every t ∈ (−τ0, τ0) and s ∈ (0, 2π). Hence the
mapping [0, 2π] 3 s 7→ X(t, s) ∈ [0, 2π] is a diffeomorphism for t ∈ (−τ0, τ0).

To proceed further, we consider the restriction of ζ0 ∈ H1
per(T)∩W 1,∞(T)∩C1(0, 2π).

Along the family of characteristic curves, we can now define Z(t, s) := ζ(t,X(t, s)) and
V (t, s) := ∂xζ(t,X(t, s)). By using the evolution equations (7.1) and (7.4) along the family
of characteristic curves satisfying (7.9), we obtain the following initial-value problems:{

2c∗∂tZ(t, s) = − 1
π
〈η′∗, ζ〉+ 1

2
Π0∂

−1
x Π0(ζ + 2(∂xζ)2),

Z(0, s) = ζ0(s),
(7.10)

and {
2c∗∂tV (t, s) = −2η′∗(X)V − V 2 + 1

2
(Z(t, s) + Z(t, 0)),

V (0, s) = ζ ′0(s),
(7.11)

where we have used the constraint (7.2). If ζ0 ∈ H1
per(T)∩W 1,∞(T)∩C1(0, 2π), then the

solutions of the initial-value problems (7.9), (7.10) and (7.11) are defined in the class of
functions 

X ∈ C1((−τ0, τ0)× (0, 2π)),

Z ∈ C1((−τ0, τ0)× (0, 2π)),

V ∈ C1((−τ0, τ0), C0(0, 2π)),
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respectively, with the bounded one-sided limits as s → 0+ and s → (2π)−. Due to the
conservation law in (7.3), we have

ζ|x=0 +
1

π

∮
(∂xζ)2dx = C0,

from which ζ|x=0 ≤ C0 with a time-independent positive constant C0. Since X(t, 0) = 0,
we get Z(t, 0) ≤ C so that the evolution problem (7.11) in the limit s → 0+ yields for
V0(t) := lim

s→0+
V (t, s):

2c∗V
′
0(t) =

π

2
V0(t)− V 2

0 (t) + Z(t, 0) ≤ π

2
V0(t) + C0.

Iterating the inequality as

2c∗
d

dt
e−

πt
4c∗ V0(t) ≤ C0e

− πt
4c∗

and integrating yields

2c∗

[
e−

πt
4c∗ V0(t)− V0(0)

]
≤ 4c∗C0

π

[
1− e−

πt
4c∗

]
≤ 4c∗C0

π
.

This implies

V0(t) ≤
(
V0(0) +

2

π
C0

)
e
πt
4c∗ .

If the initial bound (7.7) is true, we get by Sobolev embeddings of H1
per(T) to L∞(T) that

|C0| ≤ δ2 +
1

π
δ2 ≤ 2δ2,

so that the interval (−δ,− 2
π
|C0|) is nonempty for all sufficiently small δ > 0. Selecting

−δ < V0(0) < − 2
π
|C0| to satisfy the initial bound (7.7) and to ensure that V0(0)+ 2

π
C0 < 0

yields the exponential divergence V0(t)→ −∞ as t→ +∞. Since τ0 > 0 is the maximal
existence time in H1

per(T)∩W 1,∞(T) norm, there exists t0 ∈ (0, τ0) such that the instability
bound (7.8) holds. �

Remark 7. By incorporating the quadratic term in the bound

2c∗V
′
0(t) =

π

2
V0(t)− V 2

0 (t) + Z(t, 0) ≤ π

2
V0(t)− V 2

0 (t) + C0,

one can find initial data ζ0 ∈ H1
per(T)∩W 1,∞(T) for which ‖ζ(t, ·)‖W 1,∞ diverges in a finite

time, see [40] for a similar analysis of the Camassa–Holm equation. However, we do not
have the bound on ‖ζ(t, ·)‖H1

per
compared to the case of the Camassa–Holm equation, where

the H1
per norm of the perturbation does not grow, see [35, 36, 40].
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8. Numerical approximations

We approximate numerically the smooth profile η ∈ C∞per(T) of the traveling waves from

the second-order equation (3.1) and the eigenvalues of the Hessian operator L : H2
per(T) ⊂

L2(T)→ L2(T) which defines the linearized time evolution (4.1) for the smooth traveling
waves. In both cases, we are interested to understand the convergence of numerical results
to the peaked traveling wave with the profile η∗ ∈ C0

per(T)∩W 1,∞(T) as c→ c∗. We show
that the lowest eigenvalue of L diverges as c → c∗, which suggests that the linearized
equation (4.1) cannot be used for the peaked traveling wave. This explains why we had
to derive a different linearized equation (4.5) for the peaked traveling wave.

To obtain the solutions η ∈ C∞per(T) of the second-order equation (3.1) for c ∈ (1, c∗),
we use the first-order invariant (3.2) and define η from the boundary-value problem:

(
dη

dx

)2

=
2E − η2

c2 − 2η
,

η(±π) = −
√

2E .
(8.1)

Since η(−x) = η(x), we take the negative sign in the square root of (8.1) for x ∈ [0, π] and
obtain the solution profile η(x) for x ∈ [0, π] by finding the root of the integral equation

f(η(x))− x = 0, f(η) :=

∫ 1

η/
√
2E

√
c2 − 2

√
2Ex√

1− x2
dx, (8.2)

for E ∈ (0, Ec), where Ec := c4

8
is the value separating smooth and cusped profiles.

To determine the value of E for each c ∈ (1, c∗), we consider the period function
T (E , c) studied in [37]. The period function is represented by using the complete elliptic
integral E(κ) of the second kind with the elliptic modulus κ ∈ (0, 1), which is defined by
E ∈ (0, Ec) and c ∈ (1, c∗) as follows:

T (E , c) = 4E(κ)

√
c2 + 2

√
2E , κ =

√
4
√

2E
c2 + 2

√
2E
. (8.3)

The periodic profile η ∈ C∞per(T) corresponds to the value of E = E(c) found from the root
of T (E(c), c) = 2π.

To approximate the solution profile numerically, we let xj = jh, j ∈ {0, . . . , N} be a
fixed grid with the step size h = π/N for a large integer N . By the fundamental theorem
of calculus, the solution profile {(xj, ηj)}Nj=0 can be found by solving f(ηj) − xj = 0 for
every j. We implement the Newton–Raphson’s method as the root-finding algorithm
under a specific tolerance ε > 0, such that

η
(k+1)
j = η

(k)
j −

1

f ′
(
η
(k)
j

) [f (η(k)j

)
− uj

]
,

∣∣∣f (η(k)j

)
− uj

∣∣∣ < ε, (8.4)

where k ∈ N denotes iteration number, and we take η
(k)
0 (0) =

√
2E and η

(k)
N (π) = −

√
2E

as two boundary grid points for any k to avoid the singularities. Given a c-grid {ci}Mi=1
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with M grid points, we compute Ei := E(ci) from the period function (8.3) by solving
numerically T (Ei, ci) = 2π. This outputs the sets of parameter pairs {(ci, Ei)}Mi=1, which
can be used in the root-finding algorithm (8.4). After the solution {(xj, ηj)}Nj=0 is ob-
tained on [0, π] for N + 1 grid points, the even reflection fills all 2N + 1 grid points on
[−π, π] domain. The solution points {(xj, ηj)}Nj=−N are plotted in Figure 1 (left) and the

parameter pairs {(ci, Ei)}Mi=1 are plotted in Figure 1 (right).

0 0.5 1 1.5 2
-12

-10

-8

-6

-4

-2

0

Figure 2. The solution profiles η̂ in Fourier space (8.5) in log-log coordi-
nates for c = 1.03, 1.07 with N = 300 grid points and ε = 10−14 tolerance.
The black dashed line represents the peaked profile η∗ for c = c∗.

The solution {(xj, ηj)}Nj=−N can be represented in Fourier space by using the discrete
Fourier transform (DFT) with 2N + 1 modes:

η̂n =
h

2π

N−1∑
j=−N

ηje
−inxj , n ∈ {−N, . . . , N} (8.5)

where one of the end point xN = π in the physical space is removed due to the 2π-
periodicity. For the peaked wave profile η∗ at c = c∗, the solution (3.3) can be represented
as the Fourier cosine series

η∗(x) = −π
2

48
+
∞∑
m=1

cos(mx)

2m2
. (8.6)
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By applying DFT on the selected grid, the solution points {(n, η̂n)}Nn=0 are plotted for the
smooth profiles in Figure 2. The black dashed line represents the Fourier series (8.6) fot
the peaked profile. We note that the fast convergence of the Fourier transform for the
smooth waves is replaced by the slow convergence O(m−2) of the Fourier transform for
the peaked waves.

Next we study numerically the spectrum of the Hessian operator L : H2
per(T) ⊂

L2(T) → L2(T) which appears in the linearized equation (4.1). The spectrum of L can
be computed by solving the spectral problem with the 2π-periodic conditions,

Lγ = λγ, γ ∈ H2
per(T). (8.7)

We will apply two numerical methods (the finite–difference method and the Fourier col-
location method) to solve the spectral problem (8.7). We write L = M + W with
M = −∂x(c2 − 2η)∂x and W = (2η′′ − 1).

For the finite difference method, using the numerical approximation of the solu-
tion profile {(xj, ηj)}Nj=−N and the central difference approximation of the second de-
rivative M, we construct the differentiation matrix for L acting on the eigenvector
γ = (γ−N , . . . , γN−1) ∈ R2N ,

L =


(W 0 +M0)(η−N ) M+1(η−N ) 0 · · · M−1(ηN )
M−1(η−N+1) (W0 +M0)(η−N+1) M+1(η−N+1) · · · 0

0 M−1(η−N+2) (W 0 +M0)(η−N+2) · · · 0
...

...
...

. . .
...

M+1(ηN−1) 0 0 · · · (W0 +M0)(ηN−1)

 ,
where the boundary point xN = π is removed due to the 2π-periodicity. The diagonal
elementsM0(ηj),W0(ηj) and the off-diagonal elementsM±1(ηj) for j ∈ {−N, . . . , N−1}
can be written as

M0(ηj) =
2c2−2ηj−ηj+1−ηj−1

h2
, M±1(ηj) = − c2−ηj−ηj±1

h2
,

and

W0(ηj) =
4E + 2η2j − 2c2ηj

(c2 − 2ηj)
2 − 1

for c ∈ (1, c∗), where the differential equations (3.1) and (3.2) have been used for η′′(x). By
numerically solving the eigenvalue problem (8.7), we obtain the first four eigenfunctions
γ plotted in Figure 3. The eigenfunctions display spikes near x = 0 in the limit of c→ c∗.

For the Fourier collocation method, we use the discrete Fourier transform (8.5) and
represent γ in the spectral problem (8.7) by γ̂ = (γ̂−N , . . . , γ̂N) ∈ R2N+1. Since the L2-
isomorphism between physical and Fourier space, the eigenvalue problem in Fourier space

L̂γ̂ = λγ̂ shares the same eigenvalues with the physical space. We write again L̂ = M̂+Ŵ
with

M̂ = 2(D1η̂)D1 − c2D2 + 2η̂D2, Ŵ = 2(D2η̂)− πI
for c ∈ (1, c∗), where the first and second derivative are represented by

D1 = i diag(−N, . . . , N), D2 = D2
1
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Figure 3. Eigenfunctions corresponding to the first four eigenvalues for
five values of c in (1, c∗). The grid in physical space is chosen to be N = 300.
The solution profiles obtained from equation (8.4) are used for diagonaliza-
tion, and all eigenfunctions are plotted on [−π, π] with positive slope near
−π.

and η̂ is the Toeplitz matrix for convolution with the Fourier modes for m ∈ {−N, . . . , N},

η̂ =


η̂0 · · · η̂−N · · · 0
...

. . .
...

. . .
...

η̂N · · · η̂0 · · · η̂−N
...

. . .
...

. . .
...

0 · · · η̂N · · · η̂0

 .
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By numerically solving the eigenvalue problem (8.7) in the Fourier space, we obtain the
first four eigenfunctions γ plotted in Figure 4. Convergence of eigenfunctions in Fourier
space for large m becomes worse as c→ c∗.
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Figure 4. The absolute value of eigenfunctions corresponding to the first
four eigenvalues in Fourier space is plotted versus m ∈ {1, . . . , N} for five
values of c in (1, c∗). The grid in physical space is chosen to be N = 300,
and the solution profiles η̂ are obtained from equations (8.4) and (8.5).

Figure 5 shows the first four eigenvalues obtained by the finite-difference method
(left) and the Fourier collocation method (right). The lowest eigenvalue diverges to −∞
as c → c∗. After λ1, the even-numbered eigenvalues λ2, λ4, . . . correspond to eigenfunc-
tions of even parity in x, whereas the odd-numbered eigenvalues λ3, λ5, . . . correspond to
eigenfunctions of odd parity. Convergence of eigenvalues as c → c∗ is low in both physi-
cal and Fourier space and, in particular, their values do not converge well to eigenvalues
computed for the limiting wave with the peaked profile η∗ at c = c∗. The grey shaded
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region highlights the loss of precision in the numerical approximations of eigenvalues with
poor convergence to the eigenvalues of the limiting peaked wave.
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Figure 5. The dependence of the first four eigenvalues of the spectral
problem (8.7) is plotted versus c for c ∈ (1, c∗) obtained with the finite-
difference method (left) and with the Fourier collocation method (right).
Eigenvalues computed for the peaked profile with c = c∗ are marked as
circles & crosses.

Eigenvalues for the limiting wave with the peaked profile η∗ at c = c∗ are computed
as follows. For the finite-difference method, we use

c = c∗ : W0(ηj) = −1

2
− π(δ0)j

where the Dirac delta distribution is approximated by the Gaussian pulse with a small
parameter α = π/N as

δ0(x) ≈ 1√
πα2

e−x
2/α2

, x ∈ T.

For the Fourier collocation method, we use

c = c∗ : Ŵ = −1

2
I − πI,

where I is the Toeplitz matrix of unity:

I =


1 · · · 1 · · · 0
...

. . .
...

. . .
...

1 · · · 1 · · · 1
...

. . .
...

. . .
...

0 · · · 1 · · · 1

 .
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To illustrate further the low convergence of eigenvalues as c → c∗, we plot the de-
pendence of the third eigenvalue (which is theoretically zero, see [37]) versus c in Figure
6 (left). For computations with different methods and for different N , we observe the
growth |λ3|, which is a numerical way to detect the loss of accuracy of numerical compu-
tations. Similarly, Figure 6 (right) shows the difference between eigenvalues computed in
the two numerical methods versus c. The difference grows as c→ c∗ due to low accuracy
in each numerical method.
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Figure 6. (a) The third eigenvalue |λ3| plotted versus c to show its de-
parture from 0 as c→ c−∗ for different grids N = 100, 200, 300 by the finite
difference (CD) and Fourier collocations (Fourier) methods. (b) Errors be-
tween each eigenvalue computed in the two numeical methods versus c.

We conclude that the spectral stability problem for the traveling wave with the peaked
profile η∗ ∈ C0

per(T)∩W 1,∞(T) cannot be analyzed by working with the spectral stability
problem for the family of traveling waves with the smooth profiles η ∈ C∞per(T) in the limit
c→ c∗. The lack of convergence is fundamental, both at the levels of functional analysis
and numerical approximations.
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