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AbstractWe consider a discrete Klein–Gordon (dKG) equation on Zd in the limit of the discrete
nonlinear Schrödinger (dNLS) equation, forwhich small-amplitude breathers have precise scaling
with respect to the small coupling strength ε . By using the classical Lyapunov–Schmidt method,
we show existence and linear stability of the KG breather from existence and linear stability
of the corresponding dNLS soliton. Nonlinear stability, for an exponentially long time scale of
the order O(exp(ε−1)), is obtained via the normal form technique, together with higher order
approximations of the KG breather through perturbations of the corresponding dNLS soliton.

1 Introduction

Nonlinear oscillators with weak linear couplings on the d-dimensional cubic lattice are described
by the discrete Klein–Gordon (dKG) equation

Üun + V ′(un) = ε(∆u)n, n ∈ Zd, (1)

where ε > 0 is the small coupling strength, ∆ is the discrete Laplacian operator on `2(Zd), and
V(u) is a nonlinear potential for each oscillator. The total energy of the nonlinear oscillators
conserves in time t and is given by the Hamiltonian function
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H(u) =
1
2

∑
n∈Zd

Ûu2
n +

ε

2

∑
n∈Zd

∑
|k−n |=1

(uk − un)2 +
∑
n∈Zd

V(un). (2)

For illustrative purposes, we deal with a hard anharmonic potential in the form

V(u) =
1
2

u2 +
1

2 + 2p
u2+2p, (3)

where p ∈ N is assumed for analyticity of the vector field. There exists the unique global solution
u(t) ∈ C2(R, `2(Zd)) to the Cauchy problem for the dKG equation (1) with (3) equipped with the
initial datum (u, Ûu) ∈ `2(Zd)× `2(Zd), where u stands for {un}n∈Zd . Because our main results are
formulated for small initial datum (u, Ûu), most of the results are applicable for general anharmonic
potentials expanded as

V(u) =
1
2

u2 + αpu2+2p + O(u4+2p) as u→ 0, (4)

if αp , 0. The general anharmonic potential V is classified as soft if αp < 0 and hard if αp > 0.
Discrete breathers are time-periodic solutions localized on the lattice. Such solutions can

be constructed asymptotically by exploring the two opposite limit: the anti-continuum limit
ε → 0 of weak coupling between the oscillators [17] and the continuum limit ε → ∞ of strong
coupling [4]. Compared to these asymptotic approximations, we explore here a different limit
of the dKG equation to the discrete nonlinear Schrödinger (dNLS) equation, where the weak
coupling between the oscillators is combined together with small amplitudes of each oscillator.
To be precise, we assume the scaling

un = ε1/2pũn, n ∈ Zd (5)

and rewrite the dKG equation (1) with the potential (3) in the perturbed form:

Üun + un + εu1+2p
n = ε(∆u)n, n ∈ Zd, (6)

where the tilde notations have been dropped. By using a formal expansion un(t) = an(ε t)eit +
ān(ε t)e−it + O(ε), the following dNLS equation for the complex amplitudes is derived from
the requirement that the correction term O(ε) remains bounded in `2(Zd) on the time scale of
O(ε−1):

2ia′n + γp |an |
2pan = (∆a)n, n ∈ Zd, (7)

where the prime denotes the derivative with respect to the slow time variable τ = ε t and the
numerical coefficient γp is given by

γp =

(
1 + 2p
1 + p

)
=
(2p + 1)!
p!(p + 1)!

. (8)

The asymptotic relation between the dKG equation (6) and the dNLS equation (7) was observed
first in [25] and was made rigorous by using two equivalent analytical methods in our previous
work [23].



Existence and stability of Klein–Gordon breathers 3

Discrete breathers of the dKG equation (1) are approximated by discrete solitons (standing
localized waves) of the dNLS equation (7) in the form an(τ) = Ane−

i
2Ωτ , where the time-

independent amplitudes satisfies the stationary dNLS equation

ΩAn + γp |An |
2pAn = (∆A)n, n ∈ Zd . (9)

The elementary staggering transformation

An = (−1)n Ãn, Ω = −4d − Ω̃ (10)

relates the defocusing version (9) to the focusing version

(∆Ã)n + γp | Ãn |
2p Ãn = Ω̃Ãn, n ∈ Zd . (11)

In the recent past, existence and stability of discrete solitons in the focusing version (11) has been
studied inmany details depending on the exponent p and the dimension d. Various approximations
of discrete solitons of the dNLS equation (11) are described in [8]. Let us review some relevant
results on this subject.

The stationary dNLS equation (11) is the Euler–Lagrange equation of the constrained varia-
tional problem

Eν = inf
a∈`2(Zd )

{E(a) : N(a) = ν} , (12)

where
E(a) =

∑
n∈Zd

∑
|k−n |=1

|ak − an |2 −
1

p + 1

∑
n∈Zd

|an |2p+2 (13)

is the conserved energy, N(a) =
∑

n∈Zd |an |
2 is the conserved mass, and ν > 0 is fixed. The

existence of a ground state as a minimizer of the constrained variational problem (12) was proven
in Theorem 2.1 in [26] for every Eν < 0. By Theorem 3.1 in [26], if p < 2

d , the ground state
exists for every ν > 0, however, if p > 2

d , there exists an excitation threshold νd > 0 and the
ground state only exists for ν > νd .

Variational and numerical approximations for d = 1 were employed to analyze the structure
of discrete solitons of the stationary dNLS equation (11) near the critical case p = 2 [11, 18]. It
was shown for single-pulse solitons that although the dependenceΩ 7→ ν is monotone for p = 1,
it becomes non-monotone for p ' 1.5 covering the whole range ν > 0 for p < 2 and featuring
the excitation threshold for p > 2. Further analytical estimates on the excitation threshold in the
stationary dNLS equation were developed in [7, 9, 10].

Spectral stability of discrete solitons in the dNLS equation (7) was analyzed in the limit
Ω→∞, which can be recast as the anti-continuum limit of the dNLS equation. It was shown for
d = 1 in [22, 24] (see Section 4.3.3 in [21]) that the single-pulse solitons are stable in the limit
Ω→ ∞ for every p ∈ N. Asymptotic stability of single-pulse solitons for d = 1 and p > 3 was
also proven in the same limit in [1] after similar asymptotical stability results were obtained for
small solitons of the dNLS equation in the presence of a localized potential [6, 16].

Spectral and orbital stability of single-pulse discrete solitons in the dNLS equation (7) is
determined by the monotonicity of the dependenceΩ 7→ ν according to the Vakhitov–Kolokolov
criterion [13, 21]. It was shown in [15] that this criterion is related to a similar energy criterion
for spectral stability of discrete breathers in the dKG equation (1). If ω is a frequency of the
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discrete breathers and H is the value of their energy, then the monotonicity of the dependence
ω 7→ H is related to the monotonicity of the dependence Ω 7→ ν in the dNLS limit. Further
results on the energy criterion for spectral stability of discrete breathers in the dKG equation (1)
are given in [12, 27]. In spite of many convincing numerical evidences, the orbital stability of
single-pulse discrete breathers is still out of reach in the energy methods.

The purpose of this paper is to make precise the correspondence between existence and
linear stability of discrete breathers in the dKG equation (1) and discrete solitons in the dNLS
equation (7). This work clarifies applications mentioned in Section 4 of our previous paper
[23]. We show how the Lyapunov–Schmidt reduction method can be employed equally well to
study existence and linear stability of small-amplitude discrete breathers near the point of their
bifurcation from the dNLS limit under reasonable assumptions on existence and linear stability
of the discrete solitons of the dNLS equation. We also show how normal form methods (see
[2, 3, 5, 19, 20]), combined with the Lyapunov-Schmidt reduction, are implemented to provide
higher order approximation of the discrete breathers, in the same dNLS limit. These results
represent a considerable improvement with respect to the corresponding results in [19]. Long-
time nonlinear stability of small-amplitude discrete breathers then follows, assuming the discrete
soliton of the stationary dNLS equation (11) is a ground state of the variational problem (12).

The remainder of this paper consists of three sections. Section 2 proves the existence of
discrete breathers obtained via the Lyapunov–Schmidt decomposition. Section 3 describes the
linear stability results obtained by the extension of the same technique. Section 4 gives the normal
form arguments towards the long-time nonlinear stability of small-amplitude breathers.

2 Existence via Lyapunov-Schmidt decomposition

Breathers are T-periodic solutions of the dKG equation (1) localized on the lattice. One can
consider such strong solutions of the dKG equation (1) in the space u(t) ∈ H2

per([0,T]; `2(Zd)).
By scaling the time variable as τ = ωt with ω = 2π/T , it is convenient to consider 2π-periodic
solutions U(τ) ∈ H2

per([−π, π]; `2(Zd)) with parameter ω, such that u(t) = U(ωt). Breather
solutions can be equivalently represented by the Fourier series

U(τ) =
∑
m∈Z

A(m)eimτ . (14)

Since U is real, the complex-valued Fourier coefficients satisfy the constraints:

A(m) = A(−m) , m ∈ Z. (15)

If the periodic solution has zero initial velocity, i.e., U ′(0) = 0, then it follows from reversibility
of the dKG equation (1) in time1 that the periodic solution is even in time, which implies

A(m) = A(−m) , m ∈ Z. (16)

1 Given a solution γ := {u(t), Ûu(t)} to the dKG equation (1), another solution is γ̃ = {ũ(t) = u(−t), Û̃u(t) =
− Ûu(−t)}. If γ is a periodic solution with initial zero velocity, then the same is true for γ̃, and since the two
solutions have the same initial configuration u(0) = ũ(0), they are solutions of the same Cauchy problem, hence
they coincide.
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As a consequence of the two symmetries, the Fourier coefficients are real, hence the representation
(14) becomes Fourier cosine series with real-valued coefficients:

U(τ) = A(0) + 2
∑
m∈N

A(m) cos(mτ). (17)

After the scaling transformation (5), breather solutions to the scaled dKG equation (6) satisfy
the following boundary-value problem:

ω2U ′′ +U + εU1+2p = ε∆U, U ∈ H2
per([−π, π]; `2(Zd)). (18)

The existence problem can be rewritten in real-valued Fourier coefficients as

(1 − m2ω2)A(m) +
ε

2π

∫ π

−π
U1+2p(τ)e−imτdτ = ε∆A(m), m ∈ N0. (19)

At ε = 0, bifurcation of breathers is expected at ωm = 1/m, m ∈ N, from which the lowest
bifurcation value ω1 = 1 gives a branch of fundamental (single-period) breathers. If the solution
branch ω(ε) and {A(m)(ε)}m∈N ∈ `2,2(Z; `2(Zd)) is parameterized by ε , then we are looking for
the branch of fundamental breathers to satisfy the limiting conditions:

lim
ε→0

ω(ε) = 1, lim
ε→0

A(1)(ε) , 0, and lim
ε→0

A(m)(ε) = 0, m , 1. (20)

The limiting conditions (20) are not sufficient for persistence argument. In order to define
uniquely a continuation of the solution branch in ε , we consider the stationary dNLS equation in
the form:

ΩA + γp |A|
2pA = ∆A, A ∈ `2(Zd), (21)

where Ω is parameter and γp is a numerical coefficient given by (8). We restrict consideration to
the case of dNLS solitons given by realA, for which we introduce the Jacobian operator for the
stationary dNLS equation (21) at A:

JΩ := Ω + (1 + 2p)γpA2p − ∆. (22)

Since σ(∆) = [−4d, 0] in `2(Zd) and A ∈ `2(Zd) is expected to decay exponentially at infinity,
we need to consider Ω in R\[−4d, 0].

Remark 1 Since the discrete solitons in the focusing stationary dNLS equation (11) exist for
Ω̃ > 0 [26], the staggering transformation (10) suggests that the discrete solitons in the defocusing
stationary dNLS equation (21) exist for Ω < −4d.

Assuming existence of a dNLS soliton A in the stationary dNLS equation (21) for some
Ω ∈ R\[−4d, 0] and invertibility of JΩ at thisA in (22), we will prove existence and uniqueness
of the branch ω(ε) and {A(m)(ε)}m∈N ∈ `2,2(Z; `2(Zd)) of fundamental breathers satisfying the
limiting conditions:

lim
ε→0

ω(ε) − 1
ε

= −
1
2
Ω, lim

ε→0
A(m)(ε) =

{
A, m = 1,
0, m , 1. (23)

The following theorem gives the existence and uniqueness result for breathers.
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Theorem 1 Fix p ∈ N. Assume the existence of realA ∈ `2(Zd) in the stationary dNLS equation
(21) for someΩ ∈ R\[−4d, 0] such that the Jacobian operator JΩ at thisA in (22) has trivial null
space in `2(Zd). There exists ε0 > 0 and C0 > 0 such that the breather equation (19) for every
ε ∈ (0, ε0) admits a unique Cω solution branch ω(ε) ∈ R and {A(m)(ε)}m∈N ∈ `2,2(Z; `2(Zd))
satisfying the bounds ����ω(ε) − 1 +

1
2
εΩ

���� 6 C0ε
2 (24)

and
‖A(0)‖`2(Zd ) + ‖A

(1) − A‖`2(Zd ) +
∑
m>2
‖A(m)‖`2(Zd ) 6 C0ε, (25)

for every ε ∈ (0, ε0).

Remark 2 In order to explain the relevance of the stationary dNLS equation (21), we set ω2 =
1 − εΩ, where Ω is fixed independently of ε , and rewrite equation (19) for m = 1 after dividing
it by ε . This procedure yields the bifurcation equation:

ΩA(1)(ε) +
1

2π

∫ π

−π
U1+2p(τ, ε)e−iτdτ = ∆A(1)(ε),

where U(τ, ε) is given by the Fourier series (14) with amplitudes {A(m)(ε)}m∈Z satisfying
symmetries (15) and (16). Formally, at the leading order (20), we have:

ΩA(1)(0) +
1

2π

∫ π

−π

[
A(1)(0)eiτ + A(1)(0)e−iτ

]1+2p
e−iτdτ = ∆A(1)(0)

Expanding[
A(1)(0)eiτ + A(1)(0)e−iτ

]1+2p
=

1+2p∑
k=0

(
1 + 2p

k

) (
A(1)(0)

)k (
A(1)(0)

)1+2p−k
ei(2k−2p−1)τ

and evaluating the integral at the only nonzero term for k = p + 1 yields the limiting dNLS
equation (21) with A = A(1)(0).

Proof In order to solve the breather equation (19) as ε → 0 near the limiting solution (20),
we proceed with the classical Lyapunov-Schmidt decomposition (see for example [4, 25]). We
introduce the Hilbert spaces

X2 := H2
per([−π, π]; `2(Zd)), X0 := L2

per([−π, π]; `2(Zd))

and the dual spaces under the Fourier series (14):

X̂2 := `2,2(Z; `2(Zd)), X̂0 := `2(Z; `2(Zd)).

The breather solution U is an element of X2, which is uniquely identified by the sequence A in
X̂2. In other words, a solution is given by a sequence of Fourier coefficients {A(m)}m∈Z in `2,2(Z),
where each Fourier coefficient A(m) is a complex sequence A(m) = {A(m)n }n∈Zd in `2(Zd). The
Sobolev norm in space X̂2 is given by
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‖A‖X̂2
=

(∑
m∈Z

(1 + |m|2)2



A(m)




2

`2(Zd )

)1/2

.

Let us introduce also the linear operator Lω : X2 → X0, which is given in Fourier space by
L̂ω : X̂2 → X̂0: (

L̂ωA
) (m)
= (1 − m2ω2)A(m), m ∈ Z. (26)

We define the linear subspace V2 = span({eneiτ}n∈Zd , {ene−iτ}n∈Zd ) as the kernel of Lω=1 in
X2 andW2 its orthogonal complement in X2 = V2⊕W2. In the Fourier space, we set V̂2 as a kernel
of L̂ω=1 in X̂2 and Ŵ2 its orthogonal complement in X̂2 = V̂2 ⊕ Ŵ2. In a similar way, we introduce
the range subspace W0 for the operator Lω=1, which is a subspace X0 whose codimension is
equal to the dimension of V2, so that X0 = V0 ⊕W0, and similarly X̂0 = V̂0 ⊕ Ŵ0. Any element of
X̂2 can be decomposed into

A = A] + A[ , A] ∈ V̂2 , A[ ∈ Ŵ2 . (27)

The breather equation (19) can be written in the abstract form:

F(A, ω, ε) := L̂ωA + εN(A) − ε∆A = 0 , (28)

where N(A) is the nonlinear term. If p ∈ N, then the nonlinear map F(A, ω, ε) : X̂2×R×R→ X̂0
is Cω in its variables. The nonlinear equation (28) is projected onto V̂0 and Ŵ0, thus yields the
following two equations:

ΠV̂0
F(A] + A[, ω, ε) = 0 , ΠŴ0

F(A] + A[, ω, ε) = 0 . (29)

The former one is known as the kernel equation and the latter one is known as the range equation.
We shall solve the range equation for small ε assuming that |ω − 1| = O(ε) by using the implicit
function theorem.

Exploiting the fact that V̂0 and Ŵ0 are invariant under ∆ and that L̂ω=1 A] = 0 by definition,
the range equation in (29) takes the form(

L̂ω − ε∆
)

A[ + εΠŴ0
N(A] + A[) = 0 . (30)

The perturbed linear operator L̂ω−ε∆ can be inverted on Ŵ0 for ε small enough if |ω−1| = O(ε).
Indeed, first write using Neumann series(

L̂ω − ε∆
)−1
=

[(
ε L̂−1

ω ∆

)k ]
L̂−1
ω , (31)

where L̂−1
ω is well defined on Ŵ0 thanks to the diagonal form:

(L̂−1
ω A)(m) =

1
1 − m2ω2 A(m) , m , ±1 .

Let us introduce a parametrization of ω by
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ω2 = 1 − εΩ, (32)

whereΩ is fixed independently of ε . It follows by elementary computation that there exists ε∗(Ω)
that only depends on Ω such that for every ε ∈ (0, ε∗(Ω)),

|1 − m2ω2 | = |1 − m2(1 − εΩ)| >
1
2
(1 + m2) , ∀m ∈ Z\{−1, 1},

thus obtaining the estimate
‖ L̂−1

ω ‖Ŵ0→Ŵ2
6 2,

and consequently
‖ε L̂−1

ω ∆‖Ŵ0→Ŵ2
6 8dε .

By Neumann formula (31) there exists ε0 := min{ε∗(Ω), (8d)−1} and C0 > 0 such that for every
ε ∈ (0, ε0),

‖(L̂ω − ε∆)−1‖Ŵ0→Ŵ2
6 C0. (33)

Since X2 is a Banach algebra with respect to multiplication and X̂2 is a Banach algebra with
respect to convolution, the nonlinear term N(A) in (30) is closed in X̂2. By writing the range
equation as the fixed-point equation for A[:

A[ = −ε
(
L̂ω − ε∆

)−1
ΠŴ0

N(A] + A[) (34)

and using the implicit function theorem thanks to the parametrization (32) and the uniform bound
(33), we conclude that for every ε ∈ (0, ε0), Ω ∈ R, and A] ∈ V̂2 ⊂ X̂2, there exists a unique
solution A[ ∈ Ŵ2 ⊂ X̂2 to the fixed-point equation (34) such that the mapping (A],Ω, ε) → A[

is Cω and the solution is as small as O(ε) thanks to the leading order approximation

A[ = −ε L̂−1
ω ΠŴ0

N(A]) + O(ε2) , (35)

which provides the bound
‖A[‖X̂2

6 Cε, (36)

for some ε-independent C.
Inserting the parametrization (32) and the mapping (A],Ω, ε) → A[ into the kernel equation

in (29) and dividing by ε , we obtain

ΩA] − ∆A] + ΠV̂0
N(A] + A[(A],Ω, ε)) = 0.

Thanks to the computations in Remark 2 and the bound (36), one can rewrite the kernel equation
explicitly in terms of the real-valued amplitude A(1) as follows:

f (A(1),Ω, ε) := ΩA(1) − ∆A(1) + γpA(1) |A(1) |2p + εR(A(1),Ω, ε) = 0, (37)

where R(A(1),Ω, ε) : `2(Zd) ×R×R→ `2(Zd) is Cω and bounded as ε → 0 thanks to the bound
(36). Thanks to the assumptions of the theorem, A ∈ `2(Zd) is a root of

f (A,Ω, 0) = 0 (38)
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and
DA(1) f (A,Ω, 0) = JΩ (39)

is a bounded and invertible operator on `2(Zd). By the implicit function theorem, there exists
ε1 < ε0 such that for every ε ∈ (0, ε1) and Ω ∈ R for which A ∈ `2(Zd) exists in (38) and JΩ is
invertible in (39), there exists a unique solution A(1) ∈ `2(Zd) to the kernel equation (37) such
that the mapping (Ω, ε) → A(1) is Cω and the solution satisfies the bound

‖A(1) − A‖`2(Zd ) 6 Cε, (40)

for some ε-independent C. Combining (36) and (40) with the decompositions (27) and (32)
yields bounds (24) and (25). �

3 Stability via Lyapunov-Schmidt decomposition

Linearizing u(t) = U(τ) + w(t) of the dKG equation (6) at the breather solution U(τ) ∈
H2

per([−π, π]; `2(Zd)) with τ = ωt yields the linearized dKG equation:

Üw + w + ε(1 + 2p)U2pw = ε∆w. (41)

By Floquet theorem, every solution of the 2π-periodic linear equation (41) can be represented in
the formw(t) = W(τ)eλt , where λ ∈ C is the spectral parameter andW(τ) ∈ H2

per([−π, π]; `2(Zd))
is an eigenfunction of the spectral problem:

ω2W ′′ + 2λωW ′ + λ2W +W + ε(1 + 2p)U2pW = ε∆W . (42)

Let us represent W(τ) ∈ H2
per([−π, π]; `2(Zd)) by the Fourier series:

W(τ) =
∑
m∈Z

B(m)eimτ . (43)

With the help of (14) and (43), the spectral problem (42) is rewritten in Fourier coefficients as[
1 + (λ + imω)2

]
B(m) +

ε(1 + 2p)
2π

∫ π

−π
U2p(τ)W(τ)e−imτdτ = ε∆B(m). (44)

No symmetry reductions exist generally for the Fourier coefficients {B(m)}m∈Z.
At ε = 0 and ω = 1, the spectral problem (44) admits a double set of eigenvalues λ defined

by
Σ± := {i(±1 − m), m ∈ Z} , (45)

where Σ+ = Σ− and each eigenvalue has infinite multiplicity due to the lattice Zd . In terms of
the Floquet multipliers

µ := eλT = e2πλ/ω, (46)

all eigenvalues at ε = 0 and ω = 1 correspond to the same Floquet multiplier µ = 1.
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Remark 3 The degeneracy of the Floquet multiplier µ in (46) is understood in terms of the
following symmetry for the spectral problem (44). Fix k ∈ Z and apply transformation

λ = ik + λ̃, m = −k + m̃, B(m) = B̃(m̃).

The eigenvalue-eigenvector pair
(
λ̃, {B̃(m̃)}m̃∈Z

)
satisfies the same spectral problem (44) but in

tilde variables. Therefore, the spectral problem (44) near every nonzero point λ ∈ Σ± repeats its
behavior near λ = 0. It is hence sufficient to consider the spectral problem (44) near λ = 0.

Let us review the spectral stability problem for the dNLS equation (7). The dNLS soliton
a(τ) = e−

i
2ΩτA is defined by solutions of the stationary dNLS equation (21) with real A ∈

`2(Zd). Linearizing with the expansion a(τ) = e−
i
2Ωτ [A + b(τ)] yields the linearized dNLS

equation:
2ib′ +

(
Ω − ∆ + γp(p + 1)A2p

)
b + γppA2p b̄ = 0. (47)

Separating variables by b(τ) = [b+ + ib−] eΛτ and ϕ̄(τ) = [b+ − ib−] eΛτ , where Λ ∈ C is
the spectral parameter and (b+, b−) ∈ `2(Zd) × `2(Zd) is an eigenfunction, yields the spectral
problem: [

0 −(Ω − ∆ + γpA
2p)

Ω − ∆ + γp(1 + 2p)A2p 0

] [
b+
b−

]
= 2Λ

[
b+
b−

]
. (48)

The spectral problem (48) can be written in the Hamiltonian form JH ′′(A)f = 2Λf, where
f = (b+, b−)T ,

J =

[
0 −1
1 0

]
, H ′′(A) =

[
Ω − ∆ + γp(1 + 2p)A2p 0

0 Ω − ∆ + γpA
2p

]
.

The first diagonal entry in H ′′(A) coincides with the Jacobian operator (22) for the stationary
dNLS equation (21).

Remark 4 Since H ′′(A) and Ω − ∆ are bounded operators in `2(Zd), whereas Ω ∈ R\[−4d, 0]
and A2p decays exponentially at infinity, the operator (Ω − ∆)−1A2p is a compact (Hilbert–
Schmidt) operator. As a result, σc(H

′′(A)) = [Ω,Ω + 4d] and σd(H
′′(A)) consists of finitely

many eigenvalues of finite multiplicities, where σc and σd denotes the absolutely continuous
and discrete spectra of the self-adjoint operatorH ′′(A) in the Hilbert space `2(Zd).

It follows from Remark 4 that if Ω < −4d (see Remark 1), there exist finitely many positive
eigenvalues of σd(H

′′(A)), whereas if Ω > 0, there exist finitely many negative eigenvalues of
σd(H

′′(A)). In either case, the stability theory in linear Hamiltonian systems [13, 21] is applied
to conclude that there exist finitely many eigenvalues Λ with Re(Λ) , 0 in the spectral problem
(48). The continuous spectrum of JH ′′(A) coincides with the purely continuous spectrum of
JH ′′(0) and is located on

σc(JH
′′(A)) = {i[Ω,Ω + 4d]} ∪ {−i[Ω,Ω + 4d]}. (49)

The following theorem guarantees the persistence of simple isolated eigenvalues of the spectral
problem (48) in the spectral problem (44) near λ = 0.
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Theorem 2 Under the assumption of Theorem 1, assume that Λ ∈ C is a simple isolated
eigenvalue of the spectral problem (48) such that 2Λ < σc(JH

′′(A)) and (b+, b−) ∈ `2(Zd) ×
`2(Zd). There exists ε0 > 0 and C0 > 0 such that the spectral problem (44) for every ε ∈ (0, ε0)
admits a uniqueCω branch of the eigenvalue–eigenvector pair with λ(ε) ∈ C and {B(m)(ε)}m∈N ∈
`2,2(Z; `2(Zd)) satisfying

|λ(ε) − εΛ| 6 C0ε
2, (50)

‖B(1) − b+ − ib−‖`2(Zd ) + ‖B
(−1) − b+ + ib−‖`2(Zd ) 6 C0ε, (51)

and
‖B(0)‖`2(Zd ) +

∑
m>2
‖B(m)‖`2(Zd ) 6 C0ε, (52)

for every ε ∈ (0, ε0).

Proof We adopt the same Hilbert spaces as those used in the proof of Theorem 1. Any element
of X̂2 can be decomposed into

B = B] + B[ , B] ∈ V̂2 , B[ ∈ Ŵ2. (53)

We assume that ω(ε) and {A(m)(ε)}m∈Z are given by Theorem 1 with the error bounds (24) and
(25). Let us introduce the linear operator M̂λ,ω : X̂2 → X̂0:(

M̂λ,ωB
) (m)
=

[
1 + (λ + imω)2

]
B(m), m ∈ Z. (54)

The spectral problem (44) for Fourier coefficients can be written in the abstract form:

F(B, λ, ε) := M̂λ,ω(ε )B + εS(A(ε), B) − ε∆B = 0, (55)

where S(A(ε), B) is the linear map on B obtained from the nonlinear term N(A). Since p ∈ N,
the map F(B, λ, ε) : X̂2 × C × R→ X̂0 is Cω in its arguments. Projecting equation (55) onto V̂0
and Ŵ0 yields the following range and kernel equations:

ΠV̂0
F(B] + B[, λ, ε) = 0, ΠŴ0

F(B] + B[, λ, ε) = 0 . (56)

The range equation in system (56) can be solved in the sameway as the range equation in system
(29). By using the implicit function theorem, for every ε ∈ (0, ε0), Λ ∈ C, and B] ∈ V̂2 ⊂ X̂2,
there exists a unique solution B[ ∈ Ŵ2 ⊂ X̂2 of the range equation ΠV̂0

F(B] + B[, εΛ, ε) = 0
such that the mapping (B],Λ, ε) → B[ is Cω and the solution is as small as O(ε) thanks to the
bound

‖B[‖X̂2
6 Cε, (57)

for some ε-independent C.
Inserting ω = 1− 1

2 εΩ+O(ε
2), λ = εΛ, and the Cω mapping (B],Λ, ε) → B[ into the kernel

equation in system (56) and dividing by ε , we obtain the following system of two equations on
the two amplitudes (B(1), B(−1)):
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(Ω ± 2iΛ)B(±1) − ∆B(±1) + γpA
2p

[
(p + 1)B(±1) + pB(−1)

]
+εR(±1)(B(1), B(−1),Λ, ε) = 0, (58)

where R(±1)(B(1), B(−1),Λ, ε) : `2(Zd) × `2(Zd) ×R×R→ `2(Zd) is a linear map on (B(1), B(−1))
with Cω coefficients which are bounded as ε → 0 thanks to the bound (57). In the derivation of
numerical coefficients in (58), we have used the following explicit computation:

1
2π

∫ π

−π

[
Aeiτ +Ae−iτ

]2p
[
B(1)eiτ + B(−1)e−iτ

]
e∓iτdτ

=

2p∑
k=0

(
2p
k

)
A2p 1

2π

∫ π

−π

[
B(1)ei(2k−2p+1∓1)τ + B(−1)ei(2k−2p−1∓1)τ

]
dτ

=
p + 1

2p + 1
γpA

2pB(±1) +
p

2p + 1
γpA

2pB(−1).

At ε = 0, the system (58) becomes the spectral problem (48) in variables B(±1) = b+±ib−. It is as-
sume thatΛ is a simple isolated eigenvalue in the spectral problem (48) with 2Λ < σc(JH

′′(A))

and a related eigenvector (b+, b−) ∈ `2(Zd) × `2(Zd). For ε , 0, the eigenvalue Λ becomes the
characteristic root of the linear system (58). By the analytic perturbation theory for closed linear
operators (see Theorem 1.7 in Chapter VII on p. 368 in [14]), simple characteristic roots and the
associated eigenvectors are continued in ε as Cω functions. This completes justification of the
bounds (50) and (51). �

Remark 5 If 2Λ ∈ iR\σc(JH
′′(A)), the bound (50) is not sufficient to guarantee that the

eigenvalue λ remains on iR.

In order to obtain a definite prediction that the simple isolated eigenvalue Λ ∈ iR of the
spectral problem (48) persist as a simple isolated eigenvalue λ ∈ iR of the spectral problem (44),
we use the Krein signature theory for linearized Hamiltonian systems. Consider the linearized
dKG equation (41) and define

k(w) := i
∑
n∈Zd

wn Û̄wn − w̄n Ûwn. (59)

It is straightforward to verify that k(w) is independent of t. Let us represent the eigenvalue-
eigenvector pair by w(t) = W(τ)eλt with λ ∈ C and W(τ) ∈ H2

per([−π, π]; `2(Zd)). Then,
k(w) = K(W, λ)e(λ+λ̄)t with

K(W, λ) := iω
∑
n∈Zd

(
WnW̄ ′n − W̄nW ′n

)
− i(λ − λ̄)

∑
n∈Zd

|Wn |
2. (60)

The following lemma reproduces the main result of the Krein theory.

Lemma 1 Let λ ∈ C be a simple isolated eigenvalue in the spectral problem (42) with the
eigenvector W(τ) ∈ H2

per([−π, π]; `2(Zd)). Then, K(W, λ) = 0 if Re(λ) , 0 and K(W, λ) , 0 if
λ ∈ iR\{0}.
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Proof The spectral problem (42) can be formulated in the Hamiltonian form JH ′′(U)f = λf,
where f = (W,Q), J∗ = −J = J−1, and H ′′(U) is self-adjoint in L2

per([−π, π]; `2(Zd)). Since
Q = λW + ωW ′, we note that

λK(W, λ) = i〈H ′′(U)f, f〉 = i〈f,H ′′(U)f〉 = −λ̄K(W, λ),

so that if Re(λ) , 0 then K(W, λ) = 0. If λ ∈ iR\{0} is a simple isolated eigenvalue, then
we claim that K(W, λ) , 0. Indeed, if we assume K(W, λ) = 0, then there exists a generalized
eigenvector from solution of the nonhomogeneous equation

JH ′′(U)g = λg + f,

since the condition of the Fredholm alternative theorem is satisfied:

〈J−1f, f〉 = λ−1〈H ′′(U)f, f〉 = −iK(W, λ) = 0.

Therefore, λ is at least a double eigenvalue in contradiction with the assumption that λ is simple.
Therefore, K(W, λ) , 0. �

Equipped with Lemma 1, we can now prove an analogue of Theorem 2 about persistence of
simple isolated eigenvalues on iR.

Theorem 3 Under the assumption of Theorem 1, assume that Λ ∈ iR\{0} is a simple isolated
eigenvalue of the spectral problem (48) with (b+, b−) ∈ `2(Zd) × `2(Zd). There exists ε0 > 0 and
C0 > 0 such that the spectral problem (44) for every ε ∈ (0, ε0) admits a unique Cω branch of
the eigenvalue–eigenvector pair with λ(ε) ∈ iR and {B(m)(ε)}m∈N ∈ `2,2(Z; `2(Zd)) satisfying
(50), (51), and (52).

Proof ByRemark 5, we only need to prove that λ(ε) = εΛ+O(ε2) remains on iR. By smoothness
of the branch of eigenvalue-eigenvectors in ε , we can compute the limit ε → 0 for the Krein
quantity K(W, λ) in (60). We obtain

lim
ε→0

K(W, λ) = 2‖B(1)‖2
`2(Zd )

− 2‖B(−1)‖2
`2(Zd )

= 4i〈b−, b+〉`2(Zd ) − 4i〈b+, b−〉`2(Zd ),

which is the Krein quantity for the spectral problem (48). Since Λ ∈ iR\{0} is simple and
isolated, the Krein quantity for the spectral problem (48) enjoys the same properties as in Lemma
1. In particular, it is real and nonzero. By continuity in ε , K(W, λ) is nonzero for every ε ∈ (0, ε0),
so that by Lemma 1, the eigenvalue λ(ε) = εΛ + O(ε2) of the spectral problem (42) satisfies
Re(λ) = 0. �

Remark 6 Theorem 2 and 3 imply that the spectral stability of dNLS solitons is transferred
to the spectral stability of dKG breathers if bifurcations of new isolated eigenvalues from the
continuous spectrum in (49) do not result in the appearance of new eigenvalues with Re(λ) , 0
in the spectral problem (48). Such arguments follow from the Krein theory [21]. In the anti-
continuum limit of the dNLS equation (7), one can find conditions excluding bifurcations of new
isolated eigenvalues from the continuous spectrum of the spectral problem (48) [24].
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4 Long-time nonlinear stability via resonant normal forms

The resonant normal form we consider here is based on the scheme already illustrated in [2, 5],
which is suitable for infinite dimensional Hamiltonian systems and can be implemented by
working at the level of either the Hamiltonian fields (as we decide to do, following [2]) or the
Hamiltonian function (as in [5]).

In what follows we first present a result according to which the Hamiltonian of our problem
can be put into a resonant normal form up to an exponentially small remainder. The truncated
normal form represents a generalized dNLS equation in the same spirit as in [20]. We then give
a theorem about the existence of a breather for the dKG equation, exponentially close to discrete
soliton of the normal form; we stress here that such an estimate is a significant improvement
with respect to the one obtained in [19] where the two objects were proven to be only order one
close in the small parameter. As a last step, under additional hypothesis that the dNLS soliton is
a minimizer in the variational problem (12) we state a stability result for the discrete breathers
on an exponentially long time scale. The proofs of the above mentioned results are illustrated
respectively in Subsections 4.3, 4.4 and 4.5.

4.1 Setting, preliminaries and normal form result

We consider the Hamiltonian corresponding to the scaled model (6)

H =
1
2

∑
j∈Zd

(
u2
j + v

2
j

)
+

ε

2p + 2

∑
j∈Zd

u2p+2
j +

ε

2

∑
j∈Zd

∑
| j−h |=1

(
u j − uh

)2
, (61)

where vj = Ûu j . TheHamiltonian (61) can be obtained scaling both the variables (un, Ûun) according
to (5), and the original Hamiltonian original energy (2) by ε−

1
p . In the following, (61) will be

considered as a nearly integrable Hamiltonian system

H = G + F , G :=
1
2

∑
j∈Zd

(
u2
j + v

2
j

)
, F := H − G = O(ε) , (62)

where G is an integrable Hamiltonian and F is a perturbation of order O(ε).
We need some notations (we refer to Section 5 of [2] for further details).We consider z := (u, v)

in the complexified phase spaceP = `2(C)×`2(C)with the usual `2 norm, whichmakes it Hilbert
with the usual inner product. Given 0 < R < 1 and 0 < d 6 1

4 , we restrict to a ball around the
origin BR,d := {z ∈ P s.t . ‖z‖ < R(1 − d)}. To deal with complex valued functions g and
Hamiltonian vector fields Xg on such a generic ball, we make use of the supremum norm

Nd(g) := sup
z∈BR,d

|g(z)| , N∇d (g) :=
1
R

sup
z∈BR,d



Xg(z)


 . (63)

Our aim is to construct a normal form K admitting a second conserved quantity G

H = K + P , {K,G} = 0 ;
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this additional conserved quantity,which correspond to the `2 norm, corresponds to the invariance
under the rotation symmetry, given by the periodic flow Φt

G
of the Hamiltonian field XG . The

normal form K is thus a generalized dNLS model (see also [20]); given the smallness of P, G
turns out to be an approximated conserved quantity for H, whose variation can be kept bounded
on exponentially long times.

Theorem 4 For any positive d 6 1/4, any dimension d > 1 and any R < 1, there exists ε∗(d, d, R)
such that, for ε < ε∗ there exists a canonical change of coordinates TX mapping

BR,2d ⊂ TX
(
BR,d

)
⊂ BR,0 BR,3d ⊂ TX

(
BR,2d

)
⊂ BR,d (64)

which puts the Hamiltonian (61) into the resonant normal form

H = G + Z + P , {G, Z} = 0 , N∇d (P) 6 µ exp
(
−

1
µ

)
, (65)

where µ := 12eπε
d
= O(ε). Moreover, for any initial datum z0 ∈ BR,3d, there exists a positive

constant C such that the variations of G and Z are bounded as follows

|G(z(t)) − G(z0)| < CµN0(G) ,

|Z(z(t)) − Z(z0)| < CµN0(F) ,
|t | 6 T∗ := exp

(
1
µ

)
. (66)

The construction is based on the linear operator TX associated to a generating sequence
{Xs}

r
s=1, where Xs = O(ε

s), which acts recursively on G and F as follows

TXG =
∑
r>0

Gr , G0 := G , Gr :=
r∑
l=1

l
r
{Xl,Gr−l} ,

TXF =
∑
r>0

Fr , F0 := 0 , F1 := F , Fr :=
r−1∑
l=1

l
r − 1

{Xl, Fr−l} .

(67)

In the above recursive definition, it coherently turns out that Fr = O(ε
r ). Such a linear operator

also provides the close-to-the-identity nonlinear transformation

TX z = z +
∑
r>1

zr , zr =
r∑
l=1

l
r
{Xl, z}r−l . (68)

The generating sequence X, and the corresponding transformation TX , will be determined in
order to put the Hamiltonian in resonant normal form up to order O(εr )

H(r) = TXH = G + Z + R(r+1) , {G, Z} = 0 , R(r+1) = O(εr+1) . (69)

Thus X = {Xs} and the normal form terms Z =
∑r

s=1 Zs have to satisfy

{G,Xs} + Zs = Ψs , 1 6 s 6 r , (70)

where Xs, Zs and Ψs are all homogeneous terms of order ε s , with
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Ψ1 = F1 = F , Ψs :=
1
s

Fs +

s−1∑
l=1

l
s
{Xl, Zs−l} . (71)

At first order r = 1, we obtain again equation (21) as leading order approximation of the dKG
breather. Indeed we have to put into normal form the initial perturbation Ψ1 := F1. The first
normal form term Z1 represents its average, and it turns out that at first order the Hamiltonian
K (1) can be given by the corresponding dNLS model

K (1) =
∑
j

|ψj |
2 +

ε

p + 1

∑
j

|ψj |
2p+2 + ε

∑
| j−h |=1

|ψj − ψh |
2 , (72)

once complex coordinates are introduced

u j = ψj + iψj =
1
√

2
(ζj + iηj) , ⇒ ψj = ζj/

√
2 , iηj = ζj , (73)

so that the quadratic part of K (1) reads
∑

j |ζj |
2+ε

∑
| j−h |=1 |ζj−ζh |

2 . To average the nonlinearity
one follows the same calculations already used in the Remark 2

1
2π

∫ 2π

0
u2p+2
j ◦ Φt

gdt =
1

2π

∫ 2π

0

1
2p+1

(
ζjeit + iηje−it

)2p+2
dt = Γp |ζj |2p+2 ,

with Γp := 1
2p γp; thus that the nonlinear term reads Γp

2(p+1)
∑

j |ζj |
2p+2 , and its standard shape

is recovered introducing the complex variable (73) which allows to rescale the prefactor 2−p .
Discrete solitons of (72) with frequency close to one

ψj = Aei(1−
ε
2 Ω)t (74)

are then extremizer of Z1 := ε−1Z1 constrained to constant values of the norm G = ν, thus
providing again (21) with Ω = Ω(ν).

4.2 High order approximation and nonlinear stability results

Let us consider K := H − P in (65) and its equations

Ûz = XK (z) , K = G + Z , {Z,G} = 0 . (75)

To generalize the discrete soliton approximation, we rewrite the ansatz (74) as

ζds = Aei(1−
1
2 εΩ)t (76)

where A is the real amplitude of the soliton2, which is assumed to be small enough to belong to
the domain of validity of the normal form (65); once inserted in (75), it provides the equation

2 notice the use of the gothic font instead of the calligraphic one to distinguish between the objects of the
generalized dNLS – given by the higher order normal form – to those of the standard dNLS
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for A

f := f0 + ε f1 = 0 ,

{
f0 := ΩA + γp |A |2pA − ∆A ,
f1 := ε−2XZ (A) ;

(77)

where f0 gives the standard dNLS equation (21), while f1 is the perturbation due to the normal
form steps r > 2; we recall that, due to {G, Z} = 0, XZ is equivariant under the action of the
symmetry eiθ

XZ

(
Aei(1−

1
2 εΩ)t

)
= XZ (A)ei(1−

1
2 εΩ)t .

The next statement represent the higher order version of Theorem 1, under the same assumption
on A and JΩ: it claims the existence of the breather for the Klein-Gordon close to the discrete
soliton of the normal form K .

Theorem 5 Let A be a solution of (21) with JΩ of (22) invertible in `2(Zd,R). Then:

1. there exists ε∗1 < ε∗ such that for any 0 < ε < ε∗1 there exists a unique solution A(Ω, ε) of
(77), analytic in ε . Moreover, the following estimates hold true

‖A − A‖`2 6 Cε , sup



(JΩ,ε − JΩ)(z)



`2(Zd ;R)

‖z‖`2(Zd ;R)
6 Cε , (78)

where JΩ,ε := DA f (A(Ω, ε),Ω, ε) is the differential of f evaluated at A(Ω, ε).
2. Let

ζbr(τ) =
∑
m

A
(m)eimτ , τ := ωt , (79)

be the Fourier expansion of the breather of Ûz = XH (z). Then, there exists positive ε∗2 < ε∗1
such that for every 0 < ε < ε∗2 the breather (79) admits a unique analytic solution branch
ω(ε) and {A(m)(ε)} ∈ `2,2(Z; `2(Zd)) satisfying the bounds

|ω(ε) − 1 +
ε

2
Ω| 6 Cε2 , (80)

‖A(0)‖`2(Zd ) + ‖A
(1) − A‖`2(Zd ) +

∑
m>2
‖A(m)‖`2(Zd ) 6 C exp

(
−

c
ε

)
. (81)

3. Let zds(t) = T−1
X
(ζds) and zbr(t) = T−1

X
(ζbr) be the discrete soliton and the discrete breather

solutions in the original coordinates, and Tds and Tbr the corresponding periods; then it holds
true

sup
|t |6max{Tds,Tbr }

‖zds(t) − zbr(t)‖ 6 C exp
(
−

c
ε

)
. (82)

Remark 7 In Theorems 5 and 6, c and C are suitable constants independent of ε .

We now assume a stronger condition than the invertibility of the Jacobian operator JΩ; we
require A to be a nondegenerate extremizer for Z1 constrained to constant values of the norm
G. Under this assumption, which implies invertibility of JΩ, it follows that for ε sufficiently
small also the discrete soliton A obtained in Proposition 4.1 is a nondegenerate extremizer for
Z := ε−1Z constrained to the sphere S := {G(z) = ν}, with ν sufficiently small (as required by
the normal form construction). As a consequence, A is an orbitally stable periodic orbits (see



18 D.E. Pelinovsky, T. Penati, and S. Paleari

[3, 19, 26]) for the normal form K = G + Z: we are going to show that A is an approximate
periodic orbit for the full system H = G + K + P which is orbitally stable for exponentially long
times and that the same kind of stability holds true for the Klein-Gordon breathers.

Let us introduce with Ā := {A(m)} and denote with O(Ā) the closed curve described by the
Klein-Gordon breather

O(Ā) := {zbr(t), t ∈ [0,T]} O := T−1
X O(Ā) .

The next Theorem provides the orbital stability of O(Ā):

Theorem 6 Let z0 ∈ BR,3d with R < 1. Then ∀ 0 < µ � 1, ∃ 0 < δ � 1 such that

inf
w∈O
‖z0 − w‖ < δ ⇒ inf

w∈O



Φt
H (z0) − w



 < µ , |t | < exp
( c
ε

)
. (83)

4.3 Proof of Theorem 4 (Normal Form Theorem)

We give a sketch of the proof, which would be long and technical if all the details were included.
The estimates here included can be obtained by following [5, 2].

Recursive estimates, which are the most technical aspect of the whole construction, need
estimates on the initial size of the perturbation F and its vector field XF . We thus introduce the
main quantities E and ω1 providing the initial estimates

N0(F) 6 E := ε
[
4dR2 +

1
2p + 2

R2p+2
]
, N∇0 (F) 6 ω1 := 2ε

[
Cd + R2p] .

Remark 8 The magnitudes of E and ω1 are coherent: since E = O(εR2), then its differential,
divided by R according to the definition of N∇

d
(·) in (63), has to be O(ε).

In order to solve (70) we average along the periodic flow Φt
G
of period 2π, as claimed by the

following Lemma (for the proof, see [3]):
Lemma 2 The homological equation (70), i.e. {G,X} = Ψ(z) − Z(z) , is solved by

Z(z) =
1

2π

∫ 2π

0
Ψ ◦ Φt

G(z)dt , X(z) =
1

2π

∫ 2π

0
t
[
(Ψ − Z) ◦ Φt

G

]
(z)dt ;

for any d it satisfies the following estimates

Nd(Z) 6 Nd(Ψ) , N∇d (Z) 6 N∇d (Ψ) ,

Nd(X) 6 2πNd(Ψ) , N∇d (X) 6 2πN∇d (Ψ) .
(84)

At first order, Lemma 2 immediately provides the estimates

N∇d (Z1) 6 ω1 , N∇d (X1) 6 φ := 2πω1 , (85)

which introduce the main perturbation parameter φ = O(ε) of the normal form scheme. Let
now the arbitrary integer r > 1 be the order of the normal form construction, i.e. the number
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of generating functions Xs in the generating sequence X = {Xs}rs=1 and thus the number of
homological equations (70) to be solved. The first important result gives the bounds for the
quantities involved in (70)

Lemma 3 Let ds = sd
r , with d 6

1
4 . Then, for any 1 6 s 6 r it holds true

N∇ds−1
(Θ) 6

ω1
s

(
6rφ
d

)s−1
∀Θ ∈ {Fs,Ψs, Zs} , N∇ds−1

(Xs) 6
φ

s

(
6rφ
d

)s−1
. (86)

The above Lemma, and in particular the last of (86), allows to control the deformation of functions
and vector fields under the canonical transformation; indeed, let

TX f =
∑
r>0

fr , fr :=
r∑
j=1

j
r

LXj fr−j , f0 = f ,

TXg =
∑
r>1

gr , gr :=
r−1∑
j=1

j
r − 1

LXj gr−j , g1 = g ,

(87)

then the following holds true

Lemma 4 Let us introduce M1 < M2 < 1

M1(φ, r) :=
φ(e + 3r)

d
, M2(φ, r) :=

φ(2e + 3r)
d

. (88)

Then, for any d 6 1
4 and any r > 1 the following bounds hold true

Nd(zr ) 6 Mr−1
1 G̃1 , Nd( fr ) 6 Mr−1

1 B̃1 , Nd(gr ) 6 Mr−2
1 Γ̃2 ,

N∇d ( fr ) 6 Mr−1
2 B̄1 , N∇d (gr ) 6 Mr−2

1 Γ̄2 ,
(89)

together with

G̃1 :=
Rφ
d
, B̃1 :=

φ

d
N0( f ), Γ̃2 :=

φ

d
N0(g), B̄1 :=

2φ
d

N∇0 ( f ), Γ̄2 :=
2φ
d

N∇0 (g),

Given the above estimates, we can obtain the inclusions (64); indeed, we have

Nd(TX z − z) 6
∑
r>1

Nd(zr ) 6
G̃1

1 − M1
< 2G̃1 = φ

(
2R
d

)
,

provided we ask for M1 <
1
2 ; thus the deformation is O(Rε). The remainder R(r+1) in (69), at an

arbitrary step r , is given by
R(r+1) =

∑
s>r+1

Gs +
∑

s>r+1
Fs ;

by exploiting (89) and the initial estimates, the following bounds hold true

N∇d (Θ) 6
(

2φ
d

)
Ms−1

2 , ∀Θ ∈ {Gs, Fs} ⇒ N∇d (R
(r+1)) 6

(
2φ
d

)
Mr

2
1 − M2

. (90)
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The exponential estimate (65) is derived from (90) by expanding Mr
2 as

Mr
2 =

(
6φ
d

)r
rr

(
1 +

1
r

)r
< e

(
6φ
d

)r
rr , (91)

and optimizing the number of normal form steps r = ropt := b d
6eφ c; in this way r is related ε .

Finally, the variation of G along the generic orbit in the neighbourhood of the origin is obtained
combining the estimate of the Poisson bracket

|G(t) − G(0)| 6
∫ t

0
|{G,R(r+1)}(z(s))|ds 6 |t |Nd(G)

(
4eφ
d2

)
exp

[
−

(
d

6eφ

)]
,

with the bound on the deformation |G(z) − G(z)| = |G(z) − G(TX(z))| = |(TXG − G)(z)| , and
exploiting the fact that G coincides with the norm on the phase space. In a similar way one can
control the variation of Z .

4.4 Proof of Theorem 5 (high order approximation)

The proof of point (1) is an easy application of the Implicit Function Theorem (I.F.T.), based on
the main assumption that JΩ is invertible in the subspace of real square-summable sequences.
Indeed A = A is the “unperturbed” solution of equation (21) f (A,Ω, 0) = f0(A,Ω) = 0 , and
the Jacobian of f evaluated at (A, ε = 0) is given by DA f (A,Ω, 0) = JΩ , which is invertible.
The first of (78) is standard, while the second can be easily obtained from

DA f (A) = DA f0(A) + O(ε) = DA f0(A) + D2
A

f0(A)(A − A) + O(ε) = JΩ + O(ε) .

Once proved the existence of A, discrete soliton of K , we follow the same strategy used for
Theorem (1) in order to prove the existence of an analytic branch of Klein-Gordon breathers3 Ā
exponentially close to A(Ω, ε). Let us consider the Hamilton equation for (69) restricting to the
variable ζ only (recall iη = ζ̄)

ω∂τζ = iζ + ∂ηZ + ∂ηR(r+1) ;

by inserting the Fourier expansion (79) with real coefficients A(m), we get the equation

L̂ωĀ + ∂ηZ(Ā) + ∂ηR(r+1)(Ā) = 0 ,
(
L̂ωĀ

) (m)
:= i(1 − mω)A(m) ,

since the Hamilton equations are first order in time. The Kernel V̂2 of the linear operator
L̂ω=1 is given only by eiτ , all the other harmonics belonging to the Range Ŵ2. We decompose
Ā = Ā] + Ā[ and project the equations on V̂0 and Ŵ0. The great difference with respect to the
proof of Theorem 1, is that the resonant normal form construction, performed averaging with
respect to the periodic flow eiτ , provides a natural decomposition of the term ∂ηZ(Ā]), so that
one has for free

3 We again “identify” solitons and breathers with thier amplitude(s).
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ΠŴ0
∂ηZ(Ā]) = 0 , ΠV̂0

∂ηZ(Ā]) = ∂ηZ(Ā]) . (92)

This remarkable property allows to write the Range equation as

L̂ωĀ[ +
[
ΠŴ0

∂ηZ(Ā[ + Ā]) − ΠŴ0
∂ηZ(Ā])

]
+ ΠŴ0

∂ηR
(r+1)(Ā[ + Ā]) = 0 ,

where the term in square brackets is at least linear in Ā[, O(εĀ[), hence a small perturbation
with respect to L̂ω=1. The usual leading order approximation provided by the I.F.T. gives, for
some constant C independent of ε ,

Ā
[ ≈ −

(
L̂ω

)−1
ΠŴ0

∂ηR
(r+1)(Ā[) ⇒




Ā[


 6 Cεr+1 . (93)

The Kernel equation, after dividing by ε , takes the form

ΩĀ
] − ∆Ā] + Γp |Ā

] |2pĀ] +

r∑
s=2

ε s−1
ΠV̂0

∂ηZs

(
Ā
])

)
+ O(εr ) = 0 ,

where we have introduced the scaled functionsZs := ε−sZs . Notice that in the small remainder
we included not only the smallness of the vector field ∂ηR(r+1), but also

ΠV̂0
∂ηZs(Ā

[ + Ā]) − ΠV̂0
∂ηZs(Ā

]) = ΠV̂0
∂ηZs(Ā

[ + Ā]) − ∂ηZs(Ā
]) = O(Ā[) ,

which is of order O
(
εr+1) for any 1 6 s 6 r , because of (93). The Kernel equation now turns

out to be a perturbation of order O(εr ) of

f (Ā],Ω, ε) := ΩĀ] − ∆Ā] + Γp |Ā] |2pĀ] +
r∑

s=2
ε s−1

ΠV̂0
∂ηZs

(
Ā
])

)
= 0 , (94)

since the last term in the sum of Zs is of order O(εr−1). Equation (94) admits the solution
Ā = Ā(Ω, ε) given by Proposition 4.1., and since JΩ,ε is invertible for ε sufficiently small, a fixed
point argument (see for example Appendix of [4]) can be used to conclude the proof; estimate
(80) is standard, while estimate (81) follows once the generic step r is replaced with the optimal
choice r = ropt (ε).

In order to prove point (3) we exploit the fact that the two periods, Tds and Tbr, are both
approximately equal to 2π, because of (80). Hence

‖ζds(t) − ζbr(t)‖ 6
∑
m,1




A(m)


 + 


A(1)eiωt − Aei(1−
ε
2 Ω)t




 ;

moreover, on a time interval of order O(1) = max{Tds,Tbr}, we have


A(1)eiωt − Aei(1−
ε
2 Ω)t




 6 


A(1)eO(ε2)t − A




 6 C



A(1) − A


 .

The estimates holds true also in the original coordinates, exploiting the Lipschitz continuity of
the canonical transformation T−1

X
, with a Lipschitz constant L = O(1).
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4.5 Proof of Theorem 6 (exponentially long time stability)

We collect the main geometrical ideas already exploited in [3, 19], omitting most of the details
that the interested reader can find in the quoted papers.

We first have to prove the orbital stability of the discrete soliton A, interpreted as approximate
breather solution of the Klein-Gordon model. We denote with O(A) the closed orbit described
by the discrete soliton profile A during its periodic evolution

O(A) := {ei(1−
ε
2 Ω)tA, t ∈ [0,Tds]} .

We consider a tubolar neighbourhoodW0 of O(A), in the transformed coordinates which give
the original Hamiltonian the normal form (65). Any point z ∈ W0 can be represented with a
local set of coordinates

z = (ϕ, E, v) ∈ R × R × Vξ ,

where ξ is the projection of z on O(A) andVξ is the orthogonal complement to the symmetry field
XG(ξ) in the tangent space TξS = Vξ ⊕ XG(ξ). The three coordinates represent, respectively:
the scalar coordinate ϕ is the tangential displacement along the field XG , the scalar coordinate
E is the displacement in the direction ∇G orthogonal to the surface S and the vector valued
coordinate v is the tangential displacement in the directions ofVξ . In order to measure the orbital
distance of a generic point z from O(A) we need to control only the directions transversal to the
orbits, hence E and v. The main point is that E is related to the variation of G while v is related
to the variation ofZ: the first is obvious, while the second holds because we have asked A to be
a nondegenerate extremizer ofZ on S, hence locally we have

‖v‖2 = ‖z − ξ‖2 6
1
C
|Z(z) − Z(ξ)| ,

where C is a constant depending on Z′′(ξ). Let us consider an initial datum z0 ∈ W0 and its
piece of orbit Φt

H (z0) ∩W0; for any point on this curve we have

inf
w∈O(A)∩W0



Φt
H (z0) − w



 6 c1 |E(t)| + c2 ‖v(t)‖ 6

6 C
√
|G(Φt

H (z0)) − G(A)| + |Z(Φt
H (z0)) − Z(A)| .

If z0 is taken in a suitable domain where (66) hold true, then the two terms in the square root can
be bounded by

|G(Φt
H (z0)) − G(A)| 6 |G(Φt

H (z0)) − G(z0)| + |G(z0) − G(A)| (95)
|Z(Φt

H (z0)) − Z(A)| 6 |Z(Φ
t
H (z0)) − |Z(z0)| + |Z(z0) − Z(A)| ; (96)

the first right hand terms are exactly controlled by (66) on exponentially long times, while the
second right hand terms are controlled by the initial distance from the orbit. This allows to
get (83) for the discrete soliton A in the normal form coordinates. The stability result then is
transferred to the Klein-Gordon breather exploiting the exponentially small distance between
the two orbits, as stated by (82). Finally, the same stability result holds also in the original
coordinates, as claimed by (91), since T−1

X
is Lipschitz with a Lipschitz constant L = O(1).
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