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Bifurcations of Standing Localized Waves
on Periodic Graphs

Dmitry Pelinovsky and Guido Schneider

Abstract. The nonlinear Schrödinger (NLS) equation is considered on a
periodic graph subject to the Kirchhoff boundary conditions. Bifurca-
tions of standing localized waves for frequencies lying below the bottom
of the linear spectrum of the associated stationary Schrödinger equation
are considered by using analysis of two-dimensional discrete maps near
hyperbolic fixed points. We prove the existence of two distinct families
of small-amplitude standing localized waves, which are symmetric about
the two symmetry points of the periodic graph. We also prove properties
of the two families, in particular, positivity and exponential decay. The
asymptotic reduction of the two-dimensional discrete map to the station-
ary NLS equation on an infinite line is discussed in the context of the
homogenization of the NLS equation on the periodic graph.

1. Introduction

Analysis of the nonlinear Schrödinger (NLS) and wave equations with double-
well, multi-well, or periodic potentials constitutes a continuously developing
subject [23]. These nonlinear partial differential equations (PDEs) have poten-
tial applications to many realistic problems such as Bose–Einstein condensa-
tion, nano-technology, and photonic optics. In many applications, a specific
waveguide geometry of the spatial domain suggests the use of metric graphs
as suitable way to approximate dynamics of the nonlinear PDEs on such spa-
tial domains [12,21]. At the vertex points, where different edges of the metric
graphs are connected, boundary conditions are given to define the coupling
between the wave functions along the edges. Kirchhoff boundary conditions
are commonly used to ensure continuity of the wave functions and the flow
conservation through the vertex point [7].

The subject of the NLS and wave equations on metric graphs has seen
many developments in the recent years. At the rigorous mathematical level,
the emphasis has been placed on the case of star graphs, where existence,
variational properties, stability, and scattering of nonlinear waves have been
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studied, e.g., in [2,3,6]. Nonlinear waves in more complex graphs have been
studied only very recently. Variational results on the non-existence of ground
states in unbounded graphs with closed cycles is given in [4,5] under a set of
certain topological conditions. Bifurcation and stability of nonlinear waves on
tadpole and dumbbell graphs were studied in [9,19,22] by using methods of
bifurcation theory.

Periodic metric graphs arise in many contexts such as carbon nanotubes
and graphene. Spectral properties of the periodic graphs were studied in many
details [16,17,20]. Generalized Floquet–Bloch theory is introduced for periodic
graphs in a similar fashion to the study of Schrödinger operators with bounded
periodic potentials [7]. However, the periodic graphs represent a more challeng-
ing and fascinating subject since the effective periodic potentials are defined
in spaces of lower regularity. As a result, more exotic phenomena arise such
as the presence of embedded eigenvalues of infinite multiplicities inside the
Floquet–Bloch spectral bands [16,17]. In our recent work [11], we showed how
to apply the spectral Floquet–Bloch decomposition for the periodic graphs in
order to analyze propagation of nonlinear waves on such graphs.

In nonlinear PDEs with smooth periodic potentials, localization of
standing waves is quite common for the frequencies occurring in the spec-
tral gaps of the associated linear operators [23]. Mathematical justification of
such standing localized waves in the smooth periodic potentials is now well-
understood in the tight-binding approximation [1,24,25] and in the envelope
approximation near the spectral edges [8,10,14].

In the present work, we are interested in characterizing standing localized
waves on periodic graphs near the bifurcation points. However, compared to
the tight-binding and envelope approximations, we would like to explore the
discrete nature of the periodic graphs. Consequently, we reduce the existence
of standing localized waves in the NLS equation on the periodic graph to the
existence of homoclinic orbits of the two-dimensional discrete map. We will
establish the equivalence between the differential equations on the periodic
graphs and the difference equations, which holds for all frequencies below the
lowest spectral band of the associated linear operator. In order to deduce
definite results on existence of standing localized waves on the periodic graphs,
we will use the proximity of the frequencies of the standing waves to those for
the spectral edge.

Let us consider the following NLS equation

i∂tu = ∂2
xu + 2|u|2u, u(x, t) : Γ × R → C, (1)

on the periodic graph Γ shown in Fig. 1. The same periodic graph and its mod-
ifications was considered in the previous literature within the linear spectral
theory of the associated stationary Schrödinger operator [16,17,20].

In the recent work [11], using the Floquet–Bloch spectral transform and
energy methods, we have addressed the time evolution problem associated with
Eq. (1) on the periodic graph Γ and justified the most universal approximation
of the modulated wave packets given by the homogeneous NLS equation
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Figure 1. A schematic representation of the periodic graph Γ

i∂T Ψ = β∂2
XΨ + γ|Ψ|2Ψ, Ψ(X,T ) : R × R → C, (2)

where β and γ are specific numerical coefficients computed by means of the
Floquet–Bloch spectral theory and Ψ is the envelope function in slow spatial
and temporal variables (X,T ) for the leading-order term in the Floquet–Bloch
decomposition.

In the present work, we will consider bound states of the stationary NLS
equation

− ∂2
xφ − 2|φ|2φ = Λφ Λ ∈ R , φ(x) : Γ → R, (3)

which arise for the standing waves u(x, t) = eiΛtφ(x) of Eq. (1) on the periodic
graph Γ. Equation (3) is the Euler–Lagrange equation of the energy functional
HΛ := E − ΛQ, where

E(u) =
∫

Γ

|∂xu|2dx −
∫

Γ

|u|4dx (4)

and

Q(u) =
∫

Γ

|u|2dx (5)

are two conserved quantities in the time evolution of Eq. (1). Quantities E and
Q have the physical meaning of the Hamiltonian and mass, respectively. In the
definitions (4) and (5), the integrals are defined piecewise along each edge of
the periodic graph Γ. The critical points of HΛ are defined in the energy space
E given by

E :=
{
u ∈ H1(Γ) : u ∈ C0(Γ)

}
.

Here and in what follows, Hs(Γ), s ∈ N is defined by using piecewise integration
along each edge of the graph Γ, whereas u ∈ C0(Γ) means that u is continuous
not only along the edges but also across the vertex points of the graph Γ.

Compared to the weak energy space E , strong solutions of Eq. (3) are
defined in the domain space D, which is a subspace of H2(Γ) closed with the
continuity conditions as well as with the Kirchhoff boundary conditions for
derivatives across the vertex points, see Eqs. (9) and (10) below. By Theorem
1.4.11 in [7], although the energy space E is only defined by the continuity
boundary conditions, the Kirchhoff boundary conditions for the derivatives
are natural boundary conditions for critical points of the energy functional
HΛ in the space E . By bootstrap arguments, any critical point of the energy
functional HΛ in E is also a solution of Eq. (3) in D. On the other hand,
solutions of Eq. (3) in D are immediately the critical points of the energy
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functional HΛ. Therefore, the set of bound states of Eq. (3) is equivalent to
the set of critical points of the energy functional HΛ.

In the context of Eq. (3), we consider small bound states φ ∈ D bifur-
cating for small negative Λ. In this asymptotic limit, we prove the existence
of two families of small, positive, exponentially decaying bound states, one of
which is centered at the midpoint of the horizontal link connecting two rings in
the periodic graph Γ and the other one is centered symmetrically at the mid-
points in the upper and lower semicircles of one ring, see the periodic graph
Γ in Fig. 1. By discrete translational invariance, the two bound states can be
translated to the midpoints of every horizontal link and every ring in Γ.

On a technical side, we show that the two families of the bound states can
be obtained from the symmetric solutions of the two-dimensional discrete map.
The two families of bound states of Eq. (3) on the periodic graph Γ bifurcate
from the point Λ = 0, which coincides with the bottom of the spectrum of the
linear operator −∂2

x in L2(Γ). The following theorem presents the main result
of this work.

Theorem 1.1. There are positive constants Λ0 and C0 such that for every
Λ ∈ (−Λ0, 0), Eq. (3) admits two bound states φ ∈ D (up to the discrete
translational invariance) such that

‖φ‖H2(Γ) ≤ C0|Λ|1/2. (6)

One bound state satisfies

φ(x − L/2) = φ(L/2 − x), x ∈ Γ (7)

and the other one satisfies

φ(x − L − π/2) = φ(L + π/2 − x), x ∈ Γ, (8)

where L is the length of the horizontal link and π is the arc length of the upper
and lower semicircles in Γ. Moreover, it is true for both bound states that

(i) φ is symmetric in upper and lower semicircles of Γ,
(ii) φ(x) > 0 for every x ∈ Γ,
(iii) φ(x) → 0 as |x| → ∞ exponentially fast.

Remark 1.2. We conjecture that the bound state satisfying (7) is the ground
state of Eq. (1) in the sense that it is a standing wave of smallest energy E at a
fixed value of Q. Indeed, both bound states correspond to the values of Λ near
the bottom of the spectrum of the linear operator −∂2

x in L2(Γ). Both bound
states have properties (ii)–(iii), which are standard properties of the ground
states in the NLS equation. However, in comparison, the bound state satisfying
(7) has a single hump at x = L/2, whereas the bound state satisfying (8) has
two humps at x = L + π/2 in the upper and lower semicircles due to property
(i). The bound state with two humps is expected to have bigger energy E at a
fixed value of Q. Unfortunately, the energy difference between the two bound
states is exponentially small in terms of small parameter |Λ|, see Sect. 5 below.
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Remark 1.3. Using the asymptotic method developed in [19], one can prove
existence of two bound states of Eq. (3) in the limit of large negative Λ.
One bound state represents a narrow solitary wave symmetric about L/2.
The other bound state represents two narrow solitary waves symmetric about
L + π/2 in the upper and lower semicircles. It becomes then obvious from the
methods developed in [19] that the former solution is a ground state of Eq. (1).
Connection between the limits of small and large negative Λ was considered
numerically in [19]. Similar results are expected for the periodic graph Γ, as is
suggested by numerical approximations in Sect. 5.

The rest of the paper is organized as follows. The linear spectral analysis
on the periodic graph Γ involving a two-dimensional linear discrete map is
developed in Sect. 2. Existence of the two bound states stated in Theorem 1.1
is obtained in Sect. 3 by using a two-dimensional nonlinear discrete map. Prop-
erties (i)–(iii) stated in Theorem 1.1 are proved in Sect. 4 by using geometric
theory of stable and unstable manifolds in two-dimensional discrete maps. Sec-
tion 5 reports numerical approximations of the two bound states obtained in
Theorem 1.1.

2. Linear Discrete Map for the Spectral Problem on Γ

We consider the periodic graph Γ shown on Fig. 1 with the circles of the
normalized arc length 2π and the horizontal links of the length L. Writing the
periodic graph as

Γ = ⊕n∈ZΓn, with Γn = Γn,0 ⊕ Γn,+ ⊕ Γn,−,

we can map the horizontal links to Γn,0 := [nP, nP + L] and the upper and
lower semicircles to Γn,± := [nP + L, (n + 1)P ] for n ∈ Z, where P = L + π is
the graph period. For a function φ : Γ → C, we denote its part on Γn,0 with
φn,0 and its part on Γn,± with φn,±.

The Laplacian operator ∂2
x is defined on its domain D ⊂ L2(Γ) under two

boundary conditions at the vertex points {nP}n∈Z and {nP + L}n∈Z. We use
continuity of the functions at the vertices{

φn,0(nP + L) = φn,+(nP + L) = φn,−(nP + L),

φn+1,0((n + 1)P ) = φn,+((n + 1)P ) = φn,−((n + 1)P ),
(9)

and the Kirchhoff conditions for the derivatives of the functions at the vertices{
∂xφn,0(nP + L) = ∂xφn,+(nP + L) + ∂xφn,−(nP + L),

∂xφn+1,0((n + 1)P ) = ∂xφn,+((n + 1)P ) + ∂xφn,−((n + 1)P ).
(10)

Remark 2.1. In the literature [16,17], the periodic graph Γ shown on Fig. 1
was directed differently compared to the direction used in our work. Figure 2
shows two different orientations of the lower semicircle in the basic cell Γ0. The
top panel corresponds to our orientation, whereas the bottom panel shows the
orientation used in [16,17]. The change in the direction along the lower semi-
circle results in the change in the signs of the Kirchhoff boundary conditions
(10) but does not change the spectral and bifurcation results.



1190 D. Pelinovsky and G. Schneider Ann. Henri Poincaré

x = L+π

x = L+πx = Lx = 0

x = Lx = 0 x = L+πx = L+2π

Figure 2. The basic cell Γ0 of the periodic graph Γ for two
different but equivalent orientations

There exist two invariant reductions satisfying Eq. (3). The first reduc-
tion corresponds to the solutions compactly supported in the circles with zero
components in the horizontal links:{

φn,0(x) = 0, x ∈ [nP, nP + L],

φn,+(x) = −φn,−(x), x ∈ [nP + L, (n + 1)P ],
n ∈ Z. (11)

The boundary conditions (9) and (10) are satisfied for the reduction (11) if
and only if φn,+ satisfies the homogeneous Dirichlet boundary conditions at
the end points nP + L and (n + 1)P .

The second reduction corresponds to the solution symmetrically placed
in the semicircles:

φn,+(x) = φn,−(x), x ∈ [nP + L, (n + 1)P ], n ∈ Z. (12)

The boundary conditions (9) and (10) can now be closed in terms of only two
components: {

φn,0(nP + L) = φn,+(nP + L),

φn+1,0((n + 1)P ) = φn,+((n + 1)P ),
(13)

and {
∂xφn,0(nP + L) = 2∂xφn,+(nP + L),

∂xφn+1,0((n + 1)P ) = 2∂xφn,+((n + 1)P ).
(14)

The spectral problem associated with the Laplacian operator ∂2
x is given

by

− ∂2
xw = λw, x ∈ Γ. (15)
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By Theorem 1.4.4 in [7], the Laplacian operator ∂2
x : D → L2(Γ) is self-adjoint.

Therefore, the values of λ are real. Moreover, integrating by parts and using
the boundary conditions (9)–(10), we confirm that for every w ∈ D ⊂ L2(Γ),
we have

λ‖w‖2
L2(Γ) = ‖∂xw‖2

L2(Γ) ≥ 0,

hence, the values of λ are positive. Now, we note an elementary result.

Proposition 2.2. The spectrum σ(−∂2
x) in L2(Γ) consists of two parts, which

correspond to eigenfunctions w ∈ D ⊂ L2(Γ), which either satisfy the reduction
(11) or the reduction (12).

Proof. As the linear superposition principle can be applied to the linear homo-
geneous equation, a general solution of Eq. (15) on the periodic graph Γ can
be superposed as the sum of two components, one satisfies the reduction (11)
and the other one satisfies the reduction (12).

Indeed, for general wn,+ and wn,−, we can present these functions as
a sum of symmetric and anti-symmetric components (the latter ones vanish
at the end points of the intervals [nP + L, (n + 1)P ]). Due to the bound-
ary conditions (9) and (10), the two components generate the corresponding
decomposition of wn,0. The symmetric part of wn,0 satisfies (13) and (14),
whereas the anti-symmetric part of wn,0 is identically zero, due to uniqueness
of the zero solution of the second-order differential equation with zero values
both for functions and their derivatives. �

By Proposition 2.2, we can search for the eigenfunctions w of the spectral
problem (15) separately within the reductions (11) and (12). Eigenfunctions
satisfying the reduction (11) are given by{

wn,0(x) = 0, x ∈ [nP, nP + L],

wn,±(x) = ±δn,k sin(m(x − 2πn)), x ∈ [nP + L, (n + 1)P ],
(16)

for fixed m ∈ N and k ∈ Z. There exist countably many eigenfunctions (16)
for the same eigenvalue λ = m2. Hence, the first part of σ(−∂2

x) is given by
the sequence of eigenvalues {m2}m∈N of infinite multiplicity.

Eigenfunctions of Eq. (15) satisfying the reduction (12) can be repre-
sented in the piecewise form{
wn,0(x) = an cos(ω(x − nP )) + bn sin(ω(x − nP )), x ∈ [nP, nP + L],

wn,±(x) = cn cos(ω(x − nP − L)) + dn sin(ω(x − nP − L)), x ∈ [nP + L, (n + 1)P ],

where the spectral parameter λ is parameterized as λ = ω2, and the coeffi-
cients {an, bn, cn, dn}n∈Z are to be defined from the homogeneous Kirchhoff
conditions (13) and (14). Boundary conditions at the vertices {nP + L}n∈Z

yield {
cn = an cos(ωL) + bn sin(ωL),

2dn = −an sin(ωL) + bn cos(ωL),
(17)
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whereas the boundary conditions at the vertices {nP}n∈Z yield{
an+1 = cn cos(ωπ) + dn sin(ωπ),

bn+1 = −2cn sin(ωπ) + 2dn cos(ωπ).
(18)

Eliminating {cn, dn}n∈Z from system (17) and (18), we obtain the two-
dimensional linear discrete map in the matrix form

[
an+1

bn+1

]
= M(ω)

[
an

bn

]
, (19)

where the monodromy matrix is given explicitly by

M(ω) :=

[
cos(ωπ) sin(ωπ)

−2 sin(ωπ) 2 cos(ωπ)

][
cos(ωL) sin(ωL)

− 1
2 sin(ωL) 1

2 cos(ωL)

]
. (20)

By direct computation, we check that det(M) = 1 and tr(M) ≡ T is given by

T (ω) = 2 cos(ωπ) cos(ωL) − 5
2

sin(ωπ) sin(ωL). (21)

Let μ1 and μ2 be the two eigenvalues of M called the Floquet multipliers.
Then, μ1μ2 = 1 and μ1 +μ2 = T , so that we can find the spectral bands of the
spectral problem (15) in terms of the parameter λ = ω2 from the condition
|μ1| = |μ2| = 1. The standard way of finding these bands is to plot the graph
of T versus ω and to find intervals in ω, where |T (ω)| ≤ 2. Figure 3 shows
this graph for L = π/2. The eigenvalues of infinite multiplicities are shown in
black dots. As we can see, some spectral bands are disjoint from each other
with nonempty gaps, whereas some others touch each other and admit no gap.

Summarizing the previous computations, we identify the spectrum
σ(−∂2

x) on L2(Γ).

Proposition 2.3. The spectrum σ(−∂2
x) in L2(Γ) consists of eigenvalues

{m2}m∈N of infinite multiplicity and a countable set of spectral bands
{σk}k∈N, which are determined from the condition T (ω) ∈ [−2, 2], where T (ω)

0 1 2 3 4 5

−2

−1

0

1

2

ω

T

Figure 3. The graph of T versus ω for the periodic graph Γ
with L = π/2
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is given by (21) and λ = ω2. Moreover, the eigenvalues of infinite multiplicity
belong to the spectral bands:

m2 ∈ ∪k∈Nσk for every m ∈ N.

Proof. The first assertion follows from Proposition 2.2 and the explicit con-
struction of eigenfunctions described above. In particular, the kth spectral
band σk can be parameterized by a continuous parameter θ ∈ [−π, π], which
arises in the band-limited Fourier transform for bounded solutions of the linear
difference map (19):[

an

bn

]
=

∫ π

−π

[
â(θ)
b̂(θ)

]
einθdθ, n ∈ Z, (22)

such that T (ω) = 2 cos(θ) ∈ [−2, 2].
It remains to prove that eigenvalues {m2}m∈N belong to the union of

spectral bands ∪k∈Nσk. Indeed, substituting ω = m for m ∈ N to (21), we
obtain

T (m) = 2(−1)m cos(mL) ∈ [−2, 2].

If | cos(mL)| = 1, then m2 is located at the spectral edge (one of the two
end points of the corresponding spectral band), see m = 2, 4 in Fig. 3. If
| cos(mL)| < 1, then m2 belongs to the interior of the corresponding spectral
band, see m = 1, 3, 5 in Fig. 3. �

Remark 2.4. It follows from the graph of T (ω) defined by (21) that the smallest
eigenvalue of infinite multiplicity λ = 1 belongs to the second spectral band if
L ∈ (0, π), the third spectral band if L ∈ (π, 2π), and so on.

Let us simplify T (ω) defined by (21) at the lowest end point λ = 0 of the
lowest spectral band σ1 of the spectral problem (15). Expanding T in powers
of ω, we obtain

T (ω) = 2 − ν2ω2 + O(ω4) as ω → 0,

where ν2 := π2 + L2 + 5
2πL = (L + π/2)(L + 2π) is a numerical constant.

Using the band-limited Fourier transform (22), one can parameterize the
Floquet multipliers on the unit circle by μ1 = eiθ and μ2 = e−iθ. Therefore,
for small θ, we obtain another expansion

μ1 + μ2 = 2 cos(θ) = 2 − θ2 + O(θ4) as θ → 0.

Bringing T (ω) = μ1 + μ2 = 2 cos(θ) together, we obtain the asymptotic
approximation for the lowest spectral band of the spectral problem (15) near
the lowest end point λ = 0 by

λ(θ) = ν−2θ2 + O(θ4) as θ → 0, (23)

where λ(θ) is a parametrization of σ1.

Remark 2.5. The spectral bands of the spectral problem (15) can also be para-
meterized by the Bloch quasi-momentum in the Bloch wave representation of
the eigenfunctions w. The Bloch wave representation is known for the peri-
odic metric graphs [7] and has been explored in our recent work [11]. In the
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present paper, we avoid the Bloch wave representation and work with the
two-dimensional discrete maps, which generalize the linear discrete map (19).

3. Nonlinear Discrete Map for the Bound State on Γ

The bound states defined by the stationary NLS equation in D ⊂ H2(Γ) may
bifurcate from the zero states, when the parameter Λ tends to the extremal
points in σ(−∂2

x). Among all possible bound states, we are interested in the
small bound states bifurcating from the bottom in σ(−∂2

x).
It follows from (23) that the lowest spectral band extends from λ = 0 to

positive values of λ. Therefore, we shall now consider bound states of Eq. (3)
for small negative Λ. We hence set Λ := −ε2 and consider solutions of the
stationary NLS equation

∂2
xφ − ε2φ + 2|φ|2φ = 0, φ ∈ D ⊂ L2(Γ). (24)

Remark 3.1. As follows from the construction of Propositions 2.2 and 2.3,
the lowest spectral band corresponds to eigenfunctions of ∂2

x in D satisfying
the reduction (12). By Remark 2.4, the lowest spectral band is disjoint from
the lowest eigenvalue λ = 1 of infinite multiplicity that corresponds to the
eigenfunctions of ∂2

x in D satisfying the reduction (11). Therefore, it is sufficient
to consider solutions of Eq. (24) satisfying the reduction (12).

Our first task is to reduce Eq. (24) on the periodic graph Γ to the two-
dimensional discrete map. To do so, let us define a solution ψ(x; a, b, ε) of the
initial-value problem on the infinite line:⎧⎪⎪⎨

⎪⎪⎩

∂2
xψ − ε2ψ + 2|ψ|2ψ = 0, x ∈ R,

ψ(0) = a,

∂xψ(0) = b,

(25)

where (a, b) are some real-valued coefficients. The following result is well-known
for the spatial dynamical system related to the focusing NLS equation.

Proposition 3.2. For every (a, b) ∈ R
2 and every ε ∈ R, there is a unique global

bounded solution ψ(x) ∈ C∞(R) of the initial-value problem (25).

Proof. By the standard Picard methods, a unique local real-valued C1 solution
ψ exists for every (a, b) ∈ R

2 and every ε ∈ R. By the conservation of the first-
order invariant,

E := (∂xψ)2 − ε2ψ2 + ψ4 = const, (26)

the local C1 solution is extended as a global solution ψ(x) ∈ C1(R). Moreover,
for every x ∈ R, both ψ(x) and ψ′(x) remain bounded. By bootstrap argu-
ments, the C1 solution ψ is now extended as a smooth solution in x since the
vector field of Eq. (25) is smooth in real variable ψ. �
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Using the translational invariance and the unique global solution ψ(x) ∈
C∞(R) of the initial-value problem (25) given by Proposition 3.2, we can now
solve the following initial-value problems on finite intervals for every n ∈ Z:⎧⎪⎪⎨

⎪⎪⎩

∂2
xφn,0 − ε2φn,0 + 2|φn,0|2φn,0 = 0, x ∈ [nP, nP + L],

φn,0(nP ) = an,

∂xφn,0(nP ) = bn

(27)

and ⎧⎪⎪⎨
⎪⎪⎩

∂2
xφn,+ − ε2φn,+ + 2|φn,+|2φn,+ = 0, x ∈ [nP + L, (n + 1)P ],

φn,+(nP + L) = cn,

∂xφn,+(nP + L) = dn,

(28)

where {an, bn, cn, dn} are some real-valued coefficients. By the existence and
uniqueness result of Proposition 3.2 and the translational invariance, we obtain
unique solutions of the initial-value problems (27) and (28) in the following
form:

φn,0(x) = ψ(x − nP ; an, bn, ε), φn,+(x) = ψ(x − nP − L; cn, dn, ε). (29)

Remark 3.3. The function ψ for the initial-value problem (25) can be expressed
explicitly in terms of Jacobi elliptic functions. This approach was used in the
literature [13] to obtain some information about standing waves on various
metric graphs. In our approach, we avoid Jacobi elliptic functions and rely
on the general perturbation theory in small ε. The same general approach
can also be applied to other nonlinear problems (e.g., with higher-order power
functions), where explicit solutions of the initial-value problem (25) are not
available.

Keeping in mind the reduction (12), we can now satisfy the boundary
conditions (13) and (14) by using the unique solutions given by (29). Boundary
conditions at the vertices {nP + L}n∈Z yield{

cn = ψ(L; an, bn, ε),

2dn = ∂xψ(L; an, bn, ε),
(30)

whereas the boundary conditions at the vertices {nP}n∈Z yield{
an+1 = ψ(π; cn, dn, ε),

bn+1 = 2∂xψ(π; cn, dn, ε).
(31)

Eliminating {cn, dn}n∈Z from system (30) and (31), we obtain the two-
dimensional nonlinear discrete map in the form[

an+1

bn+1

]
=

[
ψ(π;ψ(L; an, bn, ε), 1

2∂xψ(L; an, bn, ε), ε)

2∂xψ(π;ψ(L; an, bn, ε), 1
2∂xψ(L; an, bn, ε), ε)

]
. (32)

Next we establish the reversibility of the two-dimensional discrete map
(32) about two natural centers of symmetries. The first symmetry

a−n = cn, b−n = −2dn, n ∈ Z, (33)
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corresponds to the solution φ ∈ D of Eq. (24) symmetric about the midpoint
x = L/2 in the 0th central link. The other symmetry

a−n = cn+1, b−n = −2dn+1, n ∈ Z, (34)

corresponds to the solution φ ∈ D of Eq. (24) symmetric about the midpoint
x = L + π/2 in the 0th circle. Although the constraints (33) and (34) involve
infinitely many relations between solutions of the nonlinear discrete map (32),
we show that each symmetry is satisfied with only one constraint.

Proposition 3.4. The symmetry (33) on the solutions of the nonlinear discrete
map (32) is satisfied if and only if (a0, b0) satisfies the following reversibility
constraint:

∂xφ0,0(L/2) = ∂xψ(L/2; a0, b0, ε) = 0. (35)

The symmetry (34) is satisfied if and only if (c0, d0) satisfies the following
reversibility condition:

∂xφ0,+(L + π/2) = ∂xψ(π/2; c0, d0, ε) = 0. (36)

Proof. Since the periodic graph Γ is symmetric about the point x = L/2 and
the stationary NLS equation involves only second-order derivatives, the exis-
tence and uniqueness theory for differential equations implies that the solution
φ ∈ D of Eq. (24) is symmetric about the point x = L/2 if and only if it satisfies
the condition (35). By the constructions of the solution φ ∈ D with the explicit
formula (29), the symmetry (35) translates uniquely to the symmetry (33) on
solutions of the discrete map (32). Thus, solutions of the two-dimensional dis-
crete map (32) satisfy (33) if and only if (a0, b0) satisfy (35).

The statement for the symmetry (34) and the constraint (36) on (c0, d0)
is proved from the symmetry of the periodic graph Γ about the point x =
L + π/2. �

Although the discrete map (32) can be used for every solution of the
stationary Eq. (24), the results are not so explicit. Moreover, many solution
branches may coexist for the same values of ε ∈ R. Therefore, we simplify the
consideration for small solutions φ ∈ D corresponding to small values of ε ∈ R.
This simplification is based on the following approximation result.

Lemma 3.5. Consider the initial-value problem (25) with the scaled initial con-
ditions

a = εα, b = ε2β (37)

where α and β are some ε-independent real-valued coefficients. For every x0 >
0, there exists ε0 > 0 such that the initial-value problem (25) for every ε ∈
(0, ε0) admits a unique solution ψ(x) ∈ C∞(0, x0), which is smooth in ε and
satisfies the power series expansion
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ψ(x; εα, ε2β, ε)

= ε

[
α + εβx +

1
2
ε2α(1 − 2α2)x2 +

1
6
ε3(1 − 6α2)βx3 + OL∞(0,x0)(ε

4)
]

. (38)

Proof. Using the scaling transformation (37), we scale the unique real-valued
solution of the initial-value problem (25) by ψ(x) = εϕ(x) and obtain⎧⎪⎪⎨

⎪⎪⎩

∂2
xϕ = ε2(1 − 2ϕ2)ϕ,

ϕ(0) = α,

∂xϕ(0) = εβ.

(39)

From smoothness of the initial-value problem (39) in ε, we have smoothness of
the unique global solution ϕ(x) ∈ C∞(R) in ε. Therefore, the unique solution
of the initial-value problem (39) satisfies the regular power series expansion
given by

ϕ(x; ε) = ϕ0(x) + ε2ϕ2(x) + ε4ϕ̃ε(x), (40)

where ϕ′′
0(x) = 0, ϕ′′

2(x) = (1 − 2ϕ2
0)ϕ0 and

ϕ̃′′
ε (x) = (1 − 6ϕ2

0)ϕ2 + ε2(1 − 6ϕ2
0 − 12ε2ϕ0ϕ2 − 6ε4ϕ2

2)ϕ̃ε

− 6ε2ϕ0ϕ
2
2 − 2ε4ϕ3

2 − 6ε6ϕ0ϕ̃
2
ε − 6ε8ϕ2ϕ̃

2
ε − 2ε10ϕ̃3

ε .

From the initial values, we have the unique expressions for ϕ0(x) = α + εβx
and

ϕ2(x) =
1
2
(1 − 2α2)αx2 +

1
6
ε(1 − 6α2)βx3 − 1

2
ε2αβ2x4 − 1

10
ε3β3x5.

Also, by standard Gronwall’s inequality, we obtain that ϕ̃ε(x) is bounded in
L∞(0, x0) for every x0 > 0 as ε → 0. Substituting expressions for ϕ0 and ϕ2

in the power series expansion (40) and neglecting the OL∞(0,x0)(ε
4) terms, we

obtain (38). �

By using scaling (37) and expansion (38), we introduce the scaling trans-
formation for solutions of the discrete maps (30) and (31):

an = εαn, bn = ε2βn, cn = εγn, dn = ε2δn, n ∈ Z. (41)

Using the connection formulas{
γn = αn + εβnL + 1

2ε2αn(1 − 2α2
n)L2 + O(ε3),

2δn = βn + εαn(1 − 2α2
n)L + 1

2ε2βn(1 − 6α2
n)L2 + O(ε3),

(42)

we rewrite the discrete map (32) in the explicit asymptotic form:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αn+1 = αn + ε(L + π/2)βn + 1
2ε2(L2 + πL + π2)(1 − 2α2

n)αn

+ 1
12ε3(2L3 + 3L2π + 6Lπ2 + π3)(1 − 6α2

n)βn + O(ε4),

βn+1 = βn + ε(L + 2π)(1 − 2α2
n)αn

+ 1
4ε2(2L2 + 4Lπ + π2)(1 − 6α2

n)βn + O(ε3).

(43)
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Next, we construct a suitable approximation for solutions of the discrete
map (43). In particular, we consider a slowly varying solution in the form

αn = A(X), βn = B(X), X = εn, n ∈ Z, (44)

with A(X), B(X) ∈ C∞(R). By substituting (44) into (43), using Taylor series
expansions, and truncating at the leading-order terms, we obtain{

A′ = (L + π/2)B,

B′ = (L + 2π)(1 − 2A2)A,
(45)

which is equivalent to the second-order differential equation

A′′ = ν2(1 − 2A2)A, ν2 := (L + π/2)(L + 2π). (46)

System (45) is satisfied with the exact localized solution

A(X) = sech(νX), B(X) = −μ tanh(νX)sech(νX), X ∈ R, (47)

where μ2 := (L + 2π)(L + π/2). In order to prove persistence of the approxi-
mation (44) and (47) among the reversible solutions of the discrete map (43),
we need the following result.

Proposition 3.6. For a given f ∈ �2(Z) satisfying the reversibility symmetry
fn = f1−n for every n ∈ Z, consider solutions of the linearized difference
equation

− αn+1 − 2αn + αn−1

ε2
+ ν2(1 − 6A2(εn − ε/2))αn = fn, n ∈ Z, (48)

where A(X) = sech(νX). For sufficiently small ε > 0, there exists a unique
solution α ∈ �2(Z) satisfying the reversibility symmetry αn = α1−n for every
n ∈ Z. Moreover there is a positive ε-independent constant C such that

ε−1 ‖σ+α − α‖�2 ≤ C‖f‖�2 , ‖α‖�2 ≤ C‖f‖�2 , (49)

where σ+ is the shift operator defined by (σ+α)n := αn+1, n ∈ Z.

Proof. As ε → 0, the finite difference operator in Eq. (48) converges to the
Schrödinger operator

L∞ := −∂2
X + ν2(1 − 6A2(X)), A2(X) = sech2(νX), (50)

where X is now defined on the real line. The Schrödinger operator (50) provides
a linearization of Eq. (46). As is well-known (see [18] and references therein),
the spectrum of L∞ consists of the continuous spectrum σc(L∞) ∈ [ν2,∞) and
two isolated eigenvalues, one of which is negative and the other one is at zero.
The zero eigenvalue is related to the translational symmetry and corresponds
to the eigenfunction of L∞ spanned by A′(X). By continuity of isolated eigen-
values with respect to parameter ε, the linearized difference operator in the
left-hand side of Eq. (48) admits an eigenvalue near zero, while the rest of its
spectrum is bounded away from zero.

Let us now impose the reversibility constraint α0 = α1 on solutions of
Eq. (48). If f ∈ �2(Z) satisfies the reversibility symmetry fn = f1−n for every
n ∈ Z, then the constraint α0 = α1 defines uniquely solutions of Eq. (48)
satisfying the reversibility symmetry αn = α1−n for every n ∈ Z.
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Since A′(−X) = −A′(X), for every X ∈ R, the Schrödinger operator
L∞ is invertible on the space of even functions. Similarly, for sufficiently small
values of ε, the linearized difference operator is invertible on sequence f ∈ �2(Z)
satisfying the constraint fn = f1−n for every n ∈ Z. Hence, we obtain the
unique reversible solution α ∈ �2(Z) to Eq. (48) satisfying the second bound
in (49).

The first bound is found from the quadratic form associated with Eq. (48),
which can be written in the form

ε−2 ‖σ+α − α‖2
�2 = 〈α, f〉�2 + ν2〈(6A2(ε · −ε/2) − 1)α, α〉�2 . (51)

By using Cauchy–Schwartz inequality in (51) and the second bound in (49),
we obtain the first bound in (49). �

With the help of Proposition 3.6, we prove the persistence of the approx-
imation (44) and (47) among the reversible solutions of the discrete map (43).

Lemma 3.7. Consider solutions of the discrete map (43) in the perturbed form

αn = A(εn − ε/2 + X0) + α̃n, βn = B(εn − ε/2 + X0) + β̃n, n ∈ Z, (52)

where X0 is a parameter. There exists ε0 > 0 and C0 > 0 such that for every
ε ∈ (0, ε0), there exist a unique choice for X0 and (α̃, β̃) ∈ �2(Z) satisfying

|X0| + ‖α̃‖�2 + ‖β̃‖�2 ≤ C0ε, (53)

such that (α, β) ∈ �2(Z) solve the discrete map (43) subject to the following
reversibility constraint on (α0, β0):

∂xψ(L/2; εα0, ε
2β0, ε) = 0. (54)

Proof. First, we rewrite the two-dimensional discrete map (43) as the scalar
second-order difference equation. This equivalent formulation is convenient for
persistence analysis near the approximated solution (47). Expressing

ε(L + π/2)βn =
αn+1 − αn − 1

2ε2(L2 + Lπ + π2)(1 − 2α2
n)αn + O(ε4)

1 + ε2 2L3+3L2π+6Lπ2+π3

12(L+π/2) (1 − 6α2
n) + O(ε4)

(55)

from the first equation of system (43), we close the second equation of system
(43) in the form

−αn+1 − 2αn + αn−1

ε2
+ ν2(1 − 2α2

n)αn

= F (αn+1, αn, αn−1) + ε2R(αn+1, αn, αn−1, ε), (56)
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where

F (αn+1, αn, αn−1)

:=
1
2
(L2 + 4Lπ + π2)

(
1 − 2α2

n − 2αnαn−1 − 2α2
n−1

)
(αn − αn−1)

− 2L3 + 3L2π + 6Lπ2 + π3

12(L + π/2)
(1 − 6α2

n)(αn+1 − αn)

− 8L3 + 24L2π + 6Lπ2 + π3

24(L + π/2)
(1 − 6α2

n−1)(αn − αn−1).

The remainder term R is a smooth function of (αn+1αn, αn−1) and ε, which
remains bounded by an ε-independent constant as ε → 0 if ‖α‖�2 is bounded
by an ε-independent constant.

Next, we ensure that the parameter X0 can be uniquely chosen to satisfy
the reversibility symmetry (33). By Proposition 3.4, the symmetry (33) is
satisfied if and only if the parameters (a0, b0) satisfies the constraint (35). By
virtue of the scaling (41), the reversibility constraint is written in the form
(54). By Lemma 3.5, we rewrite the constraint (54) in the perturbed form

β0 +
εL

2
(1 − 2α2

0)α0 +
ε2L2

8
(1 − 6α2

0)β0 + O(ε3) = 0,

from which we obtain

β0 = −εL

2
(1 − 2α2

0)α0 + O(ε3). (57)

Using (55), we rewrite this constraint in the form

α1 − α0 =
π(L + 2π)ε2

4
(1 − 2α2

0)α0 + ε4G(α0, ε), (58)

where G is a smooth function of α0 and ε, which remains bounded by an ε-
independent constant as ε → 0 if α0 is bounded by an ε-independent constant.

Substituting the decomposition (52) into the constraint (58), we obtain

α̃1 − α̃0 + A(X0 + ε/2) − A(X0 − ε/2)
= π(L + 2π)ε2(1 − 2α2

0)α0/4 + ε4G(α0, ε), (59)

where α0 = A(X0 − ε/2) + α̃0. For uniqueness of the decomposition (52), we
supply the constraint

α̃1 = α̃0. (60)

Since A′(0) = 0 and A′′(0) �= 0, we can apply the implicit function theorem
to solve Eq. (59) for X0 in terms of α̃0 for ε > 0 sufficiently small. The value
of X0 = O(ε) is uniquely determined from the implicit equation for every
α̃ ∈ �2(Z) satisfying a priori bound

‖α̃‖�2 ≤ C, (61)

where C > 0 is ε-independent.
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Next, we proceed with the perturbed solution of the discrete map (56).
By substituting the decomposition (52) and using Eq. (46), we rewrite the
second-order difference equation in the equivalent form

− α̃n+1 − 2α̃n + α̃n−1

ε2
+ ν2(1 − 6A2(εn − ε/2))α̃n

= Hn(ε) + 6ν2Gn(ε)α̃n + 6ν2A(εn − ε/2 + X0)α̃2
n + 2ν2α̃3

n

+ F (αn+1, αn, αn−1) + ε2R(αn+1, αn, αn−1, ε), (62)

where

Hn(ε) :=
A(εn + ε/2 + X0) − 2A(εn − ε/2 + X0) + A(εn − 3ε/2 + X0)

ε2

−A′′(εn − ε/2 + X0)

and

Gn(ε) := A2(εn − ε/2 + X0) − A2(εn − ε/2).

Since A(X) ∈ C∞(R) and X0 = O(ε), the terms H(ε) and G(ε) satisfy the
estimates

‖H(ε)‖�2 ≤ Cε2, ‖G(ε)‖�2 ≤ Cε, (63)

where the positive constant C is ε-independent for every ε > 0 sufficiently
small.

Both functions F (αn+1, αn, αn−1) and R(αn+1, αn, αn−1, ε) in (62) are
C∞ in terms of (αn+1, αn, αn−1) and ε. It follows from the explicit expression
for F that

‖F (A(ε · +ε/2 + X0), A(ε · −ε/2 + X0), A(ε · −3ε/2 + X0))‖�2 ≤ Cε, (64)

where C > 0 is ε-independent. Therefore, the inhomogeneous terms of the
perturbed system (62) is bounded in a ball in �2(Z) of the size O(ε). Since
ε > 0 is sufficiently small, vectors in this ball satisfy the a priori assumption
(61) used earlier.

By using the bounds (49) of Proposition 3.6, we look for solutions of the
persistence problem (62) satisfying the bounds

ε−1 ‖σ+α̃ − α̃‖�2 ≤ Cε, ‖α̃‖�2 ≤ Cε, (65)

where C > 0 is ε-independent. Linearization of F (αn+1, αn, αn−1) at αn =
A(εn−ε/2+X0) yields O(ε) perturbations to the linearized difference operator
in the left-hand side of Eq. (62) acting on ε−1(σ+α̃ − α̃) and α̃ in �2(Z).

We are now in position to invert the linearized difference operator in the
left-hand-side of Eq. (62) and to apply the fixed-point iterations for solutions of
the persistence problem (62) satisfying the estimates (65). Indeed, the solution
α̃ is supposed to satisfy the reversibility constraint (60), whereas the right-hand
side satisfies the reversibility condition used in Proposition 3.6, thanks to our
choice of parameter X0 from Eq. (59).

By Proposition 3.6, the linearized difference operator in the left-hand-
side of Eq. (62) is invertible with the bound (49) for sufficiently small ε > 0,
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so that the fixed-point iterations converge in a ball in �2(Z) of the size O(ε).
By the implicit function theorem, thanks to the estimates (63) and (64), we
obtain a unique solution α̃ ∈ �2(Z) to the perturbed system (62) satisfying the
reversibility constraint (60) and the bounds (65). Combining this result with
the unique choice for X0 = O(ε) from Eq. (59) and β ∈ �2(Z) from Eq. (55),
we obtain bound (53). The statement of the lemma is proved. �

Remark 3.8. Lemma 3.7 can be extended to solutions of the discrete map (43)
satisfying the reversibility symmetry (34). In this case, using the scaling (41),
we rewrite the reversibility constraint (36) in the form:

∂xψ(π/2; εγ0, ε
2δ0, ε) = 0. (66)

After the straightforward computations involving system (42), the constraint
(66) can be expressed for the variables (α0, β0) in the perturbed form:

β0 = −ε(L + π)(1 − 2α2
0)α0 + O(ε3), (67)

which is not so different from Eq. (57). As a result, the value of X0 is chosen
differently from the constraint (67), yet, the construction for X0 and (α̃, β̃) ∈
�2(Z) is unique.

Remark 3.9. It follows from the representation (29), Proposition 3.4, and
Lemma 3.5 that the results of Lemma 3.7 and Remark 3.8 imply the statement
of Theorem 1.1 with bound (6) and symmetries (7) and (8) on the bound states
φ of Eq. (3) with Λ = −ε2. Property (i) holds by the construction. However,
properties (ii) and (iii) have not yet been proved. In particular, we cannot state
positivity and exponential decay of the sequence {αn, βn}n∈Z, which makes it
impossible to claim the same properties for the bound state φ.

Remark 3.10. The result of Lemma 3.7 corresponds to the reductions of Eq. (1)
on the periodic graph Γ to the cubic NLS equation on the infinite line given
by Eq. (2) and established in [11]. Equation (46) corresponds to the station-
ary NLS equation obtained from Eq. (2) with β = ν−2 and γ = 2 for the
steady solutions in the form Ψ(X,T ) = A(X)e−iT . Indeed, justification of
stationary versions of the NLS equation follows closely to the justification of
the time-dependent equations and relies on the generalized Lyapunov–Schmidt
reduction method [23]. Bloch wave functions are used for derivation and justi-
fication of these equations, whereas the coefficient β = ν−2 corresponds to the
asymptotic computation (23) obtained from the linear analysis of the lowest
spectral band σ1 in the spectrum of −∂2

x : D → L2(Γ).

4. Properties of the Bound States Bifurcating on Γ

We prove here positivity and exponential decay of the sequence {αn, βn}n∈Z

for the reversible solutions of the two-dimensional discrete map (43). To do
so, we use the theory of invariant manifolds for discrete maps. Applications
of this theory to construct two distinct sets of so-called on-site and inter-site
homoclinic orbits in the discrete NLS equation can be found in [26]. A different
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but spiritually similar technique for approximations of homoclinic orbits in
discrete maps via normal forms is described in [15].

We rewrite the two-dimensional discrete map (43) in the abstract form{
αn+1 = αn + fε(αn, βn),
βn+1 = βn + gε(αn, βn),

(68)

where (fε, gε) are smooth functions of (αn, βn) and ε, which are available in
the form of the perturbative expansion:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

fε(αn, βn) := ε(L + π/2)βn

+ 1
2ε2(L2 + πL + π2)(1 − 2α2

n)αn + O(ε3),
gε(αn, βn) := ε(L + 2π)(1 − 2α2

n)αn

+ 1
4ε2(2L2 + 4Lπ + π2)(1 − 6α2

n)βn + O(ε3).

(69)

We shall prove the existence of homoclinic reversible orbits in the discrete
map (68) for small ε �= 0, which have the required properties of positivity and
exponential decay.

Lemma 4.1. There exist ε0 > 0 and C0 > 0 such that for every ε ∈ (0, ε0),
there exists two distinct homoclinic orbits to the discrete map (68) such that
(α0, β0) satisfy either constraint (54) or (66). Moreover, for each homoclinic
orbit, we have

‖α‖�2 + ‖β‖�2 ≤ C0 (70)

and
(a) αn > 0 for every n ∈ Z,
(b) αn → 0 as |n| → ∞ exponentially fast,
(c) there is N ≥ 0 such that {αn}n∈Z is monotonically increasing for n ≤ −N

and decreasing for n ≥ N .
The sequence {(αn, βn)}n∈Z for the two homoclinic orbits is smooth in ε.

Proof. The point (0, 0) is a fixed point of the discrete map (68) because
fε(0, 0) = gε(0, 0) = 0 follows by existence and uniqueness of zero solutions
of the initial-value problems (27) and (28), see Proposition 3.2. The Jacobian
matrix of the discrete map (68) at (0, 0) is given by

A =

[
1 + O(ε2) ε(L + π/2) + O(ε3)

ε(L + 2π) + O(ε3) 1 + O(ε2)

]
. (71)

The two eigenvalues of A are λ± = 1 ± εν + O(ε2), where ν2 := (L + π/2)(L +
2π), therefore, the fixed point is hyperbolic for every ε �= 0. If there exists a
homoclinic orbit {αn, βn}n∈Z to the hyperbolic fixed point (0, 0), then |αn| +
|βn| → 0 as |n| → ∞ exponentially fast, by the stable and unstable curve
theory for hyperbolic fixed points.

Therefore, we only need to prove existence of the two distinct positive
homoclinic orbits to the discrete map (68), which corresponds to the two
reversibility constraints (54) and (66), see Proposition 3.4. Without loss of
generality, we consider the symmetry constraint (54) given by the asymptotic
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expansion (57). The symmetry constraint represents a curve in the (α, β) plane
given asymptotically by

β = Nε(α) := −εL

2
(1 − 2α2)α + O(ε3) as ε → 0. (72)

By the symmetry, it is sufficient to construct the one-dimensional unstable
curve for the discrete map (68) and to prove that this curve intersects the
curve (72). By discrete group of translations and continuous dependence on
the initial conditions, the intersection point can be translated to the location
n = 0 in the sequence {αn, βn}n∈Z and hence satisfy the symmetry constraint
(54).

For the unstable eigenvalue λ+ = 1 + εν + O(ε2), the corresponding
eigenvector of A defines a straight line on the (α, β) plane,

β = Uε(α) := [μ + O(ε)] α, as ε → 0, (73)

where μ2 := L+2π
L+π/2 . The straight line (73) is located in the first quadrant of

positive α and β. By the invariant curve theory, there exists a one-dimensional
unstable curve in the (α, β) plane, which is tangent to the line defined by (73).
Therefore, there exists N1 ∈ Z such that {αn, βn}n=N1

n=−∞ are monotonically
increasing and αn, βn > 0 for every n ≤ N1.

Figure 4 shows the plane (α, β) together with the symmetry curve (72)
(red dash-dotted line) and the straight line (73) (green dashed line). The blue
dots show the monotonically increasing sequence {αn, βn}n=N1

n=−∞ according to
the approximate solution (47).

By the explicit form of fε in (69), there is a positive ε-independent con-
stant C1 such that fε(αn, βn) > 0 for ε > 0 sufficiently small, as long as
β ≥ C1εα. Therefore, the sequence {αn} remains monotonically increasing as
long as β ≥ C1εα.

By the explicit form of gε in (69), there is a positive ε-independent
constant C2 such that the sequence {βn} is monotonically decreasing if
α > 1√

2
− C2εβ.

Since

λn
+ = (1 + εν + O(ε2))n = enεν(1+O(ε)), as ε → 0, (74)

it follows from (73) and (74) that there exists N1 = O(ε−1) such that αN1 >
1√
2

− C2εβN1 and βN1 = O(1) as ε → 0. From the explicit forms of fε and

gε discussed above, it follows that there exists N2 > N1 such that {αn}n=N2
n=−∞

is monotonically increasing and {βn}n=N2
n=N1

is monotonically decreasing until it
reaches βN2 ≤ C1εαN2 .

Since the values of βn decrease from O(1) at n = N1 to O(ε) at n = N2,
we have N2−N1 = O(ε−1) and αN2 ≥ C3 for some C3 > 1√

2
. If βN2 ≤ Nε(αN2),

we are done, as the existence of a homoclinic orbit follows from the discrete
translational invariance, the reversibility symmetry, and the continuous depen-
dence of sequences from initial data.
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Figure 4. The plane (α, β) for L = π/2 and ε = 0.02, where
the blue dots denote a sequence {αn, βn}n∈Z given approxi-
mately by the solution (47), the green dashed line shows the
straight line β = Uε(α), and the red dash-dotted line shows
the symmetry curve β = Nε(α) (color figure online)

If βN2 > Nε(αN2), then we continue iterations further. Since αN2 ≥
C3 > 1√

2
− C2εβN2 and βN2 ≤ C1εαN2 , there is an ε-independent pos-

itive integer K such that {αn}n=N2+K
n=N2

becomes monotonically decreasing,
whereas {βn}n=N2+K

n=N2
continues to be monotonically decreasing until it reaches

βN2+K ≤ Nε(αN2+K) for αN2+K ≥ C4 for some C4 ∈
(

1√
2
, C3

)
. Again, the

existence of a homoclinic orbit follows from the discrete translational invari-
ance, the reversibility symmetry, and the continuous dependence of sequences
from initial data.

A similar construction holds for the symmetry constraint (66), which
is given by the asymptotic expansion (67). Smoothness in ε is obtained by
smoothness of the vector field and all asymptotic expansions in ε. �

Remark 4.2. If K > 0 in the proof of Lemma 4.1, the sequence {αn}n∈Z con-
structed for two distinct homoclinic orbits in Lemma 4.1 is not monotonically
increasing for n < 0 and decreasing for n > 0. Indeed, at the symmetry curve
(72), we have

fε(α,Nε(α)) =
π(L + 2π)ε2

4
(1 − 2α2)α + O(ε4),

therefore, fε(α,Nε(α)) < 0 for α > 1√
2
, if ε is sufficiently small. Thus, the

sequence {αn}n∈Z is only proved to be monotonically increasing for n < −N
and decreasing for n > N , where the number N ≥ 0 is ε-independent for
sufficiently small ε.

Remark 4.3. Since we are not able to prove that α0 = 1 + O(ε) for the two
distinct homoclinic orbits constructed in Lemma 4.1, we are not able to claim
immediately that these homoclinic orbits are the same as the ones in Lemma
3.7. Nevertheless, because of convergence of finite differences to derivatives
in the two-dimensional discrete map (68) as ε → 0 and smoothness of the
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sequences {(αn, βn)}n∈Z with respect to ε in Lemma 4.1, the two distinct
homoclinic orbits converge as ε → 0 to the leading-order approximation (47),
which is uniquely continued in Lemma 3.7. Therefore, in the end, we confirm
that these two distinct solutions of Lemmas 3.7 and 4.1 are the same.

We shall now transfer properties of Lemma 4.1 to the bound states of
Eq. (24) for small ε �= 0.

Corollary 4.4. There exist ε0 > 0 and C0 > 0 such that for every ε ∈ (0, ε0),
there exists two distinct bound states φ ∈ D ⊂ L2(Γ) to Eq. (24) satisfying the
constraints (7) and (8). Moreover, for each branch, we have

‖φ‖H2(Γ) ≤ C0ε (75)

and

(i) φn,+(x) = φn,−(x) for every x ∈ [nP + L, (n + 1)P ],
(ii) φ(x) > 0 for every x ∈ Γ,
(iii) φ(x) → 0 as |x| → ∞ exponentially fast.

The function φ for the two bound states is smooth in ε.

Proof. The result follows from Lemma 4.1, with the representation (29) and
the asymptotic expansions of Lemma 3.5. These asymptotic expansions can be
rewritten explicitly as follows:

φn,0(x) = ε
[
αn + εβn(x − nP )

+
1
2
ε2αn(1 − 2α2

n)(x − nP )2 + OL∞(nP,nP+L)(ε3)
]

and

φn,+(x) = ε
[
γn + εδn(x − nP − L)

+
1
2
ε2γn(1 − 2γ2

n)(x − nP − L)2 + OL∞(nP+L,(n+1)P )(ε3)
]
,

where {(αn, βn)}n∈Z is defined at one of the two homoclinic orbits of Lemma
4.1, whereas {(γn, δn)}n∈Z are found from system (42).

Bound (75) follows from this asymptotic representation and bound (70).
Symmetry (i) follows by the construction of the reduction (12). Positivity (ii)
and exponential decay (iii) follows from properties (a) and (b) of Lemma 4.1
provided the rate of exponential decay of sequences {αn}n∈Z and {βn}n∈Z

coincides. The latter fact follows from the invariant curve theory for two-
dimensional discrete maps. Smoothness of φ in ε follows from smoothness of
the sequence {(αn, βn)}n∈Z in ε, as stated in Lemma 4.1. �

Remark 4.5. Theorem 1.1 is a reformulation of the result of Corollary 4.4.
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5. Discussion

In order to illustrate the construction of two distinct bound states in Theo-
rem 1.1, we compute numerical approximations of bound states of Eq. (24)
on the periodic graph Γ. The numerical method uses the first-order invariant
(26) piecewise on the segments Γn,0 and Γn,+ of the periodic graph Γ. The
starting point (φ, φ′) = (φ0, 0) at the center of symmetry (either x0 = L/2 or
x0 = L + π/2) is used as parameter of the shooting method. The boundary
conditions (13) and (14) are preserved at each breaking point of the graph
in order to recompute the value of the first-order invariant (26) and to con-
tinue the solution away from the points of symmetry. The parameter φ0 of the
shooting method is adjusted to obtain a homoclinic orbit on the periodic graph
Γ. The two distinct families of the bound states are shown on Figs. 5 and 6
both on the plane (x, φ) and on the phase plane (φ, φ′). The green dotted line
shows the solitary wave of the stationary NLS equation on the infinite line,
which is available analytically as φ(x) = εsech(ε(x−x0)) for each of the bound
state. Note that although the jumps in the derivative φ′ look large on the right
panels of Figs. 5 and 6, the scaling is O(10−3) for the vertical axis.

We end this work with remarks on energy estimates, which are useless to
distinguish which of the two bound states of Theorem 1.1 is a ground state.
By definition, the ground state is a bound state of minimal energy E given
by (4) under fixed mass Q given by (5). Equivalently, the ground state is a
solution φ ∈ D ⊂ L2(Γ) to Eq. (24) for fixed ε > 0 that corresponds to the
smallest value of mass Q.

Substituting the asymptotic representation of Corollary 4.4 to the expres-
sion (5) and using smoothness of all quantities in ε, we obtain the asymptotic
representation for each homoclinic orbit:
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0

4

8 x 10
−3

φ

φ’

Figure 5. Profile of the numerically generated bound state
of Eq. (24) with symmetry (7) for L = π and ε = 0.1 on
(x, φ) plane (left) and on (φ, φ′) plane (right). The red dots
show the breaking points on the periodic graph Γ. The green
dashed line shows the solitary wave solution of Eq. (24) on
the infinite line (color figure online)
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Figure 6. The same as Fig. 5 but for the bound state with
symmetry (8)
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Figure 7. Profile of the numerically generated bound state
of Eq. (3) with symmetries (7) (left) and (8) (right) for L = π
and Λ = −10. The green dashed line shows the solitary wave
solution of Eq. (3) on the infinite line (color figure online)

Q = ε2
∑
n∈Z

(Lα2
n + 2πγ2

n) + ε3
∑
n∈Z

(L2αnβn + 2π2γnδn) + O(ε4). (76)

Symmetry (33) of the first homoclinic orbit implies

α−n = γn, β−n = −2δn, n ∈ Z,

which reduces the asymptotic expression (76) for Q to the form

Q = (L + 2π)ε2
∑
n∈Z

α2
n + (L2 − π2)ε3

∑
n∈Z

αnβn + O(ε4). (77)

On the other hand, symmetry (34) of the second homoclinic orbit implies

α−n = γn+1, β−n = −2δn+1, n ∈ Z,

which results in the same expression (77) for Q. Since {(αn, βn)}n∈Z

approaches the same approximation (47) as ε → 0, the value of Q is iden-
tical in the first two orders of ε. In fact, we suspect that this value is only
different by a term that is exponentially small in ε. As a result, we are not
able to claim which bound state is a ground state by using power expansions
in ε.
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As is formulated in Remarks 1.2 and 1.3, we anticipate that the bound
state satisfying the symmetry (7) is a ground state of the periodic metric
graph. We also anticipate that both bound states are extended to all values
of ε, that is, to the limit Λ → −∞ within Eq. (3). Indeed, using the same
numerical method, we have confirmed that both bound states exist in Eq. (3)
with Λ = −10. Figure 7 illustrates the profiles of the two bound states for
Λ = −10. In this case, the bound states become more concentrated at the
nearest cells to the symmetry centers of the periodic graph Γ.
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