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MODELING OF WAVE RESONANCES IN LOW-CONTRAST
PHOTONIC CRYSTALS∗
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Abstract. Coupled-mode equations are derived from Maxwell equations for modeling of low-
contrast cubic-lattice photonic crystals in three spatial dimensions. Coupled-mode equations describe
resonantly interacting Bloch waves in stop bands of the photonic crystal. We study the linear
boundary-value problem for stationary transmission of four counter-propagating and two oblique
waves on the plane. Well-posedness of the boundary-value problem is proved by using the method
of separation of variables and generalized Fourier series. For applications in photonic optics, we
compute integral invariants for transmission, reflection, and diffraction of resonant waves.
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1. Introduction. Photonic band-gap crystals are periodic optical materials, the
spectrum of which consists of bands separated by band gaps [13]. Linear periodic
properties of the isotropic photonic crystals are modeled with the Maxwell equations

∇2E − n2

c2
∂2E

∂t2
= ∇(∇ · E), ∇ ·

(
n2E

)
= 0,(1.1)

where n = n(x) is the periodic refractive index, E = (Ex, Ey, Ez) is the electric field
vector, x = (x, y, z) is the physical space, t is the time variable, ∇ = (∂x, ∂y, ∂z) is the
gradient vector, and c is the speed of light. Components of the magnetic field vector
are eliminated from the Maxwell equations (1.1) [13].

The Maxwell equations (1.1) in one dimension can be simplified for a linearly
polarized light, such that E = (E, 0, 0), where E = E(z, t) and n = n(z). The scalar
component E(z, t) solves the wave equation with the periodic speed variations

∂2E

∂z2
− n2(z)

c2
∂2E

∂t2
= 0.(1.2)

If the refractive index n(z) is a periodic function with period z0, the linear spectrum
of the wave equation (1.2) reduces to the Mathieu equation for E(z, t) = ψ(z)e−iωt,
where ω is the eigenvalue and ψ(z) is the eigenfunction of the spectral problem

ψ′′ +
ω2

c2
n2(z)ψ = 0.(1.3)

According to the Floquet theory [12], solutions of the Mathieu equation (1.3) take the
form ψ(z) = Ψ(z)eik(ω)z, where Ψ(z + z0) = Ψ(z) and k = k(ω) is the propagation
constant. For a general class of periodic potentials n2(z), there exist infinitely many
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intervals of ω, called band gaps, where the propagation constant k(ω) is purely imagi-
nary and the Bloch function ψ(z) is unbounded in z. The band gaps are supported by
the low-contrast photonic crystal with the refractive index n(z) = n0 + εn1(z), where
n0 is constant and ε is small parameter.

The linear Maxwell equations (1.1) in two and three dimensions can also be re-
duced to a spectral problem for E(x, t) = ψ(x)e−iωt, where ω is the eigenvalue and
ψ(x) is the eigenvector. When n(x) is a periodic function in x, y, z with periods x0,
y0, z0, respectively, the eigenvector ψ(x) satisfies the Floquet theorem [12] and has
the form of the Bloch wave: ψ(x) = Ψ(x)ei(kxx+kyy+kzz), where Ψ(x) is periodic in
x, y, and z with periods x0, y0, and z0, and ω = ω(kx, ky, kz). No band gaps exist in
the linear spectrum for low-contrast photonic crystals. As a result, the bounded Bloch
functions ψ(x) may exist for any value of ω ∈ R. High-contrast photonic crystals may,
however, exhibit band gaps for some configurations of the refractive index n(x) [13].

Modeling of time-dependent responses of photonic crystals in three spatial di-
mensions can be computationally difficult in the framework of the Maxwell equations,
especially if the nonlinear and nonlocal dispersive terms are taken into account. A
more efficient method is based on reduction of Maxwell equations (1.1) to the coupled-
mode equations [23]. For instance, shock wave singularities may occur in the nonlinear
Maxwell equations but they do not occur in the nonlinear coupled-mode equations
[8]. Coupled-mode equations are typically derived in the first band gap of the Bragg
resonance between two counter-propagating waves in one spatial dimension [20, 21].
More complicated coupled-mode equations are considered for three-dimensional non-
linear photonic crystals [1, 2, 3, 6]. Recent reviews [4, 5] also include classification of
different resonances of Bloch waves in photonic crystals with quadratic nonlinearities.

In this paper, we classify wave resonances and coupled-mode equations for low-
contrast cubic-lattice photonic crystals in three spatial dimensions. Since low-contrast
crystals do not support band gaps beyond one dimension [12, 13], resonances are con-
sidered in stop bands of the linear spectrum [10]. Stop bands occur between resonant
counter-propagating waves, which could be coupled resonantly with other oblique
Bloch waves. The number of resonant Bloch waves depends on the geometric configu-
ration of the incident wave with respect to the cubic lattice. When the Maxwell equa-
tions are truncated with the perturbation series expansions, coupled-mode equations
for the lowest-order Bragg resonances are derived and studied in bounded domains,
subject to the radiation boundary conditions. The radiation boundary conditions
describe transmission of the incident Bloch waves which generate resonantly reflected
and diffracted Bloch waves in the photonic crystals.

We study here the linear coupled-mode equations for four counter-propagating
and two oblique Bloch waves on the plane. It is not a priori clear why the stationary
boundary-value problem with radiation boundary conditions is well posed, since it is
specified by non–self-adjoint operators on the bounded domains. We prove, however,
the well-posedness of the linear stationary problem by using separation of variables
and generalized Fourier series [24]. Eigenfunction expansions and convergence of
generalized Fourier series follow from the general theory [7]. As a result, we construct
explicit analytical expressions for stationary transmission, reflection, and diffraction
of resonant Bloch waves, which are used in modeling of the low-contrast photonic
crystals.

Other applications of optical photonic structures include nonlinear phenomena,
such as bistable stationary transmission and gap soliton propagation [6, 14, 15, 22].
Very little is known about the persistence of such phenomena in two and three spatial
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dimensions, especially given that no band gap exists in low-contrast three-dimensional
photonic structures. The coupled-mode equations can be generalized to include the
weakly nonlinear (cubic) terms and to extend the time-dependent problems to the
nonlinear coupled-mode equations [18, 19]. Well-posedness of the nonlinear stationary
problems is beyond the scope of this manuscript, which only presents solutions of the
linear stationary problems. Nevertheless, linear analysis opens the road to nonlinear
analysis of the corresponding boundary-value problems.

The paper is organized as follows. Classification of resonances in low-contrast
cubic-lattice crystals is given in section 2. Derivation of coupled-mode equations for
lowest-order resonances is described in section 3. The linear stationary boundary-
value problems for four counter-propagating and two oblique resonant Bloch waves
are analyzed in section 4. Section 5 concludes the paper. Appendix A gives deriva-
tion and explicit forms of the nonlinear coupled-mode equations with cubic (Kerr)
nonlinearities.

2. Classification of resonances. When the optical material is homogeneous,
such that n(x) = n0 is constant, the linear spectrum of the Maxwell equations (1.1)
is defined by the free transverse waves,

E(x, t) = eke
i(k·x−ωt),(2.1)

where ek is the polarization vector, k = (kx, ky, kz) is the wave vector, and ω = ω(k)
is the wave frequency. It follows from system (1.1) that

k · ek = 0, ω2 =
c2

n2
0

(k2
x + k2

y + k2
z).(2.2)

For each wave vector k there exist two independent polarizations e
(1)
k and e

(2)
k such

that e
(1)
k · e(2)

k = 0. This degeneracy in the polarization vector is neglected here by
the assumption that the incident wave is linearly polarized.

When the optical material is periodic such that n(x + x0) = n(x0), the linear
spectrum of the Maxwell equations (1.1) is defined by the Bloch waves:

E(x, t) = Ψ(x)ei(k·x−ωt),(2.3)

where Ψ(x+x0) = Ψ(x) is the periodic envelope, k = (kx, ky, kz) is the wave vector,
and ω = ω(k) is the wave frequency. Existence of the Bloch waves (2.3) for the
Maxwell equations (1.1) is proved in [12]. The geometric configuration of the photonic
crystal is defined by the fundamental (linearly independent) lattice vectors x1,2,3 and
fundamental reciprocal lattice vectors k1,2,3 such that ki · xj = 2πδi,j , where 1 ≤ i,
j ≤ 3 (see [10]). Therefore, the linear refractive index n(x) can be expanded into a
triple Fourier series:

n(x) = n0

∑
(n,m,l)∈Z3

αn,m,le
i(nk1+mk2+lk3)·x,(2.4)

where the factor n0 is included for convenience. If n0 is the mean value of n(x),
then α0,0,0 = 1. Let the wave vector k in the incident Bloch wave (2.3) be chosen as
k = kin. The incident wave vector kin is expanded in terms of the lattice vectors:

kin =
1

2
(pk1 + qk2 + rk3),(2.5)
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where (p, q, r) ∈ R
3 are parameters. The Bloch wave (2.3) is represented by triple

Fourier series for Ψ(x), such that E(x, t) consists of an infinite superposition of free

transverse waves with the wave vectors k
(n,m,l)
out :

k
(n,m,l)
out = kin + nk1 + mk2 + lk3, (n,m, l) ∈ Z

3.(2.6)

The wave vector k
(n,m,l)
out with a nonempty triple (n,m, l) is said to be resonant with

the wave vector kin if |k(n,m,l)
out | = |kin| such that |ω(k

(n,m,l)
out )| = |ω(kin)|.

We consider here a simple cubic crystal, where the fundamental lattice vectors
and reciprocal lattice vectors are all orthogonal [10]:

x1,2,3 = ae1,2,3, k1,2,3 = k0e1,2,3, k0 =
2π

a
,(2.7)

where e1,2,3 are unit vectors in R
3. The coordinate axes (x, y, z) are oriented along

the axes of the simple cubic crystal, while the incident wave vector kin is directed
according to the spherical angles (θ, ϕ) as follows:

kin = k(sin θ cosϕ, sin θ sinϕ, cos θ), k ∈ R, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π,(2.8)

where k = |kin|. When θ = 0, the wave vector kin is perpendicular to the (x, y) crystal
plane. For the simple cubic crystal, the set of resonant Bloch waves is given by the
set of triples

S = {(n,m, l) ∈ Z
3 : n(n + p) + m(m + q) + l(l + r) = 0},(2.9)

where

p =
2k

k0
sin θ cosϕ, q =

2k

k0
sin θ sinϕ, r =

2k

k0
cos θ.(2.10)

The set S always has a zero solution: (n,m, l) = (0, 0, 0). When (p, q, r) ∈ Z
3 and

|p|+ |q|+ |r| �= 0, the set S has at least one nonzero solution: (n,m, l) = (−p,−q,−r).
The set S is also bounded, since (n,m, l) are integer solutions inside the sphere:

(
n +

p

2

)2

+
(
m +

q

2

)2

+
(
l +

r

2

)2

=

(
k

k0

)2

< ∞.(2.11)

When (p, q, r) ∈ Z
3, resonant triples (n,m, l) can all be classified analytically. How-

ever, when (p, q, r) /∈ Z
3, additional resonant triples may also exist. In solid state

physics [10], a geometric solution for the resonant triples (n,m, l) is constructed from

the condition that the vector G(n,m,l) = k
(n,m,l)
out − kin lies on the edge of sectors

of the reciprocal lattice. Here we review particular resonant sets S for integer and
noninteger values of (p, q, r).

2.1. A family of one-dimensional resonances. The one-dimensional Bragg
resonance occurs when the incident wave is coupled with the counter-propagating
reflected wave such that the set S has at least one nonzero solution: (n,m, l) =
(0, 0,−r), where r ∈ Z+. The values of p and q are not defined for the Bragg resonance
when n = m = 0. As a result, spherical angles θ and ϕ in the parametrization (2.8)
are arbitrary, while the wave number k satisfies the Bragg resonance condition [10]:

rk0 = 2k cos θ(2.12)
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such that rλ = 2a cos θ, where λ is the wavelength. The one-dimensional Bragg
resonance is generalized in three dimensions for p = q = 0 and r ∈ Z+, when the
geometric configuration for the Bragg resonance (2.12) is fixed at the specific value
θ = 0, and

kin =
π

a
(0, 0, r), k

(0,0,−r)
out =

π

a
(0, 0,−r).(2.13)

The incident wave is directed to the z-axis of the cubic lattice crystal, and the wave-
length is λ = 2a/r. The family of Bragg resonances with p = q = 0 and r ∈ Z+

may include not only the two counter-propagating waves (2.13) but also other Bloch
waves in three-dimensional photonic crystals. The lowest-order resonant sets S for
p = q = 0 and r ∈ Z+ are listed below:

r = 1 : S = {(0, 0, 0), (0, 0,−1)},
r = 2 : S = {(0, 0, 0), (1, 0,−1), (−1, 0,−1), (0, 1,−1), (0,−1,−1), (0, 0,−2)},
r = 3 : S = {(0, 0, 0), (1, 1,−1), (−1, 1,−1), (1,−1,−1), (−1,−1,−1),

(1, 1,−2), (−1, 1,−2), (1,−1,−2), (−1,−1,−2), (0, 0,−3)} .

The dimension of S depends on the total number of all possible integer solutions
for (n,m, l). The sets S for higher-order resonances with r ∈ Z+ can be found
algorithmically, with symbolic computing software.

2.2. A family of two-dimensional resonances. Two-dimensional Bragg reso-
nances occur when the incident wave vector kin is resonant to the counter-propagating

reflected wave vector k
(−p,−q,0)
out , as well as to two other diffracted wave vectors k

(0,−q,0)
out

and k
(−p,0,0)
out , where (p, q) ∈ Z

2
+. The value of r is not defined for the two-dimensional

resonance, such that the angle θ in the parametrization (2.8) is arbitrary, while k and
ϕ satisfy the resonance conditions

ϕ = arctan

(
q

p

)
,

√
p2 + q2k0 = 2k sin θ.(2.14)

The two-dimensional Bragg resonances are generalized in three dimensions for (p, q) ∈
Z

2
+ and r = 0, when the geometric configuration for the Bragg resonance (2.14) is

fixed at the specific value θ = π
2 , and

kin =
π

a
(p, q, 0), k

(−p,−q,0)
out =

π

a
(−p,−q, 0),

k
(0,−q,0)
out =

π

a
(p,−q, 0), k

(−p,0,0)
out =

π

a
(−p, q, 0).(2.15)

The incident wave kin is directed along the diagonal of the (px, qy)-cell of the cubic

lattice crystal, and the wavelength is λ = 2a/
√
p2 + q2.

The families of Bragg resonances with (p, q) ∈ Z
2
+ and r = 0 may include not

only the four resonant waves (2.15) but also other Bloch waves in three-dimensional
photonic crystals. The lowest-order resonant sets S for (p, q) ∈ Z

2
+ and r = 0 are

listed below:

p=1, q=1 : S = {(0, 0, 0), (−1, 0, 0), (0,−1, 0), (−1,−1, 0)},
p=2, q=1 : S = {(0, 0, 0), (0,−1, 0), (−1, 0, 1), (−1, 0,−1), (−1,−1, 1), (−1,−1,−1),

(−2, 0, 0), (−2,−1, 0)},
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p=2, q=2 : S = {(0, 0, 0), (0,−1, 1), (0,−1,−1), (0,−2, 0), (−1, 0, 1), (−1, 0,−1),

(−1,−2, 1), (−1,−2,−1), (−2, 0, 0), (−2,−1, 1), (−2,−1,−1),

(−2,−2, 0)} .

2.3. Two-dimensional resonances of oblique waves. The resonant set S
can be nonempty for (p, q, r) /∈ Z

3, which correspond to oblique Bloch waves. For
instance, two oblique waves can be resonant on the (x, y)-plane if

kin =
π

a
(p, q, 0), k

(n,m,0)
out =

π

a
(p + 2n, q + 2m, 0),(2.16)

where (n,m) ∈ Z
2 are arbitrary and (p, q) ∈ R

2 are taken on the straight line:

np + mq = −(n2 + m2).(2.17)

Similarly, three oblique waves can be resonant on the (x, y)-plane if

kin =
π

a
(p, q, 0),

k
(n1,m1,0)
out =

π

a
(p + 2n1, q + 2m1, 0),

k
(n2,m2,0)
out =

π

a
(p + 2n2, q + 2m2, 0),(2.18)

where (n1,m1) ∈ Z
2 and (n2,m2) ∈ Z

2 are arbitrary subject to the constraint m1n2 �=
m2n1, while (p, q) take rational values

p =
m1(n

2
2 + m2

2) −m2(n
2
1 + m2

1)

m2n1 −m1n2
, q =

n1(n
2
2 + m2

2) − n2(n
2
1 + m2

1)

n2m1 − n1m2
.(2.19)

In the general case, two oblique waves (2.16) or three oblique waves (2.18) may have
resonances with other Bloch waves in three-dimensional photonic crystals.

2.4. A family of three-dimensional resonances. When (p, q, r) ∈ Z
3
+, the

resonant sets S include eight coupled waves for fully three-dimensional Bragg reso-
nance:

kin =
π

a
(p, q, r), k

(−p,−q,−r)
out =

π

a
(−p,−q,−r),

k
(−p,0,0)
out =

π

a
(−p, q, r), k

(0,−q,0)
out =

π

a
(p,−q, r),

k
(0,0,−r)
out =

π

a
(p, q,−r), k

(−p,−q,0)
out =

π

a
(−p,−q, r),

k
(−p,0,−r)
out =

π

a
(−p, q,−r), k

(0,−q,−r)
out =

π

a
(p,−q,−r).(2.20)

The resonance condition for the three-dimensional Bragg resonance takes the form

ϕ = arctan

(
q

p

)
, θ = arctan

(√
p2 + q2

r

)
,

√
p2 + q2 + r2k0 = 2k.(2.21)

The incident wave kin is directed along the diagonal of the (px, qy, rz)-cell of the

cubic lattice crystal, and the wavelength is λ = 2a/
√
p2 + q2 + r2. The eight waves

(2.20) can be coupled with some other resonant waves such that dim(S) ≥ 8 for
(p, q, r) ∈ Z

3
+. For instance, dim(S) = 8 for (p, q, r) = (1, 1, 1) and (p, q, r) = (2, 1, 1),

but dim(S) = 10 for (p, q, r) = (2, 2, 1) and dim(S) = 16 for (p, q, r) = (3, 2, 1).
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3. Derivation of coupled-mode equations. The dispersion surface ω = ω(k)
for the Bloch waves (2.3) in the periodic photonic crystal is defined by the profile
of the refractive index n(x). We shall consider the asymptotic approximation of the
dispersion surface ω = ω(k) in the limit when the photonic crystal is low-contrast,
such that the refractive index n(x) is given by

n(x) = n0 + εn1(x),(3.1)

where n0 is a constant and ε is small parameter. It is proved in [12] that the Bloch
waves (2.3) are smooth functions of ε, such that the asymptotic solution of the Maxwell
equations (1.1) as ε → 0 takes the form of the perturbation series expansions:

E(x, t) = E0(x, t) + εE1(x, t) + O(ε2).(3.2)

The leading-order term E0(x, t) consists of free transverse waves (2.1) with wave

vectors k
(n,m,l)
out , given by (2.6), such that the asymptotic form (3.2) represents the

Bloch wave (2.3) as ε �= 0.
Coupled-mode equations are derived by separating resonant free waves from

nonresonant free waves in the Bloch wave (2.3), where the resonant set S with
N = dim(S) < ∞ is defined by (2.9). Let E0(x, t) be a linear superposition of
N resonant waves with wave vectors kj at the same frequency ω:

E0(x, t) =

N∑
j=1

Aj(X, T )ekje
i(kjx−ωt), X =

εx

k
, T =

εt

ω
,(3.3)

where ω and kj are related by the same dispersion equation (2.2), Aj(X, T ) is the
envelope amplitude of the jth resonant wave (2.1), and (X, T ) are slow variables.
The slow variables represent a deformation of the dispersion surface ω = ω(kj) due to
the low-contrast periodic photonic crystal. The degeneracy in the polarization vector
is neglected by the assumption that the incident wave is linearly polarized with the
polarization vector ein = ekin . The triple Fourier series (2.4) for the cubic-lattice
crystal (2.7) is simplified as follows:

n1(x) = n0

∑
(n,m,l)∈Z3

αn,m,le
ik0(nx+my+lz),(3.4)

where α0,0,0 = 0. The Fourier coefficients αn,m,l satisfy the constraints

αn,m,l = ᾱ−n,−m,−l,(3.5)

due to the reality of n1(x);

αn,m,l = αm,n,l = αn,l,m = αl,m,n,(3.6)

due to the crystal isotropy in the directions of x, y, z-axes; and

α−n,m,l = αn,m,l, αn,−m,l = αn,m,l, αn,m,−l = αn,m,l,(3.7)

due to the crystal symmetry with respect to the origin (0, 0, 0). (The latter property
can be achieved by a simple shift of (x, y, z).) It follows from constraints (3.5) and
(3.7) that all coefficients αn,m,l for (n,m, l) ∈ Z

3 are real-valued.
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It follows from (1.1), (3.1), and (3.2) that the first-order correction term E1(x, t)
solves the nonhomogeneous linear problem

∇2E1 −
n2

0

c2
∂2E1

∂t2
= 2

n2
0ω

c2
∂2E0

∂T∂t
− 2k (∇ · ∇X)E0

+
2n0n1(x)

c2
∂2E0

∂t2
+

2

n0
∇(∇n1 · E0),(3.8)

where ∇X = (∂X , ∂Y , ∂Z) and the second equation of (1.1) has been used. The right-
hand side of the nonhomogeneous equation (3.8) has resonant terms, which are parallel
to the free-wave resonant solutions of the homogeneous problem. The resonant terms
lead to the secular growth of E1(x, t) in t unless they are identically zero. The latter
conditions define the coupled-mode equations for amplitudes Aj(X, T ), j = 1, . . . , N,
in the general form

i

(
∂Aj

∂T
+

(
kj

k
· ∇X

)
Aj

)
+
∑
k �=j

α̂j,kAk = 0, j = 1, . . . , N,(3.9)

where the elements {α̂j,k}1≤j,k≤N are related to the Fourier coefficients of the resonant
waves {αn,m,l}(n,m,l)∈S . The explicit forms of the coupled-mode equations (3.9) are
given for two and four counter-propagating and two oblique resonant Bloch waves.

3.1. Coupled-mode equations for two counter-propagating waves. The
lowest-order Bragg resonance for two counter-propagating waves (2.13) occurs for
r = 1, when

k1 =
π

a
(0, 0, 1), k2 =

π

a
(0, 0,−1).(3.10)

Let A1 = A+(Z, T ) and A2 = A−(Z, T ) be the amplitudes of the right (forward) and
left (backward) propagating waves, respectively. The envelope amplitudes are not
modulated across the (X,Y )-plane, since the coupled-mode equations for A± are es-
sentially one-dimensional. The polarization vectors are chosen in the x-direction such
that ek1 = ek2 = (1, 0, 0) and E0 = (E0,x(z, Z, T )e−iωt, 0, 0). The nonhomogeneous
equation (3.8) at the x-component of the solution E1 at e−iωt takes the form

∇2E1,x + k2E1,x = −2ik2 ∂

∂T
E0,x − 2k

∂2

∂Z∂z
E0,x

− 2k2n1(x)

n0
E0,x +

2

n0

∂2n1(x)

∂x2
E0,x.(3.11)

By removing the resonant terms at e±ikz, the coupled-mode equations for amplitudes
A±(Z, T ) take the form

i

(
∂A+

∂T
+

∂A+

∂Z

)
+ αA− = 0,(3.12)

i

(
∂A−
∂T

− ∂A−
∂Z

)
+ αA+ = 0,(3.13)

where α = α0,0,1 = α0,0,−1. The coupled-mode equations (3.12)–(3.13) can be defined
on the interval 0 ≤ Z ≤ Lz for T ≥ 0, where the end points at Z = 0 and Z = Lz are
the left and right (x, y)-planes, which cut a slice of the photonic crystal. The linear
system (3.12)–(3.13) is reviewed in [23]. The nonlinear coupled-mode equations are
derived in [6, 22] and analyzed recently in [8, 14, 15].
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3.2. Coupled-mode equations for four counter-propagating waves. The
lowest-order resonance for four counter-propagating waves (2.15) occurs for p = q = 1,
when

k1 =
π

a
(1, 1, 0), k2 =

π

a
(1,−1, 0), k3 =

π

a
(−1, 1, 0), k4 =

π

a
(−1,−1, 0).(3.14)

Let A1 = A+(X,Y, T ) and A4 = A−(X,Y, T ) be the amplitudes of the counter-
propagating waves along the main diagonal of the (x, y) plane, while A2 = B+(X,Y, T )
and A3 = B−(X,Y, T ) are the amplitudes of the counter-propagating waves along the
antidiagonal of the (x, y)-plane. The envelope amplitudes are not modulated in the
Z-direction, since the coupled-mode equations for A± and B± are essentially two-
dimensional. The polarization vectors are chosen in the z-direction such that ekj =
(0, 0, 1), 1 ≤ j ≤ 4, and E0 = (0, 0, E0,z(x, y,X, Y, T )e−iωt). The nonhomogeneous
equation (3.8) at the z-component of the solution E1 at e−iωt takes the form

∇2E1,z + k2E1,z = −2ik2 ∂

∂T
E0,z − 2k

∂2

∂X∂x
E0,z − 2k

∂2

∂Y ∂y
E0,z

− 2k2n1(x)

n0
E0,z +

2

n0

∂2n1(x)

∂z2
E0,z.(3.15)

By removing the resonant terms at e
i√
2
(±kx±ky)

, the coupled-mode equations for
amplitudes A±(X,Y, T ) and B±(X,Y, T ) take the form

i

(
∂A+

∂T
+

∂A+

∂X
+

∂A+

∂Y

)
+ αA− + β (B+ + B−) = 0,(3.16)

i

(
∂A−
∂T

− ∂A−
∂X

− ∂A−
∂Y

)
+ αA+ + β (B+ + B−) = 0,(3.17)

i

(
∂B+

∂T
+

∂B+

∂X
− ∂B+

∂Y

)
+ β (A+ + A−) + αB− = 0,(3.18)

i

(
∂B−
∂T

− ∂B−
∂X

+
∂B−
∂Y

)
+ β (A+ + A−) + αB+ = 0,(3.19)

where α = α1,1,0 = α−1,−1,0 = α1,−1,0 = α−1,1,0 and β = α0,1,0 = α1,0,0 = α0,−1,0 =
α−1,0,0. The coupled-mode equations (3.16)–(3.19) can be defined in the domain
(X,Y ) ∈ D and T ≥ 0, where D is a domain on the (x, y)-plane of the photonic
crystal. The system has not been previously studied in literature, to the best of our
knowledge.

3.3. Coupled-mode equations for two oblique waves. Two oblique reso-
nant waves on the (x, y)-plane are defined by the resonant wave vectors (2.16) under
the constraint (2.17). Assuming that e1 = e2 = (0, 0, 1), the Maxwell equations can
be reduced to the same form (3.15), where the resonant terms are eliminated at the

wave vectors k1 = kin and k2 = k
(n,m,0)
out . The coupled-mode equations for amplitudes

A1,2(X,Y, T ) take the form

i

(
∂A1

∂T
+

p√
p2 + q2

∂A1

∂X
+

q√
p2 + q2

∂A1

∂Y

)
+ αA2 = 0,(3.20)

i

(
∂A2

∂T
+

p + 2n√
p2 + q2

∂A2

∂X
+

q + 2m√
p2 + q2

∂A2

∂Y

)
+ αA1 = 0,(3.21)
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where α = αn,m,0 = α−n,−m,0. Coupled-mode equations (3.20)–(3.21) for two oblique
waves cannot be reduced to the one-dimensional system (3.12)–(3.13), since the char-
acteristics in the system (3.20)–(3.21) are no longer parallel.

The coupled-mode equations for three oblique resonant waves (2.18) can be de-
rived similarly, subject to the resonance condition (2.19). Three characteristics along

the wave vectors k1 = kin, k2 = k
(n1,m1,0)
out , and k3 = k

(n2,m2,0)
out belong to the same

(X,Y )-plane. The stationary transmission problem for the three oblique waves is
hence a boundary-value problem on the (X,Y )-plane with three (linearly dependent)
characteristic coordinates. Oblique interaction of three oblique resonant Bloch waves
in a hexagonal crystal was considered numerically in [18].

4. Analysis of stationary transmission. The stationary transmission prob-
lem follows from separation of variables in the coupled-mode equations (3.9):

Aj(X, T ) = aj(X)e−iΩT , j = 1, . . . , N,(4.1)

where Ω is the detuning frequency. When the boundary-value problem for aj(X) is
well posed in a bounded domain, analytical solutions for the linear stationary coupled-
mode equations can be derived by using separation of variables and generalized Fourier
series [24]. Exploiting these analytical solutions, integral invariants of the stationary
transmission, reflection, and diffraction of the resonant Bloch waves can be computed
explicitly. We analyze here the stationary coupled-mode equations for two and four
counter-propagating and two oblique resonant Bloch waves.

4.1. Transmission of two counter-propagating waves. After separation of
variables (4.1), the linear coupled-mode equations (3.12)–(3.13) reduce to the following
ODE system:

i
da+

dZ
+ Ωa+ + αa− = 0,(4.2)

−i
da−
dZ

+ αa+ + Ωa− = 0.(4.3)

The problem (4.2)–(4.3) is defined on the interval 0 ≤ Z ≤ LZ . When the inci-
dent wave strikes the photonic crystal from the left, the linear system (4.2)–(4.3) is
completed by the boundary conditions

a+(0) = α+, a−(LZ) = 0,(4.4)

where α+ is the given amplitude of the incident wave at the left (x, y)-plane of the
crystal. The general solution of the ODE system (4.2)–(4.3) is given explicitly as
follows: (

a+

a−

)
= c+

(
α

Ω + iκ

)
eκZ + c−

(
α

Ω − iκ

)
e−κZ ,(4.5)

where c± ∈ C are arbitrary and κ ∈ C is the root of the determinant equation

κ =
√

α2 − Ω2.(4.6)

When κ = iK, K ∈ R, the linear dispersion relation Ω = Ω(K) follows from the
quadratic equation

Ω2 = α2 + K2.(4.7)
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The two branches of the dispersion relation (4.7) correspond to the two counter-
propagating resonant waves. Their resonance leads to the photonic stop band, which is
located in the interval |Ω| < |α|. Let Ω = 0 for simplicity; i.e., the detuning frequency
is fixed in the middle of the stop band. The unique solution of the boundary-value
problem (4.2)–(4.4) follows from the general solution (4.5):(

a+

a−

)
=

α+

coshαLZ

(
coshα(LZ − Z)

−i sinhα(LZ − Z)

)
.(4.8)

The transmittance T and reflectance R are defined from the other boundary values
of the solution (4.8),

T =

∣∣∣∣a+(LZ)

a+(0)

∣∣∣∣
2

=
1

cosh2 αLZ

, R =

∣∣∣∣a−(0)

a+(0)

∣∣∣∣
2

=
sinh2 αLZ

cosh2 αLZ

,(4.9)

such that the balance identity T + R = 1 is satisfied. The analytical solution (4.8)
for the two counter-propagating waves is well known [23] and is reproduced here for
comparison with the case of four counter-propagating and two oblique waves on the
plane.

4.2. Transmission of four counter-propagating waves. The stationary trans-
mission of four counter-propagating waves in the coupled-mode equations (3.16)–
(3.19) is studied in the characteristic coordinates (ξ, η):

ξ =
X + Y

2
, η =

X − Y

2
.(4.10)

After the separation of variables (4.1), the linear coupled-mode equations (3.16)–(3.19)
reduce to the PDE system

i
∂a+

∂ξ
+ Ωa+ + αa− + β (b+ + b−) = 0,(4.11)

−i
∂a−
∂ξ

+ αa+ + Ωa− + β (b+ + b−) = 0,(4.12)

i
∂b+
∂η

+ β (a+ + a−) + Ωb+ + αb− = 0,(4.13)

−i
∂b−
∂η

+ β (a+ + a−) + αb+ + Ωb− = 0.(4.14)

The problem (4.11)–(4.14) is defined in a bounded domain on the plane (ξ, η). We
consider the rectangle

D = {(ξ, η) : 0 ≤ ξ ≤ Lξ, 0 ≤ η ≤ Lη},(4.15)

which corresponds to a rectangle in physical coordinates (X,Y ), rotated at 45o in
characteristic coordinates (ξ, η). When the incident wave moves along the main di-
agonal in the (X,Y )-plane of the photonic crystal, the linear system (4.11)–(4.14) is
completed by the boundary conditions

a+(0, η) = α+(η), a−(Lξ, η) = 0, b+(ξ, 0) = 0, b−(ξ, Lη) = 0,(4.16)

where α+(η) is the given amplitude of the incident wave at the left boundary of the
crystal. The linear dispersion relation Ω = Ω(Kξ,Kη), where (Kξ,Kη) are Fourier
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wave numbers, follows from the determinant equation of the linear PDE system (4.11)–
(4.14).

Lemma 4.1. The linear dispersion relation Ω = Ω(Kξ,Kη) is defined by the roots
of D(Ω,Kξ,Kη), where

D(Ω,Kξ,Kη) = (Ω2 − α2 −K2
ξ )(Ω2 − α2 −K2

η) − 4β2(Ω − α)2.(4.17)

There exist real-valued roots of D(0,Kξ,Kη) = 0 for α2 ≤ 4β2, while no real-valued
roots exist for α2 > 4β2.

Proof. The determinant equation follows from the PDE system (4.11)–(4.14) for
the Fourier modes ei(Kξξ+Kηη) in the explicit form

D(Ω,Kξ,Kη) =

∣∣∣∣∣∣∣∣
Ω −Kξ α β β

α Ω + Kξ β β
β β Ω −Kη α
β β α Ω + Kη

∣∣∣∣∣∣∣∣
.(4.18)

Although the straightforward computations of D(Ω,Kξ,Kη) are involved technically,
it is easy to compute that

∂D

∂Ω
= 2Ω(Ω2 − α2 −K2

ξ ) + 2Ω(Ω2 − α2 −K2
η) − 8β2Ω + 8αβ2(4.19)

and

D(0,Kξ,Kη) = (α2 + K2
ξ )(α2 + K2

η) − 4α2β2.(4.20)

Integrating (4.19)–(4.20), we find that D(Ω,Kξ,Kη) is given by (4.17). When α2 >
4β2, the function D(0,Kξ,Kη) is positive definite on (Kξ,Kη) ∈ R

2 such that no
real-valued roots (Kξ,Kη) exist for Ω = 0. When α2 ≤ 4β2, there exist two curves on
the (Kξ,Kη)-plane, which correspond to the real-valued roots of D(0,Kξ,Kη).

There are four surfaces of the dispersion relations Ω = Ω(Kξ,Kη), which cor-
respond to the four resonant counter-propagating Bloch waves. When α2 > 4β2,
the interaction of four resonant waves leads to a stop band near the zero detuning
frequency Ω = 0. When α2 ≤ 4β2, no stop bands occur in the interaction of the
four resonant waves. We consider solutions of the system (4.11)–(4.14) at Ω = 0.
By separating variables [24], we reduce the PDE problem to two ODE problems as
follows:

a+(ξ, η) = u+(ξ)wa(η), a−(ξ, η) = u−(ξ)wa(η),(4.21)

b+(ξ, η) = wb(ξ)v+(η), b−(ξ, η) = wb(ξ)v−(η),(4.22)

where

v+(η) + v−(η) = µwa(η), u+(ξ) + u−(ξ) = −λwb(ξ),(4.23)

parameters (λ, µ) are arbitrary, and vectors (u+, u−)T and (v+, v−)T solve the two
uncoupled ODE systems(

i∂ξ α
α −i∂ξ

)(
u+

u−

)
= βΓ−1

(
1 1
1 1

)(
u+

u−

)
(4.24)

and (
i∂η α
α −i∂η

)(
v+

v−

)
= βΓ

(
1 1
1 1

)(
v+

v−

)
,(4.25)
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where Γ = λ/µ. The boundary conditions for (4.24)–(4.25) follow from (4.16) as
follows:

u+(0) = 1, u−(Lξ) = 0(4.26)

and

v+(0) = v−(Lη) = 0.(4.27)

The homogeneous problem (4.25) and (4.27) defines the spectrum of Γ, while the
inhomogeneous problem (4.24) and (4.26) defines a particular solution (4.21)–(4.22).
The general solution of the problem (4.11)–(4.14) with the boundary values (4.16)
is thought to be a linear superposition of infinitely many particular solutions, if the
convergence and completeness of the decomposition formulas can be proved [24]. We
first give solutions of the two problems above and then consider the orthogonality and
completeness of the generalized Fourier series.

Lemma 4.2. All eigenvalues Γ of the homogeneous problem (4.25) and (4.27) are
given by nonzero roots of the characteristic equation

R =

{
k ∈ C :

(
k − α

k + α

)2

e−2ikLη = 1, Re(k) ≥ 0, k �= 0

}
(4.28)

such that

Γ =
α2 + k2

2αβ
.(4.29)

Let α > 0. Then the roots k ∈ R are all located in the first open quadrant of k ∈ C.
Moreover, all roots are simple, and there exist C > 0 and N ∈ Z+ such that only one
root k ∈ R is located in each rectangle:

D+
n =

{
k ∈ C :

π(4n− 1)

2Lη
< k <

π(4n + 1)

2Lη
, 0 < Im(k) < C

}
, n ≥ N,(4.30)

and

D−
n =

{
k ∈ C :

π(4n + 1)

2Lη
< k <

π(4n + 3)

2Lη
, 0 < Im(k) < C

}
, n ≥ N.(4.31)

Proof. The general solution of the ODE system (4.25) with the use of (4.29) is
found explicitly as follows:(

v+

v−

)
= ck

(
α− k
α + k

)
eikη + c−k

(
α + k
α− k

)
e−ikη.(4.32)

The coefficients ck and c−k satisfy the relations due to the boundary conditions (4.27):

ck
c−k

=
k + α

k − α
=

k − α

k + α
e−2ikLη ,(4.33)

from which the characteristic equation (4.28) for roots k ∈ C follows. The symmetric
roots k and (−k) correspond to the same Γ and v±(η). The root k = 0 corresponds
to the zero solution for v±(η). Therefore, the roots k = 0 and Re(k) < 0 are excluded



1114 DMITRI AGUEEV AND DMITRY PELINOVSKY

from the definition of R. The characteristic equation (4.28) results in the modulus
equation

|k − α|
|k + α| = |eikLη |.

When α > 0, the left-hand side equals 1 at Re(k) = 0 and is smaller than 1 for
Re(k) > 0. The right-hand side equals 1 at Im(k) = 0 and is larger than 1 for
Im(k) < 0. Therefore, roots k ∈ R may occur only in the first open quadrant of
k ∈ C.

Let the roots k ∈ R be defined by the function f(k) = (k−α)2e−2ikLη−(k+α)2 =
0. Then,

f ′(k) = −2i(k + α)

(k − α)
[(k2 − α2)Lη + 2iα].(4.34)

Since the values of k2−α2 for k ∈ R are located in the upper half-plane of the complex
plane, f ′(k) �= 0 for α > 0 such that all roots of k ∈ R are simple.

The characteristic equation (4.28) splits into two sets of roots R+ and R− such
that R+ ∪R− = R, where

R± =

{
k ∈ C :

k − α

k + α
e−ikLη = ±1, Re(k) > 0

}
.(4.35)

We consider the set k ∈ R+ and rewrite it in the form f(k) + g(k) = 0, where

f(k) = eikLη − 1, g(k) =
2α

k + α
.

The function f(k) has a zero at

k = kn =
2πn

Lη
, n ≥ 1.

Let us consider the domain D̃+
n :

D̃+
n =

{
k ∈ C :

π(4n− 1)

2Lη
< k <

π(4n + 1)

2Lη
, −C < Im(k) < C

}
, n ≥ N,

for some large C > 0 and N ≥ 1, such that π(4n−1)
2Lη

> α. The domain D̃+
n surrounds

a simple zero of f(k) at k = kn such that |f(k)| > |g(k)| on the boundary of D̃+
n . By

Rouche’s theorem, the function f(k) + g(k) has the same number of zeros inside D̃+
n

as f(k) does, i.e., only one zero. Since the roots are located in the first open quadrant
of k ∈ C, the root in D̃+

n is located in D+
n . The same analysis applies to the second

set k ∈ R− in the domain D−
n .

Roots k ∈ R and (−k) ∈ R are shown in Figure 1 from the numerical solution
of the characteristic equation (4.28) for α = 1 and Lη = 20. In agreement with
Lemma 4.2, all roots k ∈ R are isolated points in the first open quadrant, which
accumulate to the real axis of k at infinity. The standard analysis of analytic functions
at infinity leads to the asymptotic formula for distribution of large roots k in the
domain |k| > k0 	 1:

k+
n =

2πn

Lη
+

iα

πn
+ O

(
1

n2

)
, k−n =

π(1 + 2n)

Lη
+

2iα

π(1 + 2n)
+ O

(
1

n2

)
,(4.36)
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Fig. 1. Roots k ∈ R and (−k) ∈ R of the characteristic equation (4.28) for α = 1 and
Lη = 20. Dark dots show roots of R+, and bright dots show roots of R−. The dotted curves show
the leading-order asymptotic approximation (4.36).

where n is a large positive integer. The leading order of the asymptotic approximation
(4.36) is also shown in Figure 1 by dotted curves. The two sets in (4.36) correspond to
the splitting k ∈ R± in (4.35). The eigenfunction v(η) = v+(η) + v−(η) is symmetric
(antisymmetric) with respect to η = Lη/2 for k ∈ R+ (k ∈ R−). Moreover, explicit
formulas for v(η) follow from (4.32) and (4.33):

k ∈ R+ : v(η) = c+ cos k

(
Lη

2
− η

)
,(4.37)

k ∈ R− : v(η) = c− sin k

(
Lη

2
− η

)
,(4.38)

where (c+, c−) are normalization constants. Asymptotic solutions (4.36) correspond
to two sets of eigenfunctions

{
cos(πnη̃), sin

(
π(2n + 1)η̃

2

)}
, η̃ =

2η

Lη
− 1,(4.39)

which solve the homogeneous Neumann problem on the normalized interval −1 ≤ η̃ ≤
1.

Lemma 4.3. Let Γ be an eigenvalue of the problem (4.25) and (4.27). There
exists a unique solution of the nonhomogeneous problem (4.24) and (4.26) for this Γ.
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Proof. A general solution of the ODE system (4.24) is found explicitly as follows:(
u+

u−

)
= dk

(
α2 + k2 − 2β2

λk(α
2 + k2) + 2β2

)
eiαλkη+d−k

(
α2 + k2 − 2β2

−λk(α
2 + k2) + 2β2

)
e−iαλkη,

(4.40)
where

λk =

√
4β2

α2 + k2
− 1.(4.41)

The relation (4.41) satisfies the determinant equation (4.17) such that D(0, αλk, k) =
0. Using the boundary conditions (4.26), coefficients dk and d−k are found uniquely,
under the constraint

u0 = λk(α
2 + k2) cosαλkLξ + 2iβ2 sinαλkLξ �= 0.(4.42)

We show that u0 �= 0. The equation u0 = 0 can be rewritten in the form

(λk − 1)2

(λk + 1)2
= e2iαλkLξ .(4.43)

By analysis of Lemma 4.2, it is clear that nonzero roots of the characteristic equation
(4.43) may exist only in the first and third open quadrants of λk ∈ C for α > 0, such
that the values of λ2

k + 1 are located in the upper half-plane of the complex plane.
The zero root λk = 0 is located on the real axis for λ2

k + 1. On the other hand, the
values of 4β2/(α2 + k2) for k ∈ R are located in the lower half-plane. Therefore, the
relation (4.41) leads to a contradiction, which proves that u0 �= 0.

Solutions of the nonhomogeneous problem (4.24) and (4.26) with the normaliza-
tion u+(0) = u0 �= 0 can be written explicitly by eliminating dk and d−k from the
implicit form (4.40):(

u+

u−

)
= λk(α

2 +k2)

(
1
0

)
cosαλk(Lξ−ξ)+ i

(
2β2

α2 + k2 − 2β2

)
sinαλk(Lξ−ξ).

(4.44)
When the representation (4.21) is used for α+(η) = a+(0, η), the function α+(η)
is expanded as a series of scalar eigenfunctions v(η) = v+(η) + v−(η), defined for
roots k ∈ R. This decomposition is possible only if the set of eigenfunctions v(η) is
orthogonal and complete.

Lemma 4.4. There exists a set of normalized and orthogonal eigenfunctions vj(η)
for distinct roots k = kj ∈ R, according to the inner product

∫ Lη

0

vi(η)vj(η)dη = δi,j .(4.45)

Proof. The set of adjoint eigenvectors to the problem (4.25) and (4.27) with re-
spect to the standard inner product in L2([0, Lη]) is given by the vectors (v̄−, v̄+)T .
As a result, the scalar eigenfunctions vj(η) for distinct roots k = kj satisfy the or-
thogonality relations (4.45) with i �= j. The scalar eigenfunction v(η) is found from
(4.32) and (4.33) in the explicit form

v(η) = c0(k cos kη + iα sin kη),(4.46)
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where c0 is a normalization constant. Integrating v2(η) on η ∈ [0, Lη], we confirm that
the eigenfunctions vj(η) can be normalized by the inner product (4.45) with i = j,
under the constraint

(k2 − α2)Lη + 2iα �= 0.(4.47)

Since the roots k ∈ R are all simple, such that f ′(k) �= 0 in (4.34), the constraint
(4.47) is met.

Proposition 4.5. Any continuously differentiable complex-valued function f(η)
on 0 ≤ η ≤ Lη is uniquely represented by the series of eigenfunctions

f(η) =
∑

all kj∈R
cjvj(η), cj =

∫ Lη

0

f(η)vj(η)dη,(4.48)

and the series converges to f(η) uniformly on 0 ≤ η ≤ Lη.
Proof. It follows from (4.25) and (4.27) that the scalar eigenfunction v(η) solves

the second-order boundary-value problem

v′′ + k2v = 0(4.49)

such that

iv′(0) + αv(0) = 0, −iv′(Lη) + αv(Lη) = 0.(4.50)

The Sommerfeld radiation boundary conditions (4.50) explain why the spectrum of
the formally self-adjoint operator (4.49) is complex-valued. The statement of the
proposition follows from the expansion theorem [7, p. 303], since the theorem’s con-
dition is satisfied: A2,4 = 1, where A2,4 is the determinant of the second and fourth
columns of the matrix A, associated with the boundary conditions

A =

(
α i 0 0
0 0 α −i

)
.

As a result, the Fourier series of asymptotic eigenfunctions (4.39) approximates the
series expansion (4.48) for large roots k = k±n uniformly on η ∈ [0, Lη]. The uniform
convergence of (4.48) follows from that of the Fourier series [24].

Using separation of variables and convergence of series of eigenfunctions, we sum-
marize the existence and uniqueness results on the generalized Fourier series solutions
of the linear boundary-value problem (4.11)–(4.14) and (4.16) with Ω = 0.

Proposition 4.6. Let the set {cj} be uniquely defined by the series (4.48) for
f(η) = α+(η). There exists a unique solution of the boundary-value problem (4.11)–
(4.14) and (4.16) with Ω = 0 in the domain (4.15):

a+(ξ, η) =
∑

all kj∈R
cj
u+j(ξ)

u+j(0)
(v+j(η) + v−j(η)),(4.51)

a−(ξ, η) =
∑

all kj∈R
cj
u−j(ξ)

u+j(0)
(v+j(η) + v−j(η)),(4.52)

b+(ξ, η) = −
∑

all kj∈R
cj
u+j(ξ) + u−j(ξ)

Γju+j(0)
v+j(η),(4.53)

b−(ξ, η) = −
∑

all kj∈R
cj
u+j(ξ) + u−j(ξ)

Γju+j(0)
v−j(η).(4.54)



1118 DMITRI AGUEEV AND DMITRY PELINOVSKY

We illustrate the generalized Fourier series solutions (4.51)–(4.54) with two examples:
(i) a single term of the generalized Fourier series and (ii) a constant input function
α+(η) = α+. For both examples, we compute the integral invariants for the inci-
dent (Iin), transmitted (Iout), reflected (Iref), and diffracted (Idif) waves from their
definitions:

Iin =

∫ Lη

0

|a+(0, η)|2dη, Iout =

∫ Lη

0

|a+(Lξ, η)|2dη,(4.55)

Iref =

∫ Lη

0

|a−(0, η)|2dη, Idif =

∫ Lξ

0

(|b+(ξ, Lη)|2 + |b−(ξ, 0)|2)dξ.(4.56)

Let the transmittance T , reflectance R, and diffractance D be defined from the rela-
tions

T =
Iout

Iin
, R =

Iref

Iin
, D =

Idif

Iin
.(4.57)

The integral invariants satisfy the balance identity

R + T + D = 1,(4.58)

which follows from integration of the balance equation

∂

∂ξ
(|a+|2 − |a−|2) +

∂

∂η
(|b+|2 − |b−|2) = 0.(4.59)

First, we consider a single term of the Fourier series solutions (4.51)–(4.54). The
transmittance and reflectance for k ∈ R are found from (4.44) in the explicit form

Tk =

∣∣∣∣ λk(α
2 + k2)

λk(α2 + k2) cosαλkLξ + 2iβ2 sinαλkLξ

∣∣∣∣
2

,(4.60)

Rk =

∣∣∣∣ (α2 + k2 − 2β2) sinαλkLξ

λk(α2 + k2) cosαλkLξ + 2iβ2 sinαλkLξ

∣∣∣∣
2

,(4.61)

while the diffractance is found from the balance identity as Dk = 1− Tk −Rk. These
integral invariants of the stationary transmission for α = 1 and Lξ = Lη = 20 are
shown in Figure 2 for β = 0.25 and in Figure 3 for β = 0.75. In the first case, when
α2 > 4β2, there is a stop band at Ω = 0, such that all modes are fully reflected except
for small losses due to diffraction. In the second case, when α2 < 4β2, there is no
stop band at Ω = 0, such that transmittance and diffractance are large for smaller
values of |k| and become negligible for larger values of |k|.

Next, we consider a constant input function:

α+(η) = α+, η ∈ [0, Lη],(4.62)

when cj can be found from (4.48),

cj =
4iαα+

kj [L(k2
j − α2) + 2iα]

, kj ∈ R+,(4.63)

and cj = 0 for kj ∈ R−. The solution surfaces |a±(ξ, η)|2 and |b±(ξ, η)|2 in the domain
(4.15) are shown for α = 1, Lξ = Lη = 20, and α+ = 1 in Figure 4 for β = 0.25 and
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Fig. 2. Transmittance (Tk), reflectance (Rk), and diffractance (Dk) versus Re(k) for the roots
k ∈ R when α = 1, β = 0.25, and Lξ = Lη = 20.

in Figure 5 for β = 0.75. We can see from the figures that the boundary conditions
(4.16) are satisfied by the truncated generalized Fourier series (4.51)–(4.54) with only
30 first terms.

The Parseval identity cannot be applied to eigenfunctions vj(η), because the
inner product (4.45) is not the standard inner product in L2([0, Lη]). As a result,
the energy spectrum of Iout, Iref , and Idif cannot be decomposed into a superposition
of the squared amplitudes |cj |2. Nevertheless, the numerical values for T , R, and D
can be found from numerical integration of the solution surfaces (4.55)–(4.56). The
numerical values are

β = 0.25 : T ≈ 3 × 10−15, R ≈ 0.9853, D ≈ 0.0147,

β = 0.75 : T ≈ 0.7394, R ≈ 0.0133, D ≈ 0.2473,

such that T +R+D ≈ 1. When α2 > 4β2, there exists a stop band at Ω = 0, and the
incident wave is reflected from the photonic crystal with energy loss of 1.5% due to
diffraction. When α2 < 4β2, there is no stop band at Ω = 0, and the incident wave is
transmitted along the photonic crystal with energy loss of 26% due to reflection and
diffraction.

4.3. Transmission of two oblique waves. The stationary transmission of two
oblique waves in the coupled-mode equations (3.20)–(3.21) becomes diagonal in the
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Fig. 3. Transmittance (Tk), reflectance (Rk), and diffractance (Dk) versus Re(k) for the roots
k ∈ R when α = 1, β = 0.75, and Lξ = Lη = 20.

characteristic coordinates (ξ, η):

X =
pξ + (p + 2n)η√

p2 + q2
, Y =

qξ + (q + 2m)η√
p2 + q2

.(4.64)

After the separation of variables (4.1), the linear coupled-mode equations (3.20)–(3.21)
reduce to the PDE system

i
∂a1

∂ξ
+ Ωa1 + αa2 = 0,(4.65)

i
∂a2

∂η
+ αa1 + Ωa2 = 0.(4.66)

Coordinate axes (ξ, η) are parallel to the wave vectors k1 = kin and k2 = k
(n,m,0)
out ,

but they are no longer orthogonal. The problem (4.65)–(4.66) is defined in a bounded
domain on the plane (ξ, η). We consider the same rectangle D, defined by (4.15).
When the incident wave is illuminated in the direction of the wave vector k1 but not
in the direction of the wave vector k2, the linear system (4.65)–(4.66) is completed
by the boundary conditions

a1(0, η) = α1(η), a2(ξ, 0) = 0.(4.67)
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Fig. 4. Solution surfaces |a±|2(ξ, η) and |b±|2(ξ, η) on the domain (4.15) for α = 1, β = 0.25,
Lξ = Lη = 20, and α+ = 1.

The linear dispersion relation Ω = Ω(Kξ,Kη), where (Kξ,Kη) are Fourier wave num-
bers, is given explicitly as(

Ω − Kξ + Kη

2

)2

= α2 +

(
Kξ −Kη

2

)2

.(4.68)

Two surfaces of the dispersion relation (4.68) correspond to the two oblique resonant
waves. In a moving reference frame on the plane (ξ, η) there exists a stop band in the
dispersion relation (4.68). We consider solutions of the system (4.65)–(4.66) at Ω = 0
by using the Fourier transform

a1(ξ, η) =

∫ ∞

−∞
kc(k)eiα(k−1ξ+kη)dk,(4.69)

a2(ξ, η) =

∫ ∞

−∞
c(k)eiα(k−1ξ+kη)dk.(4.70)

It follows from the boundary conditions (4.67) that

kc(k) =
α

2π

∫ Lη

0

α1(η)e
−iαkηdη, k ∈ R,(4.71)

and

0 =

∫ ∞

−∞
c(k)eiαk

−1ξdk, 0 ≤ ξ ≤ Lξ.(4.72)
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Fig. 5. Solution surfaces |a±|2(ξ, η) and |b±|2(ξ, η) on the domain (4.15) for α = 1, β = 0.75,
Lξ = Lη = 20, and α+ = 1.

Interchanging integrals, we reduce the constraint (4.72) to the form

0 =
α

2πi

∫ Lη

0

α1(η)

(∫ ∞

−∞

sinα(kη − k−1ξ)

k
dk

)
dη, 0 ≤ ξ ≤ Lξ.(4.73)

The inner integral is zero for ξ > 0 and η > 0, due to the table integral 3.871 on
p. 474 of [9]. Therefore, the constraint (4.72) is satisfied, and a unique solution of the
problem (4.65)–(4.67) exists in the form (4.69)–(4.71).

We illustrate the Fourier transform solution (4.69)–(4.70) with the constant input
function

α1(η) = α1, η ∈ [0, Lη],(4.74)

when c(k) can be found from (4.71):

c(k) =
α1

2πi

1 − e−iαkLη

k2
, k ∈ R.(4.75)

Evaluating Fourier integrals (4.69)–(4.70) with the help of the table integral 3.871 on
p. 474 of [9], we find the explicit solution of the stationary problem:

a1(ξ, η) = α1J0(2α
√
ξη), a2(ξ, η) =

iα1
√
η√

ξ
J1(2α

√
ξη),(4.76)
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Fig. 6. Solution surfaces |a1|2(ξ, η) and |a2|2(ξ, η) on the domain (4.15) for α = 1, Lξ = Lη =
10, and α1 = 1.

where J0,1(z) are Bessel functions [9]. Figure 6 shows the solution surfaces |a1(ξ, η)|2
and |a2(ξ, η)|2 in the domain (4.15) for α = 1, Lξ = Lη = 10, and α1 = 1. The inte-
gral invariants for the stationary transmission follow from integration of the balance
equation:

∂

∂ξ
|a1|2 +

∂

∂η
|a2|2 = 0.(4.77)
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We define the incident (Iin), transmitted (Iout), and diffracted (Idif) intensities by

Iin =

∫ Lη

0

|a1(0, η)|2dη, Iout =

∫ Lη

0

|a1(Lξ, η)|2dη, Idif =

∫ Lξ

0

|a2(ξ, Lη)|2dξ.
(4.78)
The transmittance (T ) and diffractance (D) are defined by the same relations (4.57),
and the balance identity T + D = 1 follows from integration of the balance equation
(4.77). The numerical values for T and D are found from numerical integration of the
solution surfaces (4.78) as follows:

T ≈ 0.032, D ≈ 0.968,

such that T + D ≈ 1. These values show that the incident wave is diffracted to
the oblique resonance wave such that only 3.2% of the wave energy remains in the
transmitted wave.

4.4. General transmission problems. A general system of coupled-mode
equations (3.9) can be diagonalized in characteristic coordinates, similarly to the
case of four counter-propagating and two oblique resonant waves. The characteristic
coordinates are introduced from the set of resonant wave vectors as follows:

∂

∂ξj
=

kj,x

k

∂

∂X
+

kj,y

k

∂

∂Y
+

kj,z

k

∂

∂Z
, j = 1, . . . , N,(4.79)

such that the characteristic coordinate ξj extends in the direction of the wave vector
kj . The characteristic coordinates (ξ1, . . . , ξN ) ∈ R

N are related to the physical
coordinates (X,Y, Z) ∈ R

3 as follows:

X = X0 +

N∑
j=1

ξj
kj

k
,(4.80)

where X0 ∈ R
3 is an arbitrary point. The boundary-value problem for the linear

stationary transmission with Ω = 0 can be rewritten in the form

i
∂aj
∂ξj

+
∑
k �=j

α̂j,kak = 0, j = 1, . . . , N.(4.81)

We consider the domain of definition in the cone (ξ1, . . . , ξN ) ∈ R
N
+ , subject to the

Goursat boundary values

aj(ξ1, . . . , ξj−1, 0, ξj+1, . . . , ξN ) = αj(ξ1, . . . , ξj−1, ξj+1, . . . , ξN ), j = 1, . . . , N.
(4.82)
The Goursat boundary-value problem (4.81)–(4.82) can be rewritten as the Volterra
integral equations:

aj(ξj) = αj + i

∫ ξj

0

∑
k �=j

α̂j,kak(ξ
′
j)dξ

′
j .(4.83)

By the contraction mapping principle [11], there exists a unique solution of the
Volterra equations (4.83) in the cone (ξ1, . . . , ξN ) ∈ R

N
+ , such that we have the fol-

lowing result.
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Theorem 4.7. Let D be a convex domain in R
3, which is cut by the characteristic

coordinate projections ξj = 0, j = 1, . . . , N . There exists a unique solution aj =
aj(ξ1, . . . , ξN ), which corresponds to the boundary-value problem (4.81)–(4.82) and
depends smoothly on the boundary values αj, j = 1, . . . , N .

If N = rank(k1, . . . ,kN ), there exists only one domain D ⊂ R
N , which corre-

sponds to the cone ξj ≥ 0, j = 1, . . . , N . The case of two oblique waves on the plane
(X,Y ) gives an example of this situation for N = 2. The Goursat problem (4.81)–
(4.82) is rewritten as the PDE problem (4.65)–(4.66) with the boundary values (4.67),
which is solved with the explicit Fourier transform solutions (4.69)–(4.71).

If N > rank(k1, . . . ,kN ), the characteristic coordinates (ξ1, . . . , ξN ) are linearly
dependent such that there exist multiple ways to choose a convex domain D ⊂ R

3

that corresponds to the cone ξj ≥ 0, j = 1, . . . , N . The case of four counter-
propagating waves on the plane (X,Y ) gives an example of this situation for N = 4
and rank(k1, . . . ,kN ) = 2. In this case, we have chosen that ξ1 = ξ, ξ2 = η,
ξ3 = Lη − η, and ξ4 = Lξ − ξ, such that 0 ≤ ξ ≤ Lξ and 0 ≤ η ≤ Lη. As a result,
the Goursat problem (4.81)–(4.82) is rewritten as the PDE problem (4.11)–(4.14)
with the boundary values (4.16). Theorem 4.7 does not guarantee well-posedness of
(4.11)–(4.14), while explicit Fourier series solutions (4.51)–(4.54) do (see Proposition
4.6).

5. Summary and open problems. We have shown that the coupled-mode
equations can be used for analysis and modeling of resonant interaction of Bloch waves
in low-contrast cubic-lattice three-dimensional photonic crystals. The analytical so-
lutions for the linear stationary transmission problem are found by using separation
of variables and generalized Fourier series. We have proved that the linear stationary
boundary-value problem is well-posed in the context of four counter-propagating and
two oblique waves on the plane. We have also given general results on well-posedness
of the general linear stationary transmission problem.

It remains an open problem to prove well-posedness of the nonlinear stationary
boundary-value problem for small-norm and finite-norm solutions. Nonstationary
transmission problems are also of interest, and very few analytical results are avail-
able on local and global well-posedness of the nonstationary nonlinear coupled-mode
equations. Finally, numerical approximations of the stationary and nonstationary,
fully nonlinear coupled-mode equations can be constructed in bounded domains with
the method of orthogonal polynomials [17]. All these problems are beyond the scope
of the present work.

Appendix A. Nonlinear coupled-mode equations with cubic nonlin-
earities. Modeling of nonlinear photonic band-gap crystals with cubic (Kerr) non-
linearities is based on the Maxwell equations, where the polarization vector depends
nonlinearly on the electric field vector E (see [13]). When the nonlinearity terms are
small, nonlocal (dispersive) terms in the polarization vector can be neglected, and the
low-contrast weakly nonlinear photonic crystals can be modeled with the Maxwell
equations (1.1), where the refractive index n = n(x, |E|2) is decomposed into the
linear and nonlinear parts [23]:

n(x, |E|2) = n0 + εn1(x) + εn2(x)|E|2,(A.1)

where n0 is constant and ε is of small parameter. When the photonic crystal has
cubic-lattice structure, the periodic functions n1(x) and n2(x) are expanded into the
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triple Fourier series (3.4) and

n2(x) = n0

∑
(n,m,l)∈Z3

βn,m,le
ik0(nx+my+lz), βn,m,l = β̄−n,−m,−l,(A.2)

where the factor n0 is included for convenience. Derivation of the nonlinear coupled-
mode equations is based on rigorous methods of Lyapunov–Schmidt reductions [16].
Equivalently, the formal derivation can be recovered with perturbation series expan-
sions [19], which follows the formalism (3.2) and (3.3) outlined in section 3. The
first-order correction term E1(x, t) solves the nonhomogeneous problem (3.8) with
additional nonlinear terms:

∇2E1 −
n2

0

c2
∂2E1

∂t2
= 2

n2
0ω

c2
∂2E0

∂T∂t
− 2k (∇ · ∇X)E0

+
2n0n1(x)

c2
∂2E0

∂t2
+

2

n0
∇ (∇n1 · E0)

+
2n0n2(x)

c2
|E0|2

∂2E0

∂t2
+

2

n0
∇
(
∇n2|E0|2 · E0

)
.(A.3)

The cubic nonlinear terms generate N3 terms from the leading-order solution (3.3),
which all give resonant terms by means of the triple series (A.2). By removing the
resonant terms, the nonlinear coupled-mode equations for Aj(X, T ), j = 1, . . . , N, are
derived in the general form:

i

(
∂Aj

∂T
+

(
kj

k
· ∇X

)
Aj

)
+
∑
k �=j

α̂j,kAk +
∑

1≤k1,k2,k3≤N

β̂j,k1,k2,k3
Ak1Ak2Āk3 = 0,

(A.4)

where the elements {β̂j,k1,k2,k3
}1≤j,k1,k2,k3≤N are related to the Fourier coefficients

of the resonant waves {βn,m,l}(n,m,l)∈S . The explicit forms of the nonlinear coupled-
mode equations are given below for two and four counter-propagating and two oblique
resonant Bloch waves.

The nonlinear coupled-mode equations for two counter-propagating waves (3.10)
generalize the linear equations (3.12)–(3.13) as follows:

i

(
∂A+

∂T
+

∂A+

∂Z

)
+ αA− + β0,0,0(|A+|2 + 2|A−|2)A+

+ β0,0,1(2|A+|2 + |A−|2)A− + β0,0,−1A
2
+Ā− + β0,0,2Ā+A

2
− = 0,(A.5)

i

(
∂A−
∂T

− ∂A−
∂Z

)
+ αA+ + β0,0,0(2|A+|2 + |A−|2)A−

+ β0,0,−1(|A+|2 + 2|A−|2)A+ + β0,0,1Ā+A
2
− + β0,0,−2A

2
+Ā− = 0.(A.6)

The system (A.5)–(A.6) is reviewed in [8, 23] for β0,0,1 = β0,0,2 = 0 and analyzed
in [14, 15] for β0,0,1 �= 0 and β0,0,2 = 0. When β0,0,1, β0,0,2 �= 0, the system (3.12)–
(3.13) is the most general coupled-mode system for Bragg resonance of two counter-
propagating waves [6, 22].

The nonlinear coupled-mode equations for four counter-propagating waves (3.14)
generalize the linear equations (3.16)–(3.19) as follows:

i

(
∂A+

∂T
+

∂A+

∂X
+

∂A+

∂Y

)
+ αA− + β (B+ + B−) + F+(A+, A−, B+, B−) = 0,(A.7)
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i

(
∂A−
∂T

− ∂A−
∂X

− ∂A−
∂Y

)
+ αA+ + β (B+ + B−) + F−(A+, A−, B+, B−) = 0,(A.8)

i

(
∂B+

∂T
+

∂B+

∂X
− ∂B+

∂Y

)
+ β (A+ + A−) + αB− + G+(A+, A−, B+, B−) = 0,(A.9)

i

(
∂B−
∂T

− ∂B−
∂X

+
∂B−
∂Y

)
+ β (A+ + A−) + αB+ + G−(A+, A−, B+, B−) = 0,(A.10)

where the cubic nonlinear functions are given by

F+= β0,0,0((|A+|2 + 2|A−|2 + 2|B+|2 + 2|B−|2)A+ + 2Ā−B+B−)

+β0,−1,0(A
2
+B̄+ + 2A+Ā−B−) + β−1,0,0(A

2
+B̄− + 2A+Ā−B+)

+β1,1,0((2|A+|2 + |A−|2 + 2|B+|2 + 2|B−|2)A− + 2Ā+B+B−)

+β0,1,0((2|A+|2 + 2|A−|2 + |B+|2 + 2|B−|2)B+ + 2A+A−B̄−)

+β−1,1,0(2A+B+B̄− + Ā−B
2
+) + β1,−1,0(2A+B̄+B− + Ā−B

2
−)

+β1,0,0((2|A+|2 + 2|A−|2 + 2|B+|2 + |B−|2)B− + 2A+A−B̄+)

+β2,0,0(Ā+B
2
− + 2A−B̄+B−) + β2,1,0(2Ā+A−B− + A2

−B̄+)

+β1,2,0(A
2
−B̄− + 2Ā+A−B+) + β2,−1,0B̄+B

2
− + β−1,2,0B

2
+B̄−

+β0,2,0(Ā+B
2
+ + 2A−B+B̄−) + β−1,−1,0A

2
+Ā− + β2,2,0Ā+A

2
−,

F−= β−1,−1,0((|A+|2 + 2|A−|2 + 2|B+|2 + 2|B−|2)A+ + 2Ā−B+B−)

+β−1,−2,0(A
2
+B̄+ + 2A+Ā−B−) + β−2,−1,0(A

2
+B̄− + 2A+Ā−B+)

+β0,0,0((2|A+|2 + |A−|2 + 2|B+|2 + 2|B−|2)A− + 2Ā+B+B−)

+β−1,0,0((2|A+|2 + 2|A−|2 + |B+|2 + 2|B−|2)B+ + 2A+A−B̄−)

+β−2,0,0(2A+B+B̄− + Ā−B
2
+) + β0,−2,0(2A+B̄+B− + Ā−B

2
−)

+β0,−1,0((2|A+|2 + 2|A−|2 + 2|B+|2 + |B−|2)B− + 2A+A−B̄+)

+β1,−1,0(Ā+B
2
− + 2A−B̄+B−) + β1,0,0(2Ā+A−B− + A2

−B̄+)

+β0,1,0(A
2
−B̄− + 2Ā+A−B+) + β1,−2,0B̄+B

2
− + β−2,1,0B

2
+B̄−

+β−1,1,0(Ā+B
2
+ + 2A−B+B̄−) + β−2,−2,0A

2
+Ā− + β1,1,0Ā+A

2
−,

G+= β0,−1,0((|A+|2 + 2|A−|2 + 2|B+|2 + 2|B−|2)A+ + 2Ā−B+B−)

+β0,−2,0(A
2
+B̄+ + 2A+Ā−B−) + β−1,−1,0(A

2
+B̄− + 2A+Ā−B+)

+β1,0,0((2|A+|2 + |A−|2 + 2|B+|2 + 2|B−|2)A− + 2Ā+B+B−)

+β0,0,0((2|A+|2 + 2|A−|2 + |B+|2 + 2|B−|2)B+ + 2A+A−B̄−)

+β−1,0,0(2A+B+B̄− + Ā−B
2
+) + β1,−2,0(2A+B̄+B− + Ā−B

2
−)

+β1,−1,0((2|A+|2 + 2|A−|2 + 2|B+|2 + |B−|2)B− + 2A+A−B̄+)

+β2,−1,0(Ā+B
2
− + 2A−B̄+B−) + β2,0,0(2Ā+A−B− + A2

−B̄+)

+β1,1,0(A
2
−B̄− + 2Ā+A−B+) + β2,−2,0B̄+B

2
− + β−1,1,0B

2
+B̄−

+β0,1,0(Ā+B
2
+ + 2A−B+B̄−) + β−1,−2,0A

2
+Ā− + β2,1,0Ā+A

2
−,

G−= β−1,0,0((|A+|2 + 2|A−|2 + 2|B+|2 + 2|B−|2)A+ + 2Ā−B+B−)

+β−1,−1,0(A
2
+B̄+ + 2A+Ā−B−) + β−2,0,0(A

2
+B̄− + 2A+Ā−B+)

+β0,1,0((2|A+|2 + |A−|2 + 2|B+|2 + 2|B−|2)A− + 2Ā+B+B−)

+β−1,1,0((2|A+|2 + 2|A−|2 + |B+|2 + 2|B−|2)B+ + 2A+A−B̄−)

+β−2,1,0(2A+B+B̄− + Ā−B
2
+) + β0,−1,0(2A+B̄+B− + Ā−B

2
−)

+β0,0,0((2|A+|2 + 2|A−|2 + 2|B+|2 + |B−|2)B− + 2A+A−B̄+)
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+β1,0,0(Ā+B
2
− + 2A−B̄+B−) + β1,1,0(2Ā+A−B− + A2

−B̄+)

+β0,2,0(A
2
−B̄− + 2Ā+A−B+) + β1,−1,0B̄+B

2
− + β−2,2,0B

2
+B̄−

+β−1,2,0(Ā+B
2
+ + 2A−B+B̄−) + β−2,−1,0A

2
+Ā− + β1,2,0Ā+A

2
−.

The nonlinear coupled-mode equations for two oblique waves (2.16) generalize the
linear equations (3.20)–(3.21) as follows:

i

(
∂A1

∂T
+

p√
p2 + q2

∂A1

∂X
+

q√
p2 + q2

∂A1

∂Y

)
+ αA2 + β0,0,0(|A1|2 + 2|A2|2)A1

+β−n,−m,0(2|A1|2 + |A2|2)A2 + βn,m,0A
2
1Ā2 + β−2n,−2m,0Ā1A

2
2 = 0,(A.11)

i

(
∂A2

∂T
+

p + 2n√
p2 + q2

∂A2

∂X
+

q + 2m√
p2 + q2

∂A2

∂Y

)
+ αA1 + β0,0,0(2|A1|2 + |A2|2)A1

+βn,m,0(|A1|2 + 2|A2|2)A1 + β−n,−m,0Ā1A
2
2 + β2n,2m,0A

2
1Ā2 = 0.(A.12)

The system (A.11)–(A.12) and its generalization to three oblique resonant waves are
reviewed in [18, 19].
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