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Abstract 

A general representation of explicit solutions to the Davey-Stewartson (DS) equations is obtained within the framework 
of the dressing method. The structure of the solutions with nonzero boundary values at infinity is established to coincide 
with the functional structure of the solutions to equations of the generalized KP hierarchy. The exponential and rational-type 
solutions are found both for the DS equations and for their one-dimensional reduction, the nonlinear Schr0dinger equation. 

1. Introduct ion 

New interesting wave phenomena were recently discovered in two-dimensional (2D) nonlinear dispersive 

media described by the well-known Kadomtsev-Petviashvili (KP) and Davey-Stewartson (DS) models [1].  

For instance, nonconventional processes of  soliton resonance [2,3] and related instability of  quasi-plane waves 

[4] ,  dynamics of  anomalous scattering of  2D structures such as lump solutions falling off rationally [5] and 

dromion solutions falling off exponentially [6-10]  were investigated in different aspects. These discoveries 
stimulate a new interest in soliton equations of  mathematical physics. 

Investigation of  the KP and DS models is based on analysis of  various structures of  their explicit solutions. 

For the KP equation 

O 
Ol(-4O3u+6u&u+O~u) + 3O2u=O, Ok-- (1) 

3tk 

and related equations of  the KP hierarchy [ 11 ] such a structure is manifested in the existence of  a determinant 

representation [ 12,13 ] 

+co 

I <_n,m<N Ii 

where matrix elements depend on arbitrary solutions of  the linear equations 

Ok f+ k + =a, f ' . ,  akf2=(--1)k- la~f2,  k >  1 (3) 

0167-2789/95/$09.50 @ 1995 Elsevier Science B.V. All rights reserved 
SSD10167-2789(95)00158-1  



116 D. Pelinovsky / Physica D 87 (199.5) 115-122 

and arbitrary constants cn. The determinant (2) is a solution of Eq. (1) for the variable r: u = 20~lnr.  To 

simplify the notation we keep in Eq. (2) a sign of dependence of the functions f,~ on the variable tl and omit 
their dependences on the other variables. It is important to note that the determinant representation is rather 
general because other representations, including the well-known Wronskian one [ 14], can be obtained from 
(2) by trivializing the functions f ~  or f +  [ 15]. 

Unlike the equations of the KP hierarchy, the structure of the explicit solutions to the DS equations has not 

been investigated in detail, although some representations in the form of two-directional and double Wronskians 
[14], the grammian-type determinant [8,9] as well as the r-function expressed by vacuum expectation values 
of Clifford algebra operators [ 10] were found and used to analyze some classes of their exact solutions. It 

seems important to find a general representation of the solutions to the DS equations. Such a representation can 

be found in the framework of the dressing method introduced by Zakharov & Shabat [ 16] and applied to the 

DS equations first by Anker & Freeman [ 17] and then, in an implicit form, by Nakamura [ 18,19]. 

In this paper the explicit structure of the solutions is derived and analyzed for the DS2 equations 

2iOtg~ + 02x g~ - O2~F + 2(n + I 12 - p2)  = 0, (4) 

O~n + Ofn + 20~1~12 = 0, (5) 

where n is a real function, ~ and 1/** are complex conjugated functions, I~12 --- ~ .  ~*, and p is an arbitrary 
real parameter. The determinant representation obtained by the dressing method generalizes (2) and transforms 

to it for the solutions with nonzero boundary values at infinity (1~1 ~ P, n 0 at x ,  y ---, oo, except, perhaps, 
for a finite number of directions on the x ,y  plane). The exponential and rational-type solutions with these 

boundary conditions are found in an explicit form. These solutions generalize those obtained earlier [ 17-22]. 

It should be mentioned that the inverse scattering problem for the DS equations with nonzero boundary 

conditions was considered on the basis of the nonlocal Riemann-Hilbert problem and the DBAR technique by 

Bogdanov [23]. The construction of explicit solutions can be realized in the framework of this approach as 
well. However, in this paper we apply the Zakharov-Shabat dressing method in its original formulation [16] 
because it enables us to get a convenient form of the explicit solutions which could be useful for possible 

applications. 

2. The determinant representation 

Eqs. (4) , (5)  are known as the conditions of commuting a pair of linear matrix operators [ 12]: 

M1 = iO,, + JOx + Q ( g t ) ,  M2 = iOt + JO2x + Q(gt)Ox + R, 

( ;  01) ( 0 ~ ) and the elements of matrix R are related to the variables qq n by the where J =  - ' Q ( q ~ ) =  -~*  0 

formulas 

RI1 - -  R22 =n  + I~0 ' l  2 - p2, RI2 = (Ox - ic)y)g*/2, R2j = - ( O x  + iOy)g**/2. 

The dressing method [16,17] enables us to construct new complicated solutions to Eqs. (4) , (5)  from a 
simple solution which is supposed to have the form of an unperturbed wave gt0 = p, no = 0. This goal is 
achieved by solving a linear integral Gelfand-Levitan-Marchenko equation for matrix functions K and F of 

dimensions 2 x 2: 
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+oo 
P 

F(x , z )  + K(x , z )  + / K(x,s)  ® F(s ,z)ds=O. (6) 

X 

The function F entering the kernel of the integral equation is given by an arbitrary solution of the linear 
equations 

iOyF + J ®OxF + OzF ® J +Q(p)  @ F - F QQ(p)  = 0, (7) 
2 iOtF + J ® 3xF - 02F ® J + Q(p) ® OxF + OzF ® Q(p) = 0. (8) 

Then, the function K that is determined from Eq. (6) generates a new solution to the nonlinear equations 
(4) ,(5) in accordance with the relationships 

= p + 2Kle(X, x),  

~* = p + 2K21 (x, x) ,  

n =20x(Kll(x,x) +K22(x,x)) 

(9) 

(10) 

(11) 

The determinant representation of the functions 1/I, n can be found by separating the variables in Eqs. (6) 
and (7) , (8)  [ 13]. For a matrix case of (6), an adequate variable separation is achieved by factorizing matrix 

F by vector functions f,+ = ( f ~ ,  fn+2) q- and fn- = (f~], f ~  ): 

N 

F(x , z )  = Z c ; l ~ ( x )  ® f ; ( z ) '  (12) 
rt=] 

where C, are arbitrary real constants. The substitution of (12) into (7) , (8)  allows us to determine linear 

differential equations for the functions f ~ , j  = 1,2: 

(3x + iOy)f~ + p f ~  = O, (3x - iOy)f~ + p f~  = O, 3tf~ = ±3xayf~. (13) 

On the other hand, the substitution of (12) into (6) reduces the integral equation to a system of linear 

algebraic equations which has a unique solution 

N N 
Ann , ( X ) 

= - ® f ; ,  ( z ) ,  ( 1 4 )  
n=l rn=l AN(X)  

where A,m is the co-factor of element h,m of the form 

+oc~ 

f + _ 
horn = C,3,m + (fro, g ) ,  (I'm, g ) =  ( f~(S) fml(S)+f;2(s) f[ , , z (s) )ds ,  (15) 

X 

N = det(h,m)~<,,m<_U. The determinant AN is highly important for investigation of the solutions and AN =-- HN, N 
to the DS equations because it determines the functions n ,  ]'l/el2 as 

n = 2021nAN, jq,]2 = p2 _ (02 + 02)lnAN. (16) 

These functions are meaningful for Eqs. (4) , (5)  only if they are real. Therefore, the determinant AN must 
also be real. For other representations of the solutions to the DS equations, the real conditions make analysis 
difficult and give rise to laborious calculations (see, e.g., papers [7,22]). For our determinant representation, 
this problem has a simple solution. Namely, at real x, y the determinant AN is real for arbitrary N if 
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C. = C*, f ±  +* n2 = ° ' n f n l  , 1 < n < N ,  

and for even N -- 2M if 

C,+M C n, fn~+M1 +. 4- :t:* = O'n+Mfnl  , = = o 'n fn2  , f n+M2 

(17) 

l < n < M ,  (18) 

where o-~ = i l ,  1 < n < N. Obviously, the conditions (17) , (18)  are completely consistent with the system 

(13).  

The determinant AN can be regarded as a direct generalization of  (2).  Its form seems to be more convenient 

than the block matrix form which was introduced earlier [ 17-19]. 

3. Other forms of explicit solutions 

There exists a close mathematical correspondence between the solutions to the DS and KP equations. Under 

the condition p 4= 0, the determinant A N with the matrix elements h~m can be transformed to (2).  For this 

purpose it is necessary to consider complex values of  the variables tk, k = 1,2 and to introduce new variables 

tk, k = - 1, - 2  so that the functions f ~ ,  1 < n < N satisfy an additional set of  integro-differential equations 

a~f~+=p-2~akf+., a k f ~ = ( - - l ) k - ' p - 2 k a k f n ,  k < _ - l .  (19) 

Here we suppose that the functions f f  decrease exponentially as tl --~ + o c  so that the inverse operator 

O~ 1 = - ft +°° dtl is well-defined. 

If  we transform the independent variables x = - ( t l  + t-1 ), y = i(tl - t-1 ), t = -2 i ( t 2  - t -2)  and use the 

relation 

(ax + iOy ) f~ f~  = (Ox - iay)f~f~2,  

then the matrix elements h~m containing the vector - functions ~ = ( f + , f + 2 ) -  and f~- = ( f ~ .  f,~?) are 

reduced to the form used in (2) with the scalar functions f ~  - f f  and the constants 6". = - 2 c . .  In the new 

variables these functions depend on t:k,. t+2 in agreement with the linear equations (3) and (19).  Therefore. 

the functional structure of  the explicit solutions to the DS equations with nonzero boundary values at infinity 

completely coincides with the structure of  the solutions to the generalized KP hierarchy with an additional set 

of  independent variables. It accounts for similarity of  the soliton and rational solutions of  these equations which 

was revealed by a bilinear method [20].  

Besides (2) ,  there exist other functional representations of  the solutions to the KP hierarchy. Now we shall 

show that the relationship between the solutions to the DS and KP equations discussed above can be extended 
to the other representations. Indeed, it is well known for the Wronskian form of the solutions [ 14]. 

The procedure of  transforming the determinant AN uses the formal series obtained from the matrix element 

h~., by integrating by parts 

O<3 

h.m =c.6n., + Z ( - 1 )  k+l O~f + O?~-J f ~  (20) 
k=O 

=cn6nm + ~-"~(-1) k+l c)(-k-l f + 3~f~n. (21) 
k=O 

Let some functions fm for M + 1 < m < N be simple exponential solutions to the systems (3) and (19) 



f m =  %7 exp ( ¢ - ( q m ) ) ,  
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(22) 

49- (qm) = Z ( - - 1  ,k+l ~k. ÷ V TM )k+l ) qm'k z_~( - 1  (23) (p2/qm)kt_k.  

k=l k=l 

Then, the expressions (20) , (21)  become power series in terms of  1/qm and qm, respectively, and the higher 

terms of  these series are decreasing for (20) if qm ~ O0 and for (21) if qm ~ O. Since the functions (16) do 

not change when the determinant A N is multiplied by an arbitrary constant and/or  exponential factors like (22),  

under the condition Cm = 0 for M + 1 _< m _< N a solution to Eqs. (4) , (5)  is independent of  the trivialized 

functions fro" Then, the limit qm --+ 0 for M + 1 _< m _< M + / z  and qm ---+ oo for M + 1 + / z  < m _< N 

transforms the functional structure of  the determinant AN which becomes as follows 

l/ > / ) 
N Cn•nm ÷ (s)f~(s)ds 

AN ~ HN;M, ~ = det . (24) 
k t l . , / l < n < N , l < m < M  

{ ~ m - - ( M + l + l  z) ~'+~ 
~al  J n ] I < n < N , M + I  < m < N  

N The Wronskian form [14] appears as a partial case of  the determinant HN;M,~, at M = 0. We are able to 

construct a still more general representation of  AN by choosing the functions f +  at K + 1 < n < N in the 

exponential form which is adjoint to (22) , (23)  

fn + = c + exp (4) + ( P n ) ) ,  (25) 

OG OO 

fb+ ( P " ) =  Z p~tk + Z (p2/pn)kt-k" 
k=l k=l 

(26) 

For / z  :~ 0 and /z  4: N - M - 1, after the limit transitions, when Pn tends to zero or to infinity, the order of  

AN decreases. However, a t / z  = 0 and p ,  ---* 0, cn = 0 for K + 1 < n < N we obtain a new functional form of  

an explicit solution 

/ / tl l <n<K, l  < m < M  
AN H N = det m-(M+l) + - - . (27) 

=-- X;M,O (01 f ;  )l<n<K,M+l<,n<N 
(( -OI ) -n+ 'Vf; ' l  

] K+I  < n < N , I  < m < M  

( ( ~ ( n - - K )  ( m - - M ) )  K + I  < n < N , M + I  < m < N  

Note that besides the determinants HN;M,#, HN:M,O there exist determinants H~,K;N, HN, o;M which are anti- 

symmetrical with respect to the functions f ~ .  The other limit transition at /x = N - M - 1 and Pn ~ oc for 
N N which is antisymmetrical to (27).  K + 1 < n < N transforms the determinant HN;M, ~ to HX, O; M 

Thus, the DS and KP equations have an identical, extremely various functional structure of  explicit solutions. 
It is important that the form of the complex variable g" obtained in the framework of  the dressing method 

(formulas ( 9 ) , ( 1 0 ) )  can be rewritten using the determinant (27) :  

HN+I /_/N+ 1 
N;N,O 1if* * * N,O;N ~ = p - - ,  = p - -  (28) 
A N AN 
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It is obvious that the determinants /4N+I L/N+I depend on the same functions f ~  for 1 < n < N as the ~N;N,O' " "  N , 0 ; N  - -  - -  

determinant AN. Moreover, they do not differ functionally from AN and, as is well known, are the result of the 
action of the transformation groups changing the phases of the independent variables of the function AN [ 11 ]. 

4. Exponential and rational-type solutions 

Employing the found representations of the determinant AN, we analyze here the exponential and rational-type 
solutions with nonzero boundary values at infinity both for Eqs. (4) , (5)  and for their 1D analog, the nonlinear 
Schr6dinger (NLS) equation. 

The exponential-type solutions are generated by choosing the functions f ~  in the form of an arbitrary 
superposition of the exponents (16a,b). The choice of the unique exponent with the constants c~ = i(pn +qn) 1/2 
and c. = 1 corresponds to the pure "N-soliton solution" of Eqs. (4) , (5) .  According to (16), it is expressed by 
the determinant AN, which can be expanded in the well-known polynomial of exponentials [20]: 

A N = det (8.m +dn.,  exp( (r/,, + r/m)/2) ) l<n,m<U (29) 

= Z e x p (  ~'~ #~r /"+ Z #,,txmA,,m). (30) 
/ z = ( 0 , 1  ) \ l < n < N  l<_n<m<_N 

where r/. = q5 + (p,)  + ~b- (q~), d,,m = ( (p. + q,,) (p,,, + qm) )1/2/(Pn + qm). and 

A,,m = ln ( (Pn - Pm)(qn --qm) 
(pn ~ qm)-(-~m ; ~ )  ) " 

The reality conditions for the determinant AN which are equivalent to (17) in the original variables yield 
that the complex parameters Pn, q~ for any n belong to the circumference of radius p. 

The expressions (29),(30) reduce to the "N-soliton solution" of the NLS equation when the condition 
c~:,~ = 0 is met. In the new variables this condition has the form 

01g ~ = 0 _ l q  r. (31) 

A sufficient condition is that all the phases -q. of (29),(30) should satisfy (31). This leads to the following 
equations 

P~qn = p2 for any n, (32) 

which coincide with the known Hirota reduction [21]. In our analysis this reduction emerges naturally from 
the investigated relationship between the functional structure of the solutions to the DS and KP equations. 

The rational-type solutions for which A N is an ordinary polynomial (probably multiplied by an arbitrary 
exponential factor) appear by choosing cn = 0 for any n and 

In f+ = c)t",'" exp(qS+(p.)),  f~- = Oq,, e x p ( ~ - ( q . ) ) .  (33) 

If there are no equal values among the parameters Pn, qn the polynomial solutions can be represented in an 
operator form [24] 

AN=Oml+'"+mu+l'+"+lUexp( Z (rlnq-ln(pnq-qn))+ ~ Anm) (34) pl,p2,...,PN,ql,q2,...,qN 
\ 1  <n<N l <_n<m<N 
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It is not difficult to show that the expression (34) transforms for mn = 1,1n = 0 for any n to the known 
polynomials of  N degree which are associated with the dynamics of  2D lump solitons in the KPI and DS1 

equations [20].  However, there are broader classes of  the polynomials A N . Such polynomials are generated 
by the functions (33) with equal parameters Pn,qn for some or for all n. The rational solutions to the NLS 

equation can be found precisely among such degenerate polynomials of  the DS equations because the Hirota 
conditions (32) are rewritten for rational solutions as p2 = q2 = _ p 2 .  Using the technique of  the recent paper 

N N [ 15] we shall show that the determinants HN;M,O, HK, O; N with the functions f f f  

f ~  = S " - l  ( A ) P ~ _  1 - e x p ( ~  ~: ( p ) )  (35) 

are rational solutions to the NLS equation if 

pZ=_p2 ,  A = - l / p .  (36) 

Here we introduced the Schur polynomials 

Pff (0~ ,  0~ . . . . .  0if) = exp( -q~+ (p ) )0p  ~ exp (~  + ( p ) ) ,  

the phases 0ff = a~±/n! and the vertex operator 

S ( I )  = e x p  - ~=l n 0 ° ' ~  ' 

N N It follows from the factorized form of the determinants HN;M,O, HK, O: N with the functions (35) [ 15] and 
from the Bineu-Cauchy formula that a general "N  x M" or "K x N" solution satisfies Eq. (31) if the partial 

Wronskians H~. 00, H~0.N satisfy the same equation. Since these Wronskians are equivalent to the Wronskians 
W~[P~,S(A)P3 :~ . . . . .  'sN-'(A)P2:LN_II and therefore depend only on the variables 0~, it is convenient to 
rewrite Eq. (31) in these variables 

1 + ~ ao~W~u + ~ (--P) -mao~-°,wiu =0.  

Direct calculations prove that both the parentheses in this equation are identically equal to zero under the 
N N conditions (36) .  Therefore, both the partial Wronskians and the general determinants HN;M,O, HK, O; N with the 

functions (35) are rational solutions to the NLS equation. 
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