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Abstract

Instability development and critical collapse of solitary waves are considered in the framework of generalized Korteweg—de
Vries (KdV) equations in one and two dimensions. An analytical theory of the solitary wave dynamics and generation of
radiation is constructed for the critical case when the solitary waves are weakly unstable. Characteristic types of the global,
essentially nonlinear evolution of the unstable solitary waves are analyzed for some typical generalized KAV equations.
The scaling laws of the self-similar wave field transformation are found analytically for the power-like KdV equation in
the critical case p = 4. The asymptotic approach is also developed for the modified Zakharov—Kuznetsov equation in two
dimensions and the rate of the singularity formation is found to be smaller than in one dimension due to diffractive wave

effects.

1. Introduction

Collapse, that is, the formation of singularities in
finite time, is a feature of some nonlinear dispersive
wave equations when a small-amplitude solitary wave,
realized as a balance between nonlinearity and dis-
persion, becomes unstable (for a review, see [1,2]).
Strictly speaking, these weakly nonlinear equations
displaying solitary wave instability and subsequent
collapse are not really valid for the description of
the wave evolution towards a singularity. Instead the
original set of governing equations should be inves-
tigated and possibly, in place of an actual collapse,
there could be formation of strongly nonlinear coher-
ent structures. However, basic information about such
large-amplitude structures can be extracted from the
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analysis of the self-similar collapsing waves in the
weakly nonlinear model equations. Thus, such simple
models displaying collapse phenomena have been in-
tensively studied for several years.

In contemporary nonlinear physics, two types of
nonlinear evolution equations have been found es-
pecially important for the description of wave prop-
agation (see |[1]). They are the so-called NLS-type
equations for the envelopes of quasiharmonic waves,
and the KdV-type equations for weakly nonlinear long
waves.

For the NLS-type model equations, solitary wave
stability and collapse formation have been investigated
in much detail. In many cases, these models can be
reduced to the generalized NLS equation,

W+ Ap¥ + DY =0, (1.1)
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where Ap stands for the Laplacian operator in D di-
mensions and f(|¥]) is proportional to the nonlinear
correction to the frequency of linear waves. It has been
proved (see [2a] and reference therein) that the soli-
tary wave solutions of the generalized NLS equation
are stable if and only if the power (number of parti-
cles) invartant grows with increase of the solitary wave
amplitude. For the power-like NLS equation, when
f¥]) ~ |¥|P, this condition is satisfied for the so-
called subcritical case when pD < 4. In the super-
critical region, i.e. pD > 4, the solitary waves are
exponentially unstable and collapse can be observed
from a large class of initial conditions.

The critical case, pD = 4, reveals a number of re-
markable properties which has attracted much interest
(see, e.g., [2b]). In this case, the power invariant has a
unique (threshold) value for all solitary wave solutions
and this value separates two different global scenar-
ios of the evolution of a localized initial perturbation.
If the power of the localized perturbation exceeds the
threshold value, the initial pulse collapses while, in
the opposite case, it spreads out and decays into lin-
ear dispersive waves. During the collapse the localized
spike remains self-similar to the underlying solitary
wave solution with varying parameters [3]. The scal-
ing laws for the variation of the solitary wave param-
eters were found to be different at different stages of
the critical collapse [2b]. At an early stage, the scal-
ing laws are described by exact self-similar solutions
to the power-like NLS equation. However, at a later
stage, the collapse is accompanied by the generation
of a radiation field and this effect modifies the scaling
laws of the solitary wave evolution by a logarithmic
factor. Finally, for the threshold value of the power
of a localized initial pulse, the collapse is completely
free of radiation and it is governed by an exact solu-
tion describing the nonlinear stage of instability of a
stationary solitary wave.

The development of solitary wave instability and
collapse has also been investigated in the framework
of the KdV-type evolution equations. In the one-
dimensional case, one such model is the generalized
KdV equation,

u,+(c+f’(u)) Uy + Uxxx = 0, (1.2)

where f'(u) = df/du. For instance, this equation de-
scribes the propagation of nonlinear long acoustic-type
waves. The function f’(u) is regarded as a nonlinear
correction to the limiting long-wave phase speed c. In
the weakly nonlinear approximation, this function is
linear or quadratic in u and, in this case, the model
(1.2) reduces to the integrable KdV, or MKdV equa-
tion, respectively [4]. However, if wave amplitude is
not supposed to be small, the generalized KdV equa-
tion serves as an approximate model for the descrip-
tion of weak dispersive effects on the propagation of
nonlinear waves along a characteristic direction [5].

Solitary waves and their linear stability in the frame-
work of (1.2) have been studied by many authors [6-9]
in analogy with the generalized NLS equation (1.1).
The criterion of the solitary wave stability was found
to be expressed through the momentum Ps(v) evalu-
ated at the stationary solution,

d P

" > 0, (1.3a)
1 +00

Pw) = 5 / ud(x; v)dx, (1.3b)
—00

where the solitary wave solution has the form u =
ug(x — vt; v) and v is the wave velocity.

However, a more detailed study by Pego and Wein-
stein [10] revealed that the birth of the solitary wave
instability in the generalized KdV equation (1.2) is
completely different from that in the generalized NLS
model (1.1). In the latter case, a pair of positive and
negative real eigenvalues (which give the instability
growth rate) arise as a result of the merging of two
imaginary eigenvalues. In the former case, the real
eigenvalues emerge from the origin when the solitary
wave velocity v, or the model parameters, cross the
bifurcation (critical) point. Inside the stability region,
the eigenfunctions corresponding to the real eigenval-
ues are nonlocalized and exponentially growing along
a spatial coordinate [10].

We would like to point out that these results are sim-
ilar to the linear analysis of the transverse stability of
the plane KdV solitary waves in two dimensions de-
scribed by the Kadomtsev— Petviashvili equation [11].
In the latter case, Burtsev [12] found that the existence
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of nonlocalized eigenfunctions inside the stability re-
gion is associated with the generation of strong ra-
diation escaping from the front of the stable solitary
waves and resulting in effective (Landau-type) damp-
ing of the front oscillations. Note that the perturbation
theory is quite effective in this case for the description
of the solitary wave dynamics and the generation of
the radiation field [13,14].

Just as in the power-like NLS equation, the gener-
alized KAV model (1.2) with power-like nonlinearity,

f) = 3(p+2ult! (1.4)

displays instability of solitary wave solutions for p >
4. Originally, Kodama and Ablowitz [15] revealed that
the perturbation theory for adiabatic solitary wave dy-
namics in the presence of external perturbations breaks
down at p = 4 and they suggested that the power-like
KdV model (1.2) and (1.4) admits the formation of
singularities at p > 4. Then, Blaha et al. [16] proved
that the Hamiltonian of the system is unbounded from
below for p > 4 and the solitary wave solutions real-
ize global maximum of the Hamiltonian. These results
indicate that the collapse formation is a global scenario
for solitary wave dynamics. Furthermore, Blaha et al.
[16a] used the method of variation of action in order
to get not only qualitative but also -quantitative fea-
tures of the focusing singularities for p > 4. However,
we will show that the strong radiation excited due to
the collapse development was omitted in this approach
and that radiation-induced damping of the momentum
of the perturbed solitary wave changes drastically the
scaling laws of the collapse formation. Recently the
structure of the singularities was observed by Bona
et al. [17] in numerical simulation of the power-like
KdV model. Their results (see [17, Fig. 8]) are in ob-
vious disagreement with the results of [16a, Fig. 6].
Thus, the detailed analysis of the critical collapse in
the power-like KdV equation awaits investigation.

There exist different two-dimensional generaliza-
tions of the power-like KdV model which also display
critical solitary wave dynamics [16,18]. Here, we will
consider the following anisotropic generalization re-
ferred to as the modified Zakharov—Kuznetsov (mZK)
equation [19]:

u; + 6u2ux + Uyxx gy =0. (1.5)

This equation can be derived for Alfven waves in
magnetized plasma at a special, critical angle to the
magnetic field by means of an asymptotic multi-scale
technique [20]. It was pointed out [3,16] that this equa-
tion describes critical collapse but a detailed investi-
gation of its development has not yet been carried out.

In this paper we present a universal analytical the-
ory for the description of the development of solitary
wave instability and the related critical collapse in
long-wave evolution equations. This theory is based
on a standard perturbation approach for solitary wave
dynamics (see [21,22]). However, in contrast to pre-
vious versions of this technique, the evolution of the
solitary waves occurs under the action of their own
perturbations which develop in the vicinity of the in-
stability threshold slowly in time. In this case, the orig-
inal KdV-type equation can be reduced through this
asymptotic technique to an ordinary differential equa-
tion for the slowly varying velocity of the perturbed
solitary wave. This result is very useful for the pre-
diction of the long-term (global) dynamics of unstable
solitary waves. Moreover, it enables us to construct
approximate solutions for self-similar critical collapse
in the KdV-type evolution equations and. in this case,
the validity of our approach is guaranteed by a col-
lapse theorem proved by Laedke et al. [3]. According
to this theorem, for critical collapse, the field near the
singularity spike remains self-similar to the shape of
the solitary wave solutions but with varying parame-
ters. We note that a similar technique was recently de-
veloped for the generalized NLS equation (1.1) and,
in the critical collapse case, it led to the same results
as the exact self-similar solutions [23].

Our paper is organized as follows. In Section 2 we
reduce the generalized KdV model (1.2) to the govern-
ing equation for the velocity of the perturbed solitary
wave. Using this equation we discuss in Section 3 the
general features of the evolution of the unstable soli-
tary waves for the generalized KdV equation. Then,
in Section 4 we analyze the critical solitary wave col-
lapse described by the model (1.2) with a power-like
nonlinearity (1.4) at p = 4. We compare the results of
our theory with those of the variational approach [16a]
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and of exact self-similar reductions [16a,17] and dis-
cuss the difference between these approaches. Next,
in Section 5 we consider the mZK equation (1.5) and
show that the excitation of the radiation field in two di-
mensions is accompanied by diffractive effects which
slows down the collapse development. Finally, our re-
sults are summarized in Section 6. In Appendix A we
show that the asymptotic equations for the KdV-type
solitary wave dynamics can be alternatively derived
from analysis of conservation laws.

2. Asymptotic model for solitary wave dynamics

Here we consider the generalized KdV equation
(1.2) for an arbitrary nonlinear function f(u). We as-
sume that this mode] exibits solitary wave solutions in
the form u = ug(x — vt; v) and that these solutions
are weakly unstable, i.e. the inequality (1.3a) is vio-
lated for some values of the velocity v and the model
parameters. In the vicinity of the instability threshold,
the KdV-type solitary waves evolve slowly in time and,
therefore, we can describe their long-term dynamics
by the formal asymptotic series,

u=ug&;v)+ui(§;v,v)
+M2(§ v, Uy, U[[) + e (21)

Here & is the coordinate of the wave center, £ =
X — f(; (c+v()) dr’, and v is a (positive) correction
to the limiting long-wave phase speed ¢ induced due
to dispersive and nonlinear effects. Although we did
not introduce a small parameter in the asymptotic ex-
pansion (2.1), we have supposed that the solitary wave
changes slowly (adiabatically) in time so that the time-
derivative of each term u,,, is much less than vu,g. In
the next sections we will show that the small parame-
ter, say €, should be introduced in the asymptotic series
(2.1) in a different manner for some particular prob-
lems related to the generalized KdV equation (1.2).

The leading order of the asymptotic series (2.1) co-
incides with the profile of the solitary wave solution
uo(&; v). This solution can be found from the equa-
tion,

uogs + f(up) — vug =0, (2.2)

with vanishing boundary conditions at infinity, up —
0 as &€ — +o00. We assume that the function f(u)
vanishes faster than « for small u and admits the exis-
tence of exponentially localized solutions of (2.2) [see
conditions (C.1),(C.2) in {6] which are necessary for
existence of such solutions].

Substitution of (2.1) into (1.2) reduces the general-
ized KdV equation to a set of linear inhomogeneous
equations for the higher-order corrections u, u> and
SO on,

(Lun)e =Fp(uo, ur. ... ttn—1)
=FGivov. ooy ). nxz o (23)

Here L is the linear operator associated with the non-
linear equation (2.2),

L= BEZ + f(ug) — v, (2.4)

and the right-hand side operators F,, can be expressed
through terms of lower order. For our purposes, we
write down the explicit form only for first two opera-
tors F,,,

(2.52)
(2.5b)

Fi=—up.
1 " 2

Fo=—uy —5 (f (uo)ul)s .

Being general solutions of the linear inhomoge-
neous equations (2.3), the functions u,, n > 1, con-
tain terms which diverge exponentially as § — Fo0.
To avoid this, it is necessary to impose a compatabil-
ity condition on F, resulting in an equation for the
variation of v(?). This is most easily obtained by mul-
tiplying (2.3) by ¢, and integrating with respect to &
over the whole &-axis. Thus we get the compatability
conditions [15],
+00
[ w0t e v dE =0,z 1,

S———

—00 "

(2.6)

which gives an n-order differential equation for the
velocity v(z). So, substituting £ from (2.5a) into (2.6)
we immediately obtain a first-order equation,

dP; dv

— =0, 2.7
dv dr 0 @7
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where the momentum of the solitary wave Ps(v) is
given by (1.3b). It follows from (2.7) that nontrivial
solitary wave dynamics (v # const.) can be described
by the asymptotic theory only if dP;/dv = 0, i.e.
in the vicinity of the instability threshold. Of course,
if the momentum P depends on v, condition (2.7)
cannot be exactly fulfilled. However, near the critical
value of the velocity the left-hand side of (2.7) remains
small and we can remove this condition to the next,
second-order approximation. This procedure leads to a
nontrivial, second-order differential equation for v(z).
Note that for the critical collapse models the momen-
tum Ps does not depend on v and, in this case, equality
(2.7) is satisfied identically.

Thus, the first-order term u| does not contain expo-
nentially diverging terms near the instability threshold.
However, it still possesses a shelf, i.e. a nonlocalized
part tending to a constant at infinity [15]. Integrating
(2.3) at n = 1 we find that the first-order term tends
to the following values at infinity:

dM.
u|—>ui:C U i
2v dv

Here M;(v) is the integral of the solitary wave mass
given by

as £ — +oc. (2.8)

+0oC

M = [ uoteivds 2.9)
—00
and C is an arbitrary integration constant. The ap-
pearance of shelfs in asymptotic expansions for the
KdV-type solitary waves has been discussed by many
authors (see, e.g., [14,15,21]). As is well known, this
effect is associated with generation of radiative waves
escaping from the solitary wave. From a formal point
of view, the nonlocalized part of the asymptotic se-
ries (2.1) in the inner region (§ ~ O(1)) should be
matched with a corresponding series in the outer re-
gion (§ — =o00). In this paper we avoid the further
details of this technique but reproduce only the prin-
cipal results.

Here, the radiation field remains behind the core of
the KdV-type solitary wave and, therefore, we should
choose the constant C in the form

v, dM,

C = . 2.10
2v dv ( )

In this case, there is no wave field in front of the
solitary wave. Furthermore, the radiation field behind
propagates with the constant velocity ¢ in the time
scale of the solitary wave dynamics. The profile of
such a stationary radiation field u,(x) can be found
from (2.8),

IM[v(t = Ty(x))]
Uy = —— = - -

v dv P=Ti(x) 0x

7

(2.11)

where T;(x) is the inverse function to the solitary wave
coordinate X(¢) = f(; v(¢") dr’ in the reference frame
moving with the limiting phase speed c.

In order to find the governing equation for v(t) we
need to evaluate the first-order term u . Let us present
it in the implicit form of a sum of even and odd com-
ponents,

up = Curev(§:v) + viu10d(§: v), (2.12)

where C is given by (2.10) and u ey, U |0d satisfy the
equations,

£
ouQ
Lujog = — | ——d§.

2.13a,b
" ( )
0

Lujey = —v,

Now we turn to the second-order approximation and
combine the compatability conditions (2.6) for n = 1
and n = 2 to get

+00

1 ,
/ (unuoz + upuy; + 540 [.f/ (uo)u%]&) d§ = 0.
—oc

(2.14)

Next, we integrate the last term in this equation by
parts and use Eq. (2.3) for n = 1 to reduce (2.14) to
the form,

dP
o_Y (u+2 _ u_2>,

A 2

where Po(t) = Pi(v) + C f_t:f uoli1ey d€. In Ap-
pendix A we show that Py is a part of the momentum
localized at the perturbed solitary wave and, generally,
the governing equation (2.15) can also be obtained
from the momentum conservation law of the general-
ized KdV equation (see also [22]).

(2.15)
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Eq. (2.15) can be rewritten in an explicit form as a
second-order differential equation for v(z). To do this,
we first note that

duy -

dv
Then multiplication of (2.13a) with dug/dv, followed
by integration with respect to £ and substitution of
(2.16) leads to the expression,

ug. (2.16)

+oo
dM,

/ UoU ey dE = —v } (2.17)
dv

—0oC

Combining formulas (2.8).(2.10),(2.15), and (2.17) we
finally obtain the equation,

dP(),l'dMszdv

i dv

| T2 )
RN UAWERS (218
- 2v \ dv dr )~ -18)

A nonlinear second-order differential equation can-
not generally be integrated. However, (2.18) has the
first integral,

v dMszdv_H() o 219
2\ Taw ) @ T e (2.19)

where Hy is an integration constant and H(v) is given
by

dH,(v) = —vdPs(v). (2.20)

It is well-known [10] that this equation defines the
Hamiltonian Hg(v) calculated at the solitary wave so-
lution ug(&; v),

+o0

Hi(v) = /

-

]

1

§<uos)2—ff(u>du de. (221
0

Thus, our asymptotic theory for the dynamics of the
KdV-type solitary waves reduces in the vicinity of the
instability threshold to the first-order differential equa-
tion (2.19) with only one parameter Hy. In Appendix A
we show that the conserved quantity Hj represents
the Hamiltonian of the perturbed solitary wave while
(2.19) is equivalent to the energy conservation law for

the generalized KdV equation (1.2). Furthermore, we
note the remarkable relation between the momentum
and energy of the perturbed solitary wave which fol-
lows from (2.18) and (2.19),

AH+vAP =10, (2.22)

where AH = Hy — Hy(v) and AP = Py(t) — Ps(v).

The system of asymptotic equations (2.11),(2.18),
and (2.19) allows us to consider two different prob-
lems. First, if the dependence H(v) has an extremal
point for a special, critical value of the velocity v we
can simplify (2.19) in a weakly nonlinear (quadratic)
approximation and analyze the local and global fea-
tures of the solitary wave instability in the generalized
KdV equation (1.2). This is discussed in Section 3.
On the other hand, when H(v) is identically equal to
zero, the system (2.11) and (2.19) represents a gov-
erning model for the critical collapse of the KdV-type
solitary waves [16,17] and leads to approximate solu-
tions describing the collapse development. These so-
lutions are presented in Section 4.

3. Linear and weakly nonlinear analysis of the
KdV-type solitary wave instability

Using the asymptotic equation (2.18) we can re-
produce the results of the linear theory for solitary
wave instability of the generalized KdV equation
[6-10]. Let the stationary solitary wave solution have
the constant velocity vg. Then, in a linear approxima-
tion, when v(t) = vy + vi exp(rt), (2.18) transforms
to the following linear algebraic equation for the

eigenvalue A:
2
) w0
v=u)

(3.1

D(%: vp)

d P
dv

=A

. 1 [ dM,
2 dv

There are two roots for A. The first is always zero and
it is associated with a spatial translation of the solitary
wave with respect to the &-axis. However, the second
root is generally different from zero. It indicates an

v=vg
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appearance of solitary wave instability in the parame-
ter region where the slope d P/ dv becomes negative.
In this case, there exists a real positive eigenvalue A.

In the critical case, when dFPs/ dvly=y, = 0, the
eigenvalue A has a double zero and there is instead a
weak, power-like instability of the solitary wave (see
[8b]) so that v(r) = vy + vyf. Note that in this case
the asymptotic series (2.1) is truncated at the first
two terms within the linear approximation and our ap-

proach allows us to obtain an exact but implicit so-

lution to the linearized equation for the solitary wave
background u(&, t; vo) = u(&, 1) — ug(&: vo),

au()
dv

U=uv [ul(é;vo)—k

v=ty

Here the function u| can be found by means of inver-
sion of the linear equation,

J
(Luy)g = —ﬁ. (3.3)

When dP/dv|,—y, is nonzero but small, the
asymptotic series (2.1) is not truncated even if we
neglect the nonlinear terms. However, in this case all
the higher-order correction terms i, in (2.1) are pro-
portional to powers of A. Therefore, in the linear ap-
proximation the series (2.1) represents an asymptotic
solution of the linear problem while the expansion of
the exact algebraic equation D(X; vp) = O given by
(3.1) determines approximately the eigenvalue of the
unstable linear mode.

These results completely coincide with the general
criterion for solitary wave instability of the general-
ized KdV equation (1.2) {6-9] and with the linear bi-
furcation analysis of Pego and Weinstein [10]. How-
ever, our asymptotic theory enables us to investigate
not only the linear properties of this bifurcation but
also the long term, essentially nonlinear dynamics of
the unstable solitary waves. Moreover, if the linear the-
ory does not possess any localized eigenfunction for
positive dPs/ dv (see [10]) the nonlinear asymptotic
analysis of the solitary wave dynamics works equally
well for both the branches of the function Ps(v). This
fact can be explained by a slow divergence of the lin-
ear eigenfunction near the bifurcation point. At the

critical point, this divergence degenerates into a shelf
produced by the linear equation (3.3) [see (2.8)]. Such
secularly divergent terms of the asymptotic expansion
(2.1) for the linear eigenfunction can be removed by
means of matching with the corresponding expansion
for the radiation field outside the solitary wave core
[21].

Next we go beyond the linear theory and consider
nonlinear effects on the development of solitary wave
instability. Although the extremal points defining the
instability threshold for the curves Py(v) and Hg(v)
coincide, the role of these integral invariants is differ-
ent for the dynamics of the KdV-type solitary waves.
Because of the radiation, the momentum invariant P
permanently decreases in time and the final stage for
long-term solitary wave dynamics cannot be predicted
from the curve Pg(v). On the other hand, the energy
Hp is constant for the time scale of the wave evolu-
tion and therefore the curve Hy(v) is a sufficient tool
to analyze different scenarios of wave dynamics in the
framework of the asymptotic equation (2.19).

Since our asymptotic approach is valid only near the
instability threshold, we can approximate the function
Hg(v) in the general case by a Taylor-series expan-
sion. To do this, we now introduce explicitly a small
parameter € which describes the slow time scale of the
instability growth rate near the bifurcation point,

T = e, v(t) = vo +evy(T). 3.4)

Here T is the slow time for the solitary wave evolution,
vo is constant which corresponds to the initial value
of the energy Hp so that H.(vg) = Hy, and v| is a
slowly varying correction to the solitary wave velocity.
Using (3.4) we reduce the governing equation (2.19)
to a weakly nonlinear (quadratic) model,

2
vy [ dM dv;
2 dv =0 dT
1 dH 1 d?H 5
== v + 3 du? vy. (3.5)
U=ty =y

Here we have supposed that dHs/ dv|,—,, is positive
and small (of the order of O(¢)). It follows from (3.5)
that the evolution of the unstable solitary waves es-
sentially depends on the sign of the perturbation. For
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one case, this evolution is always bounded and it re-
sults in a monotonic transition from an unstable state
to a stable one realized at the same value of the initial
energy Hp. We can find the general solution to (3.5)
describing this transition,

AV

B — 3.6
vl 1 4+ cexp(—AT) (3.6)

where ¢ is an arbitrary constant determined by the
initial condition for v, and

_2dP/dv
T e(dM,/ dv)?

2dH/dv
€ d2H,/ dv?

3

v=vg

AV =

v=uph

If ¢ > 0, that is the sign of v; coincides initially with
that of AV, then v; — AV as T — +o00. However,
if ¢ < 0 and the perturbation v has initially the op-
posite sign to AV, then the evolution of the solitary
wave is unbounded and depends on the global behav-
ior of Hg(v) far from the bifurcation point. In the case,
when there exists another stable solitary wave solu-
tion realized at the same value of Hy, the nonlinear
dynamics of the unstable solitary wave will result in
a monotonic transitton to the stable state. In the op-
posite case, when the other stable solitary wave so-
lutions do not exist, the perturbed KdV-type solitary
wave transforms either to a collapsing (v — 00) or to
a spreading (v — 0) structure.

All tiiese scenarios of the wave dynamics are deter-
mined by the dependence of the energy H; on the ve-
locity v. In Fig. 1(a) and (b) we present typical forms
of this curve using, as a particular example, the non-
linear function f(u) in the generalized KdV equation
(1.2) in the form, f = auPt' +bu?r+!, where b, p >
0 (see [23]). For a > 0 and p = 3 the curve Hy(v) is
shown in Fig. 1(a) where different scenarios of solitary
wave dynamics are depicted, namely the transition to
a stable solitary wave with smaller velocity described
by (3.6) for AV < 0 [curve | in Fig. 1(a)] and the
transformation into a collapsing state [curve 2]. The
dependence shown in Fig. 1(a) is typical for finite am-
plitude free surface solitary waves in shallow water
[24]. Therefore, although the final equation (2.19) has

H, a)
~-0.01 4
-0.03 1 \
1 2
Hy ] \/
-0.05 T T
0 2 4 v
H,
2.2 q b)
Hy | 2 m
2.1 4 ;
/
2.0 A
19 T T T T T
0 2 4 6 8 10 v
Fig. 1. The dependence of the solitary wave emergy Hs on

the velocity v for the generalized KdV equation (1.2) with
f = aurt! 4+ bu?Pt! for (aya =5, b =4, and p = 3; (b)
a=-3.5,b=25,and p=1.5. Hy stands for an initial value
of the energy of the perturbed solitary wave. The dot points
designate the unstable solitary wave solution while the black
points designate the stable solutions. The curve I represents the
transition from unstable to stable solitary waves described by the
asymptotic formula (3.6). The curve 2 represents the unbounded
scenario of the solitary wave dynamics, either tranformation
into collapsing states (a) or decay into quasilinear dispersive
wave packets (b).

been derived here only for the generalized KdV equa-
tion (1.2), we conjecture that evolution of the solitary
waves in shallow water essentially depends only on
the dependence of Hs(v) and displays basically the
same characteristic features. Indeed, the singularities
are well known in water-wave theory (see [24b]).
Fora <0Oand p = % the curve Hg(v) is shown in
Fig. 1(b). In this case, we also find two branches of
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the solitary wave solutions with the same value of the
energy but the stable branch now has greater veloci-
ties than the unstable one. As a result, unstable small-
amplitude solitary waves transform either into stable
large-amplitude solitary waves according to (3.6) with
AV > 0[curve 1 in Fig. 1(b)] or into packets of quasi-
linear dispersive waves [curve 2].

4. Critical collapse in one dimension
4.1. Approximate solutions of the asymptotic theory

Here we apply the general theory developed in Sec-
tion 2 to the power-like KdV model (1.2) and (1.4).
In the reference frame moving with the limiting phase
speed ¢ this model takes the form

ur+ 5(p+ D(p +2uPuy 4+ ugxx = 0. 4.1

Solitary wave solutions of this equation can be found
explicitly,

up(&; v) = (ﬁ sech [%pﬁf])zw ) (4.2)

They are known to be unstable for p > 4 [6-10]. Our
theory is valid in the critical case p = 4 where the
compatability condition reduced to (2.7) is identically
satisfied. In this case, the asymptotic series (2.1) can
be rewritten in the form of an expansion in powers of
€, where the small parameter € defines the slow time
scale of the solitary wave evolution,

T = et, v=u(T).

Furthermore, we can easily find from (1.3b), (2.9) and
(2.21) the dependence of the invariants on the velocity,

m
M(v) = m

where m = I'2(1/4)/(23/27), Pex = 3, and I'(2) is
the Gamma function. The governing equation (2.19)
reduces with the help of (4.3) to the following explicit
form:

Py(v) = Poe, Hi(v) =0, (4.3)

m?  dv
32032dT
where Hp in (2.19) is now replaced by € Hp. It is ob-
vious that the initial value of the energy Ho which

—Hy, (4.4

depends on the first-order perturbation u; to the soli-
tary wave (4.2) determines completely the resulting
dynamics. If Hy < O, the velocity increases indefi-
nitely and it indicates critical collapse of the solitary
wave. Otherwise, for Hy > 0, the velocity monoton-
ically decreases. In the case Hy = 0, the localized
initial perturbation is self-similar to the solitary wave
solution and it does not result in nontrivial dynamics
since v(T) = v(0).

It is important to note that the criterion separating
two cardinally different scenarios of the wave evolu-
tion is directly related to the value of the momentum of
the perturbed solitary wave Py. It follows from (2.22)
that the initial values of the momentum Pp(0), veloc-
ity v(0), and energy Ho are related by

PO) = P = 25 (45)
Therefore, the collapse develops for Py(0) > Per
while the decay occurs for Po(0) < Pc;. This fact is
well known for all models displaying critical collapse
phenomena [2b,3].

Next, we integrate (4.4) and obtain the scaling law
of the self-similar solitary wave dynamics,

2
T
U:vo(r—T) . (4.6)

Here vyg = v(0) and the parameter T is given by 7 =
—m?/(16HyJvp). If T > 0 (Ho < 0) singularities
occur at 1 = 1, while for T < 0 (Hy > 0) the veloc-
ity v(7) decreases monotonically from the initial value
vo. According to the general linear theory in the crit-
ical case (see [8b] and formulas (3.2) and (3.3)), the
explicit solution (4.6) describes the nonlinear stage of
the weak, power-like instability of the solitary wave
with respect to small but finite perturbations,

2
u=vo[1+grz+o<-:->]. 4.7

Implicit solutions to the linearized problem indicating
the existence of such a weak instability of the KdV-
type solitary waves were first found by Laedke and
Spatschek [8b]. We would like to mention that, in con-
trast to NLS-type solitary waves [1], this instability is
very special because the nonadiabatic perturbation u
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Fig. 2. (a) The profile of the linear eigenfunction U(Z) found
from (3.3) in a parameterless form. The dashed lines represent
the asymptotic values U¥ of the eigenfunction in the limit
E — 400, Ut =0, U™ =~ —10.48. (b) The instantaneous
profile u(x) of the collapsing solitary wave in the power-like
KdV equation (4.1) at p = 4 reconstructed from the asymptotic
approach at yg =1, 1 =10, and T = 6.

to the solitary wave uq is nonlocalized in the vicin-
ity of the solitary wave location. This is obvious from
Fig. 2(a) where we present the solution u(£; v) to
(3.3) for the power-like nonlinear function (1.4) at p =
4 which can be expressed in a parameterless form,
uy = —vr/@YHU(E), & = vE. Thus, the in-
stability and collapse of the solitary waves (4.2) in the
critical case p = 4 can be observed only under the ac-
tion of initial perturbations of a special type. This has
been confirmed in numerical experiments reported in
[17] (see formula (5.8) and the discussion there).

Now we consider the radiation escaping from the
solitary wave during its self-similar dynamics. Inte-
grating (4.6) we find the coordinate of the moving
solitary wave,

vot T
t—T
Then, substitution of (4.6) and (4.8) into (2.11) gives
the profile of the radiation field eu,, where

X, = (4.8)

b= [TV (4.9)
2V (X + Xx)?

X =ex and X = voT.

If the solitary wave is collapsing (r > 0), the ra-
diation field «, is distributed between the initial po-
sition of the solitary wave (which is specified to be
zero) and infinity (where the collapse actually occurs,
see (4.8)). Further, the radiation remains positive and
small throughout this interval, and the larger solitary
waves have the smaller radiation. We reconstruct the
evolution of the collapsing solitary wave and the gen-
erated radiation field using the leading order of our
asymptotic series (2.1) and present it in Fig. 2(b).
This picture seems to be in full agreement with direct
numerical simulations of the critical power-like KdV
model (see [16b, Fig. 7;17, Fig. 8]). Moreover, we can
show that the higher-order terms «,, of the asymptotic
series (2.1) are vanishing in the vicinity of the solitary
wave core at T — 7 so that the leading order of (2.1),
i.e. the solitary wave solution uo with the varying pa-
rameter v(T), represents the asymptotic profile of the
collapsing state. This fact completely agrees with the
general theorem for critical collapse [3].

Note that outside of the perturbed solitary wave the
emitted wave field does not vanish as 77 — 7. Indeed,
since for u, nonlinear effects are negligible, the evolu-
tion of the radiation field u (X, o) obeys the linearized
KdV equation,

Urg +trxxx =0, (4.10)

where 0 = €3¢ represent a slow time scale of the
radiation evolution and the initial profile (X, 0) is
given by (4.9). Thus, the radiation field generated by
the collapsing solitary wave [see Fig. 2(b)] transforms
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to linear dispersive wave packets which completely
decay due to dispersive effects.

In the other case, when the solitary wave is decay-
ing (t < 0), the velocity decreases and, as a result,
the solitary wave stops at the point X = — X, =
vo|t|. Then, expression (4.9) indicates that the radia-
tion field diverges at this point as u, ~ (X 4+ Xo0) /2.
Of course, this divergence of the profile of the radi-
ation field is not a real singularity of Eq. (4.1). For
small values of the velocity our asymptotic theory be-
comes invalid because the solitary wave width grows
indefinitely. In this case, it is impossible to distinguish
the weakly localized solitary wave and the extended
radiation field. As a result, the first-order correction
term u# (and terms of higher order) grow secularly like
~ T3/2, Therefore, the final stage of the self-similar
spreading of the perturbed solitary wave remains un-
clear in the framework of our approach.

We conclude that the structure of the collapsing
localized perturbations is self-similar to the solitary
wave solutions with varying parameters according to
the theorem for critical collapse [3]. However, this
theorem cannot be directly used for predicting the
scaling laws of the self-similar solitary wave dynam-
ics while our approach enables us to construct approx-
imate analytical solutions for the KdV-type solitary
wave collapse and the generation of the radiative
waves. In Section 4.2 we compare our results with
other approaches used for the derivation of the scaling
laws of the critical collapse in the power-like KdV
equation (4.1).

4.2. Discussion

The scaling laws for the solitary wave collapse in
the power-like KdV equation (4.1) were first con-
structed by Blaha et al. [16a] by means of a varia-
tional principle. This approach leads to a reduction
of the power-like KdV equation (4.1) to a set of or-
dinary differential equations for the parameters of the
trial functions used for minimization of the Lagrangian
function. The trial functions have to be localized in
order to make all integrals converge. Then, using con-
servation laws of the momentum and energy evaluated
for these localized trial functions Blaha et al. [16a]

integrated their ‘variational’ equations for p > 4 and
predicted the scaling laws for singularity formation. In
the critical case p = 4, their results can be expressed
through our parameter v determining the amplitude,
width and velocity of the solitary wave solution (4.2)
as follows:

z 2/3
v:vo( ) . “4.11)
T—1

We see that this result differs from our formula (4.6).
The reason for this disagreement is explained by the
essential necessity to include the radiation field when
one considers solitary wave collapse in these KdV-
type models. The radiation field cannot be expressed
by the localized trial functions used in the variational
approach. Moreover, the radiation leads to a decrease
in the momentum of the perturbed solitary wave. As a
result, the correct scaling laws of the KdV-type solitary
wave collapse (4.6) are three times as large as the
result obtained from the variational approach.

The other technique which is often used for the
analysis of collapse formation is to find exact self-
similar reductions of the original equations. For the
generalized NLS model (1.1) this technique has been
shown'to be a good approximation to the early stage
of critical collapse [2b]. However, for the KdV-type
models this technique also fails to describe the correct
scaling laws for the solitary wave collapse. Indeed, the
power-like KAV model (4.1) for p = 4 can be reduced
to an ordinary differential equation by means of the
following self-similar substitution,

u(x, 1) =[O U@, z=[vDO]"?x - X0)).
(4.12)

Here v(t) = dXs/dt is given by formula (4.11), and
the function U (z) satisfies the equation,

Upe + 15UV, — U, = —pu (U +2zU;),  (4.13)

where 1 = 1/(67vy’?). We note that the left-hand
side of (4.13) admits a parameterless solution in the
form Uy = uo(z; 1) while the right-hand side can be
very small in the inner region where |z|] <« 1/u. If
u < 1 solutions to (4.13) in this inner region can be
analyzed by means of the same asymptotic technique
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used in Section 2 but with a fixed law for the velocity
v(t) given by (4.11),

U = Up(z) + nUi(2) + O(u?). 4.14)

Note that the right-hand side of (4.13) is just du/dv
expressed in a parameterless form so that the second
term of expansion (4.14) possesses a nonlocalized sec-
ular term [see formula (2.8)] which should be matched
with the corresponding asymptotic expansion for the
outer region where |z| 3> O(1/u). However, we have
found in Section 2 that the asymptotic series (4.14)
also generates exponentially diverging terms unless
the compatability conditions (2.6) are met. Since the
scaling law (4.11) does not satisfy the compatability
condition (2.15), we have to make another choice for
the integration constant C than that given by (2.10).
Suppose we specify C = 0 so that u™ = —u~. Then,
we could proceed to the third-order approximation
where the scaling law (4.11) actually appears. There-
fore, this asymptotic expansion implies that the scal-
ing law (4.11) can only be realized if the extended
radiation wave field is also given initially in front of the
solitary wave. It is obvious that such critical collapse
is induced by a very special initial condition, rather
than through its own dynamics. We believe that this
difficulty explains the poor agreement between the in-
tegral characteristics of the critical collapse calculated
numerically and analytically from the self-similar re-
ductions of the power-like KdV equation (4.1) for p =
4 (cf. [17, Tables 17 and 20]).

Thus, both the variational approach and the method
of self-similar reductions fail to describe the correct
scaling law (4.6) of the critical KdV-type solitary wave
collapse. The first approach neglects the nonlocalized
component of radiation field while the second implies
the existence of incoming radiation in front of the
collapsing solitary wave. Only the direct asymptotic
theory developed in Section 2 enables us to find the
correct scaling laws for the self-similar solitary wave
dynamics.

5. Critical collapse in two dimensions

It is well known (see, e.g., [13,14]) that the dynam-
ics of KdV-type solitary waves in two or higher dimen-

sions is also accompanied by strong radiation. Thus,
the asymptotic approach developed for the generalized
KdV equation (1.2) should be modified when we an-
alyze solitary wave dynamics in two dimensions. In
this section we consider critical solitary wave collapse
in a special, anisotropic generalization of (1.2) which
was introduced by Zakharov and Kuznetsov [19] for
the description of plasma waves in a strong magnetic
field. If the plasma waves propagate at a special, crit-
ical angle to the magnetic field, the usual quadratic
nonlinear term in the long-wave evolution equation
vanishes [20], and the governing model equation can
be rewritten in the modified form (1.5).

The solitary wave solutions of (1.5) are expressed
by function ug(&, y; v), where &€ = x — vz, which
satisfies the equation

uoge + Uoyy + 2u3 —vug = 0. 5.1

Note that this equation coincides with that for sta-
tionary optical (bright) solitary waves in the two-
dimensional NLS equation [1,2]. We consider only
the ground state solutions which are radially sym-
metrical and nodeless, ug(§, y; v) = ug(r; v), where
r = &2+ y? and the function ug(r;v) is posi-
tive everywhere. Fig. 3(a) presents the ground state
solution at v = | found numerically by a standard
‘shooting’ scheme.

Our aim is to describe the self-similar dynamics
of localized wave perturbations which evolve close to
the stationary wave solution ug(r; v), with a slowly
varying parameter v. Thus, we introduce a slow time
scale T = et, where € < 1, so that

T

&:x—é/MTNT. (5.2)
0

Then, we seek solutions to the mZK equation (1.5) in
the form of an asymptotic series

v=1uv(T),

u=ug(§, y; v) + eu (&, y: v, vr)
+62u2(5. v v, T, urT) + O(e?). (5.3)

In the first-order approximation, we obtain the follow-
ing linear equation for function u;:

5 du
(ulgs + iy + Guguy — vul)é = —vr~a—;-. 5.4)
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Fig. 3. (a) The projection of the ground state solution Up(Z, Y) to (5.1) at & and Y-axes in the parameterless form (5.15). (b) The
transverse profile of the radiation field U~ (Y) generated behind the solitary wave core according to (5.8) in the parameterless form
(5.15). (c) The development of two-dimensional solitary wave collapse in the mZK equation (1.5) in the framework of the asymptotic

approach at yg =1, T =10, and T = 5.
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It can be readily checked from the scaling properties
of ug [see (5.15)] that the linear inhomogeneous equa-
tion (5.4) can be solved for u| without the necessity
of a compatability condition to exclude exponentially
divergent terms. However, the solution u; still con-
tains a nonlocalized part (shelf) which now depends
on the coordinate y which is transverse to the direc-
tion of the solitary wave propagation. In order to find
the shelf we integrate (5.4) with respect to £,

Uige + Uiyy + 6u(2)u1 —vu
&
dug
= _vC(y! T) - vr T dév (55)
av
0
where C is an integration constant which depends on

y and T. Using arguments similar to those discussed

in Section 2 we choose this constant in the form
vy dmiyg
c= T T (5.6)
2v dv
where m,(y; v) is a density of the solitary wave mass
defined by

+00

- /~uo@~yﬂﬂd§- 57)

—oC

Then, considering solutions of (5.5) as § — foc we
find that the radiation field in front of the solitary
wave is absent, while behind it obeys the differential
equation foru™ (y; v, vr) = limg, _oc u1 (€, y; v, V1),

- - dmys
Uyy = VU = VT o
with the boundary conditions u~ — 0 as y — =oo0.
We have found numerically the profile of the radi-
ation field 4~ in a parameterless form [see formula
(5.15)] and present it in Fig. 3(b). Note that in the
two-dimensional mZK equation the radiation field is
effectively excited only in a direction parallel to the
solitary wave propagation direction, but the maximum
of the radiation field is shifted at some distance from
the £-axis. The other novel feature of the solitary wave
dynamics in two dimensions is the existence of a non-
local equation governing the radiation field generation.

Next, we consider the second-order approximation
and obtain the following linear equation for u;:

(5.8)

(l/tzgg -+ Uyy + 6u(2)u2 — L'uz)g

:_mT_s@W@é (5.9)

The compatability condition for this equation can be
transformed to the form of a balance equation for the
x-projection of the momentum of the perturbed soli-
tary wave, P = %fffof u” dx dy, that is,

+o¢

dAP 1 _ )
—GT— = —5 / (UM 2 + My ) dy (510)
—oo
where
+oc +oc 5
1 dmys \°
AP = /f uou1dé dy = -vr dy.
2 dv
—00 —00

(5.11H)

The last equality can be directly established from (5.1)
and (5.5). The quantity AP stands for the deviation
of the x-projection of the momentum of the perturbed
solitary wave P from the critical value P, realized
for a stationary solution. Using (5.8) and (5.11) we
rewrite the governing equation for the solitary wave
velocity in the form

+oc 5
d dv dm,s \°
— | == — ) dy
d7 \ dT dv

—00

v [ _d

v _ dmyg

= — ——dy. 5.12

dT “ dv Y (5.12)
—00

Besides the momentum balance equation, we can

also find the balance equation for the energy, H =

U iy (u,z( +ul — u4) dxdy. This equation has

the form

dH 1 i

0 -2 -2

_ = —— N ‘) dy

1T 5 / (vu), +u”) y
-0

+00
1 dv _ dmyg

2471 | " dy

—o<

dy, (5.13)
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where Ho(T') is the energy of the perturbed solitary
wave which is related to the momentum AP(T) ac-
cording to the formula,

Hy = —vAP. (5.14)

Of course, (5.13) also follows directly from (5.8),
(5.10), and (5.14), However, in contrast to the one-
dimensional case, the energy of the perturbed solitary
wave Ho(T) is no longer constant during the solitary
wave evolution for the time scales considered. Conse-
quently, the asymptotic equation (5.12) has no first in-
tegral which can simplify its analysis. The reason for
this is caused by a stronger radiation from the KdV-
type solitary waves in two dimensions.

Nevertheless, for the mZK equation there exists
a special scaling transformation which allows us to
rewrite (5.12) in an explicit form with respect to v(7T').
Indeed, we note that the solutions to (5.1) and (5.8)
and the density (5.7) can be expressed in a parameter-
less form:

up(€, v v) = JoUp(E, V),

T Uy 5.1
27 (Y). (5.15)

Mys(y: V) = My (Y),

u (y;v,vr) =

where & = JvE, Y = \/vy. Using this transforma-
tion we reduce (5.12) to the form

d [ 1 dv 1 dv?
ar w2 ar] v \ar ) 419

where

+00 dM 2
o= /Y2<—"> dy
dy
oC
+00

., AMyg
Uy ~dY
X / v d

-1

o]

The coefficient & has been calculated numerically, & *
—0.83. Then, the general solution to (5.16) is

T Y
U(T):UO(I_T) , (5.17)

with y = 2/(3 4+ 2a) = 1.50. Similarly to the one-
dimensional case, there is a self-similar collapse of

the solitary waves for T > 0 and self-similar decay
for T < 0. It follows from (5.11) and (5.14) that crit-
ical collapse in two dimensions is possible only if
AP(0) > 0 or Hy(0) < 0 in agreement with the gen-
eral theory [3].

Finally, let us consider the mZK equation (1.5) out-
side the solitary wave core, u — €u (X, v, T), where
X = ex. Then, we find that the radiation field evolves
according to the evolution equation,

UrT + Urxyy = 0. (5.18)

The radiation field is determined in the domain 0 <
X < X (T) and the profile u, is generated by the
perturbed solitary wave at the location X = X (7).
Using (5.8),(5.15), and (5.17) we obtain this profile of
the radiation field

llr:——U Vol —————— y
X+ Xoo Xoc

T y=l
atX:Xs(T):XOO[( ) —]j|,
T—~T

(5.19)

wheren = y/[2(y—1)]and X, = vyt/(y —1). Thus,
diffractive effects make the evolution of the radiation
field escaping from the collapsing solitary wave more
complicated in two dimensions so that 4, evolves on
the time scale of the solitary wave dynamics. It results
in the nonlocal equation (5.8) for the generation of
the radiation field and in the slowing down of the
rate of the singularity formation compared to the one-
dimensional case [see (4.6)].

We can solve (5.18) and (5.19) by a Fourier trans-
form and reconstruct the radiation field at any point
X,y for a fixed time 7. The instantaneous view of
the collapse development found thus from the asymp-
totic equations (5.15)—(5.19) is presented in Fig. 3(c).
Note that the two-dimensional radiation field forms
two beams diverging from the solitary wave.

Thus, the rate of critical collapse for these KdV-
type solitary waves in two dimensions is slower than
in one dimension. This is caused by diffractive effects
resulting in the damping not only of the momentum
AP(T) of the perturbed solitary wave but also of its
energy Ho(T) [see (5.10) and (5.13)]. If the energy
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were constant we would find the same scaling laws as
in (4.6) because in this case, « = —1 and y = 2. Note
that if momentum were conserved, then ¢ = 0, and
the scaling laws (5.17) of the solitary wave collapse
in the mZK equation would reproduce the incorrect
result (4.11), y = %

6. Summary

We have presented a general approach to investigat-
ing solitary wave instability and related critical col-
lapse in KdV-type equations. This approach leads to
an asymptotic reduction of the original equation to an
evolution equation for the solitary wave parameters.
This method can be regarded as an alternative to the
variational technique but importantly it can be applied
even if the critical collapse generates strong radiation.
Note that the asymptotic technique enables us to in-
vestigate the self-consistent dynamics of the solitary
wave and its radiation field.

We have shown that the KdV-type solitary waves are
described by an equation for motion of a dissipative
particle [see (2.19)]. This equation describes mono-
tonic transitions from unstable to stable states if the
latter exist. If the stable stationary structures do not
exist the evolution equation describes the formation of
singularities, or the decay of localized perturbations.
In particular, the scaling laws for critical collapse can
always be found by means of this technique.

We have found that radiation makes the critical soli-
tary wave collapse faster than the predictions of other
approaches which do not take into account the genera-
tion of the radiative waves. On the other hand, critical
collapse in this case becomes less generic and can be
observed only from special nonlocalized and asymmet-
rical initial conditions. Moreover, we have found for
the mZK equation that critical collapse in two dimen-
sions is accompanied by damping both the momentum
and energy of the perturbed solitary waves and this
slows down the rate of the singularity formation.

Finally, we note that there are also noncritical types
of singularity formation when the collapsing struc-
tures are not self-similar to the stationary solitons. Qur
asymptotic theory is invalid for such noncritical situa-

tions. However, even in this case analysis of the scal-
ing properties of the conserved energy and momentum
remains very important for description of the collapse
formation (see [1,2]) and, therefore, we believe that
our technique can be developed for this noncritical
case as well. Nevertheless, this problem needs further
investigation.
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Appendix A. Derivation of the asymptotic
equations from conservation laws

In the reference frame of the solitary wave moving
with velocity ¢ + v, the conservation laws for mass,
momentum and energy of the generalized KdV equa-
tion (1.2) can be written in the local form,

(u), = (vu — f(u) — ugg)s , (A.la)
(%uz)r = (%vuz + / f(u)du
0
—uf(u)+ %uZ; — uu§g> , (A.1b)

3

u

u?—/f(u)du

0 '

o —

= (%vug - v/f(u)du + fuge — uf f(u)
0

+ %fZ(u) + %ugg — ugtlggg) , (A.lc)

§

Let us integrate these equations with respect to & and
then expand the function u in the asymptotic series
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(2.1). As a result, the mass conservation law (A.la)
leads to the jump of the radiation wave field lying
outside the solitary wave at the solitary wave position
Xs(n),

(™ —u”) _ b AN, (A2)

=x.n v dv

which is equivalent to (2.8). If there is no radiation
field in front of the solitary wave, then u™ = 0, and
the mass conservation law (A.2) reduces to (2.11).

Next, integration of (A.1b) gives (2.15) and, there-
fore, the momentum Py(¢) of the localized part of the
nonlinear wave field is not conserved in time due to
the radiation. Note that the decrease of the momen-
tum Py of the perturbed solitary wave is completely
compensated by an increase in the momentum of the
extended wave field so that the solitary wave and the
radiating waves together form a closed system which
conserves the total momentum (see [14b] for details).

Finally, we analyze the energy conservation law
(A.lc). Tt is obvious that the energy of the radiating
waves is of the fourth-order in terms of v, and, there-
fore, the energy of the perturbed solitary wave H does
not change on the time scales where our asymptotic
theory works so that Hy = const. This leads to the ex-
istence of the first integral of (2.18) which is just the
energy conservation law for the localized part of the
nonlinear wave field. Indeed, analysis of (A.1¢) shows
that

+00
Ho = H,(v) + / (ogure — f(uo)ur) dg
-0
+o0
= H;(v) —vC f Ul ey dé
—00
v [ dM¢\?
= H(v) — 3 ( o ) v, (A.3)

which coincides with (2.19).
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