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Abstract 

Rational solutions of the one-dimensional Boussinesq equation both with zero and nonzero boundary conditions 
at the infinity are obtained by reducing the known solutions of the Kadomtsev-Petviashvili equation. The structure 
of the found solutions generalizes a family of rational solutions to the Korteweg-de Vries equation to the case of 
two-wave processes. 

1. Rational solutions, similarly to f in i te -  zone 
and multi-soliton ones, have an important role in 
the study of some nonlinear equations in modern 
theory of nonlinear waves and structures [1 - 8]. 
Sometimes solitons are expressed by rational 
functions [1,2]. In other  cases, they are used to 
describe the explode-decay waves [3,4], the 
motion of the vortexes [5] as well as the particle 
dynamics in some finite-dimensional Hamilto- 
nian systems [6-8]. 

Although the existence of some families of 
rational solutions has been proved for many 
equations of mathematical physics, there are still 
no regular methods for finding a complete set of 
meromorphic  solutions of these equations, and 
even explicit formulas of the found families of 
solutions cannot always be written. A search for 
rational solutions to the one-dimensional Bous- 

sinesq equation (the equation of a nonlinear 
string) is one of such problems which have not 
been solved until now. 

The Boussinesq equation describes waves in 
weakly nonlinear and weakly dispersive media 
[9]: 

2 2 2 30"2U,2t2 - -  1 p Uxx + 3Uxx + uxxxx = 0 ,  (1) 

where o -2 = -+1, and p is an arbitrary parameter .  
The simplest rational solutions of this equation 

in the hyperbolic case for negative-dispersion 
media (0 -2= - 1  and p is an imaginary value) 
were found long ago by the pole expansion of 
solutions to equation (1) [7] and by finding a 
long-wave limit of the known N-soliton solution 
[10]. Besides, two partial families of solutions to 
(1) for p = 0 were constructed in [11] by expand- 
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ing the wave function of the inverse scattering 
problem in power series of spectral parameter.  

A new interest in the search for all rational 
solutions to this equation was stimulated by the 
problem of a description of two-dimensional 
stationary multisoliton structures in the frame- 
work of the Kadomtsev-Petviashvili  (KP) equa- 
tion for positive-dispersion media [8,12-14]. 
Such structures are expressed by rational solu- 
tions of the equation (1) in the elliptic case 
(or 2 = - 1  and p is a real value). It was wrongly 

proved in [12] that the real rational solutions do 
not exist in the equation (1) for 2 =  - 1 ,  except 

the simplest one which corresponds to a single 
soliton and was found earlier [7,10]. But shortly 
after, it becomes clear that the calculation of 
coefficients of the characteristic polynomial was 
incorrect,  and the real rational solutions describ- 
ing two-dimensional multisoliton stationary 
structures do exist; some similar solutions were 
found in an explicit form in [13,14]. It was also 
proved in [13] by means of the degeneration of 
the N-soliton solution in a long-wave limit, that 
the multisoliton solutions are expressed by the 
polynomials with the degrees N ( N  + 1), where N 
is an arbitrary natural number. However,  this 
method did not allow the authors to determine 
the structure of all rational solutions of equation 
(1) and to express them in an explicit form. 

In this paper we construct a broad class of 
rational solutions to equation (1) in the form of a 
determinant  with polynomial terms. This class 
includes all the partial solutions which have been 
found earlier [7,10-14]. The various forms of the 
solutions to the Boussinesq equation are dis- 
cussed in section 2; precisely, the wronskian 
form, the determinant with integral coefficients 
and the intermediate determinant which have 
common properties with both the forms. The 
solutions to equation (1) for p = 0  and one 
family of the wronskians to equation (1) for 
arbitrary p are constructed in section 3. The 
structure of the general rational solutions to 
equation (1) for arbitrary p is considered in 

section 4. The concluding section 5 is devoted to 
the discussion of rational solutions in an alter- 
native modification of the model under consid- 
eration, which is the system of classical Boussin- 

esq equations. 

2. In this paper we proceed from the fact that 
all the solutions of equation (1) can be obtained 
from the KP equation in the form: 

( - 4 u .  + 6uu , .  + u,.,.,~),l + 3o-2u,~,. = 0 ,  

cr -~ = -+ 1 (2) 

by reduction to the stationary coordinate x = t~ + 
3p2t3 . As a result, the solution of equation (2) 
depends on two variables: u( t  I , t 2, t3) ~ u ( x ,  t2).  

So, the task is to find from the general set of 
rational solutions of equation (2) the ones that 
satisfy the reduction. 

As was shown by direct [15,16] and inverse 
[17,181 methods, equation (2) has a broad class 
of partial solutions which are expressed by the 
~--function in the form of the determinant  with 
integral coefficients: 

3- ~ 
u(t  I , 12, t3) = 2 , In ~-(t~, t•, ts) , 

Ot-~ 

~-(t,, t 2, t3) = detlc,, k + l,,kl , (3) 

where I,~. = y '~ q~,,+ (s, t 2, t 3 ) . ~  k (s,  t~_, t3) ds ,  c,, k 
are arbitrary constants, 1 <_n, k <_ N, and the 
functions qP,~(t~, t 2, t3) satisfy the system of the 
linear partial differential equations: 

-4- O- 

at~ ot~ ' 

ot3 at~ (4~ 

Further on we shall consider the case ~ = +1 
Besides, in order  to find meromorphic  solutions 
one needs to set all c,, k = 0. 

As is well known [19,20], besides this form of 
the r-function, there exists another  form where 
the r-function is expressed by the wronskian of 
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the functions ~+ (or aFn-) satisfying the system 
(4+) (or (4_), respectively): 

r ( t l ,  t2, t 3) = det lJL[ = W [ ~ ? ,  q t ; , . . . ,  qs~], 

(5_+) 

where J;k = ok- laI t f  /Otkl-1 and 1 <-n, k <- N .  

The construction of any solution to equation 
(1) which is expressed by the r-function in the 
form of the determinant with the integral co- 
efficients (3) can be made in the wronkian form 
too. But a twice higher order of the wronskian is 
necessary in the latter case (see, for example, 
[15,16]). 

On the other hand, some solutions can be 
found from the determinant (3) only by special 
degeneration which changes their functional 
structure. Therefore, in order to write the solu- 
tions of equation (2) in a convenient form we 
need to find the form that does not demand 
additional degeneration and that agrees with the 
known forms (3) and (5). For this purpose one 
needs to determine the correspondence between 
both the forms. 

The solution of the form (5+) can be obtained 
from (3) by choosing the function ~ k  to be: 

~ -  exp(pktl 2 3 _ - = -- pkt2 + pk t3)  = exp(qbk), 

l < _ k < _ N  (6) 

and by the limit transition: Pk--* +oo for all k = 
1 . . . .  , N. Indeed, integrating I,k by parts, given 
that (O '~+~/Ot '~ ) . e  pkq = 0  for any m, we t l =  ee 

obtain: 

+ 2 + 

Ink = " ~ ,  - ---S " O t-'-~ + ---Y " O t ~ 
Pk Pk 

X exp(4~2). (7) 

Substituting the expression (7) into (3) and 
taking into account that the determinant with the 
same columns is equal to zero, we have an 
expansion for the r-function when Pk >> 1, and all 
Pk are supposed to have the same order of 
magnitude but not to be equal to each other: 

I-I lq  
T - -  N " ~1112 ~ " " " 

[I 
k = l  

N 

where L = N ( N  + 1)/2 + 1. 
Since the r-function in the solution (3) can be 

multiplied by an arbitrary exponential factor 
which depends linearly on t~ and by any constant 
factor, the solution of equation (2) is expressed 
by the wronskian (5+) on the limit transition 

N {Pk ---> +~}k=l" Below we shall neglect the con- 
stant and exponential factors in the r-function 
without special mention. 

The limit transition described above can be 
made not for all but only for part of the func- 
tions g~2 at K + 1 -< k -- N. Then we obtain the 
intermediate form of a solution to (2): 

r(t l , /2,  t3) = detISnkl , (9) 

where Snk=Ink, at l < k - K ; -  Snk =J+n,k-l,; at 
K + I - < k - < N ,  and 1 - < n - N .  We shall use this 
intermediate formula in the construction of gen- 
eral rational solutions to the Boussinesq equa- 
tion. 

3. We consider the solution of the set of 
equations (4+) in the following form: 

+ - -  exp[q~ +(t,, t 2, t3; p)] ~m (tl ,  t2, t3; P)  = Opm 

- O+m) "exp[  +(t,, t 2, t3; p ) ] ,  

( lo )  

where q~+(t 1, t 2, t3; p) = Z~=l pJtj and 

1 0 m 
+ ci9 + (t l ,  t2, t 3; p ) .  O"(tm' tm+l . . . .  ) -- m !  Op m 

Here the variables tj for j -> 4, which are essential 
for the construction of solutions to the infinite 
hierarchy of equations related to equation (2) 
[21], are arbitrary parameters. Besides, the 
phases of the variables t l , t z ,  t 3 are obviously 
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arbitrary parameters too, but we do not write 
them in the formula for 4)+. 

The polynomial + + Pm (01 . . . . .  0 m  + )  can be ex- 
pressed explicitly [20]: 

. . . . .  02)= m!.Y  (11) 
( i 1 . i 2  . . . . .  in, ) j = l  i j !  ' 

where the sum consists of all possible combina- 
tions of integer non-negative numbers 
( i t ,  L_ . . . . .  im) which satisfy the condition i~ + 
2i 2 + .  • • + rni m = m .  Using the formula (11) one 
can easily prove the properties of the polyno- 
mials P,+ that are important for our analysis: 

+ + m + + P, . (aO~ . . . .  " + , a o . , )  = a P (O, . . . . .  o+m) 

(12) 

+ j + 
OP m (3 Pm m !  + 

0 0 ~ -  Ot/ H J m ' V m - j '  H i m -  ( m - j ) !  

(13) 

If we take the functions q',+ in the wronskian 

~ - = W [ q r [ , q s 2 , . . .  ,q~£] in the form ~,+-- 
+ t era,(  ~,&,t3; P , )  we obtain a general rational 

solution of equation (2). Restricting the consid- 
eration to the solutions of the Boussinesq equa- 
tion, we must find from all the wronskians 
obtained in this fashion, only the ones which 
have a stationary dependence on the variable t 3 
(i .e. ,  on the variable x = t~ + 3p2t3). As follows 

+ l < - j < _ m  have from (12), the variables 0 j ,  
different degrees of homogeneity in the polyno- 
mials P+, and hence in the ~--function. Therefore ,  
the necessary condition for finding the solutions 

in the form r(x, t 2 )  is the equality p~ = p  for any 
n. Then the solution (5+) can be written in the 
form of the wronskian with polynomial terms: 

~'(t~, t~, t3; p )  = W[P+m,, P+ PzNI rn2~ • . . , 

× exp[N • q) +(t,, t 2, t3; p ) ] .  (14) 

It generates a non-zero solution for the function 
u only when there are no equal polynomials in 

~p+ ~u the set . , . . . . =  z • 

First, we construct the rational solutions to 
equation (1) at p = 0. The solutions of equation 

(2) in the form u(t~, t2) correspond to them. It is 

clear from the definition of the variables 0, + that 
all the solutions which are independent  of 0+3 do 
not depend on t 3 at p = 0. We shall prove that 
the following N-order  wronskian is such a solu- 

tion: 

+ p +  . 
r , . , , ( t , , t 2 ; p = O ) = W [ P ~ , P 4  . . . . .  3. 2 , . . . ,  

p+ p+ p+ 
. . . . . . . .  3~-1 . . . .  l ,  (15) 

where 1 -<~-<rn ,  l <--- K --< k, a n d m + k = N .  
Indeed,  using the determinant properties and 

the formula (13) one can easily establish that 

O T m , k  _ ~ 3 

003 tx~2 H 3 ~ - 2  

+ p +  
x W[P'~  P4 . . . . .  3( , - , ) -2  . . . . .  

P ~ ,  P+ p+ 5 ' '  " " ' 3 K - I '  ' " " ]  

k 

E ' ; , e  + e + + H3K 1 " W [ P  4 . . . . .  3~ -2 . . . .  : 
K = 2  

+ + + 
P2 ,  P5 . . . . .  P 3 ( ~ - t ) - I  . . . .  ] = 0 .  

So, N + 1 possible wronskian of N-order  in the 
form (15) represent a general solution of equa- 
tion (1) for p = 0. These solutions form a charac- 
teristic tree-like structure (Fig. 1) which indi- 
cates the existence of the Backlund-transform 
between the neighboring wronskians of N and 
N + 1 orders. Indeed,  it was shown in [19,20] 
that the arbitrary solutions of equation (2) in 
the form r = W [ ~ , q ' + _  . . . . .  qt~] and r ' =  

+ + + 
W[qt[ ,  1/'2 . . . . .  qt N , qr~+l ] satisfy the equations 
of the Backlund-transform for the variable 

"r(t,, t2, t3). 
The degree of the polynomial rm. k in terms of 

the variable 01 = tl can be calculated from the 
formula (15). We designate this quantity by 
R ( m ,  k): 

R ( m ,  k )  = rn z + k ( k  + 1) - rnk (16a) 

Each polynomial is parametrized by the phases 
of the variables t i on which it depends. Using our 
proof, one can reveal that the polynomials ~'m,~- 
depend neither on the variable t 3 nor on the 
variables t3. for any n. Besides, detailed analysis 
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N=0 I Zoo;0;0 ] 

/t=3 I 1:3o;9;5 I I 1:21;4;3 I [ 1:1z;5;3 I [ 1:o3;12;6 I 

Fig. 1. The structure of the rational solutions of the Boussinesq equation for p = 0; the z-function expressed by formula (15), and 
the parameters R and G of the solutions. 

shows that the solutions rm. g for m ~ 0, k ¢ 0, 
m ~ k  and m C k + l  do not depend on the 
additional set of the variables: 

t(3k_l)_(3/z_2) , p , = l , 2 , . . .  , m  

for N > k > - 2 m  ; 

t(3k_l)_(3~_2) , /z = 1, 2 , . . . ,  k - m 

for 2m > k > m  ; 

t(3m_2)_(3K_l) , K = 1, 2 , . . . ,  m -- k - 1 

for m - l > k >-m/2 ; 

t(3m_2)_(3K_l) , K = 1, 2 , . . . ,  k 

for m / 2 > k > O .  

As a result, the number  of the independent  
pa ramete rs  of  the solution ~',~.k which is desig- 

nated by G(m, k),  is determined by the formula: 

( 2 k - m ,  N > - k  >-2m 
G(m, k) = ~ k  + m ,  2m > k > - m / 2  

1 2 m - k - l ,  m / 2 > k > - O  

(16b) 

Some first polynomials with various R(m, k) 
and G(m, k) are presented schematically in Fig. 
1. 

Note that the ext reme families of the solutions 
to equation (1) for p = 0 (when m = N, k = 0 or 
m = 0 ,  k = N )  were found in [11]. It is also 

worthy of notice that for m,  k % 0 there exist the 

polynomials with the same values of  R and G at 

higher levels N. These new solutions can be 
obtained from the known ones by replacing 

t2n--~-tz,  for any n admissible by the equation 
(2). These solutions can be constructed more  

easily in the f ramework  of the wronskians ( 5 )  

which are determined by the function ~ = ~,,,, N with the same set {rn,}n= ~ but satisfying the 
adjoint system ( 4 ) .  However ,  among the solu- 

tions with m, k %0 there exist essentially new 
solutions which cannot be reduced to the ex- 

t reme families. 
Obviously,  the solutions of  the Boussinesq 

equat ion at p = 0 are also the solutions of this 
equat ion for arbitrary p ~ 0 which exist on the 
background of the magnitude 2p 2. But all ration- 

al solutions of  equation (1) do not reduce only to 
such solutions. 

Considering the solutions with zero boundary  
conditions at the infinity (u---~0 for x, t2--~ -+~), 
we can prove that the family of  the solutions in 



V.M. Galkin et al. / Physica D 80 (1995) 246-255  251 

the form (5+) to the equation (1) for arbitrary 
p ~ 0 may be represented by the N-order  wron- 
skian: 

t2; p) = w [ s  

s . . . . .  P2+  ,1 (17)  

The displacement of the variables of the polyno- 
mials P,+ in each line of the wronskian is made 
by a vertex operator  in the form [21, 22]: 

S(v)  = exp ,-,,,=~ m OOm 

where v = - 1/3p. 
Using the expression (18) one can show that 

the action of the operator  S(v)  on the polyno- 
mials P,~ has a simple form: 

S ( v ) P ~  = 1 -  v .  P~ . 

As a result we can obtain a number  of formulas 
which are necessary for the further analysis: 

0 P2 

rn! 
C.*, (19) 

k ! ( m  - k)!  

S (k+,) +- ~ v m k (u )P .  = • • C m + k  ,~ =0 Ot'~ (20) 

In order  to prove that the wronskian ~'N.0 in 
(17) is a solution to (1) at arbitrary p, we note 
that the variable O~ = t~ + 2pt 2 + 3p2t3 always 
satisfies the reduction to the stationary coordi- 
nate x = t~ + 3p2t3 . Therefore ,  the solution (17) 
as a whole satisfies this reduction if the variables 
0_ + + + = 0  + _ and 03 enter TAt, 0 in the form: 023 .~ 

+ 
0 2 / 3 p  = - t 2 / 3  p which does not depend on t~ 
and t 3. For  this purpose it is sufficient to prove 
that the function ~'u.0 satisfies the linear partial 
differential equation: 

O'rN,o 1 OrN,O 

00~ - 3p 003 (21) 

To prove equation (21) we differentiate the 
n-th line (n > 1) of the determinant (17) with 

+ 
respect to 02 , and then subtract the ( n -  1)-th 
line of the determinant from the nth line. If we 
take into account the formulas (13) and (19), the 
result of these calculations will be presented by 
the following expression: 

_ " "  , ~ '  ', ! 2 n  3 \ - -~2 ! H;~ l W[ .  ~N-,,)¢~,~p+ 

__ s ( N - n + l ) ( p ] p  + 
\ ] - - 2 n  3 '  " " "] 

3 " W [ ,  • S {N- "~(u~P ÷ . . = 1 2 . H 2 n _ l  . , ~, ~ 2n-4"  " ] 

( O'r,~,O l n 
= v' \~-S-3 / . (22) 

Because ~ , = - l / 3 p  and n is an arbitrary 
number,  it follows from the formula (22) that the 
function rN, o satisfies equation (21), i.e. it has a 

form TN.o(O+I , 0 2 ;  ) = T N . o ( X  , t 2 ) .  

The family of the rational solutions (17) which 
are represented by the unique N-order  wron- 

skian, consists of the polynomials of the degree 
R ( N )  = N ( N  + 1)/2 with G ( N )  = N arbitrary pa- 
rameters. Since the even variables 02n, n >- 1, are 
not independent quantities, the phases of the 
odd variables 02._ 1' 1-< n-< N can be chosen as 
the parameters of the solution rN. ,. The family of 
the solutions (17) transforms in the limit p--* 0 to 
the solutions (15) of the Boussinesq equation for 
p =0 .  As a result of this limit transition the 
structure of the rational solution and the sets of 
the parameters R and G change completely 
Another  limit (p  >> 1) leads to the well-known 
rational solutions of the Kor teweg-de  Vries 
(KdV) equation [7,10,11,22,23]. This equation 
can be derived from equation (2), provided that 
the function u does not depend on the variable 

t 2: 

- 4u,3 + 6uu,, + u, , , , , ,  = 0.  (23) 

The rational solutions of the KdV equation 
(23) can also be written in the wronskian form 

111,231: 
+ + 

1"N(t 1, t3; p = 0) = W [ P ~ , P 3  . . . . .  P2N ~] (24) 

They are the polynomials of the same degree 
R ( N )  = N ( N +  1)/2 and with the same number  
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of parameters G(N) = N as the solutions (17) of 
equation (1) for p ~ 0 .  Moreover, both the 
solutions (17) and (24) coincide in the limit 

+ 
p>>l ,  and the variable 0~ = x + 2 p t  2 which is 
determined in the reference frame moving with 
the velocity of infinitely long linear perturbations 
in equation (1), has a role of "spatial" coordi- 

+ 
n a t e t  I in equation (23), and the variable 0 23 = - 
t2/3P which has a sense of "slow" time, corre- 
sponds to the "time'  coordinate t 3. 

This asymptotic correspondence of the rational 
solutions in both the equations indicates the 
well-known one-wave approximation which is 
used for reduction of the Boussinesq equation to 
the KdV equation when only waves propagating 
in one direction are considered (see, for exam- 
ple, [22]). Hence, the family of the solutions to 
equation (1) expressed by the formula (17) can 
be regarded as the generalization of the known 
rational solutions of the KdV equation to the 
case of two-wave processes which are described 
by the Boussinesq equation for p ~ 0. 

4. In section 3 we constructed the solutions of 
equation (1) in the wronskian form. It means 
that we made the reduction to the stationary 
coordinate x for the case K = 0 in the general 
solution of equation (2), which is expressed by 
the intermediate determinant (9). It is natural to 
suppose that, at K > 0 ,  the determinant (9) is 
also a solution of equation (1) if the functions 
~+~ and ~k- are chosen as 

~+ = s(N-")(v)P2. 1(07, + . . . . .  0 2 n - l )  

× exp(@ +(tl, t2, t3; p ) )  , 1 ~ n  ~ N ,  

~IPl< = S (K-k  ) (p)p2k_ l (O , ,  . . . ' 0 2k_, ) 

xexp(c lg - (q , t2 , t3 ;p ) ) ,  l < - k < - K ,  (25) 

where the variables 0 m and 4)- can be obtained 
from 0m + and q~+ by replacing tzk---~-tzk for any 
k, and again u = -1 /3p .  

To prove this statement we transform the r- 
function of the form (9) to the factorized form. 
First, we calculate the integrals I,k, 1 <-n <-N, 
l <_k<_K: 

Ink l"k'exp(q)+(t,  t2,t3; p) 2p 
+ q) -(t l ,  t2, t3; P) ) ,  

where 

2 ( n + k - 1 )  om 
i.k = ~ ~£m " ~.m (S(N-n)(IJ)P;n l 

m=O ~t l 

x = - 1 / 2 p .  

Using the formula for the combinatorial analy- 
sis: 

n ~m m m 
C~+k= ~ C . ' C  k ,  

m = O  

and the property of the vertex operator (20), it is 
convenient to rewrite ink in the form of the 
formal expansion in terms of/*2: 

2 n -  1 2k 1 

ink = Z Z ~r+sC'min(r's) 
r - O  s=O 

0 ~ r+s (N n) lY + 
x i ,  .SiT(s ()&._,) 

0 s 

× at--(, 
M 

= ~, /x 2m 
m = O  

Om z o - - ( m + l ) z  xo(N-n)z \ n +  "~] 
× ~ 1  t~ I~t'~)a t l 2 ) r 2 n - l ) ]  

X " ~ l  ( s - (m+l) (~£)s (K-k) (12)e2k-  1 )  ' 

(26) 

where M = min(2n - 1, 2k - 1). 
On the other hand, one can establish by an 

inductive procedure that: 
~ k  2n - 1 

Ot--~ ( S m - " ) ( v ) P ~ - ' ) =  m=k2 (--~'lb) m-k  

[0_ 7 ] × (s J 2.-1) 

(27) 

Using the formulas (26) and (27) we express 
the solution (9) with the functions ~+ and qt~- 
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specified by (25), in the form of the determinant 
with polynomial terms of the product of two 
matrices with the sizes N × 2N - 1: 

7~.K(x, t2; p) = detl w+. w - r [ ,  (28) 

where 

(w+)"~ = ( - ~ ) ~ - '  " at~ ' 

× ta (/.tja ~v) 2,,-~), 

l<~n<_N,  l < _ k < _ 2 N - 1 ;  

(w) , ,  = ( _ g ) k  . 7 1 (  s ikl, ,olK~,,l%,p , 

I<~n<~K,  l _ < k < 2 N -  l ; 
~ n  h = ( k  ~ K + I < - n < - N , n - K < - k < - 2 N - 1 ;  

= 0  K +  l ~ n ~ N  , l < ~ k < - n -  K - 1  

According to the known Binet -Cauchy for- 
mula [24], the determinant of the product of two 
matrices with the size N x M, M > N, is equal to 
the sum of products of the determinants of all 
possible N-order  minors of one matrix and the 
corresponding minors of the same order of 
magnitude of the other  matrix. Since the vertex 
operators  S-~k~(/z) act on the columns of the 
matrices w-*, and the vertex operators s~'V-'l(u) 
act on the lines of these matrices, each factor in 
the sum which is formed from the columns of the 
matrices w*~, depends only on the variables 0~ 
and 02~, as was proved in section 3. Conse- 
quently, the complete solution expressed by 

~'N.K(X, t2; p) satisfies equation (1) for arbitrary p 
and represents a general rational solution of this 
equation. 

+ 

Since the degrees of the polynomials P zn  l ,  

P2k- ~, 1 <- n <- N, and 1 -< k -< K decrease in each 
column of the matrices w + and w- ,  the leading 
term of the r-function (28) is presented by the 
product  of the determinants obtained from the 
matrices w -+ by neglecting the columns with k > 
N. Using the formula (19), one can show that 
these determinants correspond exactly to the 
solutions ~'u.0 and %,~ which are written in the 
wronskian form (17) with the sets of the polyno- 

~q(N ,o(v~p+ ~N and {S ~K k)(v) mials to  ~ ~ 2,,- 1 J , , =  i 
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Pz~ ~ K) k= r depending on the variables 0,,,~ and 0,~, 
that are displaced by the same magnitude 
N/_t m /rn: 

~'N.K(X, t2) ~ S -(N)(t-L)rN,O" S -/Nl(p~)ro,x (29) 

as t,,--* +~c for any ?1. 
As a consequence, the degree of the polyno- 

mial R(N, K)  and the number  of the parameters  
G(N, K)  for the general solution (28) of the 
Boussinesq equation at p # 0 are the sums of the 
values of R and G for extreme solutions: 
R(N, K)  = N(N + 1)/2 + K(K + l ) /2 ,  G(N, K) = 
N + K .  

Thus, the structure of the general solutions 
which is shown in Fig. 2 differs from the struc- 
ture of the rational solutions of this equation at 

p = 0 .  
All the rational solutions of equation (1) in the 

hyperbolic case ~r 2= +1 have pole singularities 
and, hence, are physically meaningless. On the 
other hand, in the elliptic case ~r 2= - 1 .  the 
solutions Z~,.~,. with K C: N are complex valued, 
which is clear from the formulas ( 4 . )  and (28). 
But at K = N and by choosing P2k ~= /5~k-L, 
1 ~  k <--N the family of the 2N-parametric ra- 
tional solutions with the degree R---N(N + l) is 
real valued and nonsingular that follows directly 
from the factorized form (28) as a sum of 
positively determined terms. These solutions 
correspond to the bound states of a certain 
number R/2  of two-dimensional solitons of the 
KP equation with positive dispersion. The exist- 
ence of this family of solutions was discovered in 
[13] and physically accounted for in [8] by the 
features of the potential of soliton interaction. 

Note that nonsingular rational solutions exist 
neither in the hyperbolic nor in the elliptic 

equations (1) at imaginary p. 

5. The structure of the rational solutions of 
the Boussinesq equation generalizes the struc- 
ture of the rational solutions of the KdV equa- 
tion which is a one-wave reduction of the Bous- 
sinesq equation in an asymptotic limit p--~ 2. It 
is interesting to point out that other modifica- 
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N=0 

K = 0 

I too;0; 0 I 
K = I 

N=II rao;l;l I [ r11;2;2 ] 

N=2[ r2o;3;2 ] [ "1:21;4;3 ] 

K = 2  

~02;3; 2 

r12; 

r2z; 

K= 3 

] l to3 ;6;3 

4;3 ] [ r13;7;4 

6;4 ] [ r23;9;5 

N=3[ r3o;6;3 ] [ 7/31;7;4 ] I 7/32;9;5 I [ r33;12;6 ] 

K = 4 

7Z04;I0;4] 

~la;ll;5 ) 

I r24;13;6 1 

r34;16;7 

N=4 [ r40 ;i0;4] [ r41 ;ii;5] [ r42 ;13;6] [ r43;16;7] I r44;20;8 ] 

Fig. 2. The structure of the rational solutions of the Boussinesq equation for arbitrary p: the z-function expressed by the formula 
(28) and the parameters R and G of the solutions. The determinants of the same order of magnitude are outlined. 

tions of the equation (the so-called classical 
Boussinesq systems) are also known, for exam- 
ple, in the surface water wave theory [25]. These 
equations have different forms of nonlinear and 
dispersive terms as compared to equation (1). 
Since the KdV-reduction is general for all the 
considered models, it is natural to suppose that a 
similar structure of rational solutions exist also in 
the framework of the Boussinesq system. How- 
ever,  only the families of meromorphic solutions 
of these equations [3,4] which correspond to the 
waves localized near the bottom of a reservoir 
(the case p = 0 in the equation ( l ) )  were found 
by now. We suppose that a still further interest- 
ing problem in the study of the classical Boussin- 
esq system is to reveal the rational solutions 
corresponding to the waves localized near the 
surface of a reservoir. 
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