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Long finite-amplitude internal solitary waves propagating in a stratified fluid with nearly uniform
stratification are considered within an asymptotic approximation leading to a nonlocal evolution
equation of the Korteweg—de Vrig&KdV) type. Analytical properties of this equation and its
solitary wave solutions are studied and a criterion for solitary wave instability is derived. This
criterion coincides with that for solitary waves in a local generalized KdV equation. Applications of
these results reveal that strengthening of the stratification might lead to destabilization of smooth
solitary waves and their blow-up into vortex-type wave structures.1997 American Institute of
Physics[S1070-663197)02210-1

I. INTRODUCTION solitary waves vanishes for a symmetric stratification and,
therefore, the KdV equation is not applicable in this critical

Internal waves in the ocean and atmosphere have beaase. However, in order to find a nontrivial evolution equa-
under intense experimental and theoretical studies for the lagibn in this case it is usually sufficient to extend the nonlin-
30 years or even morésee, for instance, the reviews by earity expansion to a higher order and to add a cubic nonlin-
Ostrovsky and Stepanyahtand Grimshaf). It has been ear term to the small quadratic approximation. This
well understood that the density stratification can support noprocedure thus leads to a modified KdV equation which dis-
only the dynamics of linear dispersive wave packets but alsplays basically the same properties of the wave motion but
the propagation of relatively long, but localized disturbancesmodifies some quantative characteristics of solitary wéves.
called solitary waves. These waves are typically single- In this paper we study a more drastic modification of the
humped isolated waves of elevation or depression and theynderlying evolution equation which occurs in a nearly uni-
can propagate for long distances without distortion of theiformly stratified fluid within the well-known Boussinesq
shapes. Internal solitary waves commonly occur in coastdimit.” In this very special but commonly occurring situation,
seas, fiords and lakésas well as in the atmospheric bound- the leading-order term in the asymptotic multi-scale expan-
ary layer? sion is an exact solution of the Euler equations for an arbi-

A simple but very effective method for the analytical trary amplitude which is not scaléd. Therefore, the usual
description of these solitary waves is based on an asymptotizonlinearity in the evolution equation vanishes identically
multi-scale expansion technigue which uses the assumptiongithin this limit and one needs to keep the wave amplitude
of a long wavelength and a small wave amplitydee, e.g., of arbitrary magnitude in order to study the dynamics of long
Ref. 2. This method allows one to reduce a full set of hy-internal waves in nearly uniformly stratified fluid. Thus, a
drodynamics equations describing the motion of a stratifiedegularized asymptotic multi-scale expansion should be
fluid to one of a set of basic evolution equations such as théased within this critical limit using only a small parameter
Korteweg—de Vries(KdV) equation, the Benjamin—Ono related to the long wavelength. This regularization was done
(BO) equation, or the intermediate long-wave equation, deby Grimshaw and Y where they derived a nonlocal gener-
pending on the type of dispersion occurring in the wavealization of the KdV equation for resonant generation of
environment These evolution equations have been found tdfinite-amplitude internal waves by the flow over topography.
predict reasonably well the basic properties of the wave#\ similar nonlocal equation was also derived a little earlier
observed experimentally such as the dependence of the sobiy Warrt! for propagation of solitary Rossby waves on a
tary wave speed and width versus the amplitude, stabilityveak shear. Recently, extensive numerical simulations of the
properties, etc. Moreover, extensions of these evolutiofEuler equations were carried out by Rottrmetral 1 for the
equations to the second order have also been®fdneana-  uniformly stratified fluid flow over topography and their re-
lyze higher-order nonlinear corrections to the wave characsults reveal excellent agreement with predictions of the non-
teristics due to an increase in the solitary wave amplitudeslocal evolution equation derived by Grimshaw and'YFur-

These evolution equations take into account a certaithermore, a generalization of the asymptotic approach was
balance of weakly nonlinear and dispersive effects and ardeveloped by Derzho and Velafdego cover the wave dis-
generally valid in a wide interval of the parameters of thepersion of the BO type in an infinitely deep fluid with weak
given environment, but can fail in a number of so-calledshear and also by Derzho and Grimsh&eo construct an
critical cases. These critical cases occur when the coeffasymptotic solution describing steady-state vortex-type wave
cients of the governing evolution equations, which are to bestructures of supercritical amplitudes. The problem of match-
evaluated through the given stratification profiles, vanish oing the asymptotic expansions of Grimshaw and®¥iith
diverge. For instance, the coefficient of the usual quadratithe small-amplitude radiation shelves was recently consid-
nonlinearity in the KdV equation describing long internal ered by Prasad and Akylas.
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Although the derivation of nonlocal evolution equations through ¢y by means of the relationsi= ¢, andw= — i .
for the description of solitary waves in a nearly uniformly The primary equations for the stratified fluid’s motion are
stratified fluid is now well understood, analytical propertiesthen given by°
of the nonlocal equations have not been studied in great de-
tail as yet. In particular, the dynamical properties of solitary A y, + 3(A g, ) — N2(z— 7) 7, + ENZ(Z— 7)
waves (stability, evolution and interactionhave not been g

considered. In spite of this, the authors of Ref. 13 have
P X[t It 1)) + (7= 1) (Pt I, )10,

started a discussion of the effects of destabilization of long 1)
solitary waves in the presence of a strong or symmetrical

shear flow applying as a guide the well-known results ong,+J( 5, ¢)+ ¢,=0. 2
stability analysis valid for local models such as the general- : )

ized KdV and BO equation. Here J(a,b)=a,b,—a,b, is the Jacobian operator) s

The aim of this paper is to find the instability criterion _ Yt ¥, IS the Laplacian operating of, g is the grav-

for steady-state solitary waves supported by a deviation ofY constant, andi*(2) is the buoyancy frequency defined by

the stratification profile from the uniform case as well as by IR,

the traditional non-Boussinesq terms. We extend the analysis NZ=— R

of solitary wave instability developed by Pego and

Weinsteirt” and Pelinovsky and Grimshafvfor the local  In order to simplify consideration of the internal wave mo-

generalized KdV equation to the present nonlocal case. Howtion we impose “rigid lid” boundary conditions at the plane

ever, our results reveal that the same conventional instabilitgurfacesz=0 andz=h,

criterion given by the dependence of the solitary wave mo-

mentum on its velocity(for a review, see Ref. 19s valid #lo=0=¥l,=n=0. @)

also for the nonlocal evolution equation. We analyze the system of governing equati¢hsand
The results of our paper are described as follows. Firs{2) under the assumption that the internal waves are long

in Section Il we re-derive the nonlocal evolution equation forenough so that the following scaling holds:

long internal waves following basically the analysis of Grim-

shaw and Yi° However, we use some modifications of this ~ X=€(x—ct), =€, 4

approach which enable us to represent the nonlinear term Qijere ¢ is a small parameter arlis the limiting speed of

the evolution _equat|on ina S|mpllf|ed form convenient for_ infinitely long waves(see(12) below). In addition, we sup-

further analysis. Then, in Section Il we discuss the analytifose that the stratification is nearly uniform and the deviation

cal pr_operties of the_ underlying model inql_uding the La- 4 the buoyancy frequency from the constant vaNg is
grangian representation, conserved quantities and stead¥jaasured as

state solitary wave solutions. The main results concerning
solitary wave instability are described in Section IV where N2(z)=N§+ eM(2). (5)
the conventional instability criterion is rigorously proved. _. . S . .
The nonlinear dynamics of unstable internal solitary Wave{'na"y’ the Bou_ssmesq approximation is applied and it al-
with subcritical amplitudes is analyzed in Section V within ows us tqfonglder the last term (@) to be sma!l of the
an adiabatic perturbation theory for solitary wavédVe order ofg "= e%o, where the parametar determines the
show that the instability development could lead to the for—non'B.ou.SSIneSq effects. L . .
mation of vortex structures with supercritical amplitudes. Fi- Within these appro>§|mat!ons, the governing equations
nally, we discuss in Section VI applications of the general(l) and(2) are now rewritten in the form

instability theory to some particular stratifications and reveal

that strengthening of the stratification distribution might Iead.J( 1/ iZNngr €F,,p—cz| —N3| 5— }d/ + €2y,
to destabilization of the steady-state internal solitary waves c ¢ Ix
and to the generation of vortices in the stratified fluid. +0(e%=0, (6)
1 1
J(n—gz,b,w—cz +562¢T+0(e4)=0, (7)
II. DERIVATION OF A NONLOCAL EVOLUTION
EQUATION where
We consider the two-dimensional motion of an inviscid, 1 1 o 11
incompressible fluid in the presence of density stratification.  F2=yxx+ M ( z— Et// Y+ EN?) §¢§—sz :
It is convenient to describe this motion in terms of the stan- ¢
dard variables, the vertical particle displacemeyfk,z,t) To proceed with the reduction of these equations, we
and the stream functiog(x,z,t), wherex andz are hori-  introduce the Lagrangian coordinafeaccording to the sub-
zontal and vertical coordinates, respectively, and the  stitution
time. The density of the fluid is expressed throlRflz— 7),
whereR(z) is a given profile of the basic stratification. The [=2— llﬂ(X 2,7) )
horizontal and vertical velocitiesj and w, are expressed C e
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and considery, n, andz to be dependent od, X, and 7. h
Then, Equationg6) and (7) can be integratesee Ref. 1D |A|<ﬁ- (16)
with the boundary conditions
Therefore, the wave disturbances considered in the frame-

g, 7—0 as X—+oo. (9 work of this long-scale asymptotic approach should satisfy
As a result, we find the following closed boundary-valuethe amplitude restriction given bjlL6).
problem for the stream functiosy subject to the boundary Using the functiorz=2(A,{) given by(15) we present
conditions(3) and (9) (14) in the form of a nonlocal evolution equation,
1 ZNg X ! ' ! 2 f
art NG+ €G] +0(h)=0, (10 < f LLNAA) ZodX s+ 1 A)=0, (17
where whereA’ =A(X’,7), while the integral kernek(A,A’) and
the nonlinear functiorf(A) are given by
2 X 2 ’ ’
G2=Fz+—0j 1492 aiﬂz»_z)i‘;i ax’ 1(h [oz 9z 9z o 9z 9z 9 oz
c2) 4w al | ar ac\ ar K=—J d|—=—-2——-72—— —|,
hlo 7| dA gA"  0A L oA’ aA’ 9L A
andz' =z(X',7,0). (18)
The boundary conditiof8) means that there is no radia- 3

tion in the directionX— +«~. On the other hand, such a f:iAJhdz\N’-(z)M(z—AW(z))ﬂLU—'\lo
restriction is not imposed a6— — «. Indeed, it can be easily c’h Jo 3ch
shown that the small-amplitude radiative waves always 5 n
propagate to the left in the reference frame moving with the XATLI=(=D"], (19)
limiting speedc. Therefore, if the evolution process gener- wherez' =z(A’,¢).

ates radiation, it propagates only to the left and this leads to  The nonlocal evolution equationl?) with K(A,A’)
the appearance of secular shelf-type divergences of thgiven by (18) was derived by Grimshaw and ¥ibut the
stream functiony in the limit X— —o (see formula(2l)  nonlinear functionf(A) in their paper(see formula(3.23h

below and also the discussion in Ref,)11 ~inRef. 10 looks different from our forn{19). As a matter of
‘Now we expand the solution afl0) in an asymptotic  fact, this function arises from nonlinear effects of two differ-

series, ent types. The first type is induced by a deviation of the
U= o(X,2,7) + (X, 2,7) + O( ). (11) stratification profile from the uniform case, while the second

one is due to the non-Boussinesq terms in the primitive equa-
The leading-order term can be found by separation of varitions. Using our approach we have found it possible to re-

ables, duce the nonlinearity of the second type to a solely quadratic
form (19) [cf. (3.23h, (3.28 in Ref. 10.
o= CAX,)W(2), W(2)=sin anz o= qu_o:’ (12) Finally, using a simple transformation,

o _ 2Ng
wheren==*1,+2,....This is just a set of standard internal {—h¢, z—hz, A—hA X—Xx, 77— —t
modes supported by the uniform stratification. The variable c
A stands for an amplitude of the giventf) internal mode. e reduce(17) to the dimensionless form,

We suppose that the mode is localized at the leading order,
i.e., the following boundary conditions are met, X IA' 9*A
f K(AA") —dx'+ — +f(A)=0, (20
A—0 asX— -+, (13) oo Jt x?

Next, the correctiony, of the asymptotic seriegll)  WhereK(A,A") andf(A) are given by(18) and(19) with the
satisfies an inhomogeneous boundary-value problem followdepthh renormalized by unity. We call this evolution equa-

ing directly from(10) subject to the following compatability tion the nonlocal generalized KdV equation because it gen-
condition: eralizes the conventional KdV equation by an arbitrary non-

linear function and a nonlocal nonlinear evolution operator.

h _ It follows from (10) and (11) that even if the amplitude
fo W(2)Gal #0]dz=0. (14 of the internal mode is localized at both infinities accord-
ing to (13), the correctiony, still has a shelfy™(z,7)
This condition leads to an evolution equation AfX,7). In = jim, . __y,(X,z7), which obeys,
the leading order, the Lagrangian coordinétis given by
B 1, N§[te 9z\ 9z
{=z—A(X,7)W(2), (15 Yot ?Nol/f :?J_Oc 1+ azlon
which means that the variabtecan be regarded as an effec-
tive function of only two variableg=z(A,¢). This transfor- +(z=0) i( E) %dx (21)
mation is valid only forsubcritical amplitudesA limited by AL\ oA |ar
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This equation describes the generation of small-amplitude 2.0 5

radiating waves behind the localized nonlinear disturbance
Indeed, in the small-amplitude limit the nonlocal KdV equa-
tion (20) describes harmonic waves propagating to the left,
A~exfi(kx+k3t)], while the nonlinear solitary wave distur-
bance propagates to the rigisee the discussion in Section
lII'). The generation of these radiating waves limits the ap-
plicability of the asymptotic scheme used in the analysis de-
scribed above to a time scale for whiehis O(1), that is
dimensional time oD (e 3). In order to extend this analysis
to a longer time scale, one needs to calculate the radiatiot
according to(21) and then, in the next-order approximation,
evaluate the dissipation-type corrections of the radiative
losses for the internal wave dynamics. However, this analy-
sis is beyond the scope of our paper, where we consider only
the wave evolution in the framework of the nonlocal gener-FIG. 1. The functionK(A,A’) given by (18) within the domain—1
alized KdV equatior{20). The problems related to the shelf = TnA<1 for different values ofrnA’, 1-0, 2-0.2, 3-0.4, 4-0.6, 5-0.8,
generation were recently investigated by Prasad and
Akylas!® It should be noted that the right-hand side(?1)
is zero, and hence~ is zero, for a steadily propagating where 8(v) is a constant amplitude. Some typical nonlin-
wave. earitiesf(A) and the corresponding solitary wave solutions
are discussed in Section VI while here we carry out our
analysis for a general form of the nonlinear function.

K{4,4) |

0.5 -

Ill. SOLITARY WAVE SOLUTIONS AND CONSERVED
QUANTITIES

The analysis of the nonlocal evolution equati@9) is
based on two main properties of the integral keieh,A’)
which follows from the explicit representatid8) ath=1,

K(A,A)=K(A",A), (22)
JAK(A,A’)dA’ =A. (23)
0

The first property is an obvious symmetry Kfin A andA’
while the other enables us to redu@®) to a local equation

In spite of the disappearance of the integral kernel
K(A,A’) in this steady-state problem, the time evolution of
solitary waves depends essentially on the properties of this
nonlinear integral function. In order to point out that this
function is not trivial we find the first terms in the Taylor
expansion oK in a small-amplitude limiA, A’ —0,

(mn)? (mn)*

K=1=— 64

[BAZ—8AA' +3A'2]+

X[5A%—128A%A" + 270A%A’2— 128AA' 3+ 5A"4]
+0O(A%). (27)

The full dependence oK(A,A’) evaluated numerically

for the steady-state solutions propagating with a constankithin the domain— (7n) "< A<(mn)~! [see Eq(16)] is

speedv, A=ug(x—ut). Supposing zero boundary condi-
tions at infinity,x— =« [see(13)], we find from (20) and
(23) a simple differential equation farg(x),

2

Xzs—vus+f(us)=0. (24)

shown in Fig. 1 for different values &%’ (cf. Fig. 4 in Ref.
12). We conclude from this figure that this function is always
positive within the domain and it diverges to infinity fér,
A’ —(mn) L

In order to study the evolutiofstability) properties of
the solitary wave solutions, we find the following conserved

This equation exactly occurs for steady-state solutions of guantities of(20),

local generalized KdV equatiofsee Refs. 17 and 1&nd,

therefore, the solitary wave solutions in both equations are

identical. Supposing the functiof(u) to satisfy the condi-
tions f(0)=f'(0)=0, we conclude from(24) that solitary
waves propagate witlpositive velocitiesv and exist pro-
vided there is a value=u* so that

u* 1

f f(u)du— zvu*?=0. (25

0 2
Under this condition the solitary waves are described by a
even nodeless functiom=u¢(x) which has a maximum

valueu=u* at x=0 and approaches zero p§— at an
exponential rate,

ug(x)— B(v)e i (26)

as X— *foo,

3346 Phys. Fluids, Vol. 9, No. 11, November 1997

M[A]zfj:dxfoAK(O,A’)dA’

14+ —|, (29)

te (1 0z
- [ ax| aze-oweo |1+ 5

+

P[A]= ; J _:Azdx. (29

Jhe first conserved quantity is a mass constant which is con-

served only ifA satisfies the boundary conditiof3). The
other conserved quantity29) is the momentum of the non-
linear wave field. This quantity together with the Hamil-
tonian of the evolution equation plays an important role in a
traditional energetic theory of solitary wave stabilitsee,

D. E. Pelinovsky and R. H. J. Grimshaw
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e.g., Ref. 1& In particular, the traditional proofs of stability whereyii are arbitrary constants and , j=1,2,3 are roots

and instability rely on the facts thdt) the solitary wave of the characteristic polynomial,

solutions are a local minimizer of the energy functiohhl _ _

subject to the constraint of fixed momentuand (i) an P(p)=pn’~vp+r=0. (34

operator of the second variation of the modified Hamiltonian ~ We are interested in the construction of a bounded solu-

functional (e.g.,H,=H+vP) has at most one negative ei- tion to (31) for Re(\)>0 which indicates the linearized in-

genvalue. stability of a solitary wave with respect to a small localized
Because the steady-state solutidnsu,(x—uvt) for the  perturbation. Therefore, we consider only the caseARe(

nonlocal KdV equatior{20) are the same as in a local case, >0, when the cubic equatiof34) admits only one root

the energy functionaH is given by w1 with Re(u;)<O0 and two other rootsu,s with
co[1/9A\2 (A Re(u, 9 >0. _Solutions ta31) are then d_ecaying in the limit
H[A]= 5(5> _f f(u)du|dx. (30) Xx— +o0 only if they have the asymptotic form
— 0
Y(X;\)—y.e41%  as x— +oo, (35

However, it is not easy to prove that this functional is a _ _ -~ N
constant of motion for(20). In Appendix A we analyze a wherey; is ponstant. This boundary condlltlon.spemﬂes the
Lagrangian representation for a related nonlocal KdV equaWhole functionY(x;A). However, this function is generally
tion with a symmetric nonlocal operator where the form ofnonlocalized in the limik— —c because of the first diverg-
the Lagrangian implies, indeed, that the functiépA] is the NG exponential term in the asymptotic representatid®.
third conserved quantity of this symmetric evolution equa-on!y if the coeff|C|ent_|n front of the first term vanishes,
tion. However, the nonlocal equatiof20) arising in the which occurs for certain values af, then a convergent so-
physical problem has an asymmetric nonlocal operator dultion Y(x;\) does exist and the steady-state solitary wave is
to a special radiation conditiof®) and, hence, is unlikely to Unstable. _ _ _ _

have a Lagrangian representation and a third conserved 10 characterize the divergent term ¥(x;\) we intro-
quantity. Indeed, our results from an asymptotic multi-scaléluce an associated transposed system,

a_malysis_described in Section V reveal Fhat the integral quarf- P IZ(X\) « 9Z(X'\)
tity (30) is no longer a constant of motion f¢20). — v+ (Uug) [——=N|  K(us,ul)———dx’
For the aforementioned reasons, a formal proof of the 9X X -

solitary wave stability and instability based on the traditional (36)
energetic method8 seems to be difficult and we develop with the boundary condition

instead a direct analytical theory involving the so-called
Evans’s function'see Ref. 17 and references thejeldow-
ever, this direct method described in the next section pl'edictwherezl is constant. Then, we define an analytical function
the same criterion for solitary wave instability as the tradi-D(\) which is referred to as the Evans’s functitsee Ref.

Z(X;\)—z.e”#1*  as x— — oo, (37

tional theory. 17 and references thergiim the following form:
Y 9Z9Y 9z ,
IV. CRITERION FOR SOLITARY WAVE INSTABILITY D(>\)=Zﬁ v EYHf (ug)—v]zZY

We consider the linearized stability of steady-state soli- L )
tary wave solutions satisfyin@4) and reducé20) to a linear _)\JX dx’Jde” IK(Ug,Us) dug
e X

eigenvalue problem. To do this, we substitutgx,t) au; ox’
=ug(x—vt)+Y(x—vt;\)eM, where N is an eigenvalue
andY(x;\) satisfies XZ(X MY (XN, (38)

52 It can be directly shown front31), (36), and (38) that the
——v+f'(ug) |[Y(X;N) functionD(\) does not depend an As a consequence, this
Ix? function defines the diverging exponential term in the

asymptotic representation of(x;\) and Z(x;\) following

X
:_)\j K(ug,ul)Y(x';N)dx’, (31  from (35), (37), and(38),
+ o0
o Y(X;\)—D(N)y;e**  as x— —oo, (39
wheref’ (ug) =df(us)/dug. In the asymptotic limitx— oo
the nonlocal eigenvalue problef®1) reduces to the local Z(x;N)—D(N)ze #1*  as X— 4o, (40
form

where the constantg; and z; are supposed to satisfy the

EE normalization condition
——v——+N|Y(X;A)=0 as x—=*x, (32 ,
ax®  oX P (pr1)y121=1, (41)
which has the solution with P’(u)=3u?—v. Thus, the eigenvalua for Re(\)
3 >0 is defined by the zeros of the Evans’s functtérFur-
Y(x;)\)zE yjieﬂjx, (33) thgrmore, the func_tlorD()\) is ol_awously regl for r.eal)\.
=1 Using an asymptotic transformation of the linear eigenvalue
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problems(31) and (36) in the limit |[\|—~, Re(\)>0 so
that u— — A3 we can showsee Ref. 17 for detailghat the
Evans'’s function satisfies the boundary condition

'920(X )

Yor(X)

D”(O):f, dxf dx'K(ug,us)

D(A\)—1 as|\|—o, (42) +Yo(X)

X/

dZo\(X") 1 dPg
- Bzvslza’
provided the normalizatiof41) is met. Thus, iD(\)<0 for
small real\, then the functionD(\) changes its sign for
Iarger_)\ acc_ording_ t_o(42_) and, hence, a zero ﬁf(_)\) and_the ity v belongs to the domain
associated instability eigenvaldealways exists in the linear
problem (31 for A>0. If D(A\)>0 for small \, then the dPg
functionD(\) either has no zeros at all or at least two zeros g,
are present.

Now we analyze the zeros of the functibr{\) by con-
sidering the asymptotic limit for smad. To do this we
follow the paper by Pego and Weinsteisee the proof of
Theorem 1.11 in Ref. )7and derive the following integral
formula for the derivativeD’ (\):

wherePg(v) =P[ug] given by(29). It follows from this for-
mula thatD”(0)< 0 if the values of the solitary wave veloc-

<0. (48)

In this case,D(A)<0 for smallN whereasD(\)—1 for
large A. Hence, a steady-state solitary wave is linearly un-
stable if the momentum of the solitary wave is a decreasing
function of its velocity. This criterion is exactly the tradi-
tional criterion of solitary wave instability which occurs for
other local long-wave evolution equatiotfs1®

Z(x":\) In the rest of this section we study transition to instabil-
D’()\):f dx f dx'K(ug,u S)—Y(x,)\) ity occurring whendPg/dv~0. In this case extension of
ax’ D(A\) by the Taylor series,
DO du(™) 43 D(\)= $\2[D"(0)+ 3AD"(0)+0O(\?)], (49
dn |’

gives an approximate value fnear the instability onset. To
find this value we calculate in Appendix B the value of

The expansions of the functiong(x;\) and Z(x;\) as a ; .
p ME(x:A) (XA D" (0) in the following form:

power series for small can be easily found froni31) and
(36) by taking into account the boundary conditio(#5),
(35), (37), (39), (40), and (41) [y;=1 for simplicity]. The
first terms of these expansiofsee Section I(b) in Ref. 17
for detailg are given by

!

oJu

D”(0)= 3 ff+wK ,(9US de/
( )_W _ K(us,ug)—= == dxdXx

2 9B %2 1]dP, 5
1 ou ﬁ“ﬂav do %0
YoX)=Y(X;N)|y=0=— —F—=—, 44 . . .
o)=Y Mlh=0 ,8\/5 Jx (44 As a result, we find the same scenario of the instability onset
as that described for local evolution equatigese Refs. 17
. 1 and 18. A real positive eigenvalua leading to the linear-
ZO(X):Z(X’)‘HA:O:ZIBU Us (45 ized instability of a solitary wave emerges from the origin
when the parameters of a solitary wave pass through the
IY(XN) 1 ou 1 4B au marginal stability curve given bgPs/dv =0 into the insta-
YO)\(X)——|>\ 0=-F7 4+ N a—s bility domain (48). The approximate value fox can be
Bv v Ry dv 9% found from (49) and (50) as
(46)
2 dPg
(?Z(X,)\) A=— E do (51)
Zoy(X)= T|>\=o
where
e T L P [ s 2
ZBU % &U ZBUS/Z B av v S KS(U)— . K(US’US)E %dXdX'>O (52)
4D The positiveness oK (v) follows from the fact that the
Using these formulas and alg89) and (43) we find that integral kerneIK_(A,A ) is a_lways positivsee Fig. 1
D(0)=0 We would like to mention that the same results on tran-

sition to instabilities can also be obtained by a different
asymptotic technique applied for analysis of the type Il in-
stability bifurcation(see the classification and review in Ref.
19). This bifurcation emerges from the origin where the con-
tinuous spectrum coexists with a localized neutral eigen-
=0, mode. Then, the type Il bifurcation techniq(see Ref. 19
allows us to re-derive the same approximat{éa) and(52)

9Zo(X")

!

D'(0)=fj:dxf;dx’K(us,ug)Yo(x)

1 [+
- 2’3203/2J_x d
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by expanding solutions t@31) in a power series ok and  whereM4(v)=M[ug] given by (28). In the opposite limit,
applying a solvability condition subject to the condition thatthe correctioru, is exponentially localized according to the
the functionY(x;\) is exponentially decaying at infinity. radiation condition(9).

This solvability condition takes the form Next, we proceed to the second-order approximation,
o where the linear inhomogeneous equation has the form
D(M\)=\ usY(x;\)dx=0. 53
(SN IETRTESN CR L .
_ |z vt (uy) uzz—zf”(us)ul—f K(us,ug)—_l_
The difference between the two approaches describedoX +oo d
above is the fact that the functidd(\) is not an analytic IK(ug,ul)  aul do
function in A while D(\) is. Therefore, the former function ==
has only a local sense defined fotogalized eigenfunction s dgu dT
Y(x;\). As a result, the bifurcation approach enables us to / ,
; . : o dK(ug,ug)  dug dv
obtain only local characteristics of the type Il instability bi- +——u— ——|dx’.
furcation while the approach based on analytical properties dug dv dT
of Evans’s function provides not only local but also global (58)
criteria for instability of solitary waves in the model under - N
consideration. The solvability condition both t¢56) and (58) has the form

of the conservation law,

V. NONLINEAR ANALYSIS OF SOLITARY WAVE 1 dPg 1

— —\2
INSTABILITY ;d_T__EU(“ )% (59)

Here we assume that a solitary wave is weakly unstableyhere P, is the momentum of a localized wave given by
i.e., the derivativedP¢/dv is small but negative and the .
instability criterion (48) holds. In this case, the asymptotic pozps(v)JFMj ugu,dx+ O( u?).
multi-scale expansion method allows us to study the nonlin- —o
ear quasi-adiabatic dynamics of these unstable solitar
waves®!® To do this, we introduce a slow evolution time
T=ut, where u<1, and expand solutions t(20) as an
asymptotic series,

A=US(X—XS)+,LLU1(X—XS,T)+,LL2U2(X—XS,T)
3 where K (v) is given by (52). As a result, at the leading
+0(u”), (54) : , :
. _ _ o order of the asymptotic multi-scale expansion method we
whereug(X) is the profile of a solitary wave satisfyin@4),  arrive to the effective dynamical equation for the parameter

Y,lsing simple algebrasee, e.g., Ref. 18wve transform this
equation to the form

B 1 dv )
Po=Ps(v)+ EMKS(v)d—TﬂLO(M )s (60)

X, is the coordinate of an effective solitary wave orbit, v(T) of the solitary wave speed,
1T 2 2
xs=—f v(THdT, idpsd—UJriEKs(v)d—v __ L[dMs) e :
m~Jo p dv dT  dT|2 dT 2v\ dv daT
(61)

andv=uv(T) is the varying solitary wave speed. We bring all
terms of the asymptotic expansion into a balance by demand- It should be noted that the same form of effective dy-

ing that namical equation has been derived for a local generalized
dp KdV equatiort® but with the coefficienK(v) given by
5 =O(k) (55) NIYRE
A

for the range of the speed’s variation under the consideration.
Substitution of(54) into (20) reduces the nonlinear equa- As a result, in the local casé1) has a first integral which is

tion to a set of linear inhomogeneous equationsugrus,, conservation of the nonlinear field energy given(B9). In

etc. In the first-order approximation, we find the nonlocal case governed 680), the energy functional
(30) is no longer constant. Indeed, by reconstructing the en-
ergy H, of a localized wave through the variational principle
for solitary waves(see Ref. 19 we find thatHy=H4(v)

(56) +vPg(v) —v Py, whereH (v)=H[ug], satisfies

!

dv (x , s
u1=—d—_|_f K(us,us)gdx .

+

&2
E—U-I—f'(us)

This equation has no exponentially divergent term®ét) 1 dH, 1/dv\? +oo
provided the conditior(55) holds. However, integration of AT _(d_'l') f f [K(us,ug)
(56) reveals that it still possesses a shelf, i.e., a nonlocalized # -
part in the asymptotic limik— — oo, where aug du,

) - 1 dMS dv - K(US!O)K(O-US)JE ngdX', (62)

u = lim u(x,T)=———— 7=, (57
X — o v dv dT where the right-hand side is obviously nonzero.
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The changes of the momentulRy of a localized wave We note that the linear term can be excluded fr(@8) by
described by(59) are induced by radiating waves,,q  renormalizing the limiting speed and henceforth we will
=uu~ (ux,«3t) generated by the varying solitary wave ac- not keep this term in all subsequent calculations.
cording to(57). On the other hand, it is obvious frof80) Applying now a linear approximationM(z)=m,z,
that the small-amplitude long-scale radiation takes away thevhere m; is constant, we find that the nonlinear function
O(u* part of the energy, of a localized wave field. How- f(A) reduces solely to the quadratic nonlinearity with the
ever, the leading-order equatiof&9) and(62) are effective  coefficient
to the order ofO(u?) and already in this asymptotic order
the value ofH, is not conserved. Hence, the change of the _
energyH, is unlikely to be induced by radiating waves but it 27 3¢
indicates that the energy function@O0) is not conserved for ) ) ) )
the nonlocal generalized KdV equation with the asymmetric! herefore, the quadratic nonlinear function exists only for
integral operato20). (We recall that a nonlocal equation the internal modes with odd and its sign depends on the
with a symmetric operator discussed in Appendix A con-coefficientm;. The solltr_;\ry wave solutions t24) are just
serves the energy. the well-known KdV soliton given by

The absence of the third conserved functional makes dif- Vo
ficult a direct application of a formal energetic stability u 7x .
theory for solitary wave solutions @R0). However, the ef-

fective dynamical equatio(61) allows us not only to imme- |t follows from this analysis that fom,< toN§ the solitary
diately recover the results of the linear analysise(51)] but  \yaves for the internal modes with oddare the elevation
also predict nonlinear regimes of the solitary wave instabilyygyes ,>0) including the solitary waves supported solely
ity. The detailed discussion of these regimes was done in oYy the non-Boussinesq termsn{=0) (cf. with formulas

previous paperésee Refs. 18 and 19Here we mention only (gOa b in Ref. 6. On the other hand, fom,> laNg the
. . . 1] . . 1 4
the basic fact. Whereas a soilltary wave is unstable and thsolitary waves are depression wavds<0) including the
dependenc®(v) is a decreasing function, the growth of the . Y
) .~ case of linearR(z) when m;=oN; (see Ref. 10 and the
solitary wave parameter cannot be prevented at the nonlin- ~ """ ) .
) " ; riginal papers by Mile€ and Weidmaf?).
ear stage of the wave instability and this leads to blow-up o . : -
: ) SR For the modes with evem and in the critical case
a steady-state solitary wave and its transformation into 1 o ) S o .
strongly nonlinear structures of the nonlinear wave field. ThdM™~ 20N the linear approximation of the deviatid(z) is

sequences of this transformation in application to the dynamP©t adequate because the quadratic nonlinearity ter@@3n
ics of internal waves are discussed in the next section. ~ vanishes. Therefore, in these cases one should use a qua-

dratic approximationM (z) =m,z+m,z2, for which the ex-
pansion (63) produces the cubic nonlinear functidifA)
with the coefficients

3
_oNp

m
)[1—(—1)”]-

. 1
4

3v

=31, (64)

sech

VI. DISCUSSION AND APPLICATIONS

. . . L (’Ng my 8m,

In this section we consider useful applications of the f2=¥ -— [1-(—1)"]+ 3N (=",
nonlocal evolution equatiof20) for some particular stratifi- oNg 0
cations. It follows from(18) and (19) that the kernel of the 3m

_omp

integral termK (A,A’) is completely defined by the structure fa=—or.
of an internal mod€12) supported by the uniform stratifica- 4c?
tion while the nonlinear functioi(A) depends crucially on
the deviationM (z) of the stratification profile. Usually the
function M (z) is approximated by a finite polynomial in
Taking this into account, we expand the nonlinear functio
f(A) as a Taylor series with respect g

Therefore, for the casen,>0 (the stratification profile is

concave upwardthe nonlinear function in the nonlocal KdV
equation(20) is of focusing type which supports the exis-
"ence of two different solitary wave solutions described by

o 3v v f 14 9f3U
. U.= y o+ == .
f(A):,Zl f; A, (63) * a.coslivux]+f, - 2 2f2

(65

For the casem,<0 (the stratification profile is concave

where the coefficients; are given by ) g
downward there is only one branch of solitary wave solu-

2 (1 tions to(24) given by (65) for « .
flng’O W-(z)M(z)dz, This analysis can be extended for higher-order approxi-
mations and, in a general case, the concave upward stratifi-
2 (1 oN3 cation profilesN?(z) = N2+ m,,z?¢ with m, >0 generates
f,=— ?L W3(z)M’(z)dz+ 3—0[1—(— 1M, the focusing-type nonlinear functionf(A)= f ., AZ<"!

with f, . 1>0. Furthermore, because the instability criterion
(48) for solitary waves in the nonlocal equatigd0) coin-

2 (1 _ _ . . .

fi1=(—1) — Wit2(z2) Mi(z)dz, j=2.3,... . cides with the local case, we apply a standard .ana(xwe
csjlJo Refs. 16 and 1)7to conclude that long internal solitary waves
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induced growth of the solitary wave amplitude accordingto L=
the dynamical equatio61) (see Ref. 18 Recalling now
that the solitary wave amplitudes are limited by the condition 1
(16) we come to the hypothesis that this growth of solitary e
wave amplitudes leads to breakdown of the smooth wave 2\ ox?
profiles and formation of vortex structures in a nearly uni-
formly stratified fluid. Indeed, it was shown by Derzho and
Grimshaw* that the streamlines become ambiguous for
slightly supercritical wave amplitudes and the steady-state ﬁH(A,A’) JII(A,A")
vortex-type solutions bifurcate from the sharp corners. ThusiK(AA) =LA A") + o) A——— + A’ L
we support the idea that the blow-up of the solitary waves (Ad)
that occurs as a result of buoyancy destabilization effects
provides a route to vortex structure formation in a stratifiedT© Prove this result, one needs to introduce an infinitesimal
fluid. perturbationd— 6+ §6 and transform the first variation of

If the buoyancy frequency decreases because of the déie actionS to the form containing’¢ by means of integra-
viation M (z) with m,,<0, then the effective nonlocal Kdv tion by parts and changing the limit of integration according
equation (20) contains a defocusing-type nonlinearity andto the rule
this leads generally to stabilization of finite-amplitude soli- (. N T too N T
tary waves. In this case, we expect that the steady-state sorl"y[ dx(J —f )dx’=—f dx’(f —f, )dx
tary wave solutions play the same fundamental role in an =~ X ’°° e X
evolution problem as do stable solitons in other nonlinear  The integral kernellI(A,A’) defined by the relation
evolution equations. A detailed analysis of the evolution of(A4) can be found explicitly in the form
localized initial perturbations in the framework of the nonlo-
cal model(20) as well as in the primitive Euler equations is 19z 97’

beyond the scope of our paper. =2 0 9A de' (A5)

are unstable fok=2 and this instability leads to focusing- f
dx

U j )H(GX’(’)ax;it ’

2 6.
+f “f(u)dul, (A3)
0

wherell(A,A") is a new integral kernel which is related to
K(A,A") according to the following formula:

This result can be shown frofi8), (A4), and(A5) by inte-

grating by parts and using the relation following frqf®):
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properties(22) and (23) asK(A,A’). Moreover, it replaces
K(A,A") in the nonlocal evolution equatidi20) derived by
APPENDIX A: LAGRANGIAN REPRESENTATION FOR Warnt! for description of solitary Rossby waves supported
A SYMMETRIC NONLOCAL EQUATION by a weak shear. Hence, we conclude that this integral kernel
II(A,A") plays a fundamental role in analysis of the nonlo-
In order to find the Lagrangian representation for a non<al evolution equations of the KdV type.
local evolution equation we consider instead of the asymmet-
ric nonlocal equation(20), the following related equation,
where the nonlocal operator is in a symmetric form:

AL

Using a potential representatioA= 6,, and differentiating
(A1) we transform this equation to

Ko 020+1 fx fﬂc IK(0x,0,,) 376 3%6' ]
(B X)ﬁX&t 20w )y 0y Ix2 ax’ ot X

APPENDIX B: EVALUATION OF D" (0)

, First, we express the derivatii@”(0) from (43) under
K(AA' —d + —+f(A) 0. the conditionD(0)=D'(0)=0,

(A1)

D"(0)= f dx

dZo(X")
J dx'K(ug,u S)( Yoa(X)
ax’

+2l920>\(,x )YO)\(X) Zon(X )Yo( %)
IX ox’

1
+—D" .
0 20 5, 2"(0) (B1)
+— +f(6,)—=0. (A2) . . -
ax* ax? Here the functiorY g, , (X) is the second derivative of(x;\)

at A\=0 and so isZ,,(0). Forexample, we show how to
This equation can be obtained by a variation of the acdeal with the first integral term i(B1). We use the following
tion S=[{, Ldt’ with the following Lagrangian, linear inhomogeneous equation g, , ,
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(92 X
o Ym(x>=—2f+ K (U L) Yor (X)X,

2
(B2

and substitutg45) and (46) to transform the first integral
term in (B1) as follows:

+ o0 X 0ZO(X’)
f dx f X K (U5 U) ™ Yo ()
— 00 — 00 X

1 [+
=%f_w dXug(X) Yoan(X)

1 + oo (9US X ’ ! !
__ _f deLwdx K(Uusg,ug)Yor(x")

Bv)_w
1 4P
4p%° dv
- fﬁwd XK (u. un s s
“2p22) . X (Us,Ug)——= ==
0 2 9pdPy 1 gP,
+ 4 -
2 D*(0) wdx B2 dv dv  4B%3 v
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