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Long finite-amplitude internal solitary waves propagating in a stratified fluid with nearly uniform
stratification are considered within an asymptotic approximation leading to a nonlocal evolution
equation of the Korteweg–de Vries~KdV! type. Analytical properties of this equation and its
solitary wave solutions are studied and a criterion for solitary wave instability is derived. This
criterion coincides with that for solitary waves in a local generalized KdV equation. Applications of
these results reveal that strengthening of the stratification might lead to destabilization of smooth
solitary waves and their blow-up into vortex-type wave structures. ©1997 American Institute of
Physics.@S1070-6631~97!02210-1#
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I. INTRODUCTION

Internal waves in the ocean and atmosphere have b
under intense experimental and theoretical studies for the
30 years or even more~see, for instance, the reviews b
Ostrovsky and Stepanyants1 and Grimshaw2!. It has been
well understood that the density stratification can support
only the dynamics of linear dispersive wave packets but a
the propagation of relatively long, but localized disturbanc
called solitary waves. These waves are typically sing
humped isolated waves of elevation or depression and
can propagate for long distances without distortion of th
shapes. Internal solitary waves commonly occur in coa
seas, fjords and lakes,3 as well as in the atmospheric boun
ary layer.4

A simple but very effective method for the analytic
description of these solitary waves is based on an asymp
multi-scale expansion technique which uses the assump
of a long wavelength and a small wave amplitude~see, e.g.,
Ref. 2!. This method allows one to reduce a full set of h
drodynamics equations describing the motion of a strati
fluid to one of a set of basic evolution equations such as
Korteweg–de Vries~KdV! equation, the Benjamin–On
~BO! equation, or the intermediate long-wave equation,
pending on the type of dispersion occurring in the wa
environment.2 These evolution equations have been found
predict reasonably well the basic properties of the wa
observed experimentally such as the dependence of the
tary wave speed and width versus the amplitude, stab
properties, etc. Moreover, extensions of these evolu
equations to the second order have also been done5,6 to ana-
lyze higher-order nonlinear corrections to the wave char
teristics due to an increase in the solitary wave amplitud

These evolution equations take into account a cer
balance of weakly nonlinear and dispersive effects and
generally valid in a wide interval of the parameters of t
given environment, but can fail in a number of so-call
critical cases. These critical cases occur when the co
cients of the governing evolution equations, which are to
evaluated through the given stratification profiles, vanish
diverge. For instance, the coefficient of the usual quadr
nonlinearity in the KdV equation describing long intern
Phys. Fluids 9 (11), November 1997 1070-6631/97/9(11)/3343
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solitary waves vanishes for a symmetric stratification a
therefore, the KdV equation is not applicable in this critic
case. However, in order to find a nontrivial evolution equ
tion in this case it is usually sufficient to extend the nonl
earity expansion to a higher order and to add a cubic non
ear term to the small quadratic approximation. Th
procedure thus leads to a modified KdV equation which d
plays basically the same properties of the wave motion
modifies some quantative characteristics of solitary wave6

In this paper we study a more drastic modification of t
underlying evolution equation which occurs in a nearly u
formly stratified fluid within the well-known Boussines
limit.7 In this very special but commonly occurring situatio
the leading-order term in the asymptotic multi-scale exp
sion is an exact solution of the Euler equations for an a
trary amplitude which is not scaled.8,9 Therefore, the usua
nonlinearity in the evolution equation vanishes identica
within this limit and one needs to keep the wave amplitu
of arbitrary magnitude in order to study the dynamics of lo
internal waves in nearly uniformly stratified fluid. Thus,
regularized asymptotic multi-scale expansion should
based within this critical limit using only a small paramet
related to the long wavelength. This regularization was do
by Grimshaw and Yi10 where they derived a nonlocal gene
alization of the KdV equation for resonant generation
finite-amplitude internal waves by the flow over topograph
A similar nonlocal equation was also derived a little earl
by Warn11 for propagation of solitary Rossby waves on
weak shear. Recently, extensive numerical simulations of
Euler equations were carried out by Rottmanet al.12 for the
uniformly stratified fluid flow over topography and their re
sults reveal excellent agreement with predictions of the n
local evolution equation derived by Grimshaw and Yi.10 Fur-
thermore, a generalization of the asymptotic approach
developed by Derzho and Velarde13 to cover the wave dis-
persion of the BO type in an infinitely deep fluid with wea
shear and also by Derzho and Grimshaw14 to construct an
asymptotic solution describing steady-state vortex-type w
structures of supercritical amplitudes. The problem of mat
ing the asymptotic expansions of Grimshaw and Yi10 with
the small-amplitude radiation shelves was recently con
ered by Prasad and Akylas.15
3343/10/$10.00 © 1997 American Institute of Physics
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Although the derivation of nonlocal evolution equatio
for the description of solitary waves in a nearly uniform
stratified fluid is now well understood, analytical properti
of the nonlocal equations have not been studied in great
tail as yet. In particular, the dynamical properties of solita
waves ~stability, evolution and interaction! have not been
considered. In spite of this, the authors of Ref. 13 ha
started a discussion of the effects of destabilization of lo
solitary waves in the presence of a strong or symmetr
shear flow applying as a guide the well-known results
stability analysis valid for local models such as the gene
ized KdV and BO equations.16

The aim of this paper is to find the instability criterio
for steady-state solitary waves supported by a deviation
the stratification profile from the uniform case as well as
the traditional non-Boussinesq terms. We extend the ana
of solitary wave instability developed by Pego a
Weinstein17 and Pelinovsky and Grimshaw18 for the local
generalized KdV equation to the present nonlocal case. H
ever, our results reveal that the same conventional instab
criterion given by the dependence of the solitary wave m
mentum on its velocity~for a review, see Ref. 19! is valid
also for the nonlocal evolution equation.

The results of our paper are described as follows. F
in Section II we re-derive the nonlocal evolution equation
long internal waves following basically the analysis of Grim
shaw and Yi.10 However, we use some modifications of th
approach which enable us to represent the nonlinear term
the evolution equation in a simplified form convenient f
further analysis. Then, in Section III we discuss the anal
cal properties of the underlying model including the L
grangian representation, conserved quantities and ste
state solitary wave solutions. The main results concern
solitary wave instability are described in Section IV whe
the conventional instability criterion is rigorously prove
The nonlinear dynamics of unstable internal solitary wa
with subcritical amplitudes is analyzed in Section V with
an adiabatic perturbation theory for solitary waves.19 We
show that the instability development could lead to the f
mation of vortex structures with supercritical amplitudes.
nally, we discuss in Section VI applications of the gene
instability theory to some particular stratifications and rev
that strengthening of the stratification distribution might le
to destabilization of the steady-state internal solitary wa
and to the generation of vortices in the stratified fluid.

II. DERIVATION OF A NONLOCAL EVOLUTION
EQUATION

We consider the two-dimensional motion of an invisc
incompressible fluid in the presence of density stratificati
It is convenient to describe this motion in terms of the st
dard variables, the vertical particle displacementh(x,z,t)
and the stream functionc(x,z,t), wherex and z are hori-
zontal and vertical coordinates, respectively, andt is the
time. The density of the fluid is expressed throughR(z2h),
whereR(z) is a given profile of the basic stratification. Th
horizontal and vertical velocities,u and w, are expressed
3344 Phys. Fluids, Vol. 9, No. 11, November 1997
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throughc by means of the relations,u5cz and w52cx .
The primary equations for the stratified fluid’s motion a
then given by10

Dc t1J~Dc,c!2N2~z2h!hx1
1

g
N2~z2h!

3@hx~cxt1J~cx ,c!!1~hz21!~czt1J~cz ,c!!#50,
~1!

h t1J~h,c!1cx50. ~2!

Here J(a,b)5axbz2azbx is the Jacobian operator,Dc
5cxx1czz is the Laplacian operating onc, g is the grav-
ity constant, andN2(z) is the buoyancy frequency defined b

N252
gRz

R
.

In order to simplify consideration of the internal wave m
tion we impose ‘‘rigid lid’’ boundary conditions at the plan
surfacesz50 andz5h,

cuz505cuz5h50. ~3!

We analyze the system of governing equations~1! and
~2! under the assumption that the internal waves are l
enough so that the following scaling holds:

X5e~x2ct!, t5e3t, ~4!

wheree is a small parameter andc is the limiting speed of
infinitely long waves~see~12! below!. In addition, we sup-
pose that the stratification is nearly uniform and the deviat
of the buoyancy frequency from the constant valueN0

2 is
measured as

N2~z!5N0
21e2M ~z!. ~5!

Finally, the Boussinesq approximation is applied and it
lows us to consider the last term in~1! to be small of the
order of g215e2s, where the parameters determines the
non-Boussinesq effects.

Within these approximations, the governing equatio
~1! and ~2! are now rewritten in the form

JS czz1
1

c2
N0

2c1e2F2 ,c2czD 2N0
2Fh2

1

c
c G

X

1e2czzt

1O~e4!50, ~6!

JS h2
1

c
c,c2czD1

1

c
e2ct1O~e4!50, ~7!

where

F25cXX1
1

c2
M S z2

1

c
c Dc1

s

c
N0

2F1

2
cz

22cczG .
To proceed with the reduction of these equations,

introduce the Lagrangian coordinatez according to the sub-
stitution

z5z2
1

c
c~X,z,t!, ~8!
D. E. Pelinovsky and R. H. J. Grimshaw
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and considerc, h, and z to be dependent onz, X, and t.
Then, Equations~6! and ~7! can be integrated~see Ref. 10!
with the boundary conditions

c,h→0 as X→1`. ~9!

As a result, we find the following closed boundary-val
problem for the stream functionc subject to the boundary
conditions~3! and ~9!,

czz1
1

c2
N0

2c1e2G2@c#1O~e4!50, ~10!

where

G25F21
N0

2

c2 E1`

X F S 11
]z8

]z D ]z8

]t
1~z82z!

]

]zS ]z8

]t D GdX8

andz85z(X8,t,z).
The boundary condition~9! means that there is no radia

tion in the directionX→1`. On the other hand, such
restriction is not imposed asX→2`. Indeed, it can be easily
shown that the small-amplitude radiative waves alwa
propagate to the left in the reference frame moving with
limiting speedc. Therefore, if the evolution process gene
ates radiation, it propagates only to the left and this lead
the appearance of secular shelf-type divergences of
stream functionc in the limit X→2` ~see formula~21!
below and also the discussion in Ref. 11!.

Now we expand the solution of~10! in an asymptotic
series,

c5c0~X,z,t!1e2c2~X,z,t!1O~e4!. ~11!

The leading-order term can be found by separation of v
ables,

c05cA~X,t!W~z!, W~z!5sinFpnz

h G , c5
N0h

pn
, ~12!

wheren561,62, . . . .This is just a set of standard intern
modes supported by the uniform stratification. The varia
A stands for an amplitude of the given (nth! internal mode.
We suppose that the mode is localized at the leading or
i.e., the following boundary conditions are met,

A→0 as X→6`. ~13!

Next, the correctionc2 of the asymptotic series~11!
satisfies an inhomogeneous boundary-value problem foll
ing directly from~10! subject to the following compatability
condition:

E
0

h

W~z!G2@c0#dz50. ~14!

This condition leads to an evolution equation forA(X,t). In
the leading order, the Lagrangian coordinatez is given by

z5z2A~X,t!W~z!, ~15!

which means that the variablez can be regarded as an effe
tive function of only two variables,z5z(A,z). This transfor-
mation is valid only forsubcritical amplitudesA limited by
Phys. Fluids, Vol. 9, No. 11, November 1997
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Therefore, the wave disturbances considered in the fra
work of this long-scale asymptotic approach should sati
the amplitude restriction given by~16!.

Using the functionz5z(A,z) given by ~15! we present
~14! in the form of a nonlocal evolution equation,

2N0
2

c3 E
1`

X

K~A,A8!
]A8

]t
dX81

]2A

]X2
1 f ~A!50, ~17!

whereA85A(X8,t), while the integral kernelK(A,A8) and
the nonlinear functionf (A) are given by

K5
1

hE0

h

dzF ]z

]A

]z8

]A8
2z

]z

]A

]

]z

]z8

]A8
2z8

]z8

]A8

]

]z

]z

]AG ,

~18!

f 5
2

c2h
AE

0

h

dzW2~z!M ~z2AW~z!!1
sN0

3

3ch

3A2@12~21!n#, ~19!

wherez85z(A8,z).
The nonlocal evolution equation~17! with K(A,A8)

given by ~18! was derived by Grimshaw and Yi10 but the
nonlinear functionf (A) in their paper~see formula~3.23b!
in Ref. 10! looks different from our form~19!. As a matter of
fact, this function arises from nonlinear effects of two diffe
ent types. The first type is induced by a deviation of t
stratification profile from the uniform case, while the seco
one is due to the non-Boussinesq terms in the primitive eq
tions. Using our approach we have found it possible to
duce the nonlinearity of the second type to a solely quadr
form ~19! @cf. ~3.23b!, ~3.28! in Ref. 10#.

Finally, using a simple transformation,

z→hz, z→hz, A→hA, X→x, t→
2N0

2

c3
t,

we reduce~17! to the dimensionless form,

E
1`

x

K~A,A8!
]A8

]t
dx81

]2A

]x2
1 f ~A!50, ~20!

whereK(A,A8) and f (A) are given by~18! and~19! with the
depthh renormalized by unity. We call this evolution equ
tion the nonlocal generalized KdV equation because it g
eralizes the conventional KdV equation by an arbitrary no
linear function and a nonlocal nonlinear evolution operat

It follows from ~10! and ~11! that even if the amplitude
of the internal modeA is localized at both infinities accord
ing to ~13!, the correctionc2 still has a shelfc2(z,t)
5 limX→2`c2(X,z,t), which obeys,

czz
21

1

c2
N0

2c25
N0

2

c2 E2`

1`F S 11
]z

]z D ]z

]A

1~z2z!
]

]zS ]z

]AD G]A

]t
dX. ~21!
3345D. E. Pelinovsky and R. H. J. Grimshaw
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This equation describes the generation of small-amplit
radiating waves behind the localized nonlinear disturban
Indeed, in the small-amplitude limit the nonlocal KdV equ
tion ~20! describes harmonic waves propagating to the l
A;exp@i(kx1k3t)#, while the nonlinear solitary wave distur
bance propagates to the right~see the discussion in Sectio
III !. The generation of these radiating waves limits the
plicability of the asymptotic scheme used in the analysis
scribed above to a time scale for whicht is O(1), that is
dimensional time ofO(e23). In order to extend this analysi
to a longer time scale, one needs to calculate the radia
according to~21! and then, in the next-order approximatio
evaluate the dissipation-type corrections of the radia
losses for the internal wave dynamics. However, this an
sis is beyond the scope of our paper, where we consider
the wave evolution in the framework of the nonlocal gen
alized KdV equation~20!. The problems related to the she
generation were recently investigated by Prasad
Akylas.15 It should be noted that the right-hand side of~21!
is zero, and hencec2 is zero, for a steadily propagatin
wave.

III. SOLITARY WAVE SOLUTIONS AND CONSERVED
QUANTITIES

The analysis of the nonlocal evolution equation~20! is
based on two main properties of the integral kernelK(A,A8)
which follows from the explicit representation~18! at h51,

K~A,A8!5K~A8,A!, ~22!

E
0

A

K~A,A8!dA85A. ~23!

The first property is an obvious symmetry ofK in A andA8
while the other enables us to reduce~20! to a local equation
for the steady-state solutions propagating with a cons
speedv, A5us(x2vt). Supposing zero boundary cond
tions at infinity,x→6` @see~13!#, we find from ~20! and
~23! a simple differential equation forus(x),

]2us

]x2
2vus1 f ~us!50. ~24!

This equation exactly occurs for steady-state solutions o
local generalized KdV equation~see Refs. 17 and 18! and,
therefore, the solitary wave solutions in both equations
identical. Supposing the functionf (u) to satisfy the condi-
tions f (0)5 f 8(0)50, we conclude from~24! that solitary
waves propagate withpositive velocities v and exist pro-
vided there is a valueu5u* so that

E
0

u*
f ~u!du2

1

2
vu* 250. ~25!

Under this condition the solitary waves are described by
even nodeless functionu5us(x) which has a maximum
value u5u* at x50 and approaches zero asuxu→` at an
exponential rate,

us~x!→b~v !e2Avuxu as x→6`, ~26!
3346 Phys. Fluids, Vol. 9, No. 11, November 1997
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where b(v) is a constant amplitude. Some typical nonli
earities f (A) and the corresponding solitary wave solutio
are discussed in Section VI while here we carry out o
analysis for a general form of the nonlinear function.

In spite of the disappearance of the integral ker
K(A,A8) in this steady-state problem, the time evolution
solitary waves depends essentially on the properties of
nonlinear integral function. In order to point out that th
function is not trivial we find the first terms in the Taylo
expansion ofK in a small-amplitude limitA, A8→0,

K512
~pn!2

4
@3A228AA813A82#1

~pn!4

64

3@5A42128A3A81270A2A822128AA8315A84#

1O~A6!. ~27!

The full dependence ofK(A,A8) evaluated numerically
within the domain2(pn)21<A<(pn)21 @see Eq.~16!# is
shown in Fig. 1 for different values ofA8 ~cf. Fig. 4 in Ref.
12!. We conclude from this figure that this function is alwa
positive within the domain and it diverges to infinity forA,
A8→(pn)21.

In order to study the evolution~stability! properties of
the solitary wave solutions, we find the following conserv
quantities of~20!,

M @A#5E
2`

1`

dxE
0

A

K~0, A8!dA8

5E
2`

1`

dxE
0

1

dz~z2z!W~z!F11
]z

]z G , ~28!

P@A#5
1

2E2`

1`

A2dx. ~29!

The first conserved quantity is a mass constant which is c
served only ifA satisfies the boundary conditions~13!. The
other conserved quantity~29! is the momentum of the non
linear wave field. This quantity together with the Ham
tonian of the evolution equation plays an important role in
traditional energetic theory of solitary wave stability~see,

FIG. 1. The functionK(A,A8) given by ~18! within the domain21
<pnA<1 for different values ofpnA8, 1–0, 2–0.2, 3–0.4, 4–0.6, 5–0.8
6–1.0.
D. E. Pelinovsky and R. H. J. Grimshaw
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e.g., Ref. 16!. In particular, the traditional proofs of stabilit
and instability rely on the facts that~i! the solitary wave
solutions are a local minimizer of the energy functionalH
subject to the constraint of fixed momentumP and ~ii ! an
operator of the second variation of the modified Hamilton
functional ~e.g.,Hv5H1vP) has at most one negative e
genvalue.

Because the steady-state solutionsA5us(x2vt) for the
nonlocal KdV equation~20! are the same as in a local cas
the energy functionalH is given by

H@A#5E
2`

1`F1

2S ]A

]x D 2

2E
0

A

f ~u!duGdx. ~30!

However, it is not easy to prove that this functional is
constant of motion for~20!. In Appendix A we analyze a
Lagrangian representation for a related nonlocal KdV eq
tion with a symmetric nonlocal operator where the form
the Lagrangian implies, indeed, that the functionH@A# is the
third conserved quantity of this symmetric evolution equ
tion. However, the nonlocal equation~20! arising in the
physical problem has an asymmetric nonlocal operator
to a special radiation condition~9! and, hence, is unlikely to
have a Lagrangian representation and a third conse
quantity. Indeed, our results from an asymptotic multi-sc
analysis described in Section V reveal that the integral qu
tity ~30! is no longer a constant of motion for~20!.

For the aforementioned reasons, a formal proof of
solitary wave stability and instability based on the tradition
energetic methods16 seems to be difficult and we develo
instead a direct analytical theory involving the so-call
Evans’s function~see Ref. 17 and references therein!. How-
ever, this direct method described in the next section pred
the same criterion for solitary wave instability as the tra
tional theory.

IV. CRITERION FOR SOLITARY WAVE INSTABILITY

We consider the linearized stability of steady-state s
tary wave solutions satisfying~24! and reduce~20! to a linear
eigenvalue problem. To do this, we substituteA(x,t)
5us(x2vt)1Y(x2vt;l)elt, where l is an eigenvalue
andY(x;l) satisfies

F ]2

]x2
2v1 f 8~us!GY~x;l!

52lE
1`

x

K~us ,us8!Y~x8;l!dx8, ~31!

wheref 8(us)5d f(us)/dus . In the asymptotic limitsx→6`
the nonlocal eigenvalue problem~31! reduces to the loca
form

F ]3

]x2
2v

]

]x
1lGY~x;l!50 as x→6`, ~32!

which has the solution

Y~x;l!5(
j 51

3

yj
6em j x, ~33!
Phys. Fluids, Vol. 9, No. 11, November 1997
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whereyj
6 are arbitrary constants andm j , j 51,2,3 are roots

of the characteristic polynomial,

P~m!5m32vm1l50. ~34!

We are interested in the construction of a bounded so
tion to ~31! for Re(l).0 which indicates the linearized in
stability of a solitary wave with respect to a small localiz
perturbation. Therefore, we consider only the case Rel)
.0, when the cubic equation~34! admits only one root
m1 with Re(m1),0 and two other rootsm2,3 with
Re(m2,3).0. Solutions to~31! are then decaying in the limi
x→1` only if they have the asymptotic form

Y~x;l!→y1em1x as x→1`, ~35!

wherey1 is constant. This boundary condition specifies t
whole functionY(x;l). However, this function is generally
nonlocalized in the limitx→2` because of the first diverg
ing exponential term in the asymptotic representation~33!.
Only if the coefficient in front of the first term vanishe
which occurs for certain values ofl, then a convergent so
lution Y(x;l) does exist and the steady-state solitary wave
unstable.

To characterize the divergent term inY(x;l) we intro-
duce an associated transposed system,

F ]2

]x2
2v1 f 8~us!G]Z~x;l!

]x
5lE

2`

x

K~us ,us8!
]Z~x8;l!

]x8
dx8

~36!

with the boundary condition

Z~x;l!→z1e2m1x as x→2`, ~37!

wherez1 is constant. Then, we define an analytical functi
D(l) which is referred to as the Evans’s function~see Ref.
17 and references therein! in the following form:

D~l!5Z
]2Y

]x2
2

]Z

]x

]Y

]x
1

]2Z

]x2
Y1@ f 8~us!2v#ZY

2lE
2`

x

dx8E
x

1`

dx9
]K~us8 ,us9!

]us8

]us8

]x8

3Z~x8;l!Y~x9,l!. ~38!

It can be directly shown from~31!, ~36!, and ~38! that the
functionD(l) does not depend onx. As a consequence, thi
function defines the diverging exponential term in t
asymptotic representation ofY(x;l) and Z(x;l) following
from ~35!, ~37!, and~38!,

Y~x;l!→D~l!y1em1x as x→2`, ~39!

Z~x;l!→D~l!z1e2m1x as x→1`, ~40!

where the constantsy1 and z1 are supposed to satisfy th
normalization condition

P8~m1!y1z151, ~41!

with P8(m)53m22v. Thus, the eigenvaluel for Re(l)
.0 is defined by the zeros of the Evans’s function.17 Fur-
thermore, the functionD(l) is obviously real for reall.
Using an asymptotic transformation of the linear eigenva
3347D. E. Pelinovsky and R. H. J. Grimshaw
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problems~31! and ~36! in the limit ulu→`, Re(l).0 so
thatm→2l1/3 we can show~see Ref. 17 for details! that the
Evans’s function satisfies the boundary condition

D~l!→1 as ulu→`, ~42!

provided the normalization~41! is met. Thus, ifD(l),0 for
small reall, then the functionD(l) changes its sign for
largerl according to~42! and, hence, a zero ofD(l) and the
associated instability eigenvaluel always exists in the linea
problem ~31! for l.0. If D(l).0 for small l, then the
functionD(l) either has no zeros at all or at least two ze
are present.

Now we analyze the zeros of the functionD(l) by con-
sidering the asymptotic limit for smalll. To do this we
follow the paper by Pego and Weinstein~see the proof of
Theorem 1.11 in Ref. 17! and derive the following integra
formula for the derivativeD8(l):

D8~l!5E
2`

1`

dxF E
2`

x

dx8K~us ,us8!
]Z~x8;l!

]x8
Y~x;l!

1D~l!
dm~l!

dl G . ~43!

The expansions of the functionsY(x;l) and Z(x;l) as a
power series for smalll can be easily found from~31! and
~36! by taking into account the boundary conditions~26!,
~35!, ~37!, ~39!, ~40!, and ~41! @y151 for simplicity#. The
first terms of these expansions~see Section II~b! in Ref. 17
for details! are given by

Y0~x!5Y~x;l!ul5052
1

bAv

]us

]x
, ~44!

Z0~x!5Z~x;l!ul505
1

2bv
us , ~45!

Y0l~x!5
]Y~x;l!

]l
ul505

1

bAv

]us

]v
1

1

b2v

]b

]v
]us

]x
,

~46!

Z0l~x!5
]Z~x;l!

]l
ul50

5
1

2bvE2`

x ]us8

]v
dx82

1

2bv3/2F 1

b

]b

]v
1

1

vGus .

~47!

Using these formulas and also~39! and ~43! we find that
D(0)50,

D8~0!5E
2`

1`

dxE
2`

x

dx8K~us ,us8!Y0~x!
]Z0~x8!

]x8

52
1

2b2v3/2E2`

1`

dxus

]us

]x
50,
3348 Phys. Fluids, Vol. 9, No. 11, November 1997
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D9~0!5E
2`

1`

dxE
2`

x

dx8K~us ,us8!FY0l~x!
]Z0~x8!

]x8

1Y0~x!
]Z0l~x8!

]x8
G5

1

b2v3/2

dPs

dv
,

wherePs(v)5P@us# given by~29!. It follows from this for-
mula thatD9(0),0 if the values of the solitary wave veloc
ity v belongs to the domain

dPs

dv
,0. ~48!

In this case,D(l),0 for small l whereasD(l)→1 for
large l. Hence, a steady-state solitary wave is linearly u
stable if the momentum of the solitary wave is a decreas
function of its velocity. This criterion is exactly the trad
tional criterion of solitary wave instability which occurs fo
other local long-wave evolution equations.16–18

In the rest of this section we study transition to instab
ity occurring whendPs /dv'0. In this case extension o
D(l) by the Taylor series,

D~l!5 1
2 l2@D9~0!1 1

3 lD-~0!1O~l2!#, ~49!

gives an approximate value ofl near the instability onset. To
find this value we calculate in Appendix B the value
D-(0) in the following form:

D-~0!5
3

2b2v3/2E E
2`

1`

K~us ,us8!
]us

]v

]us8

]v
dxdx8

2
3

b2v2F 2

b

]b

]v
1

1

vGdPs

dv
. ~50!

As a result, we find the same scenario of the instability on
as that described for local evolution equations~see Refs. 17
and 18!. A real positive eigenvaluel leading to the linear-
ized instability of a solitary wave emerges from the orig
when the parameters of a solitary wave pass through
marginal stability curve given bydPs /dv50 into the insta-
bility domain ~48!. The approximate value forl can be
found from ~49! and ~50! as

l52
2

Ks

dPs

dv
, ~51!

where

Ks~v !5E E
2`

1`

K~us ,us8!
]us

]v

]us8

]v
dxdx8.0. ~52!

The positiveness ofKs(v) follows from the fact that the
integral kernelK(A,A8) is always positive~see Fig. 1!.

We would like to mention that the same results on tra
sition to instabilities can also be obtained by a differe
asymptotic technique applied for analysis of the type II
stability bifurcation~see the classification and review in Re
19!. This bifurcation emerges from the origin where the co
tinuous spectrum coexists with a localized neutral eig
mode. Then, the type II bifurcation technique~see Ref. 19!
allows us to re-derive the same approximation~51! and~52!
D. E. Pelinovsky and R. H. J. Grimshaw
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by expanding solutions to~31! in a power series ofl and
applying a solvability condition subject to the condition th
the function Y(x;l) is exponentially decaying at infinity
This solvability condition takes the form

D̃~l!5lE
2`

1`

usY~x;l!dx50. ~53!

The difference between the two approaches descr
above is the fact that the functionD̃(l) is not an analytic
function in l while D(l) is. Therefore, the former function
has only a local sense defined for alocalizedeigenfunction
Y(x;l). As a result, the bifurcation approach enables us
obtain only local characteristics of the type II instability b
furcation while the approach based on analytical proper
of Evans’s function provides not only local but also glob
criteria for instability of solitary waves in the model und
consideration.

V. NONLINEAR ANALYSIS OF SOLITARY WAVE
INSTABILITY

Here we assume that a solitary wave is weakly unsta
i.e., the derivativedPs /dv is small but negative and th
instability criterion ~48! holds. In this case, the asymptot
multi-scale expansion method allows us to study the non
ear quasi-adiabatic dynamics of these unstable soli
waves.18,19 To do this, we introduce a slow evolution tim
T5mt, where m!1, and expand solutions to~20! as an
asymptotic series,

A5us~x2Xs!1mu1~x2Xs ,T!1m2u2~x2Xs ,T!

1O~m3!, ~54!

whereus(x) is the profile of a solitary wave satisfying~24!,
Xs is the coordinate of an effective solitary wave orbit,

Xs5
1

mE0

T

v~T8!dT8,

andv5v(T) is the varying solitary wave speed. We bring a
terms of the asymptotic expansion into a balance by dema
ing that

dPs

dv
5O~m! ~55!

for the range of the speed’s variation under the considerat
Substitution of~54! into ~20! reduces the nonlinear equa

tion to a set of linear inhomogeneous equations foru1, u2,
etc. In the first-order approximation, we find

F ]2

]x2
2v1 f 8~us!Gu152

dv
dTE1`

x

K~us ,us8!
]us8

]v
dx8.

~56!

This equation has no exponentially divergent terms atO(1)
provided the condition~55! holds. However, integration o
~56! reveals that it still possesses a shelf, i.e., a nonlocal
part in the asymptotic limitx→2`, where

u25 lim
x→2`

u1~x,T!52
1

v
dMs

dv
dv
dT

, ~57!
Phys. Fluids, Vol. 9, No. 11, November 1997
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whereMs(v)5M @us# given by ~28!. In the opposite limit,
the correctionu1 is exponentially localized according to th
radiation condition~9!.

Next, we proceed to the second-order approximati
where the linear inhomogeneous equation has the form

F ]2

]x2
2v1 f 8~us!Gu252

1

2
f 9~us!u1

22E
1`

x FK~us ,us8!
]u18

]T

1
]K~us ,us8!

]us
u1

]us8

]v
dv
dT

1
]K~us ,us8!

]us8
u18

]us8

]v
dv
dTGdx8.

~58!

The solvability condition both to~56! and~58! has the form
of the conservation law,

1

m

dP0

dT
52

1

2
v~u2!2, ~59!

whereP0 is the momentum of a localized wave given by

P05Ps~v !1mE
2`

1`

usu1dx1O~m2!.

Using simple algebra~see, e.g., Ref. 18! we transform this
equation to the form

P05Ps~v !1
1

2
mKs~v !

dv
dT

1O~m2!, ~60!

where Ks(v) is given by ~52!. As a result, at the leading
order of the asymptotic multi-scale expansion method
arrive to the effective dynamical equation for the parame
v(T) of the solitary wave speed,

1

m

dPs

dv
dv
dT

1
d

dTF1

2
Ks~v !

dv
dTG52

1

2vS dMs

dv D 2S dv
dTD 2

.

~61!

It should be noted that the same form of effective d
namical equation has been derived for a local generali
KdV equation18 but with the coefficientKs(v) given by

Ks5S dMs

dv D 2

.

As a result, in the local case,~61! has a first integral which is
conservation of the nonlinear field energy given by~30!. In
the nonlocal case governed by~20!, the energy functional
~30! is no longer constant. Indeed, by reconstructing the
ergyH0 of a localized wave through the variational princip
for solitary waves~see Ref. 19! we find that H05Hs(v)
1vPs(v)2vP0, whereHs(v)5H@us#, satisfies

1

m

dH0

dT
52

1

2S dv
dTD 2E E

2`

1`

@K~us ,us8!

2K~us,0!K~0,us8!#
]us

]v

]us8

]v
dxdx8, ~62!

where the right-hand side is obviously nonzero.
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The changes of the momentumP0 of a localized wave
described by~59! are induced by radiating wavesurad

5mu2(mx,m3t) generated by the varying solitary wave a
cording to~57!. On the other hand, it is obvious from~30!
that the small-amplitude long-scale radiation takes away
O(m4) part of the energyH0 of a localized wave field. How-
ever, the leading-order equations~59! and ~62! are effective
to the order ofO(m2) and already in this asymptotic orde
the value ofH0 is not conserved. Hence, the change of
energyH0 is unlikely to be induced by radiating waves but
indicates that the energy functional~30! is not conserved for
the nonlocal generalized KdV equation with the asymme
integral operator~20!. ~We recall that a nonlocal equatio
with a symmetric operator discussed in Appendix A co
serves the energy.!

The absence of the third conserved functional makes
ficult a direct application of a formal energetic stabili
theory for solitary wave solutions of~20!. However, the ef-
fective dynamical equation~61! allows us not only to imme-
diately recover the results of the linear analysis@see~51!# but
also predict nonlinear regimes of the solitary wave insta
ity. The detailed discussion of these regimes was done in
previous papers~see Refs. 18 and 19!. Here we mention only
the basic fact. Whereas a solitary wave is unstable and
dependencePs(v) is a decreasing function, the growth of th
solitary wave parameterv cannot be prevented at the nonli
ear stage of the wave instability and this leads to blow-up
a steady-state solitary wave and its transformation i
strongly nonlinear structures of the nonlinear wave field. T
sequences of this transformation in application to the dyn
ics of internal waves are discussed in the next section.

VI. DISCUSSION AND APPLICATIONS

In this section we consider useful applications of t
nonlocal evolution equation~20! for some particular stratifi-
cations. It follows from~18! and ~19! that the kernel of the
integral termK(A,A8) is completely defined by the structur
of an internal mode~12! supported by the uniform stratifica
tion while the nonlinear functionf (A) depends crucially on
the deviationM (z) of the stratification profile. Usually the
function M (z) is approximated by a finite polynomial inz.
Taking this into account, we expand the nonlinear funct
f (A) as a Taylor series with respect toA,

f ~A!5(
j 51

`

f j Aj , ~63!

where the coefficientsf j are given by

f 15
2

c2E0

1

W2~z!M ~z!dz,

f 252
2

c2E0

1

W3~z!M 8~z!dz1
sN0

3

3c
@12~21!n#,

f j 115~21! j
2

c2 j !
E

0

1

Wj 12~z!M ~ j !~z!dz, j 52,3, . . . .
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We note that the linear term can be excluded from~63! by
renormalizing the limiting speedc and henceforth we will
not keep this term in all subsequent calculations.

Applying now a linear approximation,M (z)5m1z,
where m1 is constant, we find that the nonlinear functio
f (A) reduces solely to the quadratic nonlinearity with t
coefficient

f 25
sN0

3

3c S 12
4m1

sN0
4D @12~21!n#.

Therefore, the quadratic nonlinear function exists only
the internal modes with oddn and its sign depends on th
coefficientm1. The solitary wave solutions to~24! are just
the well-known KdV soliton given by

us5
3v
2 f 2

sech2FAv
2

xG . ~64!

It follows from this analysis that form1, 1
4sN0

4 the solitary
waves for the internal modes with oddn are the elevation
waves (f 2.0) including the solitary waves supported sole
by the non-Boussinesq terms (m150) ~cf. with formulas

~50a,b! in Ref. 6!. On the other hand, form1. 1
4sN0

4 the
solitary waves are depression waves (f 2,0) including the
case of linearR(z) when m15sN0

4 ~see Ref. 10 and the
original papers by Miles20 and Weidman21!.

For the modes with evenn and in the critical case

m1' 1
4sN0

4 the linear approximation of the deviationM (z) is
not adequate because the quadratic nonlinearity term in~63!
vanishes. Therefore, in these cases one should use a
dratic approximation,M (z)5m1z1m2z2, for which the ex-
pansion ~63! produces the cubic nonlinear functionf (A)
with the coefficients

f 25
sN0

3

3c S 12
4m1

sN0
4D @12~21!n#1

8m2

3cN0
~21!n,

f 35
3m2

4c2
.

Therefore, for the casem2.0 ~the stratification profile is
concave upward! the nonlinear function in the nonlocal KdV
equation~20! is of focusing type which supports the exi
tence of two different solitary wave solutions described b

us5
3v

a6cosh@Avx#1 f 2

, a656 f 2A11
9 f 3v

2 f 2
2

. ~65!

For the casem2,0 ~the stratification profile is concav
downward! there is only one branch of solitary wave sol
tions to ~24! given by ~65! for a1 .

This analysis can be extended for higher-order appro
mations and, in a general case, the concave upward str
cation profilesN2(z)5N0

21m2kz
2k with m2k.0 generates

the focusing-type nonlinear functionsf (A)5 f 2k11A2k11

with f 2k11.0. Furthermore, because the instability criteri
~48! for solitary waves in the nonlocal equation~20! coin-
cides with the local case, we apply a standard analysis~see
Refs. 16 and 17! to conclude that long internal solitary wave
D. E. Pelinovsky and R. H. J. Grimshaw
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are unstable fork>2 and this instability leads to focusing
induced growth of the solitary wave amplitude according
the dynamical equation~61! ~see Ref. 18!. Recalling now
that the solitary wave amplitudes are limited by the condit
~16! we come to the hypothesis that this growth of solita
wave amplitudes leads to breakdown of the smooth w
profiles and formation of vortex structures in a nearly u
formly stratified fluid. Indeed, it was shown by Derzho a
Grimshaw14 that the streamlines become ambiguous
slightly supercritical wave amplitudes and the steady-s
vortex-type solutions bifurcate from the sharp corners. Th
we support the idea that the blow-up of the solitary wav
that occurs as a result of buoyancy destabilization effe
provides a route to vortex structure formation in a stratifi
fluid.

If the buoyancy frequency decreases because of the
viation M (z) with m2k,0, then the effective nonlocal KdV
equation ~20! contains a defocusing-type nonlinearity a
this leads generally to stabilization of finite-amplitude so
tary waves. In this case, we expect that the steady-state
tary wave solutions play the same fundamental role in
evolution problem as do stable solitons in other nonlin
evolution equations. A detailed analysis of the evolution
localized initial perturbations in the framework of the nonl
cal model~20! as well as in the primitive Euler equations
beyond the scope of our paper.
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APPENDIX A: LAGRANGIAN REPRESENTATION FOR
A SYMMETRIC NONLOCAL EQUATION

In order to find the Lagrangian representation for a n
local evolution equation we consider instead of the asymm
ric nonlocal equation~20!, the following related equation
where the nonlocal operator is in a symmetric form:

1

2S E
2`

x

2E
x

1` DK~A,A8!
]A8

]t
dx81

]2A

]x2
1 f ~A!50.

~A1!

Using a potential representation,A5ux , and differentiating
~A1! we transform this equation to

K~ux,ux!
]2u

]x]t
1

1

2S E
2`

x

2E
x

1` D ]K~ux ,ux8
8 !

]ux

]2u

]x2

]2u8

]x8]t
dx8

1
]4u

]x4
1 f 8~ux!

]2u

]x2
50. ~A2!

This equation can be obtained by a variation of the
tion S5*0

t Ldt8 with the following Lagrangian,
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L5E
2`

1`

dxF1

4S E
2`

x

2E
x

1` DP~ux ,ux8
8 !

]u

]x

]2u8

]x8]t
dx8

2
1

2S ]2u

]x2D 2

1E
0

ux
f ~u!duG , ~A3!

whereP(A,A8) is a new integral kernel which is related t
K(A,A8) according to the following formula:

K~A,A8!5P~A,A8!1
1

2FA
]P~A,A8!

]A
1A8

]P~A,A8!

]A8
G .

~A4!

To prove this result, one needs to introduce an infinitesim
perturbationu→u1du and transform the first variation o
the actionS to the form containingdu by means of integra-
tion by parts and changing the limit of integration accordi
to the rule

E
2`

1`

dxS E
2`

x

2E
x

1` D dx852E
2`

1`

dx8S E
2`

x8
2E

x8

1` D dx.

The integral kernelP(A,A8) defined by the relation
~A4! can be found explicitly in the form

P52E
0

1 ]z

]A

]z8

]A8
dz. ~A5!

This result can be shown from~18!, ~A4!, and~A5! by inte-
grating by parts and using the relation following from~15!:

A
]2z

]A2
5

]

]zF ~z2z!
]z

]AG .
The new integral kernelP(A, A8) has the same basi

properties~22! and ~23! as K(A,A8). Moreover, it replaces
K(A,A8) in the nonlocal evolution equation~20! derived by
Warn11 for description of solitary Rossby waves support
by a weak shear. Hence, we conclude that this integral ke
P(A,A8) plays a fundamental role in analysis of the non
cal evolution equations of the KdV type.

APPENDIX B: EVALUATION OF D-„0…

First, we express the derivativeD-(0) from ~43! under
the conditionD(0)5D8(0)50,

D-~0!5E
2`

1`

dxF E
2`

x

dx8K~us ,us8!S ]Z0~x8!

]x8
Y0ll~x!

12
]Z0l~x8!

]x8
Y0l~x!1

]Z0ll~x8!

]x8
Y0~x!D

1
1

2v
D9~0!G . ~B1!

Here the functionY0ll(x) is the second derivative ofY(x;l)
at l50 and so isZ0ll(0). For example, we show how to
deal with the first integral term in~B1!. We use the following
linear inhomogeneous equation forY0ll ,
3351D. E. Pelinovsky and R. H. J. Grimshaw
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F ]2

]x2
2v1 f 8~us!GY0ll~x!522E

1`

x

K~us ,us8!Y0l~x8!dx8,

~B2!

and substitute~45! and ~46! to transform the first integra
term in ~B1! as follows:

E
2`

1`

dxE
2`

x

dx8K~us ,us8!
]Z0~x8!

]x8
Y0ll~x!

5
1

2bvE2`

1`

dxus~x!Y0ll~x!

52
1

bvE2`

1`

dx
]us

]v E1`

x

dx8K~us ,us8!Y0l~x8!

2
1

4b2v3

]Ps

]v

5
1

2b2v3/2E E
2`

1`

dxdx8K~us ,us8!
]us

]v

]us8

]v

1
1

2v
D9~0!E

2`

0

dx2
2

b3v2

]b

]v
dPs

dv
2

1

4b2v3

]Ps

]v
.

By virtue of similar calculations we evaluate the oth
integral terms in~B1! and finally arrive at the expressio
~50!.

1L. A. Ostrovsky and Yu. S. Stepanyants, ‘‘Do internal solitons exists
the ocean?’’ Rev. Geophys.27, 293 ~1989!.

2R. Grimshaw, ‘‘Internal solitary waves,’’ inAdvances in Coastal and
Ocean Engineering, edited by P. L.-F. Liu~World Scientific, Singapore,
1996!, Vol. 3.

3J. R. Apel, ‘‘Linear and nonlinear internal waves in coastal and marg
seas,’’ in Oceanographic Applications of Remote Sensing, edited by M.
3352 Phys. Fluids, Vol. 9, No. 11, November 1997

Downloaded 14 Feb 2001 to 130.113.234.50. Redistribution subject t
l

Ikeda and F. Dobson~Chemical Rubber, Boca Raton, FL, 1995!, p. 512.
4D. R. Christie, ‘‘Long nonlinear waves in the lower atmosphere,’’ J. A
mos. Sci.46, 1462~1989!.

5R. Grimshaw, ‘‘A second-order theory for solitary waves in deep fluids
Phys. Fluids24, 1611~1981!.

6J. A. Gear and R. Grimshaw, ‘‘A second-order theory for solitary waves
shallow fluids,’’ Phys. Fluids26, 14 ~1983!.

7R. R. Long, ‘‘On the Boussinesq approximation and its role in the the
of internal waves,’’ Tellus17, 46 ~1965!.

8R. R. Long, ‘‘Some aspects of the flow of stratified fluids. I. A theoretic
investigation,’’ Tellus5, 42 ~1953!.

9C. S. Yih, ‘‘Exact solutions for steady two-dimensional flows of a stra
fied fluid,’’ J. Fluid Mech.9, 161 ~1960!.

10R. Grimshaw and Y. Zengxin, ‘‘Resonant generation of finite-amplitu
waves by the flow of a uniformly stratified fluid over topography,’’
Fluid Mech.229, 603 ~1991!.

11T. Warn, ‘‘The evolution of finite amplitude solitary Rossby waves on
weak shear,’’ Stud. Appl. Math.69, 127 ~1983!.

12J. W. Rottman, D. Broutman, and R. H. J. Grimshaw, ‘‘Numerical sim
lations of uniformly stratified fluid flow over topography,’’ J. Fluid Mech
306, 1 ~1996!.

13O. G. Derzho and M. G. Verlarde, ‘‘Solitary waves of permanent form
a deep fluid with weak shear,’’ Phys. Fluids7, 1357~1995!.

14O. G. Derzho and R. H. J. Grimshaw, ‘‘Solitary waves with a vortex co
in a shallow layer of a stratified fluid,’’ preprint No. 97/21~Monash Uni-
versity, Australia!, submitted to Phys. Fluids A.

15D. Prasad and T. R. Akylas, ‘‘On the generation of shelves by long n
linear waves in stratified flows,’’ submitted to J. Fluid Mech.

16J. L. Bona, P. E. Souganidis, and W. A. Strauss, ‘‘Stability and instabi
of solitary waves of KdV type,’’ Proc. R. Soc. London, Ser. A411, 395
~1987!.

17R. L. Pego and M. I. Weinstein, ‘‘Eigenvalues and instabilities of solita
waves,’’ Philos. Trans. R. Soc. London, Ser. A340, 47 ~1992!.

18D. E. Pelinovsky and R. H. J. Grimshaw, ‘‘An asymptotic approach
solitary wave instability and critical collapse in long-wave KdV-type ev
lution equations,’’ Physica D98, 139 ~1996!.

19D. E. Pelinovsky and R. H. J. Grimshaw, ‘‘Asymptotic methods in solit
stability theory,’’ in Advances in Fluid Mechanics Series: Nonlinear In
stability Analysis, edited by S. Choudhury and L. Debnath~Computational
Mechanics Publications, Southampton, 1997!, Chap. 8.

20J. W. Miles, ‘‘On internal solitary waves,’’ Tellus31, 456 ~1979!.
21P. D. Weidman, ‘‘Internal solitary waves in a linearly stratified fluid,

Tellus 30, 177 ~1978!; appendum:31, 465 ~1979!.
D. E. Pelinovsky and R. H. J. Grimshaw

o AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html


