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Abstract 

The exact solutions to the Davey-Stewartson 1 equations are constructed to describe the development of a transversal 
solitary wave instability. Two types of plane dark soliton decays into two-dimensional solitary waves are found and analysed. 
It is also shown that the transversal instability of one-dimensional waveguides leads only to a shift of their drift velocity 
under the action of nonlocalized, inhomogeneous perturbations. 

1. Introduction 

The discovery of the exact N-soliton solutions to several one-dimensional (1D) equations stimulated inves- 
tigation of soliton dynamics in nonlinear systems (see, e.g., Ref. [ 1 ] ). Using the N-soliton formulas Zakharov 
and Shabat succeeded in describing both the soliton scattering and the bound states of oscillating or stationary 
particles [2,3]. Later it was found that the range of applicability for this class of solutions exceeds the bounds of 
simple soliton dynamics. New resonant types of soliton interactions, accompanied by their decay and merging, 
were studied in the framework of the N-soliton solutions as well [4,5]. Moreover, the formal expansion of 
parameters of the solutions into the complex plane allowed one to analyse the development of instability both 
of the solitons and of the wave background of constant intensity [6-8].  

In the two-dimensional (2D) case, the soliton dynamics is still more diverse and manifests simple and 
resonant interactions of plane and 2D solitary waves [9,10]. In order to describe the complete pattern of soliton 
dynamics in multidimensional integrable systems we need a more general representation of the explicit solutions 
than the N-soliton ones. Such a fundamental representation might be found by means of the dressing method 
[ 11 ]. For instance, the dressing method for a 1D stationary solution includes the construction of a complete set 
of eigenfunctions to a linearized problem, which was realized for the Kadomtsev-Petviashvili (KP) equation 
in Refs. [ 12,13]. Recently the nonlinear solutions to the KP1 equation were constructed in the framework of 
this approach to analyse the development of growing discrete-spectrum modes and the transformation of the 
original soliton into 2D solitary waves [ 14]. 

In the present paper we investigate the phenomenon of solitary wave instability in another 2D integrable 
model, 

0375-9601/94/$07.00 (~) 1994 Elsevier Science B.V. All rights reserved 
SSDI 0375-9601 (94)00925-2 



182 D. Pelinovsky /Physics Letters A 196 (1994) 181-186 

2 i a ~ F + a ~ ! / ~ + e 7 2 , p . + 2 g ~ ( n + l , / ~ 1 2  02} 0 ,;:n aU,z4-2,:~l~[ 2 o. (11 

This model is referred to as the Davey-Stewartson (DS1)  equations and describes, lot  instance, surface gravity- 
capillary waves in a fluid of  small depth [15].  The variable ~/r corresponds to the complex ampli tude of  a 
quasi-harmonic wave and the real variable n corresponds to the self-consistent mean flow. 

The wave background (WB)  g'  = p,  n = 0 is stable with respect to small perturbations depending on the 
coordinate x and is unstable with respect to the ones depending on the coordinate v. The development of  
the WB instability for plane quasi-periodic perturbations is described by the 1D nonlinear Schr6dinger (NLS)  
equation and was studied earlier [7,81. It was lound that the growth of  the perturbations alternated with their 
damping. 

Here we shall consider the instability of  other stationary solutions to Eqs. ( 1 ), namely, the 1D solitary waves. 
As is well-known [2,3],  the soliton solutions of  Eqs. (1)  are presented by dark solitons, the amplitudes o1 
which fall off along the x-axis to the value IV[ = p,  and by waveguides, the amplitudes of  which vanish to 
zero along the y-axis. We shall restrict our consideration of the dark soliton instability to only the localized 
discrete-spectrum modes evolving against the soliton background. The dark soliton instability with respect to 
the nonlocalized eigenfunctions of  the continuum spectrum is known to originate from the WB instability 
and does not transform the original soliton into new solitary waves [6] .  On the other hand, the waveguide 
instability discovered for Eqs. (1)  by Ablowitz  and Segur [15] is found to occur under the action of  internal 
nonlocalized perturbations of the mean flow n and to have features of soliton instability with respect to the 
continuum-spectrum eigenfunctions. 

2. T y p e s  o f  d a r k  s o l i t o n  i n s t a b i l i t y  

In order to investigate a dark soliton instability we consider the exact solution to Eqs. ( l ) at p 4- O, 

2) 

/( , ,~ G = o F  + 2&X*, F = 8 - ]&l 2 + l a ' - }  d.v, 3 

where 8 is an arbitrary constant and the functions &, X are solutions to the linear system 

a,4, + a~.4, + PX = 0, a.,X a,.X + P4' = 0. i a ,4 '  = 0 , a , 4 ' ,  ia, a = ,~J', a-- 4 

Formulas ( 2 ) - ( 4 )  follow from the general determinant of explicit solutions Io the DS system which was 
recently found in the framework of  the dressing method [ 16]. If  we choose the functions 4', X in the single- 
exponential form we get an ordinary one-soliton solution to Eqs. (1) .  Hence, the solution ( 2 ) - ( 4 )  is a direct 
functional generalization of  the one-soliton solution. 

Let us choose • = 1 and the functions 4', X in the form 

= -- _ / q b ( K )  cxp(K.~" -- iVY KPt)  dK, 4' x / k e x p ( k x  iuv- -  k v t )  + . - 
l 

k - i v  / ~ e x p ( k x _ i v v _ k v t )  " / ' K  i z ' q S ( K I e x p ( K x  i r a , -  K~'t)dK, 151 
)( . . . .  p " . P 

where v =  X/p 2 k e, p = o - @ p  2 -  K 2 , a n d c r = ± l .  

Obviously,  if  the spectral function g, is infinitesimal we can expand the functions ~I r, n in the vicinity of  the 
one-soli ton solution with parameters (k,  u) and find a solution to the linearized problem. 
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Fig. 1. Regions of dark-soliton instability in the parameter plane k, p. 

Fig. 2. Scheme of dark-soliton decay for o- = +1 (a) and o" = - 1  (b).  

~-_~O(()+ f ~,(K)[~I%(~,K)exp(ipy)+t~_((,K)exp(--ipy)]exp(,~t)dK+O(exp(2at)), (6) 

where 

v-ik[v-iktanh(k()], l~=x-vt, ~-  2 kv'-k-+-K' qt o = p 

exp(x~:) [ ( (v--iK)(v--ik--2iK)) ( (v--iK)(v+ik))l ~+ - p 1 + - ~ o  1 + 
cosh(k~:) ~o7 p2 ' 

eXp(KSC) [ ( (v-iK-2ik)(v-ik)) ( (v+iK)(v--ik))] 
~/'- = cosh(k~:) p 1 + p2 --  gt° 1 + p2 ' 

and the growth rate is related to the transversal wave number by the algebraic system 

A = Kp, p = V/p2 -- k 2 - -  o - V / p 2  - -  K 2. (7) 

Apparently, it is impossible to find a complete set of eigenfunctions to the linearized problem in the framework 
of the solution ( 2 ) - (4 ) .  Nevertheless, the unstable discrete-spectrum modes can be constructed by formulas 
(6),  (7).  Moreover, the non-reduced solution (2), (3) enables us to analyse simultaneously the linear growth 
and the nonlinear long-term evolution of the unstable soliton perturbations. 

Restricting ourselves to a single-periodic perturbation, we choose the spectral function • to be 

~0 = x/-ff~(,~ - k'). (8) 

The instability regions are bounded on the parameter plane k,p in the range 0 ~< [kl[ ~< Ikl because, otherwise, 
the linear corrections !/'± grow exponentially along the coordinate (.  The instability regions for both signs of 

o- are shown in Fig. 1. 
The linear mode 9% at o- = +1 (region 1) is unstable only for long-wave transversal perturbations of the 

dark soliton 9'0. In the asymptotic limit k ~ 0, the soliton transforms to the known soliton of the KP equation 
and the discrete-spectrum mode transforms to its instability mode [ 12-14]. Therefore, we shall call this type 
of dark soliton instability the KP-type. 

Unlike this type, the linear mode 9% at o" = -1  (region 2) is unstable in a narrow range of the short-wave 
perturbations. At k ---, 0 the instability region fuses at the point p = 2p which is cut off for unstable transversal 
perturbations of the uniform wave background I~01 = p. Therefore, the second type of dark soliton instability 
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will be referred to as the WB-type.  It should be noted that this mode has an unusual leature: the growth rate at 
the long-wave boundary of  the region 2 where pc = 2 x/-P2 - k 2, does not vanish and coincides with the growth 

rate of  the WB instability with respect to small ,,,-dependent perturbations A _-7.~ Awt~ = Pox~ P" -- P2 /4 .  

The conditional character of such a classification becomes obvious for the limiting case k ~ p when the 
original soliton is immobile.  In this case, both modes are equivalent and represent two perturbations breaking 
the mirror symmetry of  the original soliton g ' 0 ( x )  

3. Types of dark soliton decay 

At the nonlinear stage of  a dark soliton instability of both types we observe a simple picture: the original 
plane soliton decays into two solitary waves. One of  them is a ID soliton which is described by the function 
q"0 replacing k --+ k' ,  u ~ t / ,  where t, ~ = ( r , J p  2 - k '2. The other, essentially 2D stationary wave, is described 
by the functions G , F  given in (2) ,  (3)  for ~ = 0 and the functions dp, y in the form (5) ,  (8) .  This solution 
depends on two parameters k, k'  and propagates with the velocity w = (kl U u ' l / (  k k ' ) ,  the sign of ,r 
determining two different branches. The scheme of  the plane soliton decay is shown lbr each type of  instability 
in Figs. 2a, 2b. In this section we discuss characteristic features of  the processes outlined. 

The development of  the dark soliton instability of  the KP-type generalizes the phenomenon of  plane soliton 
decay in posit ive-dispersion media discovered recently in the KPI equation [10,14].  It is seen from Fig.2a that, 
for small values of  the parameter k, both resulting solitary waves move in the same direction as an original 
unstable soliton, the plane wave having a smaller amplitude and greater velocity, while the 2D wave has a 
greater ampli tude and smaller velocity. 

The 2D stationary wave can be regarded as a periodic chain of  2D dark solitons, each of which is described 
by the lo l lowing function, 

( (  - i / v )  2 + k2y2/t; 2 + p2/4v2k2 

= P (2 __ k2y2/l~2 q_ p2./41,2k2 
{9t 

where ( = x - (u 2 -- k 2 ) t / u , u  2 + k 2 = t )2. 

For small k, 2D dark solitons look like inverted KP lumps, the region of lower intensity being concentrated 
near the global minimum at the point ( = v = 0 and the regions of  higher intensity near the points ( :  = 
(3U 2 -  k 2) /4u2k 2 , y = O .  

For the WB-type  dark soliton instability, the resulting solitary structures have slightly different characteristic 
features (see Fig. 2b) .  For cr = - 1  and Ik'l < Ikl, a new 2D wave is also a stationary superposition of  2D 
perturbations, but it propagates faster than the 2D wave at o- = +1 and has much wider regions of higher 
intensity. Such a wave can also be regarded as a periodic chain of  2D dark solitons (9)  but for large k when 
they have a pair of  zero values at the points ( = 0, y2 = (3k  2 u2) /4k  4 and the global maximum in the origin 

~=y=0. 
Besides the 2D stationary wave, a new plane soliton appears and moves in the opposite direction with respect 

to the original soliton. We may call such a phenomenon the inversion of  a dark soliton occurring as a result 
of  its instability of  the WB-type.  In its pure form, the dark soliton inversion is observed for k' = k at the 
boundary curve p = p c ( k )  where the growth rate A -- ,,lwB. During this process, all energy of  the plane soliton 
propagating with velocity +v  along the (-axis ,  transforms into energy of  the plane soliton propagating with the 
velocity - u .  Such a transformation is caused by growing and damping perturbations of  the wave background 
which are uniform along the ( -ax is  and are nothing but "the 2D wave" at k' = k, u' = u, w = oc. 

It should be emphasized that except for the limiting case k r = k the dark soliton instability of  the WB-type  
occurs under the action of  localized discrete-spectrum modes (6) .  Nevertheless, its appearance is associated 
with the phenomenon of  the WB transversal instability. 
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4. The waveguide instability 

Here we consider solitary waves at the zero background, depending on the coordinate y. Since a quasi- 
harmonic wave propagates along the x-axis, such solitary waves are referred to as 1D waveguides [ 15]. As 
was found in Ref. [ 15], the 1D waveguides are also unstable with respect to transversal perturbations. In this 
section we construct the exact solutions describing the nonlinear stage of this instability. 

The explicit solution to Eqs. (1) generalizing the one-soliton solution at p = 0 can be written in the form 
[17] 

o o  o o  

c =2@x', P = l - f 14,1'dx. S ixl'dx, (lO) 
x x 

where the functions 4,, X satisfy the linear system (4) at p = 0, and the functions G, F generate a solution to 
Eqs. (1) according to (2). 

Applying the approach described above, we specify the functions 4,, X as follows, 

= c e x p [ p ( x  - y )  + ip2t] + / q ~ ( a )  exp [a ( x  - y) + ia2t] da,  4, 

X = c exp[q(x  + y) - iq2t] + / T ( f l )  exp [ f l ( x  + y )  - ifl2t] dfl. ( 1 1 ) 

Here the spectral functions q0, T are independent and generate two partial sets of eigenfunctions to a linearized 
problem on the waveguide background. However, one set can be obtained from the other by the mirror 
transformation x ~ - x .  Therefore, we consider only the first one and restrict ourselves again to a single- 
periodic perturbation: q~(t~) = c l 6 (  a - p l ) ,  T ( f l )  = O. 

Substituting (11) into (2) and choosing a convenient parametrization, we obtain the following nonlinear 
solution, 

= 2vexp(v~7 - i 0 ) { 1  + [ ( v - i K ) / V ]  e x p [ M + i K ( X  -- Kr;) ] } (12) 
1 + exp(2v~;){1 + [ (v  2 + K 2 ) / V  2] exp(2,~t) + 2 exp(ht) COS[K(X -- roT)] } '  

where 

~ 7 = y + 2 I m q t ,  O = 2 I m q y + 2 ( I m q 2 - R e q 2 ) t ,  x = I m p ~ - - I m q ,  

A = VK,  V = 2Req,  p = -q* ,  Rep  I = Rep, c = V'-v, c p = ( v  - i x ) / v / - v .  

As t ---, - ~ ,  the solution (12) describes the 1D waveguide which drifts along the y-axis with velocity - 2 I m q  
and the growing perturbation which is periodic along the x-axis and oriented at an angle to the waveguide, 
depending on the parameter K. At K ~-- 0, the linear corrections ~ ±  are asymmetrical, q'+ "~ 0n[~'01 and 
represent the transversal modulation of the waveguide coordinate. 

For the variable ~ ,  the localized eigenfunction 1/,+ might seem to be a discrete-spectrum mode which usually 
leads to instability of one-dimensional envelope solitons in equations of NLS-type [ 15 ]. Nevertheless, the other 
component of the wave field n is localized only along the direction r/--~ -cx~ for v > 0 and vice versa. Along 
the opposite direction, the field n is non-localized and looks like an oblique harmonic wave with a small but 
growing amplitude. Therefore, the waveguide instability is actually the instability with respect to the continuum 
eigenfunctions. It occurs only due to the action of internal inhomogeneous perturbations induced by the field 
n. This fact accounts for the unusual feature following from the linear dependence A = VK: the waveguide is 
unstable with respect to the oblique perturbations with an arbitrary period. 

At the nonlinear stage, the growth of the perturbations is stabilized and is replaced by their damping. Only 
two effects appear as a result of the waveguide instability: the change of the drift velocity which becomes equal 
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to ( I m  q + I m p ' )  as t --~ + o c  and the b e n d i n g  of  the phase  f ronts  0 = cons t  wh ich  b e c o m e  ob l i que  in the 

.v, y -p lane .  The  ene rgy  o f  a wavegu ide  is not  changed  by these  effects.  

Apparen t ly ,  the  d a m p i n g  o f  the  2D pe r tu rba t ions  for  the  wavegu ide  ins tabi l i ty  is assoc ia ted  wi th  the  absence  

o f  2D sol i ta ry  waves  at the  zero b a c k g r o u n d  in the  model  ( I ). The  energy  o f  the  or ig ina l  wavegu ide  c a n n o t  be 

d i s t r ibu ted  a m o n g  o the r  n o n l i n e a r  s t ruc tures  o f  the wave field, and se l f - focus ing  o f  the 1D wavegu ides  changes  

the  d e f o c u s i n g  stage.  
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