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Abstract. A nonstationary model that relies on the spatial nonlinear Schrödinger (NLS) equation with the time-dependent
refractive index describes laser beams in photopolymers. We consider a toy problem, when the rate of change of refractive
index is proportional to the squared amplitude of the electric field and the spatial domain is a plane. After formal deriva-
tion of the NLS approximation from a two-dimensional quasilinear wave equation, we establish local well-posedness of the
original and reduced models and perform rigorous justification analysis to control smallness of the approximation error for
appropriately small times.
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1. Introduction

Mathematical models for laser beams in photochemical materials used in the physical literature [14] are
based on a spatial nonlinear Schrödinger (NLS) equation with a time-dependent refractive index. These
models are normally derived from Maxwell equations using heuristic arguments and qualitative approxi-
mations (see e.g., [15,19]). Numerical simulations of such models are performed by experimentalists [9,21]
for theoretical explanations of complicated dynamics of laser beams in photopolymers. The complexity
of the NLS equation modeling photochemical materials is related to the fact that the spatial coordinate
in the direction of the beam propagation serves as an evolution time in the NLS equation, whereas the
nonlinear refractive index depends slowly on the temporal coordinate. Physically, the NLS approximation
describes laser beams in emerging waveguides in polymers which affect shape and dynamics of the pulse
via nonlinear refractive index.

In the present work, we study how to justify a time-dependent NLS model from a toy model resembling
the Maxwell equations. The toy model is written as a system of a two-dimensional quasilinear wave equa-
tion and an empirical relation for the change of the refractive index. Although the justification procedure
for the classical nonlinear Schrödinger equation is well-known [8], we emphasize that no results are avail-
able in the mathematical literature on the justification of the spatial NLS equation with a time-dependent
refractive index. Among other relevant results, we mention the work of J. Rauch and his collaborators on
dispersive nonlinear geometric optics in the context of Maxwell–Bloch equations [3–7] and the works of
G. Schneider and his collaborators on justification of various versions of the NLS equation in the context
of Maxwell equations [11,12,17,18].

1.1. Toy model

A photopolymer occupies typically a half space z ≥ 0, and its face z = 0 is exposed to a laser beam. If
the beam is localized in the x-direction and uniform in the y-direction, then the electric field has polari-
zation in the y-direction with the amplitude E being y-independent; hence, E (x, z, t) = (0, E (x, z, t) , 0)
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is the electric field. The initial beam is assumed to be spatially wide-spreaded, small in amplitude, and
monochromatic in time.

Neglecting polarization effects and uniform material losses, the electric field satisfies a two-dimensional
quasilinear wave equation in the form

∂2
xE + ∂2

zE − n2∂2
t E = 0, (1.1)

where n is referred to as the refractive index of the photopolymer. The refractive index n changes in time
t because of the nonlinear effects induced by the squared amplitude of the electric field E.

Let us write the squared refractive index in the form n2 = 1 + m and assume that the rate of change
of m is governed by the empirical relation

∂tm = E2. (1.2)

We note that all physical constants in the system (1.1)–(1.2) are normalized to unity.
The system (1.1)–(1.2) approximates a more complicated system of governing equations in the physical

literature [14], for which the quasilinear wave equation is written via a polarization term

∂2
xE + ∂2

zE − ∂2
t P = 0, P = n2E, (1.3)

whereas the correction of the refractive index m = n2 − 1 is modeled by

∂tm = E2

(
1 − m

ms

)
⇒ m = ms

(
1 − e

− 1
ms

t∫
0

E2dt′
)

, (1.4)

where ms is the constant level of saturation for m. Justification of the system (1.3)–(1.4) is expected to
be analogous to the results which are presented here for the simplified system (1.1)–(1.2).

It is worth mentioning that the realistic three-dimensional problems for laser beams in photochemical
materials can also be treated with similar analysis. Even though the starting system will then take a
form of the system of coupled Maxwell equations, functional embedding of H2(R3) to Cb(R3) allows us
to close the estimates within the same energy levels as those in the considered two-dimensional case.

1.2. Asymptotic balance

Let us seek for the asymptotic solution to the system (1.1)–(1.2) by using the multi-scale expansion
[16,19]

E (x, z, t) = εpA(X,Z, T )eiω0(z−t) + c.c., m (x, z, t) = εrM(X,Z, T ), (1.5)

where c.c. stands for complex conjugated terms, X = εx, Z = εqz, T = εst are slow variables, and
p, q, s, r > 0 are exponents to be specified.

We want to choose the exponents p, q, s, and r such that A is governed by the NLS equation, which
has first-order partial derivatives of A in Z, second derivative in X, and a nonlinear term proportional
to m0A at the leading order of ε (that is O (

εp+2
)

due to the term ∂2
xE). At the same time, Eq. (1.2)

must enforce the rate of change of M in T to be of order O (1) at the leading order of ε (that is O (
ε2p
)

due to the term E2). These requirements lead to the choice

q = 2, r = 2, s = 2p − 2, (1.6)

which still leaves parameter p to be defined.
To show (1.6), we substitute (1.5) in (1.1) and (1.2) to obtain:

εp
[
ε2∂2

XA + 2iω0 (εq∂ZA + εs∂T A) + εrω2
0MA

]
eiω0(z−t) + c.c. + h.o.t. = 0, (1.7)

and

εr+s∂T M = ε2p |A|2 +
(
ε2pA2e2iω0(z−t) + c.c.

)
+ h.o.t., (1.8)

where h.o.t. stands for the higher order terms.
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From Eq. (1.7), the balance occurs for q = 2, r = 2, and s ≥ 2. From Eq. (1.8), the balance occurs for
r + s = 2p, hence s = 2p − 2, and the balance (1.6) is justified. Note that, the second term in Eq. (1.8)
induces the second harmonic, which will be further included in the equation for a residual term.

If s = 2, the leading-order terms of the system (1.7)–(1.8) read as follows:

∂2
XA + 2iω0 (∂ZA + ∂T A) + ω2

0MA = 0 (1.9)

and

∂T M = 2 |A|2 , (1.10)

which will be the subject of our studies.
If s > 2, the leading-order terms of Eq. (1.7) yield the spatial NLS equation

∂2
XA + 2iω0∂ZA + ω2

0MA = 0. (1.11)

Because M depends on T by means of the same Eq. (1.10), A depends on T implicitly in Eq. (1.11).
The system (1.10)–(1.11) was used in the previous works on photochemical materials (see review in [14]).
Unfortunately, our method does not allow us to justify the system (1.10)–(1.11) at the present time. For
example, the energy (L2-norm) of the solution A on the plane (X,Z) is infinite because the integral of
|A|2 in X is independent of the Z-variable.

Our task is to justify the system (1.9)–(1.10), where the time evolution of A is uniquely determined.
To avoid nonvanishing boundary terms arising in energy method when integrating by parts, we shall
consider solutions of the original system (1.1)–(1.2) on the whole plane (x, z) ∈ R

2 supplemented by the
initial conditions at t = 0.

To summarize, in the case s = 2, we choose the scaling X = εx, Z = ε2z, T = ε2t and represent exact
solution to the system (1.1)–(1.2) as

E(x, z, t) = ε2
(
A(X,Z, T )eiω0(z−t) + c.c.

)
+ U(x, z, t) (1.12)

and

m(x, z, t) = ε2M(X,Z, T ) + N(x, z, t), (1.13)

where U(x, z, t) and N(x, z, t) are error terms to estimate.
Let us denote

(R)nω0
:= Reinω0(z−t) + c.c.

where the complex envelope R at the nth harmonic may depend on X, Z, and T .
Feeding (1.12)–(1.13) into (1.1)–(1.2) and assuming validity of (1.9)–(1.10), we arrive at the system

∂2
xU + ∂2

zU − (
1 + ε2M + N

)
∂2

t U = −ε2
(
R

(U)
2

)
ω0

N − ε6
(
R

(U)
6

)
ω0

(1.14)

and

∂tN = ε4
(
A2
)
2ω0

+ 2ε2 (A)ω0
U + U2, (1.15)

where

R
(U)
2 = ω2

0A + 2iω0ε
2∂T A − ε4∂2

T A,

R
(U)
6 = ∂2

ZA − (
1 + ε2M

)
∂2

T A + 2iω0M∂T A.

We shall now consider an initial-value problem, for which we formulate the main justification result.
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1.3. Main result

For the system (1.1)–(1.2), we impose the following initial conditions

E|t=0 = ε2A0

(
εx, ε2z

)
eiω0z + c.c. =: E0, (1.16)

∂tE|t=0 = −iω0ε
2A0

(
εx, ε2z

)
eiω0z + ε4∂T A0

(
εx, ε2z

)
eiω0z + c.c. =: E1, (1.17)

m|t=0 = 0, (1.18)

where A0 is the initial distribution of the beam for the nonlinear Schrödinger equation (1.9) and ∂T A0 is
expressed explicitly from (1.9). Such initial conditions imply that the electrical field E at t = 0 is already
penetrated in the photopolymer but has not yet induced the change in the refractive index m. Note also
that the conditions (1.16)–(1.18) imply that U |t=0 = ∂tU |t=0 = N |t=0 = 0 in the system (1.14)–(1.15)
for the error terms.

Our main result is the following justification theorem.

Theorem 1. Given initial data A0 ∈ H8
(
R

2
)
, let A, M be local solutions to the system (1.9)–(1.10) for

T ∈ [0, T∞) where T∞ > 0 is the maximal existence time. There exist ε0 > 0 and T0 ∈ (0, T∞) such that
for every ε ∈ (0, ε0) there is a unique solution E, m of the system (1.1)–(1.2) for t ∈ [

0, T0/ε2
]

satisfying
the initial conditions (1.16)–(1.18) and the bounds

sup
t∈[0,T0/ε2]

∥∥E − ε2 (A)ω0

∥∥
H3(R2)

= O
(
ε5/2

)
, sup

t∈[0,T0/ε2]

∥∥m − ε2M
∥∥

H2(R2)
= O

(
ε5/2

)
. (1.19)

The methods of the proof of Theorem 1 are standard, e.g., energy methods and Gronwall inequality.
The main technical difficulty arises because Eq. (1.1) is quasilinear and lacks the linear dispersion of the
Klein–Gordon equation. As a result, estimates for the L2-norm of the error terms can be obtained only
by integration of the time derivative term and hence are O(ε2)-larger compared to the L2-norm of the
spatial gradients and time derivatives of the error terms.

We note that the leading-order terms in the decompositions (1.12)–(1.13) are bounded by

sup
t∈[0,T0/ε2]

∥∥ε2 (A)ω0

∥∥
L2 ≤ 2ε2 sup

T∈[0,T0]

⎛
⎝ ∫

R2

∣∣A (
εx, ε2z, T

)∣∣2 dxdz

⎞
⎠

1/2

= O(ε1/2) (1.20)

and

sup
t∈[0,T0/ε2]

∥∥ε2M∥∥
L2 = ε2 sup

T∈[0,T0]

⎛
⎝ ∫

R2

∣∣M (
εx, ε2z, T

)∣∣2 dxdz

⎞
⎠

1/2

= O(ε1/2), (1.21)

with similar bounds for the L2-norms of the derivatives. Therefore, the error terms in the decompositions
(1.12)–(1.13) are O(ε2)-smaller than the leading-order terms in the corresponding Sobolev norms. Also
note that the L2-norms of the leading-order terms are O(ε3/2)-larger compared with the order of their
L∞-norm because of integration in the slow variables X = εx and Z = ε2z.

We shall outline the proof of Theorem 1 in more detail. First, in Sect. 2, we review local existence of
solutions of the system (1.1)–(1.2) in Sobolev spaces. By using Kato’s theory [10], we prove existence of
local solutions

E ∈ C
(
[0, t0] ,H4

(
R

2
)) ∩ C1

(
[0, t0] ,H3

(
R

2
)) ∩ C2

(
[0, t0] ,H2

(
R

2
))

, (1.22)

for some t0 > 0 which can be continued to t′0 > t0 as long as

sup
t∈[0,t′

0]

(‖E‖L∞ + ‖∂tE‖L∞ + ‖∇E‖L∞) < ∞. (1.23)



Vol. 65 (2014) Laser beams in photopolymers 409

Solutions of the system are extended on the time intervals [0, T0/ε2] with an ε-independent T0, for which
local solutions of the NLS system (1.9)–(1.10) can be considered for any A0 ∈ Hs(R2) with s > 1. The
functional analysis tools needed for our work are collected together in Appendix A.

The goal of Sect. 3 is to obtain sufficient estimates for the error terms U, N governed by (1.14)–(1.15)
and hence to justify the approximation of solutions of the system (1.1)–(1.2) by solutions of the NLS
system (1.9)–(1.10).

First, we execute near-identity transformations to move the residual terms of the system (1.14)–(1.15)
to the O(ε8) order in the L∞-norm or to the O(ε13/2) order in the L2-norm Then, using a priori energy
estimates and Gronwall inequality, we bound terms such as ‖∂tU‖L2 and ‖∇U‖L2 on the time intervals
[0, T0/ε2] by the O(ε9/2) error of the inhomogeneous (source) terms in the L2-norm. Because of the lack
of the linear dispersion term, we use bounds like

‖U‖L2 ≤ T0

ε2
sup

t∈[0,T0/ε2]

‖Ut‖L2 , (1.24)

which results in a larger O(ε5/2) error in Theorem 1. Nevertheless, because the residual terms have been
moved to the higher order by means of near-identity transformations, we are able to close the estimates
for small values of T0 that satisfy some technical constraints. This construction allows us to continue
solutions to the time interval [0, T0/ε2] and to bound the error terms on these time intervals.

2. Local well-posedness theory

Before we proceed with the justification analysis, let us consider the question of local well-posedness of
the wave system (1.1)–(1.2) and formulate a regularity criterion for the continuations of local solutions.
We also obtain local well-posedness of the NLS system (1.9)–(1.10). Note that, many useful results from
functional analysis are reviewed in Appendix A and labeled by the capital letters (instead of numbers).

2.1. Local well-posedness of the quasilinear wave system

Consider the quasilinear wave system{
∂2

xE + ∂2
zE − (1 + m) ∂2

t E = 0,

∂tm = E2,
(x, z) ∈ R

2, t ∈ R+, (2.1)

subject to the initial conditions m|t=0 = 0, E|t=0 = E0, and Et|t=0 = E1 for given E0, E1 ∈ Hs
(
R

2
)

with some s ≥ 0, where Hs is the L2-based Sobolev space. We can apply the local well-posedness theory
for quasilinear symmetric hyperbolic systems [10,13,20] once we bring the quasilinear wave system (2.1)
into a form of the first-order system associated with a symmetric matrix.

To symmetrize the system, we set

v :=

(
∂tE,

∂xE

(1 + m)1/2
,

∂zE

(1 + m)1/2
, E, ∂xm, ∂zm, m

)T

. (2.2)

Then, the wave system (2.1) is equivalent to the symmetric quasilinear first-order system

∂tv + A1 (v) ∂xv + A2 (v) ∂zv = f (v) , (2.3)

where A1, A2 are matrices with the only nonzero elements

− 1

(1 + v7)
1/2

= − 1
(1 + m)1/2
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located at (1, 2)–(2, 1) and (1, 3)–(3, 1) entries, respectively, whereas f(v) is a vector field given by

f (v) =

(
v2v5 + v3v6

2 (1 + v7)
3/2

, − v2
4v2

2 (1 + v7)
, − v2

4v3

2 (1 + v7)
, v1, 2 (1 + v7)

1/2
v2v4, 2 (1 + v7)

1/2
v3v4, v2

4

)T

=

(
∂xE∂xm + ∂zE∂zm

2 (1 + m)2
, − E2∂xE

2 (1 + m)3/2
, − E2∂zE

2 (1 + m)3/2
, ∂tE, 2E∂xE, 2E∂zE, E2

)T

.

Note that, A1, A2, f have no explicit dependence on x, z and t.
The initial data for (2.3) are given by

v|t=0 = (E1, ∂xE0, ∂zE0, E0, 0, 0, 0)T
. (2.4)

By the Kato theory (see Theorems I–II in [10]), for any v0 ∈ Hs
(
R

2
)

with a fixed s > 5
2 , the Cauchy

problem (2.3)–(2.4) admits unique local solution in class of functions

v ∈ C
(
[0, t0] ,Hs

(
R

2
)) ∩ C1

(
[0, t0] ,Hs−1

(
R

2
))

for some t0 > 0. Moreover, the solution v depends on the initial data v0 continuously (Theorem III in
[10]). We transfer this result in the following lemma, where we prefer to work with integer values of s ≥ 3.

Lemma 1. For any integer s ≥ 3, there exists a unique local solution of the system (2.1) in the class of
functions

E ∈ C
(
[0, t0] ,Hs+1

(
R

2
)) ∩ C1

(
[0, t0] ,Hs

(
R

2
)) ∩ C2

(
[0, t0] ,Hs−1

(
R

2
))

, (2.5)

m ∈ C1
(
[0, t0] ,Hs+1

(
R

2
)) ∩ C2

(
[0, t0] ,Hs

(
R

2
)) ∩ C3

(
[0, t0] ,Hs−1

(
R

2
))

. (2.6)

Moreover, the solution depends continuously on the initial data E0 ∈ Hs+1
(
R

2
)

and E1 ∈ Hs
(
R

2
)
.

Proof. From the first and the last four entries in (2.2), we infer that, for any integer s ≥ 3,

E ∈ C1
(
[0, t0] ,Hs

(
R

2
)) ∩ C2

(
[0, t0] ,Hs−1

(
R

2
))

, (2.7)

m ∈ C
(
[0, t0] ,Hs+1

(
R

2
)) ∩ C1

(
[0, t0] ,Hs

(
R

2
))

. (2.8)

We shall now use the second and third entries in (2.2), which tell us that

J :=
∫
R2

⎛
⎝
[
∂s

x

(
∂xE

(1 + m)1/2

)]2

+

[
∂s

z

(
∂zE

(1 + m)1/2

)]2
⎞
⎠ dxdz

is a bounded continuous function of t on [0, t0]. Without loss of generality, let us keep track of only
x-derivatives.

By the Leibnitz differentiation rule, we have[
∂s

x

(
∂xE

(1 + m)1/2

)]2

=

[
s∑

k=0

(
s
k

)
∂k+1

x E∂s−k
x (1 + m)−1/2

]2

=

[
(1 + m)−1/2

∂s+1
x E +

s−1∑
k=0

(
s
k

)
∂k+1

x E∂s−k
x (1 + m)−1/2

]2

,

where
(

s
k

)
is a binomial coefficient. Denoting

λ :=

⎛
⎝ ∫

R2

[
∂s+1

x E
]2

1 + m
dxdz

⎞
⎠

1/2

, μ :=

⎛
⎝∫

R2

[
s−1∑
k=0

(
s
k

)
∂k+1

x E∂s−k
x (1 + m)−1/2

]2

dxdz

⎞
⎠

1/2

,
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we use the Cauchy–Schwarz inequality to estimate

λ2 ≤ J − 2
∫
R2

∂s+1
x E

(1 + m)1/2

s−1∑
k=0

(
s
k

)
∂k+1

x E∂s−k
x (1 + m)−1/2 dxdz

−
∫
R2

[
s−1∑
k=0

(
s
k

)
∂k+1

x E∂s−k
x (1 + m)−1/2

]2

dxdz

≤ J + 2λμ.

But then

λ2 − 2μλ − J ≤ 0 ⇒ λ ≤ μ +
√

μ2 + J.

Let us now show that μ < ∞ for any t ∈ [0, t0]. By the triangle inequality for L2-norm, for some
constant C > 0, we have

μ ≤ C

s−1∑
k=0

⎛
⎝ ∫

R2

(
∂k+1

x E
)2 [

∂s−k
x (1 + m)−1/2

]2
dxdz

⎞
⎠

1/2

≤ C

[
‖∂xE‖L∞

∥∥∥∂s
x (1 + m)−1/2

∥∥∥
L2

+
s−1∑
k=1

∥∥∂k+1
x E

∥∥
L2

∥∥∥∂s−k
x (1 + m)−1/2

∥∥∥
L∞

]
.

The right-hand side of the last inequality is bounded for any t ∈ [0, t0] because ‖∂s
xE‖L2 ,

∥∥∂s+1
x m

∥∥
L2 ,

‖∂xE‖L∞ ,
∥∥∂s−1

x m
∥∥

L∞ , ‖m‖L∞ are all bounded due to (2.7)–(2.8), as well as by Sobolev’s embeddings
(Proposition B) and Banach algebra of the L∞-norm. Since μ < ∞, then λ < ∞ holds for all t ∈ [0, t0].

Now, since m|t=0 = 0 and ∂tm = E2 ≥ 0, we have m (x, z, t) ≥ 0 for all (x, z) ∈ R
2 and t ∈ [0, t0].

Therefore, we obtain

1
1 + ‖m‖L∞

∫
R2

([
∂s+1

x E
]2

+
[
∂s+1

z E
]2)

dxdz ≤
∫
R2

([
∂s+1

x E
]2 +

[
∂s+1

z E
]2

1 + m

)
dxdz < ∞,

and thus conclude that, for all t ∈ [0, t0],∫
R2

([
∂s+1

x E
]2

+
[
∂s+1

z E
]2)

dxdz < ∞. (2.9)

It is also clear that the norm in (2.9) is a continuous function of t on [0, t0] so that the assertion (2.5)
holds. To obtain (2.6), we use the bootstrapping argument for the second equation in the system (2.1)
because the space Hs

(
R

2
)

is a Banach algebra for s > 1 (Proposition A). �

2.2. Continuation of local solutions of the quasilinear wave system

The following lemma tells us that a local solution of Lemma 1 can be continued as long as the solution, its
time derivative, and its space gradient remain bounded in L∞-norm. This result is similar to the blow-up
criteria of solutions in other equations of fluid dynamics [2,20].

Lemma 2. Local solution of the system (2.1) in Lemma 1 does not blow up as t → t0 if

sup
t∈[0,t0]

(‖E‖L∞ + ‖∂tE‖L∞ + ‖∇E‖L∞) < ∞. (2.10)
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Proof. In order to verify the condition (2.10), we assume that M1,2,3 < ∞, where

M1 := sup
t∈[0,t0]

‖E‖L∞ , M2 := sup
t∈[0,t0]

‖∇E‖L∞ , M3 := sup
t∈[0,t0]

‖∂tE‖L∞ ,

and show that, for all t ∈ [0, t0],

‖E‖H4 , ‖∂tE‖H3 ,
∥∥∂2

t E
∥∥

H2 < ∞.

To demonstrate this, we employ a priori energy bounds. For the sake of compactness, let us use short
notation Ex := ∂xE, Et := ∂tE and so on for other derivatives of E and m.

Let us multiply the first equation of the system (2.1) by Et and integrate by parts employing decay of
EtEx and EtEz to zero as |x| , |z| → ∞. The decay to zero is justified for the local solution of Lemma 1
with s = 3 by Sobolev’s embeddings (Proposition B). Thus, we obtain

dH1

dt
=

1
2

∫
R2

E2E2
t dxdz ⇒ dH1

dt
≤ M2

1 H1, (2.11)

where we have used the second equation of the system (2.1) and introduced the first energy functional

H1 :=
1
2

∫
R2

(
(1 + m) E2

t + E2
x + E2

z

)
dxdz. (2.12)

By Gronwall’s inequality (Proposition D) and the fact that m (x, z, t) ≥ 0 for all (x, z) ∈ R
2, we obtain

‖Ex‖2
L2 + ‖Ez‖2

L2 + ‖Et‖2
L2 ≤ 2H1 ≤ 2H1|t=0e

M2
1 t < ∞, t ∈ [0, t0] .

By Lemma A for p = 2, we also control ‖E‖L2 as follows:

d
dt

‖E‖L2 ≤ ‖Et‖L2 ⇒ ‖E‖L2 ≤ t0 sup
t∈[0,t0]

‖Et‖L2 + (‖E‖L2)|t=0 < ∞, t ∈ [0, t0] .

We thus conclude that E ∈ H1
(
R

2
)

and Et ∈ L2
(
R

2
)

for all t ∈ [0, t0].
Now, we perform the same procedure but differentiating the first equation of the system (2.1) with

respect to x, multiplying it by Ext and integrating over (x, z) ∈ R
2. Repeating the same with z- and

t-variables, we sum the results to obtain
dH2

dt
=

1
2

∫
R2

(
E2

[
E2

xt + E2
zt − E2

tt

]− Ett [Extmx + Eztmz]
)

dxdz, (2.13)

where the second energy functional was introduced

H2 :=
1
2

∫
R2

(
(1 + m) E2

tt + (2 + m)
[
E2

xt + E2
zt

]
+ E2

xx + E2
zz + 2E2

xz

)
dxdz, (2.14)

and we have used the decay of ExtExx, ExtExz, EztEzz, EztExz, EttExt and EttEzt to zero as |x| , |z| →
∞, which is justified for the local solution of Lemma 1 for s = 3. We have

‖Exx‖2
L2 + ‖Ezz‖2

L2 + 2 ‖Exz‖2
L2 + 2 ‖Ext‖2

L2 + 2 ‖Ezt‖2
L2 + ‖Ett‖2

L2 ≤ 2H2.

We shall now control H2 from Eq. (2.13). The terms in (2.13) with E2E2
xt, E2E2

zt and E2E2
tt are

controlled by a multiple of M2
1 H2. Additionally, we need to bound ‖m‖L∞ and ‖∇m‖L∞ . By Corollary A

for p = ∞, we have

‖m‖L∞ ≤ t0 sup
t∈[0,t0]

‖mt‖L∞ ≤ t0M
2
1 (2.15)

and

‖∇m‖L∞ ≤ t0 sup
t∈[0,t0]

‖∇mt‖L∞ ≤ 2t0M1M2, t ∈ [0, t0] , (2.16)
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where we have used the initial condition m|t=0 = 0 and the second equation of the system (2.1).
By the triangle and Cauchy–Schwarz inequalities, we have

dH2

dt
≤ M1 (M1 + 2t0M2) H2, ⇒ H2 ≤ H2|t=0e

M1(M1+2t0M2)t < ∞, t ∈ [0, t0] .

Thus, we deduce that E ∈ H2
(
R

2
)
, Et ∈ H1

(
R

2
)
, and Ett ∈ L2

(
R

2
)

for all t ∈ [0, t0].
We continue in the same manner as before, acting on the first equation of the system (2.1) by the

operator Exxt∂
2
x + Ezzt∂

2
z + Ettt∂

2
t and integrating the result in (x, z) over R

2 by parts to reduce the
expression to first-order derivatives of m only. At the end, we obtain a functional that is not positive
definite. Its boundedness does not yield a bound on the norms of derivatives of E it includes. To remedy
the situation, we add

∫
R2

(
m2

x + m2
z

)
E2

tt dxdz to the energy functional thus obtained and compute the

balance equation:

dH3

dt
=

1
2

∫
R2

(
E2

[
E2

xxt + E2
zzt − 3E2

ttt

]− 2mx [ExxtExtt + ExxxEttt]

−2mz [EzztEztt + EzzzEttt] − 4EttE [EtttEt + ExxxEx + EzzzEz]

+8EE2
tt [Exmx + Ezmz] + 4EttEttt

[
m2

x + m2
z

])
dxdz, (2.17)

where

H3 :=
1
2

∫
R2

(
(1 + m)

[
E2

ttt + E2
xxt + E2

zzt

]
+ E2

xtt + E2
ztt +

1
2
(
E2

xxx + E2
zzz

)

+E2
xxz + E2

xzz +
1
2

[Exxx − 2mxEtt]
2 +

1
2

[Ezzz − 2mzEtt]
2

)
dxdz, (2.18)

so that

‖Exxx‖2
L2 + ‖Ezzz‖2

L2 + 2 ‖Exxz‖2
L2 + 2 ‖Exzz‖2

L2 + 2 ‖Exxt‖2
L2 + 2 ‖Ezzt‖2

L2

+2 ‖Ettt‖2
L2 + 2 ‖Extt‖2

L2 + 2 ‖Eztt‖2
L2 ≤ 4H3.

In deriving Eq. (2.17), we have used the decay of ExxxExxt, ExxzExxt, EzzzEzzt, ExzzEzzt, EtttExtt,
EtttEztt, mxExxtEtt, and mzEzztEtt to zero as |x| → ∞, |z| → ∞. This decay can be obtained by working
with approximating sequences as follows.

Let us consider an approximation of the initial conditions E0, E1 by the sequences of functions{
E

(n)
0

}∞

n=1
∈ H5

(
R

2
)
,
{

E
(n)
1

}∞

n=1
∈ H4

(
R

2
)
, respectively. Then, by Lemma 1 with s = 4, the cor-

responding sequence of local solutions will be

E(n) ∈ C
(
[0, t0] ,H5

(
R

2
)) ∩ C1

(
[0, t0] ,H4

(
R

2
)) ∩ C2

(
[0, t0] ,H3

(
R

2
))

.

The decay assumptions are valid for the approximate solution E(n) by Sobolev’s embeddings.
Because the space H5

(
R

2
)

is dense in H4
(
R

2
)

and so is H4
(
R

2
)

in H3
(
R

2
)
, we have∥∥∥E(n)

0 − E0

∥∥∥
H4

→ 0,
∥∥∥E(n)

1 − E1

∥∥∥
H3

→ 0 as n → ∞,

and hence, by the continuous dependence of the solution on the initial data in Lemma 1, we have∥∥∥E(n) − E
∥∥∥

H4
→ 0,

∥∥∥E(n)
t − Et

∥∥∥
H3

→ 0 as n → ∞,

that holds for all t ∈ [0, t0]. This approximation argument furnishes the required decay of solutions at
infinity in the justification of the energy balance (2.17).
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Using (2.16), we estimate the m-dependent terms in (2.17) as follows:∫
R2

mx [ExxtExtt + ExxxEttt] dxdz ≤ ‖∇m‖L∞ (‖Exxt‖L2 ‖Extt‖L2 + ‖Exxx‖L2 ‖Ettt‖L2) ≤ 8t0M1M2H3,

∫
R2

EttEtttm
2
x dxdz ≤ ‖∇m‖2

L∞ ‖Ett‖L2 ‖Ettt‖L2 ≤ 8t20M
2
1 M2

2 H1/2
2 H1/2

3 ,

and ∫
R2

EExE2
ttmx dxdz ≤ M1M2 ‖∇m‖L∞ ‖Ett‖2

L2 ≤ 4t0M
2
1 M2

2 H2.

Similar estimates are obtained for the z-derivatives terms.
The estimates of the m-independent terms in (2.17) are straightforward as follows:∫

R2

E2
[
E2

xxt + E2
zzt − 3E2

ttt

]
dxdz ≤ M2

1 H3

and ∫
R2

EEtt [ExxxEx + EzzzEz + EtttEt] dxdz ≤ M1 (2M2 + M3) H1/2
2 H1/2

3 .

Combining all results together, we write
dH3

dt
≤ M1 (M1 + 16t0M2) H3 + 2M1

(
2M2 + M3 + 16t20M1M

2
2

)H1/2
2 H1/2

3 + 32t0M
2
1 M2

2 H2.

Using now the inequality H1/2
2 H1/2

3 ≤ 1
2 (H2 + H3), we obtain

dH3

dt
≤ FH3 + GH2,

where

F := M1

(
M1 + 18t0M2 + t0M3 + 16t30M1M

2
2

)
,

G := M1

(
2M2 + M3 + 16t20M1M

2
2

)
+ 32t0M

2
1 M2

2 .

Then, by Gronwall’s inequality (A.9), for t ∈ [0, t0], we obtain

H3 ≤
(

H3|t=0 + Gt0 sup
t∈[0,t0]

H2

)
etF < ∞, t ∈ [0, t0].

Thus, we deduce that E ∈ H3
(
R

2
)
, Et ∈ H2

(
R

2
)
, and Ett ∈ H1

(
R

2
)

for all t ∈ [0, t0].
We proceed to obtain the final energy estimates. We act on the first equation of the system (2.1) by

the operator

Exxxt∂
3
x + Ezzzt∂

3
z + Exttt∂x∂2

t + Ezttt∂z∂
2
t + Etttt∂

3
t

and integrate the result in (x, z) over R
2. Following the same steps as in the previous energy level com-

putations, we can introduce the positive definite energy functional

H4 :=
1
2

∫
R2

[
(1 + m)

(
E2

xxxt + E2
zzzt + E2

xttt + E2
zttt + E2

tttt

)
+

1
2
(
E2

xxxx + E2
zzzz

)

+2E2
xxzz + 2E2

xztt + E2
xxtt + E2

zztt + E2
xttt + E2

zttt +
1
2

(Exxxx − 2mxxEtt)
2

+
1
2

(Ezzzz − 2mzzEtt)
2

]
dxdz (2.19)
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to obtain
dH4

dt
=

1
2

∫
R2

[
E2

(
E2

xxxt + E2
zzzt − 3E2

xttt − 3E2
zttt − 4E2

tttt

)− 4Ett

(
E2

xExxxx + E2
zEzzzz + E2

t Etttt

)

− 4EEtt (ExxExxxx + EzzEzzzz + EttEtttt) − 4mxx (ExttExxxt + EtttExxxx)
− 4mzz (EzttEzzzt + EtttEzzzz) − 6mxExxttExxxt − 6mzEzzttEzzzt − 12EEtEtttEtttt

+ 4EtttEtt

(
m2

xx + m2
zz

)
+ 8E2

tt

(
mxx

(
E2

x + EExx

)
+ mzz

(
E2

z + EEzz

))]
dxdz. (2.20)

This computation is valid under assumption on decay to zero of ExxxtExxxx, ExxxtExxxz, EzzztEzzzz,
EzzztExzzz, EttttExttt, EttttEzttt, ExtttExxtt, ExtttExztt, EztttEzztt, EztttExztt, mxxExxttEtt, and
mzzEzzttEtt as |x| → ∞, |z| → ∞. This required decay can be justified by the approximation argu-
ment for a sequence of local solutions of Lemma 1 with s = 5 as done in the previous computations of
the balance equation (2.17). We have the control:

‖Exxxx‖2
L2 + ‖Ezzzz‖2

L2 + 4 ‖Exxzz‖2
L2 + 2 ‖Exxxt‖2

L2 + 2 ‖Ezzzt‖2
L2

+2 ‖Exxtt‖2
L2 + 2 ‖Ezztt‖2

L2 + 4 ‖Exztt‖2
L2 ≤ 4H4. (2.21)

Hence, by Sobolev’s embeddings, we have

‖Exx‖L∞ ≤ C0 (‖ΔExx‖L2 + ‖Exx‖L2) ≤
√

2C0

(
H1/2

4 + H1/2
2

)
,

for some C0 > 0. Using this estimate and Corollary A, we obtain from the second equation of the system
(2.1) for t ∈ [0, t0],

‖mxx‖L∞ ≤ t0 sup
[0,t]

‖mtxx‖L∞ ≤ 2t0M
2
2 + 2

√
2C0t0M1

(
sup
[0,t]

H1/2
4 + sup

t∈[0,t0]

H1/2
2

)
.

Similar estimates hold for the z-derivatives terms. Lengthy calculations result in the inequality
dH4

dt
≤ IH4 + J sup

t∈[0,t0]

H4 + L, (2.22)

where I, J, L are some coefficients that depend on t0, M1, M2, M3, supt∈[0,t0] H2 and supt∈[0,t0] H3.
Inequality (2.22) can be integrated as follows:

sup
t∈[0,t0]

H4 ≤ H4|t=0 + t0L + (I + J) t0 sup
t∈[0,t0]

H4.

By the integral form of Gronwall’s inequality, we hence estimate

sup
t∈[0,t0]

H4 ≤ (H4|t=0 + t0L) et(I+J) < ∞.

Now, since

‖Exxxz‖2
L2 , ‖Exzzz‖2

L2 ≤ 1
2

‖Exxxx‖2
L2 +

1
2

‖Exxzz‖2
L2

and

‖Exxzt‖2
L2 , ‖Exzzt‖2

L2 ≤ 1
2

‖Exxxt‖2
L2 +

1
2

‖Ezzzt‖2
L2 ,

which is a result of straightforward estimates on the Fourier transform side, we conclude that E ∈
H4

(
R

2
)
, Et ∈ H3

(
R

2
)

and Ett ∈ H2
(
R

2
)

for all t ∈ [0, t0]. �

Remark 1. To eliminate finite-time blow-up of the component m in H4-norm, we can use the estimate
of E in Lemma 2 and the Banach algebra property in Proposition A applied to the second equation of
the system (2.1).
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2.3. Local well-posedness of the NLS system

To study local well-posedness of the NLS system (1.9)–(1.10), we shall work with the rescaled equations{
∂2

XA + i (∂T A + ∂ZA) + MA = 0,

∂T M = |A|2 ,
(X,Z) ∈ R

2, T ∈ R+, (2.23)

subject to the initial data A|T=0 = A0 ∈ Hs
(
R

2
)
, M |T=0 = 0, for some integer s ≥ 2. The following

lemma gives local well-posedness result.

Lemma 3. For any integer s ≥ 2 and any δ > 2 ‖A0‖Hs(R2), there exist a positive constant T0 and a
unique solution A ∈ C

(
[0, T0] ,Hs

(
R

2
)) ∩ C1

(
[0, T0] ,Hs−2

(
R

2
))

to the NLS system (2.23) such that
A|T=0 = A0 and supT∈[0,T0] ‖A‖Hs(R2) ≤ δ.

Proof. Let us take Fourier transform in both spatial variables and denote

M̂A(ξ, η, T ) :=
1
2π

∫
R2

M(X,Z, T )A(X,Z, T )ei(ξX+ηZ) dxdz.

The first equation of the NLS system (2.23) then becomes

∂T Â = i
(−ξ2 + η

)
Â + iM̂A,

which leads to the integral equation

Â (ξ, η, T ) = Â0 (ξ, η) ei(−ξ2+η)T + i

T∫
0

ei(−ξ2+η)(T−τ)M̂A (ξ, η, τ) dτ. (2.24)

Introduce the Schrödinger kernel

ST (X) :=
1√
4πT

e− iπ
4 e

iX2
4T ,

such that

F−1
[
ei(−ξ2+η)T

]
= ST (X) δ (T − Z) .

Using the inverse Fourier transform of (2.24), we obtain the integral equation

A (X,Z, T ) = ST (X) � A0 (X,Z − T ) + i

T∫
0

ST−τ (X) � [M (X,Z − T + τ, τ) A (X,Z − T + τ, τ)] dτ,

where � stands for convolution in X-variable.
Making use of the second equation in the NLS system (2.23) and M |T=0 = 0, we can rewrite the

integral equation as an operator equation

A (X,Z, T ) = K [A (X,Z, T )] , (2.25)

where

K [A] := ST (X) � A0 (X,Z − T ) + i

T∫
0

ST−τ (X) �

⎡
⎣A (X,Z − T + τ, τ)

τ∫
0

|A (X,Z − T + τ, τ̃)|2 dτ̃

⎤
⎦ dτ.

Existence and uniqueness of solutions to Eq. (2.25) are obtained by applying the Banach fixed-point
theorem (Proposition E). We need to show that conditions of the fixed-point theorem are fulfilled in a
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closed ball of radius δ in the space C
(
[0, T0] ,Hs

(
R

2
))

for some δ > 0 and T0 > 0 as well as for any
s ≥ 2:

B̄δ :=

{
f ∈ C

(
[0, T0] ,Hs

(
R

2
))

: sup
T∈[0,T0]

‖f‖Hs(R2) ≤ δ

}
. (2.26)

In other words, we need to show that B̄δ is an invariant subspace of the operator K, that is, for any
A ∈ B̄δ ⊂ C

(
[0, T0] ,Hs

(
R

2
))

, we have

sup
T∈[0,T0]

‖K [A]‖Hs(R2) ≤ δ, (2.27)

for suitable choice of δ > 0 and T0 > 0. We also need to show that K is a contractive operator in the
sense that there is q ∈ (0, 1) such that for any A(1), A(2) ∈ B̄δ

sup
T∈[0,T0]

∥∥∥K [
A(1)

]
− K

[
A(2)

]∥∥∥
Hs(R2)

≤ q sup
T∈[0,T0]

∥∥∥A(1) − A(2)
∥∥∥

Hs(R2)
. (2.28)

To choose δ > 0 and T0 > 0 such that both conditions (2.27)–(2.28) are satisfied, we proceed with analysis
on the Fourier transform side using (2.24) rather than (2.25).

We start by showing (2.27). Let A ∈ B̄δ, that is, supT∈[0,T0] ‖A‖Hs(R2) ≤ δ. Then, applying Plancherel’s
theorem and Minkowski’s integral inequality to (2.24), we obtain

sup
T∈[0,T0]

‖K [A]‖Hs(R2) = sup
T∈[0,T0]

∥∥∥(1 + ξ2 + η2
)s/2

K̂ [A]
∥∥∥

L2(R2)

≤
∥∥∥(1 + ξ2 + η2

)s/2
Â0

∥∥∥
L2(R2)

+ sup
T∈[0,T0]

T∫
0

∥∥∥(1 + ξ2 + η2
)s/2

M̂A
∥∥∥

L2(R2)
dτ

= ‖A0‖Hs(R2) + sup
T∈[0,T0]

T∫
0

‖MA‖Hs(R2) dτ.

By Proposition A and Corollary B, we arrive at the bounds

sup
T∈[0,T0]

‖K [A]‖Hs(R2) ≤ ‖A0‖Hs(R2) + C2
s T 2

0 sup
T∈[0,T0]

‖A‖3
Hs(R2)

≤ ‖A0‖Hs(R2) + C2
s T 2

0 δ3,

for some constant Cs > 0. If δ ≥ 2 ‖A0‖Hs(R2) and T0 ≤ 1√
2Csδ

, then both terms become less or equal to
δ/2 which furnishes (2.27).

Now, we proceed with showing (2.28). We write

M
(
A(1)

)
= M

(
A(2)

)
−
(
M
(
A(2)

)
− M

(
A(1)

))
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and using the triangle inequality, the Banach algebra property of Hs
(
R

2
)
, and the same arguments as

above, we obtain

sup
T∈[0,T0]

∥∥∥K [
A(1)

]
− K

[
A(2)

]∥∥∥
Hs(R2)

≤ sup
T∈[0,T0]

T∫
0

∥∥∥M (
A(1)

)
A(1) − M

(
A(2)

)
A(2)

∥∥∥
Hs

dτ

≤ C2
s T 2

0 sup
T∈[0,T0]

[∥∥∥A(2)
∥∥∥2

Hs

∥∥∥A(1) − A(2)
∥∥∥

Hs
+
∥∥∥A(1)

∥∥∥
Hs

(∥∥∥A(1)
∥∥∥

Hs
+
∥∥∥A(2)

∥∥∥
Hs

)∥∥∥A(1) − A(2)
∥∥∥

Hs

]

≤ 3C2
s T 2

0 δ2 sup
T∈[0,T0]

∥∥∥A(1) − A(2)
∥∥∥

Hs(R2)
.

From here, contraction of operator K is achieved if T0 < 1√
3Csδ

. Combining this with the previous
condition, we conclude that the choice

δ > 2 ‖A0‖Hs(R2) , T0 ≤ 1√
3Csδ

leads to the existence of unique solution A of Eq. (2.25) in the ball (2.26).
Then, expressing ∂T A from the first equation of the system (2.23), the bootstrapping argument gives

A ∈ C1
(
[0, T0] ,Hs−2

(
R

2
))

. �

Remark 2. Tracing the proof, it is straightforward to see that the same result holds in the presence of
inhomogeneous terms in the system (2.23) providing these terms belong to the space C

(
[0, T0] ,Hs

(
R

2
))

.

3. Rigorous justification analysis

We shall here prove Theorem 1 by using near-identity transformations and a priori energy estimates.

3.1. Near-identity transformations

Smallness of error terms U (x, z, t) and N (x, z, t) in the decompositions (1.12)–(1.13) hinges on smallness
of the right-hand side terms in the system (1.14)–(1.15). The right-hand side terms can be made smaller
by performing near-identity transformations.

Let us start with the source term ε6
(
R

(U)
6

)
ω0

in Eq. (1.14) and introduce

U1 (x, z, t) := U (x, z, t) − ε4 (F (X,Z, T ))ω0
, (3.1)

where F (X,Z, T ) will be chosen later. Eliminating U (x, z, t) from (1.14), we obtain

∂2
xU1 + ∂2

zU1 − (
1 + ε2M + N

)
∂2

t U1 = −ε2
(
R̃

(U)
2

)
ω0

N − ε6
(
R̃

(U)
6

)
ω0

− ε8
(
R̃

(U)
8

)
ω0

, (3.2)

where

R̃
(U)
2 = R

(U)
2 + ε2

(
ω2

0F + 2iω0ε
2∂T F − ε4∂2

T F
)
,

R̃
(U)
6 = ∂2

XF + 2iω0 (∂ZF + ∂T F ) + ω2
0MF − (

∂2
T A − ∂2

ZA − 2iω0M∂T A
)
,

R̃
(U)
8 = ∂2

ZF − ∂2
T F − M∂2

T A + 2iω0M∂T F − ε2M∂2
T F.
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The O (
ε6
)

source term is eliminated (that is, R̃
(U)
6 = 0) providing that F (X,Z, T ) solves the linear

inhomogeneous Schrödinger equation

∂2
XF + 2iω0 (∂ZF + ∂T F ) + ω2

0MF = ∂2
T A − ∂2

ZA − 2iω0M∂T A. (3.3)

Hence, Eq. (3.2) for U1 (x, z, t) has a O (
ε8
)

source term. Generally, such transformation can be repeated
k times to have a source term of order O (

ε6+2k
)
, but one application of the transformation (3.1) (k = 1)

will be sufficient for us to close the estimates.
Now, we proceed with Eq. (1.15) treating the first two terms in the right-hand side separately. To

remove the O (
ε4
)

source term, we introduce

N1 := N − ε4
(

A2

2iω0

)
2ω0

(3.4)

and obtain the equation for N1(x, z, t) with the O (
ε6
)

source term:

∂tN1 = −ε6
(

A∂T A

iω0

)
2ω0

+ 2ε2 (A)ω0
U + U2. (3.5)

In a similar fashion, this transformation can be repeated n times to get the O (
ε4+2n

)
source term. We

will need two transformations of the type (3.4) (n = 2) to move the residual term to the O(ε8) order,
which will be sufficient for us to close the estimates.

To improve the second term in the right-hand side of (1.15), we perform another type of the near-
identity transformation

N2 := N − 2ε2
(

A

iω0

)
ω0

U, (3.6)

in which case we have

∂tN2 = ε4
(
A2
)
2ω0

− 2ε2
(

A

iω0

)
ω0

∂tU − 2ε4
(

∂T A

iω0

)
ω0

U + U2. (3.7)

This transformation moves the linear term in U to the O (
ε4
)

order, whereas the O (
ε2
)

term depends now
on ∂tU , which norm is expected to be smaller. Note that, an iteration of this latter transformation is not
effective because we do not anticipate the norm of ∂2

t U to be smaller compared to the norm of ∂tU . The
two near-identity transformations (3.4) and (3.6) can be combined in a straightforward way, however,
putting together near-identity transformations (3.1), (3.4), and (3.6) should be done more carefully due
to intertwining structure of the equations.

Including the third-harmonic term in the relevant transformations because of the nonlinear terms
produced in the system (1.14)–(1.15), we write the resulting near-identity transformations in the form

V := U − ε4 (B)ω0
− ε4 (D)3ω0

, (3.8)

P := N − ε4N0 + 2ε2
(

A

iω0

)
ω0

V + ε4
(

A2

2iω0

)
2ω0

+ε6

[
2
(
AB̄ − ĀB

)
iω0

−
(

A∂T A

2ω2
0

− AB + ĀD

iω0

)
2ω0

+
(

AD

2iω0

)
4ω0

]
. (3.9)

Here, bar denotes complex conjugation, and B (X,Z, T ) , D (X,Z, T ) , N0 (X,Z, T ) solve the following
linear inhomogeneous equations

∂2
XB + 2iω0 (∂ZB + ∂T B) + ω2

0MB = ∂2
T A − ∂2

ZA − 2iω0M∂T A − iω0

2
A2Ā, (3.10)

∂2
XD + 2iω0 (∂ZD + ∂T D) + ω2

0MD = − iω0

2
A3, (3.11)
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and

∂T N0 = 2
(
AB̄ + ĀB

)
. (3.12)

As a result of the transformations (3.8)–(3.9) and the relations (3.10)–(3.12), the system (1.14)–(1.15)
transforms to the system

∂2
xV + ∂2

zV − (
1 + ε2M + N

)
∂2

t V = −ε2ω2
0 (A)ω0

P + 2iω0ε
4 |A|2 V − ε8R

(V )
8 (3.13)

and

∂tP = ε8R
(P )
8 + 2ε4R

(P )
4 V + 2ε2

(
A

iω0

)
ω0

∂tV + V 2, (3.14)

where

R
(P )
4 =

(
∂T A

iω0
+ B

)
ω0

+ (D)3ω0
,

R
(P )
8 = −∂T

(
ĀB − AB̄

)
2iω0

+

(
BD̄ − ∂T (A∂T A)

2ω2
0

+
∂T

(
AB + ĀD

)
iω0

)

2ω0

+
(

BC +
∂T (AD)

2iω0

)
4ω0

,

R
(V )
8 =

(
iω0

2

[
2 |A|2 B + A2B̄ + 7ĀD + 4M∂T B

]
+

|A|2 ∂T A

2
+ A2∂T Ā − M∂2

T A + ∂2
ZB − ∂2

T B

)

ω0

−
(

iω0

2

[
|A|2 D + A2B − 12M∂T D

]
+

A2∂T A

2
− ∂2

ZD + ∂2
T D

)
3ω0

+ 3
(
iω0A

2D
)
5ω0

.

This system of residual equations is a starting point in our justification analysis.

3.2. A priori energy estimates

We now proceed with the estimates of the error terms U(x, z, t), N(x, z, t) in the decompositions (1.12)–
(1.13) given sufficiently smooth initial data. The amplitudes A and M change on the temporal scale of
T = ε2t on [0, T0]. Therefore, the validity of approximation needs to be justified for all t ∈ [

0, T0/ε2
]
. We

would like to prove that there are α0, β0 > 0 such that

sup
t∈[0,T0/ε2]

‖U (·, ·, t)‖L2 = O(εβ0), sup
t∈[0,T0/ε2]

‖N (·, ·, t)‖L2 = O(εα0). (3.15)

Because of the O(ε1/2) order of the leading-order terms in (1.20) and (1.21), the error terms in the decom-
positions (1.12)–(1.13) are smaller than the leading-order terms in L2-norm if α0, β0 > 1

2 . We intend to
prove that the estimates can be closed with α0 = β0 = 5

2 .
We shall use index notation for partial derivatives such as Ex := ∂xE, Et := ∂tE, and so on. We shall

also employ subscript notations such as ‖·‖L2
X,Z

, ∇X,Z , and ΔX,Z when necessary to emphasize that the
norms or derivatives are computed with respect to slow variables X, Z. A generic positive constant is
denoted by C.

Using the near-identity transformations (3.8) and (3.9), under assumptions B, D, N0 ∈ L2
(
R

2
)
, A ∈

L∞ (
R

2
) ∩ L2

(
R

2
)
, R

(M)
6 ∈ L2

(
R

2
)
, we can see that

sup
t∈[0,T0/ε2]

‖U (·, ·, t)‖L2 ≤ sup
t∈[0,T0/ε2]

‖V (·, ·, t)‖L2 + Cε5/2 (3.16)

and

sup
t∈[0,T0/ε2]

‖N (·, ·, t)‖L2 ≤ sup
t∈[0,T0/ε2]

‖P (·, ·, t)‖L2 + Cε2 sup
t∈[0,T0/ε2]

‖V (·, ·, t)‖L2 + Cε5/2. (3.17)
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Hence, to have (3.15) with α0, β0 > 1
2 , we only need

sup
t∈[0,T0/ε2]

‖V (·, ·, t)‖L2 = O (
εβ
)
, sup

t∈[0,T0/ε2]

‖P (·, ·, t)‖L2 = O (εα) , (3.18)

with α, β > 1
2 . Again, we intend to prove that the estimates can be closed with α = β = 5

2 .

3.2.1. First energy level. While P (x, z, t) can be controlled directly from Eq. (3.14), the estimate of
V (x, z, t) relies on a priori energy bounds. Multiplication of Eq. (3.13) by Vt(x, z, t) and further integra-
tion by parts in (x, z) over R

2 lead to

dH1

dt
=
∫
R2

(
ε4 |A|2 V 2

t +
1
2
NtV

2
t + ε2ω2

0 (A)ω0
PVt − 2iω0ε

4 |A|2 V Vt + ε8R
(V )
8 Vt

)
dxdz, (3.19)

where we introduced the first energy functional

H1 :=
1
2

∫
R2

[(
1 + ε2M + N

)
V 2

t + V 2
x + V 2

z

]
dxdz. (3.20)

This yields the estimate

dH1

dt
≤ 2ε4 ‖A‖2

L∞ H1 + ‖Nt‖L∞ H1 + 2
√

2ε2ω2
0 ‖A‖L∞ ‖P‖L2 H1/2

1

+2
√

2ε4ω0 ‖A‖2
L∞ ‖V ‖L2 H1/2

1 +
√

2ε13/2
∥∥∥R(V )

8

∥∥∥
L2

X,Z

H1/2
1 , (3.21)

where we recall that we are loosing ε3/2 when computing L2-norms of the residual terms like R
(V )
8 , because

of integration in the slow variables X = εx and Z = ε2z.
Let Q1 := H1/2

1 and assume that we can prove

sup
t∈[0,T0/ε2]

Q1 = O (
εδ1
)
, (3.22)

for some δ1 > 0. Since V |t=0 = 0, Corollary A implies that for t ∈ [
0, T0/ε2

]
, we have

‖V ‖L2 ≤ T0

ε2
sup

t∈[0,T0/ε2]

‖Vt‖L2 ≤
√

2T0

ε2
sup

t∈[0,T0/ε2]

Q1, (3.23)

and hence supt∈[0,T0/ε2] ‖V ‖L2 = O (
εδ1−2

)
, that is, β = δ1 − 2 in (3.18).

Similarly, by the Gagliardo–Nirenberg inequality with σ = 1 (Proposition C), we estimate the nonlin-
ear term in (3.14)

‖V ‖2
L4 ≤ Cσ ‖V ‖L2 ‖∇V ‖L2 .

Since P |t=0 = 0, Corollary A implies that for t ∈ [
0, T0/ε2

]
, we have

‖P‖L2 ≤ T0

ε2
sup

t∈[0,T0/ε2]

‖Pt‖L2 ≤ ε9/2T0 sup
t∈[0,T0/ε2]

∥∥∥R(P )
8

∥∥∥
L2

X,Z

+ 2CσT 2
0 ε−4

(
sup

t∈[0,T0/ε2]

Q1

)2

+2
√

2T0

(
T0 sup

t∈[0,T0/ε2]

∥∥∥R(P )
4

∥∥∥
L∞

+
2
ω0

sup
T∈[0,T0]

‖A‖L∞

)
sup

t∈[0,T0/ε2]

Q1,

Hence, supt∈[0,T0/ε2] ‖P‖L2 = O (
ε9/2 + εδ1 + ε2δ1−4

)
, that is, in (3.18),

α = min
{

9
2
, δ1, 2δ1 − 4

}
. (3.24)
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To control Q1, we need to bound ‖Nt‖L∞ from Eq. (1.15),

‖Nt‖L∞ ≤ 2ε4 ‖A‖2
L∞ + 4ε2 ‖A‖L∞ ‖U‖L∞ + ‖U‖2

L∞ , (3.25)

where ‖U‖L∞ is controlled using (3.8) by

‖U‖L∞ ≤ 2ε4 ‖B‖L∞ + 2ε4 ‖D‖L∞ + ‖V ‖L∞ . (3.26)

By Sobolev’s embedding (Proposition B), we can bound

‖V ‖L∞ ≤ C ‖V ‖H2 , (3.27)

if we assume the L2-norm of second derivatives of V is controlled by some quantity Q2 to be introduced
later in Eq. (3.37), that is,

‖Vxx‖L2 , ‖Vzz‖L2 ≤
√

2Q2, sup
t∈[0,T0/ε2]

Q2 = O(εδ2), (3.28)

for some δ2 > 0. Bound (3.23) and (3.28) imply that there is C0 > 0 such that

‖V ‖L∞ ≤ C0

[
Q2 + T0ε

−2 sup
t∈[0,T0/ε2]

Q1

]
. (3.29)

As we will see, supt∈[0,T0/ε2] ‖V ‖L∞ is always bigger than O(ε4), so bound (3.26) implies that there is
C > 0 such that

‖U‖L∞ ≤ C ‖V ‖L∞ .

Then, bound (3.25) yields

‖Nt‖L∞ ≤ 2ε4 ‖A‖2
L∞ + 4C0ε

2 ‖A‖L∞ Q2 + C2
0Q2

2

+ε−4C2
0T 2

0

(
sup

t∈[0,T0/ε2]

Q1

)2

+ 2C0T0 sup
t∈[0,T0/ε2]

Q1

(
ε−2C0Q2 + 2 ‖A‖L∞

)
. (3.30)

Combining all together, Eq. (3.21) yields
dQ1

dt
≤ I1Q1 + J1,

where

I1 = 4ε4

(
sup

T∈[0,T0]

‖A‖∞

)2

+ 2ε2 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

Q2 +
C2

0

2

(
sup

t∈[0,T0/ε2]

Q2

)2

+ε−2C2
0T0 sup

t∈[0,T0/ε2]

Q1 sup
t∈[0,T0/ε2]

Q2 +
C2

0T 2
0

2
ε−4

(
sup

t∈[0,T0/ε2]

Q1

)2

+2C0T0 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

Q1

and

J1 =
√

2ε13/2

(
1
2

sup
t∈[0,T0/ε2]

∥∥∥R(V )
8

∥∥∥
L2

X,Z

+ ω2
0T0 sup

t∈[0,T0/ε2]

‖A‖L∞ sup
t∈[0,T0/ε2]

∥∥∥R(P )
8

∥∥∥
L2

X,Z

)

+2ε2ω0T0

⎛
⎝(4 +

√
2
)(

sup
T∈[0,T0]

‖A‖L∞

)2

+ 2T0 sup
t∈[0,T0/ε2]

∥∥∥R(P )
4

∥∥∥
L∞

⎞
⎠ sup

t∈[0,T0/ε2]

Q1

+2
√

2ε−2ω2
0T 2

0 Cσ sup
T∈[0,T0]

‖A‖L∞

(
sup

t∈[0,T0/ε2]

Q1

)2

.
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By Gronwall’s inequality (Proposition D) with Q1|t=0 = 0, we have, for t ∈ [
0, T0/ε2

]
,

Q1 ≤ T0ε
−2J1e

I1T0ε−2
. (3.31)

To prevent divergence of the exponential factor eI1T0ε−2
as ε → 0, we require that I1ε

−2 be finite as
ε → 0, that is,

min {δ2, 2δ2 − 2, δ2 + δ1 − 4, 2δ1 − 6, δ1 − 2} ≥ 0. (3.32)

We also want δ1 > 4 so that the quadratic term
(
supt∈[0,T0/ε2] Q1

)2

in T0ε
−2J1 is negligible. Moreover,

we require T0 to be small enough such that

2ω0T
2
0 eI1T0ε−2

⎛
⎝(4 +

√
2
)(

sup
t∈[0,T0/ε2]

‖A‖L∞

)2

+ 2T0 sup
t∈[0,T0/ε2]

∥∥∥R(P )
4

∥∥∥
L∞

⎞
⎠ < 1,

then, the coefficient of the linear term supt∈[0,T0/ε2] Q1 in T0ε
−2J1 is smaller than one.

With these constraints, we obtain from (3.31) that

sup
t∈[0,T0/ε2]

Q1 ≤ Cε9/2T0e
I1T0ε−2

(
sup

t∈[0,T0/ε2]

∥∥∥R(V )
8

∥∥∥
L2

X,Z

+ 2ω2
0T0 sup

t∈[0,T0/ε2]

‖A‖L∞ sup
t∈[0,T0/ε2]

∥∥∥R(P )
8

∥∥∥
L2

X,Z

)
,

hence supt∈[0,T0/ε2] Q1 = O(ε9/2). The conditions (3.24) and (3.32) imply that

α = δ1 =
9
2
, β = δ1 − 2 =

5
2
, (3.33)

if we additionally require

δ2 ≥ 1. (3.34)

We will ensure that this constraint on δ2 is satisfied by continuing next with a priori energy estimates
on the second derivatives of V .

3.2.2. Second energy level. Acting on Eq. (3.13) with the operator Vxt∂x + Vzt∂z + Vtt∂t and integrating
in (x, z) over R

2, we introduce the second energy functional:

H2 :=
1
2

∫
R2

((
1 + ε2M + N

)
V 2

tt +
(
2 + ε2M + N

) (
V 2

xt + V 2
zt

)
+ V 2

xx + V 2
zz + 2V 2

xz

)
dxdz. (3.35)

Long but straightforward computations show that the rate of change of the second energy functional is
given by

dH2

dt
=

9∑
n=1

Kn, (3.36)
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where

K1 = ε4
∫
R2

|A|2 (V 2
tt + V 2

tx + V 2
tz

)
dxdz,

K2 = −ε3
∫
R2

Vtt

(
VtxMX + εVtzMZ + 2ε |A|2 Vtt

)
dxdz,

K3 =
1
2

∫
R2

Nt

(
V 2

tx + V 2
tz − V 2

tt

)
dxdz,

K4 =
∫
R2

N [VttxVtx + VttzVtz + Vtt (Vtxx + Vtzz)] dxdz,

K5 = ε2ω2
0

∫
R2

(A)ω0
(PxVtx + PzVtz + PtVtt) dxdz,

K6 = ε2ω2
0

∫
R2

P
[
ε (AX)ω0

Vtx +
(
(iω0A)ω0

+ ε2 (AZ)ω0

)
Vtz +

(− (iω0A)ω0
+ ε2 (AT )ω0

)
Vtt

]
dxdz,

K7 = −2iε5ω0

∫
R2

V
(
Vtx∂X |A|2 + εVtz∂Z |A|2 + εVtt∂T |A|2

)
dxdz,

K8 = −2iε4ω0

∫
R2

|A|2 (VtxVx + VtzVz + VttVt) dxdz,

K9 = ε8
∫
R2

(
εVtx∂XR

(V )
8 + Vtz∂zR

(V )
8 + Vtt∂tR

(V )
8

)
dxdz.

We estimate the terms in (3.36) as follows:

|K1| ≤ 2ε4 ‖A‖2
L∞ H2,

|K2| ≤ 4ε3
(∥∥∇(X,Z)M

∥∥
L∞ + ε ‖A‖2

L∞

)
H2,

|K3| ≤ ‖Nt‖L∞ H2,

|K4| ≤ ‖N‖L∞ (‖Vttx‖L2 + ‖Vttz‖L2 + ‖Vxxt‖L2 + ‖Vzzt‖L2) H1/2
2 ,

|K5| ≤ 2
√

2ε2ω2
0 ‖A‖L∞ (2 ‖∇P‖L2 + ‖Pt‖L2) H1/2

2 ,

|K6| ≤ 2
√

2ε2ω2
0 ‖P‖L2

(
ε ‖AX‖L∞ + ε2 ‖AZ‖L∞ + ε2 ‖AT ‖L∞ + 2ω0 ‖A‖L∞

)H1/2
2 ,

|K7| ≤ 4ε5ω0 ‖A‖L∞ ‖V ‖L2 (‖AX‖L∞ + ε ‖AZ‖L∞ + ε ‖AT ‖L∞) H1/2
2 ,

|K8| ≤ 12ε4ω0 ‖A‖2
L∞ H1/2

1 H1/2
2 ,

|K9| ≤
√

2ε13/2

(
ε
∥∥∥∂XR

(V )
8

∥∥∥
L2

X,Z

+
∥∥∥∂zR

(V )
8

∥∥∥
L2

X,Z

+
∥∥∥∂tR

(V )
8

∥∥∥
L2

X,Z

)
H1/2

2 .

Let Q2 := H1/2
2 , and we want to ensure that

sup
t∈[T0/ε2]

Q2 = O(εδ2), (3.37)
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for some δ2 ≥ 1 according to (3.34). To proceed further, we shall use the bounds

sup
T∈[0,T0]

∥∥∇(X,Z)M
∥∥

L∞ ≤ T0 sup
T∈[0,T0]

∥∥∇(X,Z)∂T M
∥∥

L∞

≤ 4T0 sup
T∈[0,T0]

‖A‖L∞ sup
T∈[0,T0]

∥∥∇(X,Z)A
∥∥

L∞

and

sup
t∈[0,T0/ε2]

‖∇P‖L2 ≤ 2
√

2T0

[
T0 sup

t∈[0,T0/ε2]

∥∥∥∇R
(P )
4

∥∥∥
L∞

+ C0T0ε
−4 sup

t∈[0,T0/ε2]

Q1 + C0ε
−2 sup

t∈[0,T0/ε2]

Q2

]

× sup
t∈[0,T0/ε2]

Q1 +
4
√

2T0

ω0
sup

T∈[0,T0]

∥∥∇(X,Z)A
∥∥

L∞ sup
t∈[0,T0/ε2]

Q2, (3.38)

where we dropped terms which are of higher order of smallness under assumptions ∇R
(P )
8 ∈

L2
(
R

2
)
, R

(P )
4 ∈ L∞ (

R
2
)
, ∇A ∈ L∞ (

R
2
)
.

To estimate the K4 term, we control ‖N‖L∞ by using (3.30) and Corollary A:

‖N‖L∞ ≤ ε−2T0 sup
t∈[0,T0/ε2]

‖Nt‖L∞ .

Additionally, we need to bound the third derivatives Vttx, Vttz, Vxxt, Vzzt, in which L2-norms are con-
trolled in terms of the quantity Q3 that will be introduced later in Eq. (3.46), that is,

‖Vttx‖L2 , ‖Vttz‖L2 , ‖Vxxt‖L2 , ‖Vzzt‖L2 ≤
√

2Q3, sup
t∈[0,T0/ε2]

Q3 = O(εδ3), (3.39)

for some δ3 > 0. Then,

|K4| ≤ 2T0

⎡
⎣2ε2

(
sup

T∈[0,T0]

‖A‖L∞

)2

+ 4C0 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

Q2 + ε−2C2
0

(
sup

t∈[0,T0/ε2]

Q2

)2

+ε−6C0T
2
0

(
sup

t∈[0,T0/ε2]

Q1

)2

+ 2C2
0T0ε

−4 sup
t∈[0,T0/ε2]

Q1 sup
t∈[0,T0/ε2]

Q2

+ 4C0T0ε
−2 sup

t∈[0,T0/ε2]

Q1 sup
T∈[0,T0]

‖A‖L∞

](
sup

t∈[0,T0/ε2]

Q3

)
Q2.

Details for other K-terms in (3.36) can be elaborated using the previous bounds. Combining all
together and neglecting a priori smaller source terms in K9 in comparison with other terms, we obtain
from Eq. (3.36):

dQ2

dt
≤ I2Q2 + J

(1)
2 + J

(2)
2 sup

t∈[0,T0/ε2]

Q3, (3.40)
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where

I2 = 4ε3T0 sup
T∈[0,T0]

‖A‖L∞ ‖∇A‖L∞ + 2ε2C0 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

Q2 +
C2

0

2

(
sup

t∈[0,T0/ε2]

Q2

)2

+
ε−4C2

0T 2
0

2

(
sup

t∈[0,T0/ε2]

Q1

)2

+ 2ε−2C0T0 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

Q1

+ε−4C2
0T0 sup

t∈[0,T0/ε2]

Q1 sup
t∈[0,T0/ε2]

Q2,

J
(1)
2 = 4ω2

0T0 sup
T∈[0,T0]

‖A‖L∞

[
2 sup

T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

Q1 +
√

2C0 sup
t∈[0,T0/ε2]

Q1 sup
t∈[0,T0/ε2]

Q2

+ε−2 T0√
2

(2C0 + Cσω0)

(
sup

t∈[0,T0/ε2]

Q1

)2

+
2
ω0

ε2 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

Q2

]
,

and

J
(2)
2 = T0

⎡
⎣2ε2

(
sup

T∈[0,T0]

‖A‖L∞

)2

+ 4C0 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

Q2 + ε−2C2
0

(
sup

t∈[0,T0/ε2]

Q2

)2

+ε−6C0T
2
0

(
sup

t∈[0,T0/ε2]

Q1

)2

+ 2ε−4C2
0T0 sup

t∈[0,T0/ε2]

Q1 sup
t∈[0,T0/ε2]

Q2

+4ε−2C0T0 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

Q1

]
.

By Gronwall’s inequality (Proposition D) with Q2|t=0 = 0, we obtain

Q2 ≤ T0ε
−2J2e

I2T0ε−2
, J2 = J

(1)
2 + J

(2)
2 sup

t∈[0,T0/ε2]

Q3.

To bound the exponential factor as ε → 0, we require I2ε
−2 to be finite as ε → 0, that is,

min {δ2, 2δ2 − 2, 2δ1 − 6, δ1 + δ2 − 6, δ1 − 4} ≥ 0. (3.41)

Taking into account (3.33), this constraint reduces to the condition δ2 ≥ 3
2 . On the other hand, the source

term in T0ε
−2J

(1)
2 yields supt∈[0,T0/ε2] Q2 = O(ε5/2), that is,

δ2 =
5
2
. (3.42)

Under this condition, the linear and quadratic terms with respect to supt∈[0,T0/ε2] Q2 are sufficiently small
in T0ε

−2J2, if T0 is sufficiently small and if we additionally require

δ3 ≥ δ2. (3.43)

Now, we proceed with a priori energy estimates on the next level to justify the constraint (3.43).

3.2.3. Third energy level. Acting on Eq. (3.13) with the operator Vxxt∂
2
x+Vzzt∂

2
z +Vttt∂

2
t and integrating

in (x, z) over R
2, we introduce the third energy functional:

H3 :=
1
2

∫
R2

((
1 + ε2M + N

) (
V 2

xxt + V 2
zzt + V 2

ttt

)
+

1
2
(
V 2

xxx + V 2
zzz

)
+ V 2

xxz + V 2
xzz

+
1
2

[Vxxx − 2NxVtt]
2 +

1
2

[Vzzz − 2NzVtt]
2

)
dxdz. (3.44)
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Long but straightforward computations show that the rate of change of the third energy functional is
given by

dH3

dt
=

15∑
n=1

Ln, (3.45)

where

L1 = ε4
∫
R2

|A|2 (V 2
xxt + V 2

zzt − V 2
ttt

)
dxdz,

L2 =
1
2

∫
R2

Nt

(
V 2

xxt + V 2
zzt − 3V 2

ttt

)
dxdz,

L3 = −ε4
∫
R2

Vtt

(
VxxtMXX + ε2VzztMZZ + ε2Vttt∂T |A|2

)
dxdz,

L4 = −2ε3
∫
R2

(VxxtVxttMX + εVzztVzttMZ) dxdz,

L5 = −
∫
R2

[
Nx

(
2VxxtVxtt + VxxxVttt − V 2

xtt

)
+ Nz

(
2VzztVztt + VzzzVttt − V 2

ztt

)]
dxdz,

L6 =
∫
R2

[
Vtt (NxtVxxx + NztVzzz) + V 2

tt (Ntt + 2NxNxt + 2NzNzt)
]

dxdz,

L7 = 2
∫
R2

VttVttt

(
N2

x + N2
z

)
dxdz,

L8 = ε2ω2
0

∫
R2

(A)ω0
(PxxVxxt + PzzVzzt + PttVttt) dxdz,

L9 = 2ε3
∫
R2

(
iω3

0A
)
ω0

(PzVzzz − PtVttt) dxdz,

L10 = 2ε2ω2
0

∫
R2

(
(AX)ω0

PxVxxt + ε (AZ)ω0
PzVzzt + ε (AT )ω0

PtVttt

)
dxdz,

L11 = ε4ω2
0

∫
R2

P
(
(AXX)ω0

Vxxt + ε2 (AZZ)ω0
Vzzt + ε2 (ATT )ω0

Vttt

)
dxdz,

L12 = −2iε6ω0

∫
R2

V
(
Vxxt∂

2
X |A|2 + ε2Vzzt∂

2
Z |A|2 + ε2Vttt∂

2
T |A|2

)
dxdz,

L13 = −4iε5ω0

∫
R2

(
VxVxxt∂X |A|2 + εVzVzzt∂Z |A|2 + εVtVttt∂T |A|2

)
dxdz,

L14 = −2iε4ω0

∫
R2

|A|2 (VxxVxxt + VzzVzzt + VttVttt) dxdz,

L15 = ε8
∫
R2

(
ε2Vxxt∂

2
XR

(V )
8 + Vzzt∂

2
zR

(V )
8 + Vttt∂

2
t R

(V )
8

)
dxdz.
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We shall estimate these terms as follows:

|L1| ≤ 2ε4 ‖A‖2
L∞ H3,

|L2| ≤ ‖Nt‖L∞ H3,

|L3| ≤ 2ε4
(‖MXX‖L∞ + ε2 ‖MZZ‖L∞ + 2ε2 ‖A‖L∞ ‖AT ‖L∞

)H3,

|L4| ≤ 4ε3 (‖MX‖L∞ + ε ‖MZ‖L∞) H3,

|L5| ≤ 12 ‖∇N‖L∞ H3,

|L6| ≤ 4 ‖∇Nt‖L∞ H1/2
2 H1/2

3 + 2 (‖Ntt‖L∞ + 8 ‖∇N‖L∞ ‖∇Nt‖L∞) H2,

|L7| ≤ 16 ‖∇N‖2
L∞ H1/2

2 H1/2
3 ,

|L8| ≤ 2
√

2ε2ω2
0 ‖A‖L∞ (‖ΔP‖L2 + ‖Ptt‖L2) H1/2

3 ,

|L9| ≤ 4
√

2ε3ω3
0 ‖A‖L∞ (‖∇P‖L2 + ‖Pt‖L2) H1/2

3 ,

|L10| ≤ 4
√

2ε2ω2
0 [(‖AX‖L∞ + ε ‖AZ‖L∞) ‖∇P‖L2 + ε ‖AT ‖L∞ ‖Pt‖L2 ] H1/2

3 ,

|L11| ≤ 2
√

2ε4ω2
0

(‖AXX‖L∞ + ε2 ‖AZZ‖L∞ + ε2 ‖ATT ‖L∞
)H1/2

3 ,

|L12| ≤ 4
√

2ε6ω0 ‖V ‖L2

(‖A‖L∞
[‖AXX‖L∞ + ε2 ‖AZZ‖L∞ + ε2 ‖ATT ‖L∞

]
+ ‖AX‖2

L∞ + ε2 ‖AZ‖2
L∞ + ε2 ‖AT ‖2

L∞

)
H1/2

3 ,

|L13| ≤ 32ε5ω0 ‖A‖L∞ (‖AX‖L∞ + ε ‖AZ‖L∞ + ε ‖AT ‖L∞) H1/2
1 H1/2

3 ,

|L14| ≤ 12ε4ω0 ‖A‖2
L∞ H1/2

2 H1/2
3 ,

|L15| ≤
√

2ε13/2
(
ε2
∥∥∥∂2

XR
(V )
8

∥∥∥
L2

+
∥∥∥∂2

zR
(V )
8

∥∥∥
L2

+
∥∥∥∂2

t R
(V )
8

∥∥∥
L2

)
H1/2

3 .

Let Q3 := H1/2
3 , and we want to ensure that

sup
t∈[T0/ε2]

Q3 = O(εδ3), (3.46)

for δ3 ≥ δ2 = 5
2 . At this energy level, there will be no restriction on the upper bound of the time interval;

therefore, we do not necessarily need to keep track of particular expressions of all the L-terms estimates,
instead we will be looking at their order of smallness only.

To control the right-hand side of Eq. (3.45), we use (3.38), Corollary A, and Propositions B and C to
obtain the following estimates

sup
t∈[0,T0/ε2]

‖∇N‖L∞ ≤ 2T0ε
−2 sup

t∈[0,T0/ε2]

[
ε4 sup

T∈[0,T0]

‖A‖2
L∞ + 2ε2 sup

T∈[0,T0]

‖A‖L∞ ‖U‖L∞

+ ‖∇U‖2
L∞ + ‖U‖L∞ ‖∇U‖L∞

]
,

sup
t∈[0,T0/ε2]

‖ΔP‖L2 ≤ T0ε
−2 sup

t∈[0,T0/ε2]

[
ε13/2

∥∥∥ΔR
(P )
8

∥∥∥
L2

X,Z

+ 2ε4
∥∥∥ΔR

(P )
4

∥∥∥
L∞

‖V ‖L2

+2ε4
∥∥∥R(P )

4

∥∥∥L∞ ‖ΔV ‖L2 +4ε2ω0 sup
T∈[0,T0]

‖A‖L∞ ‖Vt‖L2 +4
ε2

ω0
sup

T∈[0,T0]

‖A‖L∞ ‖ΔVt‖L2

+2 ‖V ‖L∞ ‖ΔV ‖L2 +2Cσ ‖∇V ‖L2 ‖ΔV ‖L2

]
,

sup
t∈[0,T0/ε2]

‖Ptt‖L2 ≤ ε13/2 sup
t∈[0,T0/ε2]

∥∥∥ΔR
(P )
8

∥∥∥
L2

X,Z

+ 2ε4 sup
t∈[0,T0/ε2]

∥∥∥R(P )
4

∥∥∥
L∞

sup
t∈[0,T0/ε2]

‖Vt‖L2
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+2ε4 sup
t∈[0,T0/ε2]

∥∥∥∂tR
(P )
4

∥∥∥
L∞

sup
t∈[0,T0/ε2]

‖V ‖L2 + 4ε2 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

‖Vt‖L2

+4
ε2

ω0
sup

t∈[0,T0/ε2]

‖A‖L∞ sup
t∈[0,T0/ε2]

‖Vtt‖L2 + 2 sup
t∈[0,T0/ε2]

‖V ‖L∞ sup
t∈[0,T0/ε2]

‖Vt‖L2 ,

sup
t∈[0,T0/ε2]

‖∇Nt‖L∞ ≤ 4ε4ω0

(
sup

T∈[0,T0]

‖A‖L∞

)2

+ 4ε2ω0 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

‖U‖L∞

+4ε2 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

‖∇U‖L∞ + 2 sup
t∈[0,T0/ε2]

‖∇U‖L∞ sup
t∈[0,T0/ε2]

‖U‖L∞ ,

sup
t∈[0,T0/ε2]

‖Ntt‖L∞ ≤ 4ε4ω0

(
sup

T∈[0,T0]

‖A‖L∞

)2

+ 4ε2ω0 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

‖U‖L∞

+4ε2 sup
T∈[0,T0]

‖A‖L∞ sup
t∈[0,T0/ε2]

‖∇U‖L∞ + 2 sup
t∈[0,T0/ε2]

‖∇U‖L∞ sup
t∈[0,T0/ε2]

‖U‖L∞ ,

and

sup
T∈[0,T0]

∥∥Δ(X,Z)M
∥∥

L∞ ≤ 4T0

⎡
⎣
(

sup
T∈[0,T0]

‖∇A‖L∞

)2

+ sup
T∈[0,T0]

‖A‖L∞ sup
T∈[0,T0]

‖ΔA‖L∞

⎤
⎦ ,

where smaller terms are neglected under assumption ΔA, ∇A, ∂T A ∈ L∞ (
R

2
)
.

Taking into account (3.33), (3.42) and (3.43), we can drop a priori smaller terms and hence obtain

dH3

dt
≤ 24T0 sup

T∈[0,T0]

‖A‖L∞

[
ε2 sup

T∈[0,T0]

‖A‖L∞ + 2 sup
t∈[0,T0/ε2]

Q2

]
H3

+8ω0T0 sup
T∈[0,T0]

‖A‖L∞

[
ε−2C0ω0T0 sup

t∈[0,T0/ε2]

Q1 sup
t∈[0,T0/ε2]

Q2

+ C0ω0

(
sup

t∈[0,T0/ε2]

Q2

)2

+ 4ε2 sup
T∈[0,T0]

‖∇A‖L∞ sup
t∈[0,T0/ε2]

Q2

⎤
⎦H1/2

3

+8ε2ω0 sup
T∈[0,T0]

‖A‖L∞

(
sup

t∈[0,T0/ε2]

Q2

)2(
ε2 sup

T∈[0,T0]

‖A‖L∞ + C0 sup
t∈[0,T0/ε2]

Q2

)
. (3.47)

The source term can be dropped if

min {4 + 2δ2, 2 + 3δ2} > max {2δ3 + δ2, δ3 + 2δ2} , (3.48)

hence, δ3 < 13
4 . Neglecting the source term in (3.47), we obtain

dQ3

dt
≤ I3Q3 + J3, (3.49)

where

I3 = 12T0 sup
T∈[0,T0]

‖A‖L∞

[
ε2 sup

T∈[0,T0]

‖A‖L∞ + 2 sup
t∈[0,T0/ε2]

Q2

]
,
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and

J3 = 4ω0T0 sup
T∈[0,T0]

‖A‖L∞

[
ε−2C0ω0T0 sup

t∈[0,T0/ε2]

Q1 sup
t∈[0,T0/ε2]

Q2

+ C0ω0

(
sup

t∈[0,T0/ε2]

Q2

)2

+ 4ε2 sup
T∈[0,T0]

‖∇A‖L∞ sup
t∈[0,T0/ε2]

Q2

⎤
⎦ .

By Gronwall’s inequality (Proposition D) with Q3|t=0 = 0, we obtain

sup
t∈[0,T0/ε2]

Q3 ≤ 4ε−2ω2
0T 2

0 eI3T0ε−2
sup

T∈[0,T0]

‖A‖L∞

[
ε−2C0T0 sup

t∈[0,T0/ε2]

Q1 sup
t∈[0,T0/ε2]

Q2

+ C0

(
sup

t∈[0,T0/ε2]

Q2

)2

+ 4ε2 sup
T∈[0,T0]

‖∇A‖L∞ sup
t∈[0,T0/ε2]

Q2

⎤
⎦ .

Taking into account (3.33), (3.42), and (3.43), we deduce that supt∈[0,T0/ε2] Q3 = O(ε5/2), that is,

δ3 =
5
2
, (3.50)

which is compatible with the condition δ3 < 13
4 that follows from the inequality (3.48). Hence, the third

energy level is controlled, and all a priori energy estimates are closed.

3.3. Proof of Theorem 1

According to (3.33),(3.42), and (3.50), we have the following estimates

sup
t∈[0,T0/ε2]

‖V ‖L2 = O(ε5/2), sup
t∈[0,T0/ε2]

‖∇V ‖L2 = O(ε9/2), (3.51)

sup
t∈[0,T0/ε2]

‖ΔV ‖L2 = O(ε5/2), sup
t∈[0,T0/ε2]

‖∇ΔV ‖L2 = O(ε5/2), (3.52)

and

sup
t∈[0,T0/ε2]

‖P‖L2 = O(ε9/2), sup
t∈[0,T0/ε2]

‖∇P‖L2 = O(ε5/2), sup
t∈[0,T0/ε2]

‖ΔP‖L2 = O(ε5/2).

(3.53)

From (3.16), (3.17), and the previous bounds, we obtain bounds (3.15) with α0 = β0 = 5
2 . Combining

these bounds with similar bounds for the L2-norms of derivatives of V and P , we obtain the bounds
(1.19) of Theorem 1.

Note that, the estimates involving R
(V )
8 , R

(P )
8 , R

(P )
6 , and R

(P )
4 rely on the smoothness of A(X,Z, T ),

B(X,Z, T ), and D(X,Z, T ). This smoothness is gained with the use of Lemma 3 and Remark 2 provided
that the initial data A0 (X,Z) are sufficiently smooth. Indeed, the most stringent requirements come from
the estimates performed on the third energy level, where we have imposed conditions ∂2

XA, ∂2
ZA, ∂2

T A ∈
L∞ (

R
2
)

for all T ∈ [0, T0] and ∂2
XR

(V )
8 , ∂2

ZR
(V )
8 , ∂2

T R
(V )
8 ∈ L2

(
R

2
)

for all t ∈ [
0, T0/ε2

]
. Expressing

T -derivatives from Eqs. (2.23), (3.10) and (3.11) and differentiating one more time with respect to T , we
can see that these requirements are satisfied if A0 ∈ H8

(
R

2
)
.

We have already obtained a bound for supt∈[0,T0/ε2] ‖U‖L∞ when performing estimates on the first
energy level. Similarly, applying Sobolev’s embeddings (Proposition B) to the derivatives of (3.8) and
using (3.51)–(3.52), we control
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sup
t∈[0,T0/ε2]

‖U‖L∞ = O(ε5/2), sup
t∈[0,T0/ε2]

‖∇U‖L∞ = O(ε5/2), sup
t∈[0,T0/ε2]

‖Ut‖L∞ = O(ε5/2). (3.54)

This allows us to apply Lemma 2 to extend validity of local solution E with small initial data up to the
time t0 = T0/ε2 while preserving the accuracy of the error bounds (1.19). The proof of Theorem 1 is
complete.

Appendix A: Elements of functional analysis

For a positive integer s, we denote the L2-based Sobolev space by Hs
(
R

2
)

:= W s,2
(
R

2
)

and endow it
with the norm:

‖f‖Hs :=

⎛
⎝ ∑

k+l=s

∫
R2

∣∣∂k
x∂l

zf
∣∣2 dxdz

⎞
⎠

1/2

+

⎛
⎝∫

R2

|f |2 dxdz

⎞
⎠

1/2

.

For any p ≥ 1, Lebesgue spaces Lp
(
R

2
)

are endowed with the norm

‖f‖Lp :=

⎛
⎝∫

R2

|f(x, z)|p dxdz

⎞
⎠

1/p

.

The L∞ space is obtained in the limiting procedure:

‖f‖L∞ := lim
p→∞ ‖f‖Lp = ess sup

(x,z)∈R2
|f(x, z)| .

Now, we assume that functions f in Hs
(
R

2
)

depend on an additional variable t ∈ R+. We will often
write f ∈ Hs

(
R

2
)

implying f (·, ·, t) ∈ Hs
(
R

2
)

for fixed t.

Lemma A. Assume that f, ∂tf ∈ Lp
(
R

2
)

and ‖f‖Lp = 0. Then for any 1 ≤ p < ∞, we have

∂t ‖f‖Lp ≤ ‖∂tf‖Lp . (A.1)

Proof. Clearly,

∂t ‖f‖p
Lp = p ‖f‖p−1

Lp ∂t ‖f‖Lp . (A.2)

On the other hand, for 1 ≤ p < ∞, Lebesgue’s dominated convergence theorem (valid since f ∈
Lp(R2), ∂tf ∈ Lp(R2)) ensures that differentiation can be performed under the integral sign which is
then followed by an application of Hölder’s inequality

∂t ‖f‖p
Lp = p

∫
R2

|f (x, z, t)|p−1
∂tf (x, z, t) dxdz ≤ p

∥∥fp−1
∥∥

Lp/(p−1) ‖∂tf‖Lp = p ‖f‖p−1
Lp ‖∂tf‖Lp . (A.3)

Comparison of (A.2) and (A.3) furnishes the result (A.1). �

Corollary A. Assume that f, ∂tf ∈ Lp
(
R

2
)

for all t ∈ [0, t0] and some p ≥ 1. Then, we have

‖f‖Lp ≤ t0 sup
t∈[0,t0]

‖∂tf‖Lp + (‖f‖Lp)|t=0 , t ∈ [0, t0] . (A.4)

Proof. For p = ∞, the result follows from the fundamental theorem of calculus and integral Minkowski’s
inequality
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‖f‖L∞ ≤
∥∥∥∥∥∥

t∫
0

∂τf dτ

∥∥∥∥∥∥
L∞

+ (‖f‖L∞)|
t=0

≤ t0 sup
t∈[0,t0]

‖∂tf‖L∞ + (‖f‖L∞)|
t=0

, t ∈ [0, t0] .

For p < ∞, this result follows directly from Lemma A. �

Corollary B. Let f, ∂tf ∈ Hs
(
R

2
)

for all t ∈ [0, t0] and some s ≥ 0. Then, we have

‖f‖Hs ≤ t0 sup
t∈[0,t0]

‖∂tf‖Hs + (‖f‖Hs)|t=0
, t ∈ [0, t0] . (A.5)

Proof. By Plancherel’s theorem, we can employ the estimate (A.4) for p = 2 on the Fourier transform
side f (ξ) ∈ L2

(
R

2
)

‖f‖Hs =
∥∥∥∥
(
1 + |ξ|2

)s/2

f̂

∥∥∥∥
L2

≤ t0 sup
t∈[0,t0]

∥∥∥∥
(
1 + |ξ|2

)s/2

∂tf̂

∥∥∥∥
L2

+
(∥∥∥∥
(
1 + |ξ|2

)s/2

f̂

∥∥∥∥
L2

)∣∣∣∣
t=0

.

Using Plancherel’s theorem again, we obtain (A.5). �

We shall now list useful results: Banach algebra property, Sobolev embedding theorem, Gagliardo–Ni-
renberg inequality and Gronwall’s inequality, and Banach fixed-point theorem. For the proofs, see [1] and
Appendix B in [16].

Proposition A. (Banach algebra property) For any s > 1, Hs
(
R

2
)

is a Banach algebra with respect to
multiplication, that is, if f, g ∈ Hs

(
R

2
)
, then there is a constant Cs > 0 (depending only on index s)

such that

‖fg‖Hs ≤ Cs ‖f‖Hs ‖g‖Hs . (A.6)

Proposition B. (Sobolev embedding) Assume that f ∈ Hs
(
R

2
)

for s ≥ 2. Then, the function f is
continuous on R

2 decaying at infinity, and there is a constant Cs > 0 such that

‖f‖L∞ ≤ Cs ‖f‖Hs . (A.7)

Proposition C. (Gagliardo–Nirenberg inequality) Let f ∈ H1
(
R

2
)
. Then, for any σ ≥ 0, there exists a

constant Cσ > 0 such that

‖f‖2(σ+1)

L2(σ+1) ≤ Cσ ‖∇f‖2σ
L2 ‖f‖2

L2 . (A.8)

Proposition D. (Gronwall’s inequality) Assume g (t) ∈ C1 ([0, t0]) satisfies

dg (t)
dt

≤ ag (t) + b, t ∈ [0, t0] .

for some constants a, b > 0 and g (0) > 0. Then, we have

g (t) ≤ (g (0) + bt0) eat, t ∈ [0, t0] . (A.9)
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Proposition E. (Banach fixed-point theorem) Let B be a closed nonempty set of the Banach space X,
and let K : B �→ B be a contraction operator, that is, for any x, y ∈ B, there exists 0 ≤ q < 1 such that
‖K (x) − K (y)‖X ≤ q ‖x − y‖X . Then, there exists a unique fixed point of K in B, in other words, there
exists a unique solution x0 ∈ B such that K (x0) = x0.

References

1. Adams, R.A., Fournier, J.F.F.: Sobolev Spaces. Academic, New York (2003)
2. Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D euler equations. Commun.

Math. Phys. 94, 61–66 (1982)
3. Donnat, P., Rauch, J.: Global solvability of the Maxwell–Bloch equations from nonlinear optics. Arch. Ration. Mech.

Anal. 136, 291–303 (1996)
4. Donnat, P., Rauch, J.: Dispersive nonlinear geometric optics. J. Math. Phys. 38, 1484–1523 (1997)

5. Joly, J.-L., Metivier, G., Rauch, J.: Diffractive nonlinear geometric optics With Rectification. Indiana U. Math.
J. 47, 1167–1241 (1998)

6. Joly, J.-L., Metivier, G., Rauch, J.: Transparent nonlinear geometric optics and Maxwell–Bloch equations. J. Diff.
Eqs. 166, 175–250 (2000)

7. Joly, J.-L., Metivier, G., Rauch, J.: Global solutions to Maxwell equations in a ferromagnetic medium. Ann. Henri
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