Z. Angew. Math. Phys. 65 (2014), 405-433
© 2013 Springer Basel

0044-2275/14,/030405-29 - - "
published online May 26, 2013 Zeitschrift fiir angewandte

DOI 10.1007/s00033-013-0338-9 Mathematik und Physik ZAMP

Justification of a nonlinear Schrodinger model for laser beams in photopolymers

Dmitry Pelinovsky and Dmitry Ponomarev

Abstract. A nonstationary model that relies on the spatial nonlinear Schrodinger (NLS) equation with the time-dependent
refractive index describes laser beams in photopolymers. We consider a toy problem, when the rate of change of refractive
index is proportional to the squared amplitude of the electric field and the spatial domain is a plane. After formal deriva-
tion of the NLS approximation from a two-dimensional quasilinear wave equation, we establish local well-posedness of the
original and reduced models and perform rigorous justification analysis to control smallness of the approximation error for
appropriately small times.
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1. Introduction

Mathematical models for laser beams in photochemical materials used in the physical literature [14] are
based on a spatial nonlinear Schrédinger (NLS) equation with a time-dependent refractive index. These
models are normally derived from Maxwell equations using heuristic arguments and qualitative approxi-
mations (see e.g., [15,19]). Numerical simulations of such models are performed by experimentalists [9,21]
for theoretical explanations of complicated dynamics of laser beams in photopolymers. The complexity
of the NLS equation modeling photochemical materials is related to the fact that the spatial coordinate
in the direction of the beam propagation serves as an evolution time in the NLS equation, whereas the
nonlinear refractive index depends slowly on the temporal coordinate. Physically, the NLS approximation
describes laser beams in emerging waveguides in polymers which affect shape and dynamics of the pulse
via nonlinear refractive index.

In the present work, we study how to justify a time-dependent NLS model from a toy model resembling
the Maxwell equations. The toy model is written as a system of a two-dimensional quasilinear wave equa-
tion and an empirical relation for the change of the refractive index. Although the justification procedure
for the classical nonlinear Schrédinger equation is well-known [8], we emphasize that no results are avail-
able in the mathematical literature on the justification of the spatial NLS equation with a time-dependent
refractive index. Among other relevant results, we mention the work of J. Rauch and his collaborators on
dispersive nonlinear geometric optics in the context of Maxwell-Bloch equations [3-7] and the works of
G. Schneider and his collaborators on justification of various versions of the NLS equation in the context
of Maxwell equations [11,12,17,18].

1.1. Toy model
A photopolymer occupies typically a half space z > 0, and its face z = 0 is exposed to a laser beam. If

the beam is localized in the z-direction and uniform in the y-direction, then the electric field has polari-
zation in the y-direction with the amplitude E being y-independent; hence, E (z, z,t) = (0, E (z, 2,t) ,0)

) Birkhauser



406 Dmitry Pelinovsky and Dmitry Ponomarev ZAMP

is the electric field. The initial beam is assumed to be spatially wide-spreaded, small in amplitude, and
monochromatic in time.

Neglecting polarization effects and uniform material losses, the electric field satisfies a two-dimensional
quasilinear wave equation in the form

OIE + 02F — n*07E = 0, (1.1)
where n is referred to as the refractive index of the photopolymer. The refractive index n changes in time
t because of the nonlinear effects induced by the squared amplitude of the electric field E.

Let us write the squared refractive index in the form n? = 1 + m and assume that the rate of change
of m is governed by the empirical relation

oym = E2. (1.2)

We note that all physical constants in the system (1.1)-(1.2) are normalized to unity.
The system (1.1)—(1.2) approximates a more complicated system of governing equations in the physical
literature [14], for which the quasilinear wave equation is written via a polarization term

OIE +0?FE - 0P =0, P=nE, (1.3)
whereas the correction of the refractive index m = n? — 1 is modeled by

_ 1 thltl
8tm:E2<1—m> = m:m5<1—e me ), (1.4)

ms

where m is the constant level of saturation for m. Justification of the system (1.3)—(1.4) is expected to
be analogous to the results which are presented here for the simplified system (1.1)—(1.2).

It is worth mentioning that the realistic three-dimensional problems for laser beams in photochemical
materials can also be treated with similar analysis. Even though the starting system will then take a
form of the system of coupled Maxwell equations, functional embedding of H2(R3) to C,(R?) allows us
to close the estimates within the same energy levels as those in the considered two-dimensional case.

1.2. Asymptotic balance

Let us seek for the asymptotic solution to the system (1.1)—(1.2) by using the multi-scale expansion
[16,19]

E(z,2,t) = A(X, Z,T)e™ Y fce., m(x,zt) = M(X,Z,T), (1.5)
where c.c. stands for complex conjugated terms, X = ex, Z = €z, T = €°t are slow variables, and
P, q, s, r > 0 are exponents to be specified.

We want to choose the exponents p, ¢, s, and r such that A is governed by the NLS equation, which
has first-order partial derivatives of A in Z, second derivative in X, and a nonlinear term proportional
to moA at the leading order of € (that is O (e’*?) due to the term §2F). At the same time, Eq. (1.2)
must enforce the rate of change of M in T to be of order O (1) at the leading order of € (that is O (¢?)
due to the term E?). These requirements lead to the choice

qg=2, r=2, s=2p—2, (1.6)
which still leaves parameter p to be defined.

To show (1.6), we substitute (1.5) in (1.1) and (1.2) to obtain:

e [20% A + 2iwg (107 A + €9 A) + € WM A] 07D 4 c.c. + hoot. = 0, (1.7)
and
oM = 2P ‘A|2 + (62pA2€2in(Z_t) + C.C.) +h.o.t., (1.8)

where h.o.t. stands for the higher order terms.
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From Eq. (1.7), the balance occurs for ¢ = 2, » = 2, and s > 2. From Eq. (1.8), the balance occurs for
r 4+ s = 2p, hence s = 2p — 2, and the balance (1.6) is justified. Note that, the second term in Eq. (1.8)
induces the second harmonic, which will be further included in the equation for a residual term.

If s = 2, the leading-order terms of the system (1.7)—(1.8) read as follows:

O% A+ 2iwg (07A+ 0rA) + wgMA =0 (1.9)
and
OrM =2|A|, (1.10)

which will be the subject of our studies.
If s > 2, the leading-order terms of Eq. (1.7) yield the spatial NLS equation

0% A+ 2iwg0zA + Wi MA = 0. (1.11)

Because M depends on T by means of the same Eq. (1.10), A depends on T implicitly in Eq. (1.11).
The system (1.10)—(1.11) was used in the previous works on photochemical materials (see review in [14]).
Unfortunately, our method does not allow us to justify the system (1.10)—(1.11) at the present time. For
example, the energy (L2-norm) of the solution A on the plane (X, Z) is infinite because the integral of
|A]? in X is independent of the Z-variable.

Our task is to justify the system (1.9)—(1.10), where the time evolution of A is uniquely determined.
To avoid nonvanishing boundary terms arising in energy method when integrating by parts, we shall
consider solutions of the original system (1.1)—(1.2) on the whole plane (z,z) € R? supplemented by the
initial conditions at ¢t = 0.

To summarize, in the case s = 2, we choose the scaling X = ex, Z = €2z, T = €2t and represent exact
solution to the system (1.1)-(1.2) as

B, 2,1) = & (A(X, 2, T)e 0 + c.c.) + U, 2,1) (1.12)
and
m(x,z,t) = M(X, Z,T) + N(z,2,1), (1.13)

where U(z, z,t) and N(z, z,t) are error terms to estimate.
Let us denote

(R), :=Re"™0Et 4 cc

nwo
where the complex envelope R at the nth harmonic may depend on X, Z, and T.
Feeding (1.12)—(1.13) into (1.1)—(1.2) and assuming validity of (1.9)—(1.10), we arrive at the system

02U + 02U — (1+ &M + N) 92U = —é> (R§U>) N (RgU>) (1.14)

wo wo
and
N = €' (A%),, +2¢(4),, U+U?, (1.15)
where
R = W2 A + 2iwge?0p A — 02 A,
RY) = 024 — (1+ M) 92A + 2iwgMOr A.

We shall now consider an initial-value problem, for which we formulate the main justification result.
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1.3. Main result

For the system (1.1)—(1.2), we impose the following initial conditions

E|,_, = €4 (ex, 622’) e™0% 4 c.c. =: Fy, (1.16)
O E|,_, = —iwpe Ag (ex, 622) e 4 e4or Ay (ex, 622) €% 4 c.c. =: Fy, (1.17)
m‘t:o =0, (1.18)

where Ay is the initial distribution of the beam for the nonlinear Schrédinger equation (1.9) and dr Ay is
expressed explicitly from (1.9). Such initial conditions imply that the electrical field E at ¢t = 0 is already
penetrated in the photopolymer but has not yet induced the change in the refractive index m. Note also
that the conditions (1.16)—(1.18) imply that U|,_, = 0:U|,_, = N|,_, = 0 in the system (1.14)—(1.15)
for the error terms.

Our main result is the following justification theorem.

Theorem 1. Given initial data Ag € H® (R?), let A, M be local solutions to the system (1.9)—(1.10) for
T € [0,Tw) where Too > 0 is the mazimal existence time. There exist €g > 0 and Ty € (0,T,) such that
for every € € (0,¢€p) there is a unique solution E, m of the system (1.1)—(1.2) fort € [O,To/eﬂ satisfying
the initial conditions (1.16)—(1.18) and the bounds

2 5/2 2 5/2
te[OS,Lg)/@] HE o (A)wOHm(RZ) -0 <6 / ) ’ te[os,l;g)/@] ||m - MHHz(Rz) =0 (6 / ) - (119)
The methods of the proof of Theorem 1 are standard, e.g., energy methods and Gronwall inequality.
The main technical difficulty arises because Eq. (1.1) is quasilinear and lacks the linear dispersion of the
Klein-Gordon equation. As a result, estimates for the L2-norm of the error terms can be obtained only
by integration of the time derivative term and hence are O(e?)-larger compared to the L?-norm of the
spatial gradients and time derivatives of the error terms.
We note that the leading-order terms in the decompositions (1.12)—(1.13) are bounded by

1/2
sup H€2 (A)onLz < 2¢% sup /|A (61;,622,T)|2 dxdz = O(M?) (1.20)
te[0,To/€?] T€[0,To] e
and
1/2
sup H62M||L2 =€ sup /|M (eac,eQ,Z,T){2 dzdz = O('/?), (1.21)
te[0,To/€?] Te.To) \

with similar bounds for the L?-norms of the derivatives. Therefore, the error terms in the decompositions
(1.12)—(1.13) are O(€?)-smaller than the leading-order terms in the corresponding Sobolev norms. Also
note that the L2-norms of the leading-order terms are (9(63/ 2)-larger compared with the order of their
L -norm because of integration in the slow variables X = ex and Z = €2z.

We shall outline the proof of Theorem 1 in more detail. First, in Sect. 2, we review local existence of
solutions of the system (1.1)—(1.2) in Sobolev spaces. By using Kato’s theory [10], we prove existence of
local solutions

E € C([0,to], H* (R*)) n C* ([0, t0] , H* (R?)) N C* ([0, t0] , H* (R?)), (1.22)
for some to > 0 which can be continued to t{, > to as long as

s (B oo +10:El oo + [VE| oo ) < 00 (1.23)

t€[0,t)
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Solutions of the system are extended on the time intervals [0, Ty/€?] with an e-independent T, for which
local solutions of the NLS system (1.9)—(1.10) can be considered for any Ay € H*(R?) with s > 1. The
functional analysis tools needed for our work are collected together in Appendix A.

The goal of Sect. 3 is to obtain sufficient estimates for the error terms U, N governed by (1.14)—(1.15)
and hence to justify the approximation of solutions of the system (1.1)—(1.2) by solutions of the NLS
system (1.9)—(1.10).

First, we execute near-identity transformations to move the residual terms of the system (1.14)—(1.15)
to the O(e®) order in the L>®-norm or to the O(e'?/2) order in the L?*-norm Then, using a priori energy
estimates and Gronwall inequality, we bound terms such as ||0;U||z2 and ||VU]||z2 on the time intervals
[0, Th/€?] by the O(e%/?) error of the inhomogeneous (source) terms in the L?-norm. Because of the lack
of the linear dispersion term, we use bounds like

T
[Ull 2 <= sup Uil 2, (1.24)
€ te[0,To /€3]

which results in a larger O(¢°/2) error in Theorem 1. Nevertheless, because the residual terms have been
moved to the higher order by means of near-identity transformations, we are able to close the estimates
for small values of Ty that satisfy some technical constraints. This construction allows us to continue
solutions to the time interval [0, 7y /€e?] and to bound the error terms on these time intervals.

2. Local well-posedness theory

Before we proceed with the justification analysis, let us consider the question of local well-posedness of
the wave system (1.1)—(1.2) and formulate a regularity criterion for the continuations of local solutions.
We also obtain local well-posedness of the NLS system (1.9)—(1.10). Note that, many useful results from
functional analysis are reviewed in Appendix A and labeled by the capital letters (instead of numbers).

2.1. Local well-posedness of the quasilinear wave system

Consider the quasilinear wave system

°E 2E— (14+m)0?E =
{gjmi%{ (L+m)o, 0 (z,2) €R? teR,, (2.1)
subject to the initial conditions m|,_, = 0, E|,_, = Eo, and E|,_, = E, for given Ey, E; € H® (RQ)
with some s > 0, where H® is the L?-based Sobolev space. We can apply the local well-posedness theory
for quasilinear symmetric hyperbolic systems [10,13,20] once we bring the quasilinear wave system (2.1)
into a form of the first-order system associated with a symmetric matrix.

To symmetrize the system, we set

T

E E

v:=|0F, O , 9 L E, 0,m, 0.m, m| . (2.2)
(1 +m)1/2 (1 +m)1/2

Then, the wave system (2.1) is equivalent to the symmetric quasilinear first-order system
v+ A (V) 0gv+ Az (V) 0,v =£(v), (2.3)

where A1, A are matrices with the only nonzero elements
1 1

(1+on)/2 (A+m)l/2
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located at (1,2)—(2,1) and (1,3)—(3,1) entries, respectively, whereas f(v) is a vector field given by

T
vt - sl vjv2 vivs 1/2 1/2 2
f(v) = , — y T , v, 2(1+w vovy, 2(1 40 V304, V
| (2(1+U7)3/2 2(1+wv7)” 2(1+wy) 1 2( 7) 24, 2 ( 7) 34, Uy
T
2 50q - L0 E? B E? B
_ (9 8m+823m,_ 9 - 5, 3/2,8tE,2E8zE72E3ZE,E2 .
2(1+m) 2(14m) 2(1 +m)

Note that, A1, As, f have no explicit dependence on z, z and t.
The initial data for (2.3) are given by

V]i=o = (E1, 0xEo, 0. Eo, Eo, 0,0,0)". (2.4)

By the Kato theory (see Theorems I-II in [10]), for any vy € H* (Rz) with a fixed s > g, the Cauchy
problem (2.3)-(2.4) admits unique local solution in class of functions

v e C([0,t0],H® (R?)) n C* ([0,t0], H*~" (R?))

for some ty > 0. Moreover, the solution v depends on the initial data vy continuously (Theorem III in
[10]). We transfer this result in the following lemma, where we prefer to work with integer values of s > 3.

Lemma 1. For any integer s > 3, there exists a unique local solution of the system (2.1) in the class of
functions

E € C([0,to], H* (R?)) n C* ([0,t0], H® (R?)) N C* ([0, 0], H* ' (R?)), (2.5)
m € C' ([0,t0], H*' (R?)) n C? ([0, to] , H® (R?)) N C®([0,t0], H*~' (R?)). (2.6)
Moreover, the solution depends continuously on the initial data Eq € H*™' (R?) and Ey € H® (R?).
Proof. From the first and the last four entries in (2.2), we infer that, for any integer s > 3,
E €' ([0,t0], H® (R?)) N C*([0,t0], H*" " (R?)), (2.7)
m € C ([0,to] , H*T (R?)) n C* ([0, 0], H* (R?)) .
We shall now use the second and third entries in (2.2), which tell us that

o ar \I" [.( or \] "
J'_Ré l@”(mm)“)] +[az<<1+m>”2>] o

is a bounded continuous function of ¢ on [0,#y]. Without loss of generality, let us keep track of only
z-derivatives.
By the Leibnitz differentiation rule, we have

2 2
0, F S /s )
0, 1712 = 5 ORTLEYS™F (1 4+ m) 1/2]
[ <(1+m)/ )] L_o(k)

s—1 2
L+m) o+ (Z) oM EoITR (1+ m)l/Q] :

k=0

where (Z) is a binomial coefficient. Denoting

1/2

2
[8;+1E}2 — $ k+1pgs—k —1/2
A= /l—l—im dzdz .= / Z (k‘) 0y B, (14+m) dadz ,

R2 R2
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we use the Cauchy—Schwarz inequality to estimate

s+1E s—1
A< J— 2/(@ (Z) OB (1+m) 2 dadz

172
2 L+m)? =

s—1 2
—/ [Z (2) IR R (1 + m)l/zl dzdz
k=0

R2
< J+2\u.

But then
N—2uA—J <0 = A<pu+Vp2+J.
Let us now show that u < oo for any ¢t € [0,%y]. By the triangle inequality for L2-norm, for some
constant C' > 0, we have
) 1/2
S— 2
< C’Z / (65“1?)2 [8;7]“ (1 —|—m)_1/2} dzdz
k=0

R2

< C |10, Bll = |

s—1
o (1 m) L+ 3 o
k=1

95 (1 er)_l/QHLw] .

The right-hand side of the last inequality is bounded for any ¢ € [0,to] because [|05E| ;- , H@;Hm||L2,
102 E|| oo s ||8;_1m||Loo, |m|| - are all bounded due to (2.7)-(2.8), as well as by Sobolev’s embeddings
(Proposition B) and Banach algebra of the L*-norm. Since 1 < 0o, then A\ < oo holds for all ¢ € [0, t¢].

Now, since m|,_, = 0 and 9;m = E? > 0, we have m (z,z,t) > 0 for all (z,z) € R? and ¢ € [0, ).
Therefore, we obtain

; s+1 2 s+l 9 /
] (072 + [p:7 ) amaz <

R2 R2

( [0+ E]” + [0 E]”

> dzdz < oo,
1+m

and thus conclude that, for all ¢ € [0, to],

/ ([25E]" + [ E)) dadz < oc. (2.9)
e

It is also clear that the norm in (2.9) is a continuous function of ¢ on [0,%y] so that the assertion (2.5)
holds. To obtain (2.6), we use the bootstrapping argument for the second equation in the system (2.1)
because the space H* (R?) is a Banach algebra for s > 1 (Proposition A). O

2.2. Continuation of local solutions of the quasilinear wave system

The following lemma tells us that a local solution of Lemma 1 can be continued as long as the solution, its
time derivative, and its space gradient remain bounded in L*°-norm. This result is similar to the blow-up
criteria of solutions in other equations of fluid dynamics [2,20].

Lemma 2. Local solution of the system (2.1) in Lemma 1 does not blow up as t — to if

sup ([ Ellpoe + [10:E] e + [[VE][ ) < 00 (2.10)

te[0,to]
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Proof. In order to verify the condition (2.10), we assume that M 2 3 < 0o, where

M= sup [Elpe, Mpi= sup [VE|,w, Ms:= sup |02~ .
te0,to] te[0,to] te[0,to]
and show that, for all ¢ € [0, to],
||EHH4 ) ||atE||H3 ) ||at2EHH2 < 0.
To demonstrate this, we employ a priori energy bounds. For the sake of compactness, let us use short
notation F, := 0, F, E; := 0;FE and so on for other derivatives of £ and m.
Let us multiply the first equation of the system (2.1) by E} and integrate by parts employing decay of

E\E, and E.E, to zero as |z|,|z| — oco. The decay to zero is justified for the local solution of Lemma 1
with s = 3 by Sobolev’s embeddings (Proposition B). Thus, we obtain

dH; 1 5 o dH, 9
— =_-[E°Efdxdz = —<M 2.11
dt 2/ ¢ Grez dt — 1M, (2.11)
R2
where we have used the second equation of the system (2.1) and introduced the first energy functional
1
Hy = 2/ (1 +m) Ef + E2 + E?) dadz. (2.12)
R2

By Gronwall’s inequality (Proposition D) and the fact that m (z, z,t) > 0 for all (z,2) € R?, we obtain
1EolF2 + | B:ll7e + 1Bl 72 < 21 < 2Hi|emoe™it < 0o, t € [0,t0].

By Lemma A for p = 2, we also control ||E||,. as follows:

d
3 1Bllee <M1Bellp. = 1IBll2 < fo_sup 1Bl L2 + (1Bl L2),—g <00, t € [0,t0].
€[0,t0]
We thus conclude that £ € H' (R?) and E; € L? (R?) for all t € [0,to].
Now, we perform the same procedure but differentiating the first equation of the system (2.1) with
respect to x, multiplying it by E,; and integrating over (z,z) € R% Repeating the same with z- and
t-variables, we sum the results to obtain

dH 1

th =3 / (E? [E2, + E2, — Ef] — Ey [Eqymy + Eym.]) dzdz, (2.13)
]R2

where the second energy functional was introduced

1
Ho = 5/ (1+m)Ef + (2+m) [E2, + EZ] + E2, + EZ, + 2E2.) dadz, (2.14)
]RQ
and we have used the decay of E,tEyy, ExtEryy EntE,., E4E,., EyFEy and EyE,y to zero as |z, |z| —
00, which is justified for the local solution of Lemma 1 for s = 3. We have

2 2 2 2 2 2
1EzellLz + [ Eazllpe + 2 (| Bazllze + 2[[EatllLe + 2[[Extllze + [1EBell 12 < 2Ho.
We shall now control Hy from Eq. (2.13). The terms in (2.13) with E?E2,, E?E?, and E?E? are

x

controlled by a multiple of M{Hs. Additionally, we need to bound ||m/||; .. and ||[Vm]|, ... By Corollary A
for p = oo, we have

Imll o <to sup [my e < toM7 (2.15)
te[0,to]
and
VMmoo <to sup [|[Vmy|| e < 2t0MiMs, te[0,t0], (2.16)

te[0,to]
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where we have used the initial condition m/|,_, = 0 and the second equation of the system (2.1).

By the triangle and Cauchy—Schwarz inequalities, we have

dH
d—t"’ < My (My +2toMs) Ha, = Ha < Halmoe MMt < o0 1 € [0, 4] .
Thus, we deduce that E € H? (R?), E; € H' (R?), and Ey, € L? (R?) for all t € [0, 0]

We continue in the same manner as before, acting on the first equation of the system (2.1) by the
operator E,.;02 + E,,;0? + F1;,07 and integrating the result in (z,z) over R? by parts to reduce the
expression to first-order derivatives of m only. At the end, we obtain a functional that is not positive
definite. Its boundedness does not yield a bound on the norms of derivatives of F it includes. To remedy

the situation, we add [ (mi + mi) EZ dzdz to the energy functional thus obtained and compute the
R2
balance equation:

dH 1
T: = */ <E2 [Eg%g;t + Egzt - 3E152tt] —2my [Ezzthtt + ErzzEttt]

2
R2
*2mz [Ezzthtt + EzzzEttt] - 4EttE [EtttEt + Exerr + EzzzEz]
+8EE}, [Eymy + E.m.] 4+ 4Ey Eyy [m3 + m§]> dzdz, (2.17)
where
1 1
Hs = 5/ ((1 +m) [Etztt + Eﬁm + Ez2zt] + Eztt + Egtt + B (Eim + Egzz)
RZ
2 2 1 2 1 2
—‘rELIZ + E.'Ezz —|— 5 [Exxz — meEtt] + 5 [EZZZ — QmZEtt] dxdz, (218)
so that

| Bosallre + 1Ezzz 32 + 2 | Bagall7e + 2| Bazl 72 + 2| Baatllze + 2|1 Eazell?
+2 (| Erell72 + 2| Eatel 72 + 2 | Baell72 < 4Hs.

In deriving Eq. (2.17), we have used the decay of Eyy0FErot, EroeFunt, Erz2Ersty ErzzFrvty, Brt Fott,
EytEotr, My Epyi By, and m, E, i Fy to zero as |z| — 00, |z| — 0o. This decay can be obtained by working
with approximating sequences as follows.

Let us consider an approximation of the initial conditions FEy, F1 by the sequences of functions

{Eén)} . € H® (RQ), {E;n)} . € H* (RQ), respectively. Then, by Lemma 1 with s = 4, the cor-

responding sequence of local solutions will be
EM™ e C([0,t], H° (R%)) N C* ([0, 0], H* (R?)) N C2 ([0,¢0], H® (R?)).

The decay assumptions are valid for the approximate solution E(™) by Sobolev’s embeddings.
Because the space H° (R?) is dense in H* (R?) and so is H* (R?) in H? (R?), we have

AR BTN E I ST
H4 H3
and hence, by the continuous dependence of the solution on the initial data in Lemma 1, we have
=5l =0 |2 -], 0w
HA H3

that holds for all ¢ € [0,¢0]. This approximation argument furnishes the required decay of solutions at
infinity in the justification of the energy balance (2.17).
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Using (2.16), we estimate the m-dependent terms in (2.17) as follows:

/ma: [Ea:a:tEa:tt + Exa:a:Ettt] dxdz S ||vm||Loo (HEI:EtHL? HExtt”L? + ||E$a:a:||L2 ||Ettt||L2) S 8tOM1M2H3a
R2

/ EyEum? dadz < |Vmlf; < | Eullpe | Buell 2 < 8EMEMIHY* 1y

R2

)

and
/EEzEftmz dzdz < My My |V e || Eull72 < 4toM2MZH,.
]R2

Similar estimates are obtained for the z-derivatives terms.
The estimates of the m-independent terms in (2.17) are straightforward as follows:

/ E? [E2,, + EZ,, — 3E},] dedz < M{Hs
R2
and

/ EEy [EypaEy + Evzn B + EyyBy] dadz < My (2Ms + M) HY *HY/?.
R2

Combining all results together, we write

dHs

g S My (M + 16t0My) Hy + 20y (2My + Ms + 16650, M3) HYPHY? + 3240 M2 M2H,.
Using now the inequality H§/2H§/2 < % (H2 + Hs), we obtain
dH
TtB < FHs + GHs,

where
F = My (M + 18tgMa + toMs + 16t5M1 M)
G == M (2M5 + M + 16t5 M1 M3) + 32t M7 MJ.
Then, by Gronwall’s inequality (A.9), for ¢ € [0, t], we obtain
Hs < (Hgt_(] + Gty sup Hg) et < oo, te0,tg].
te[0,to]

Thus, we deduce that E € H? (Rz) , B, € H? (RQ), and By € H! (Rz) for all ¢ € [0, to].
We proceed to obtain the final energy estimates. We act on the first equation of the system (2.1) by
the operator
Eo22t03 + E..2403 + Eg110:0; + E.100.07 + E0}

and integrate the result in (x,z) over R?. Following the same steps as in the previous energy level com-
putations, we can introduce the positive definite energy functional

1 1
Hy = 5 / {(1 +m) (Egmt + Egzzt + Eg%ttt + E?ttt + EtQttt) + 5 (Eﬁmz + Efm)
R2
1
+2E§m + 2Egztt + Egrtt + Egztt + Egttt + E?ttt + 5 (Brzee — QmmEtt)2
1
4 = (Baeze — 2m.. Ey)° | dzdz (2.19)

2
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to obtain
dH4 1 2 2 2 2 2
W = 5 [E (Ewwzt + Ezzzt 3Ea:ttt - SEzttt 4Etttt) 4Ett (E E1$$ZE + E EZZZZ + E Etttt)

RQ
- 4EEtt (Eza:Ezzzaz + EzzEzzzz + EttEtttt) - 4mxm (EzttEx:L’:vt + EtttE:L’:vzz)
- 4mzz (Eztthzzt + Ettthzzz) - szEmrtthzzt - 6mZEZZttEZZZt - 12EEtEtttEtttt
+ 4By By (m2, + m2,) + 8E} (myy (B2 4+ EEyy) +m.. (B2 + EE..))] dedz.  (2.20)
This computation is valid under assumption on decay to zero of Fy vt Frrre, FrretFovezy BazotFazaz,
EzzztEa:zzz; EttttExtth Etttthttt7 ExtttEaL‘xtt; EltttE(EZtt7 Ezttthztta Eztttszttv mxa:Ewa:ttEtty and
M., E,..tFy as || — 0o, |z| — oo. This required decay can be justified by the approximation argu-
ment for a sequence of local solutions of Lemma 1 with s = 5 as done in the previous computations of
the balance equation (2.17). We have the control:
2 2 2 2 2
||Em;m||L2 + ||EZZZZ||L2 +4 ||EMZZHL2 +2 HEmzt||L2 +2 ||EzzthL2
42| Erartl| 72 + 2| Bzzrll 72 + 41| Buznel 72 < 4Ha. (2.21)

Hence, by Sobolev’s embeddings, we have
|Evallp < Co(IABus 2 + | Eaall2) < vV2Co (M3 +15%) |

for some Cjy > 0. Using this estimate and Corollary A, we obtain from the second equation of the system
(21) for t € [O,to},

mex”[,oo <tg sup Hmtxw”Loo < 2t0M2 —|—2\[C’0t0M1 (SupH4 + sup H1/2>
[0,¢ [0,¢] te[0,to]

Similar estimates hold for the z-derivatives terms. Lengthy calculations result in the inequality
dH
—2 <IHs+J sup Hy+L, (2.22)
dt te[0,to]
where I, J, L are some coefficients that depend on o, My, M, M3, sup,co,) H2 and sup,¢jo 4, Hs-
Inequality (2.22) can be integrated as follows:

sup Hy < Hal,_y +tol + (I + J)tg sup Ha.
t€[0,to] t€[0,to]

By the integral form of Gronwall’s inequality, we hence estimate

sup My < (Hal,_o +toL) ') < oo,
t€(0,to]

Now, since

1 1
||Eza:wz||i2 9 ||szzz‘|22 S 5 ||Eww:w:||i2 + 5 ||Ea:wzzHiZ

and
HEwwzt”%ﬁ ) ||Emzzt||i2 = ||EzwthL2 + HEzzzt||L2 )

which is a result of straightforward estimates on the Fourier transform side, we conclude that F €
H* (RQ) ,E, e H3 (RQ) and Ey € H? (RQ) for all ¢ € [0, to]. O

Remark 1. To eliminate finite-time blow-up of the component m in H*-norm, we can use the estimate
of F in Lemma 2 and the Banach algebra property in Proposition A applied to the second equation of
the system (2.1).



416 Dmitry Pelinovsky and Dmitry Ponomarev ZAMP
2.3. Local well-posedness of the NLS system

To study local well-posedness of the NLS system (1.9)—(1.10), we shall work with the rescaled equations

{3§A +i(0pA+0z4)+ MA =0,

X,Z)eR?, TeR,, 2.23
OrM = A (X,2) + (2.23)

subject to the initial data A|,_, = Ag € H® (Rz) , M|;_, = 0, for some integer s > 2. The following
lemma gives local well-posedness result.

Lemma 3. For any integer s > 2 and any § > 2 ||A0||HS(R2), there exist a positive constant Ty and a

unique solution A € C ([0, To], H* (R?)) N C* ([0, Ty], H*~2 (R?)) to the NLS system (2.23) such that
Alp_g = Ao and SUPT¢[0,T0] HAHHS(R2) <.

Proof. Let us take Fourier transform in both spatial variables and denote

MA(¢n,T) = % / M(X,Z,T)A(X, Z,T)e'EX+17) dgdz.
]RZ

The first equation of the NLS system (2.23) then becomes
OpA=i(-¢2+n) A+iMA,

which leads to the integral equation

T
AfenT) = o (e ST 4 [ SCEDTD5TA 1) ar (224)
0
Introduce the Schrédinger kernel
1 ir  ix2
St (X) := e~ 4 ear
r(X)= g

such that
£ [ei(—f’#n)T} =Sr(X)6(T—Z).

Using the inverse Fourier transform of (2.24), we obtain the integral equation
T
A(X,Z,T) =87 (X)* A (X,Z—T)—i—z'/ST,T X)*M(X,Z-T+7,71)AX,Z-T+7,7)] dr,
0

where x stands for convolution in X-variable.
Making use of the second equation in the NLS system (2.23) and M|,_, = 0, we can rewrite the
integral equation as an operator equation
A(X,2,T) = K [A(X, 2,T)], (2.25)

where

T T
K [A] ::ST(X)*AO(X,Z—T)—H'/ST,T(X)* A(X7Z—T+T,T)/|A(X,Z—T+T,%)|2d% dr.
0 0

Existence and uniqueness of solutions to Eq. (2.25) are obtained by applying the Banach fixed-point
theorem (Proposition E). We need to show that conditions of the fixed-point theorem are fulfilled in a
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closed ball of radius § in the space C ([0,Tp], H* (R?)) for some § > 0 and Ty > 0 as well as for any
s> 2

Te0,T,

Bs = {f € C([0,Ty],H* (R?)) : sup ||fHHs(R2 < (5} (2.26)

In other words, we need to show that Bs is an invariant subspace of the operator K, that is, for any
AeBscC ([07T0} ,H* (RQ)), we have

sup ||K [A]HHs(Rz) <4, (2.27)
T€[0,To]

for suitable choice of § > 0 and Tp > 0. We also need to show that K is a contractive operator in the
sense that there is ¢ € (0,1) such that for any A A®) ¢ Bs

sup
T€[0,To]

K [A(l)] - K [A(Q)} HH%RZ) = qTES[%,F;’“o]

AW _A® H . (2.28)
He (R?)

To choose § > 0 and Ty > 0 such that both conditions (2.27)—(2.28) are satisfied, we proceed with analysis
on the Fourier transform side using (2.24) rather than (2.25).

We start by showing (2.27). Let A € Bj, that is, supreo, 1) | All s (r2) < 6. Then, applying Plancherel’s
theorem and Minkowski’s integral inequality to (2.24), we obtain

(1 Jrgz + 772)8/2

i 14]]

sup ||K[A]HHS(]R2): sup

T€[0,To] T€[0,To] L2 (R?)

IN

H(1+§2+n )*% 4y ‘

sup /H 1+§2+77 )S/QMA‘

L2R2 TEOT]

L2(R?)
— [Aoll o gy +_sup / I MA|| g g, dr.
TE[O,TO]O

By Proposition A and Corollary B, we arrive at the bounds

sup || K [Alll go oy < Aol o gey + C2T6 sup | All3e g2,
T€[0,T0] Te[0,T0]

< HAOHHS(]RQ) + CSQTOZ(537

for some constant Cs > 0. If § > 2|[Ao|| ;7 (g2 and Tp < ﬂ%&’ then both terms become less or equal to

d/2 which furnishes (2.27).
Now, we proceed with showing (2.28). We write

 (a0) 0 (4% o (1) <0 (4
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and using the triangle inequality, the Banach algebra property of H*® (R2)7 and the same arguments as
above, we obtain

pou i |a®] - x4 HW)
< s [l (40) 00 -3 (1) 0]

< C2TE sup [HA(Q)H

0, o, (e ], ) -4,
T€[0,To] Hs Hs Hs Hs s

< 3C%T35%  sup
T€[0,Ty)]

A _ A<2>H ,
He(R?)

From here, contraction of operator K is achieved if Ty < ﬁ. Combining this with the previous

condition, we conclude that the choice \

1
To < ——
ERVETOR;
leads to the existence of unique solution A of Eq. (2.25) in the ball (2.26).

Then, expressing Oy A from the first equation of the system (2.23), the bootstrapping argument gives
AeC([0,To], H*2 (R?)). 0

6 > 2[[Aoll g (re) »

Remark 2. Tracing the proof, it is straightforward to see that the same result holds in the presence of
inhomogeneous terms in the system (2.23) providing these terms belong to the space C ([0, To], H® (RQ)).

3. Rigorous justification analysis

We shall here prove Theorem 1 by using near-identity transformations and a priori energy estimates.

3.1. Near-identity transformations

Smallness of error terms U (z, z,t) and N (z, 2, t) in the decompositions (1.12)—(1.13) hinges on smallness
of the right-hand side terms in the system (1.14)—(1.15). The right-hand side terms can be made smaller
by performing near-identity transformations.

Let us start with the source term €° (RéU)) in Eq. (1.14) and introduce
wo
Ui (z,2,t) :=U (z,2,t) — " (F (X, 2,T)),, , (3.1)
where F (X, Z,T) will be chosen later. Eliminating U (z, z,t) from (1.14), we obtain
02U, + 02Uy — (14 €M + N) 92U, = —é2 (Rgl”) N—¢ (ng) e (RgU>) . (3.2
wo wo wo
where
RéU) = RéU) + € (w(Q)F + 2iwoe?dr F — 648%F) ,
RY) = 0% F + 2iwg (02 F + 0rF) + W MF — (024 — 93 A — 2iwg Mo A)
RY) = 0LF — 02F — MO2A + 2iwoMOrF — 2 MOSF.
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The O (e) source term is eliminated (that is, RéU) = 0) providing that F (X, Z,T) solves the linear
inhomogeneous Schrodinger equation

0% F + 2iwy (0zF 4+ 0rF) + wiMF = 02.A — 0% A — 2iwgMOr A. (3.3)

Hence, Eq. (3.2) for Uy (z, z,t) has a O (68) source term. Generally, such transformation can be repeated
k times to have a source term of order O (e5+2%), but one application of the transformation (3.1) (k = 1)
will be sufficient for us to close the estimates.

Now, we proceed with Eq. (1.15) treating the first two terms in the right-hand side separately. To
remove the O (64) source term, we introduce

A2
N ::N—e4< : ) (3.4)
22(.(}() 2wo
and obtain the equation for Ny (x, z,t) with the O (¢%) source term:
AorA
0Ny = —¢8 (T> +2¢% (A),, U+ U (3.5)
wWo 2w0

In a similar fashion, this transformation can be repeated n times to get the O (e4+2") source term. We
will need two transformations of the type (3.4) (n = 2) to move the residual term to the O(e®) order,
which will be sufficient for us to close the estimates.

To improve the second term in the right-hand side of (1.15), we perform another type of the near-
identity transformation

A
Ny := N — 262 <> U, (3.6)
wWo wo
in which case we have
A orA
0Nz = ¢* (A2),  — 2¢° (> OU — 2€! (T> U+ U2 (3.7)
“o W wo W wo

This transformation moves the linear term in U to the O (64) order, whereas the O (62) term depends now
on U, which norm is expected to be smaller. Note that, an iteration of this latter transformation is not
effective because we do not anticipate the norm of 92U to be smaller compared to the norm of 9;U. The
two near-identity transformations (3.4) and (3.6) can be combined in a straightforward way, however,
putting together near-identity transformations (3.1), (3.4), and (3.6) should be done more carefully due
to intertwining structure of the equations.

Including the third-harmonic term in the relevant transformations because of the nonlinear terms
produced in the system (1.14)—(1.15), we write the resulting near-identity transformations in the form

Vi=U-¢"(B), — € (D), (3.8)
2
P::N—64NO—|—262<,A) V+e4(4 )
1wy 21w
wo 2wo
2 (AB - AB AdrA  AB+ AD AD
Lo | 2(AD )_( A _AB ) +<‘ ) , (3.9)
1wg 2wg Two 200 21wg dwo

Here, bar denotes complex conjugation, and B (X, Z,T), D (X,Z,T), Ny (X, Z,T) solve the following
linear inhomogeneous equations

8% B + 2iw (0B + 0rB) + wiMB = 02A — 93 A — 2iwoMr A — Z%OAQZL (3.10)

0% D + 2wy (07D + 0rD) + weMD = —%Ag’, (3.11)
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and
OrNo = 2 (AB + AB). (3.12)

As a result of the transformations (3.8)-(3.9) and the relations (3.10)—(3.12), the system (1.14)—(1.15)
transforms to the system

D2V + 02V — (1+ &M + N) 92V = —2wd (A),,, P + 2iwpe’ |[APV — R (3.13)
and
0P = RS 42 RV + 262 (;3) OV + V2, (3.14)
0/ wo
where
orA
RflP) — (T +B> + (D)3, »
wwo wo
dr (AB — AB _ 9p (AdrA)  Op (AB+ AD dr (AD
R = Or(AB=AB) (), or rd) r (A1 ) +(Bc+7“> :
2iwo 2wg iwg o 21w dwo
) _ [ fwo 2 s o |A]” 9p A _
RY) = (52 [2 A B+ A2B + TAD + 4MaTB} + ST+ A0r A - MO A+ 03B — 03B

' A20pA
_ (";0 [|A|2 D+ A’B — 12M6TD] + ZT — 92D+ a%D> + 3 (iwgA2D)

3w0

5(4)0 :

This system of residual equations is a starting point in our justification analysis.

3.2. A priori energy estimates

We now proceed with the estimates of the error terms U(x, z,t), N(x, z,t) in the decompositions (1.12)—
(1.13) given sufficiently smooth initial data. The amplitudes A and M change on the temporal scale of
T = é*t on [0, Tp]. Therefore, the validity of approximation needs to be justified for all ¢ € [0,7p/€?]. We
would like to prove that there are ag, B9 > 0 such that
sup  |[U (1)l = O(™),  sup  [|N (- 8)]| 12 = O(™). (3.15)
te[0,Ty /€] te[0,To /€?]

Because of the O(e!/2) order of the leading-order terms in (1.20) and (1.21), the error terms in the decom-
positions (1.12)—(1.13) are smaller than the leading-order terms in L?-norm if o, 3y > 5. We intend to
prove that the estimates can be closed with ag = 5y = g

We shall use index notation for partial derivatives such as F, := 0, F, E; := 0;FE, and so on. We shall
also employ subscript notations such as ||| L2, Vx,z, and Ax 7 when necessary to emphasize that the
norms or derivatives are computed with respéct to slow variables X, Z. A generic positive constant is
denoted by C.

Using the near-identity transformations (3.8) and (3.9), under assumptions B, D, Ny € L? (R?), A €

L (RQ) nL? (R2) , RéM) erL? (RQ), we can see that

sSup ||U('7'7t)||L2 < sSup HV('?'?t)HL? +065/2 (3'16)
t€[0,To/€?] t€[0,To/€?]
and

sup ||N("'7t)HL2 < sup HP('a'7t)||L2 +C€2 sup HV(""t)”L? +C€5/2' (317)
te[0,To /2] te[0,To /2] te[0,To/€2]
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Hence, to have (3.15) with ag, Gy > %, we only need

sup ||V(77t)||L2 :O(eﬁ) ) sup HP(aat)”Lz :O(ea)7 (318)
te[0,To/€?] te[0,To /€]
with o, G > % Again, we intend to prove that the estimates can be closed with a = g = %

3.2.1. First energy level. While P(z,z,t) can be controlled directly from Eq. (3.14), the estimate of
V(x, z,t) relies on a priori energy bounds. Multiplication of Eq. (3.13) by Vi(z, z,t) and further integra-
tion by parts in (x,z) over R? lead to
d 1
% = / (e‘* AP V2 + §NtVt2 + Wi (A),, PV, — 2iwoe [AP V'V, + eSngvt) dazdz,  (3.19)
R2

where we introduced the first energy functional

1
Hy = 5/ [(1+ €M+ N) VP + V7 + V7] dadz. (3.20)
R2
This yields the estimate
dH
0 S 26 AN M+ IVl e P+ 2V2E05 A e 1P 2 1

+2v2e4w0 | A2 [V [ 2 HY? + V261372 HRgW]

1/2
L2 HT, (3.21)
X,z

where we recall that we are loosing €/2 when computing L2-norms of the residual terms like Rév), because
of integration in the slow variables X = ex and Z = €2z.

Let Q1 := 'Hi/Z and assume that we can prove

sup Q1 =0 (661) , (3.22)

tG[O,T0/62]

for some d; > 0. Since V|,_, = 0, Corollary A implies that for t € [0, T0/62], we have

To V2T
Wls <2 s il <28 ap o, (523)

te[0,To /€2 t€[0,To/€?]

and hence sup,c(o 1, /2] ||V ll2 = O (e9172), that is, = 6; — 2 in (3.18).
Similarly, by the Gagliardo—Nirenberg inequality with o = 1 (Proposition C), we estimate the nonlin-
ear term in (3.14)

2
VI[zs < Co VI [IVV]| 2
Since P|,_, = 0, Corollary A implies that for ¢ € [0,Ty/e?], we have

T
1Pz <=5 sup ||Pill. < €Ty sup
€7 t€[0,To /€] t€[0,To/€?]

2
’Rép)HLz +2CUT026_4< sup Q1>
X,z

t€[0,Tp/€?]

+2V/2T, <T0 sup ’RA(LP)

t€[07T0/62]

2
+ — sup ||A||L°°> sup  Qr,

HL”o Wo Te(0,T,] te[0,To /€2

Hence, sup,¢jo 1, e2) 1P|l 2 = O (€92 4+ €9 + €29174) that is, in (3.18),

« = min {3, 01, 201 — 4} . (3.24)
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To control Q1, we need to bound || N¢||;~ from Eq. (1.15),

INel| oo < 26" [|All7 0 +4€ [ All poo U] oo + U117 » (3.25)
where ||U]| - is controlled using (3.8) by
Ul e < 26" 1Bl o + 2€* [IDl] e + IV [| o - (3.26)
By Sobolev’s embedding (Proposition B), we can bound
Vil < ClIVIIg2, (3.27)

if we assume the L?-norm of second derivatives of V is controlled by some quantity Q2 to be introduced
later in Eq. (3.37), that is,

Vaollp2 s [Vaslls < V2Qa,  sup Qo = O(e%), (3.28)
tE[O,To/€2]

for some d2 > 0. Bound (3.23) and (3.28) imply that there is Cp > 0 such that

Vg < Co

QQ + T0€72 sup Ql . (329)
te[O,TD/62]

As we will see, sup,c(o.7, /e2) |V || 1 1s always bigger than O(e*), so bound (3.26) implies that there is
C > 0 such that

Ul < ClIVIlze -
Then, bound (3.25) yields
Nl < 2€* A + 4Coe® | All oo Q2 + C3Q3
2
+e 02T sup Q1| +2CTy sup Qi (e 2CoQ2+2||Al ). (3.30)
te[0,Ty /€?] te[0,To/€?]

Combining all together, Eq. (3.21) yields

d@Q,
—= < T J
T 1Q1 + J,
where
2 2
cs
L=4* [ sup |A|l | +2¢ sup |A],« sup Q2+ —2 sup Qo
TE[0,To] TE[0,To] e 2 \te(0.To/e?)
C3T? ’
+esz§To sup @1 sup @2+ Z0°0 —4 sup Q1
te[0,To/e?]  t€[0,T0/e?] 2 te[0,T0/€?]
+2CTy sup [|Al|,« sup Q1
Te[0,To] te[0,T0/€2]
and

Jp = V/2€13/2 (; sup

t€[0,To/€?]

RéV)H +wdTy sup  ||Af;~ sup
L,z t€[0,To/€?] t€[0,To/€?]

R(P) H
8 ez,

sup
t€[0,To /€]

RP) H

2
+2€2woTh (4 + \/5) sup ||All;~ | +2T0 sup
T€[0,To] te[0,70 /2]

2
+2v2e W3 TFC,  sup ]A|L°°< [SUP Ql) .

Te[0,To t€[0,To /€]
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By Gronwall’s inequality (Proposition D) with Q1|;—¢o = 0, we have, for ¢ € [0, T0/62],

Q1 < Toe 2JyelToe " (3.31)

11T0€72

To prevent divergence of the exponential factor e as € — 0, we require that I;e~2 be finite as

€ — 0, that is,

min {62, 2(52 - 2, (52 + 61 - 4, 261 — 6, 61 - 2} Z 0. (332)

2
We also want d; > 4 so that the quadratic term (Supte[O,Tg/e2] Ql) in The=2J; is negligible. Moreover,

we require Tj to be small enough such that

2
2T el Toe ™ (4 n \@) sup  ||A|l | +2Tp  sup
te[0,To/€?] te[0,Ty /€]

R H <1
4 oo )

then, the coefficient of the linear term sup;c( 7, /2 @1 in Toe=2J; is smaller than one.
With these constraints, we obtain from (3.31) that

sup Ql < 069/2T06I1T0672 sup
t€[0,To /€] t€[0,To/¢€%]

RéV)H +2w§T0 sup  [|All ~ sup
L% 2 te[0,To /€2 te[0,Tp /€2

R(P)H
‘ 8 %, )’

hence supc(o, 7, /e2) @1 = O(e°/?). The conditions (3.24) and (3.32) imply that

9 5
@:61257 ﬁ:61—2:§, (333)

if we additionally require
09 > 1. (3.34)

We will ensure that this constraint on d, is satisfied by continuing next with a priori energy estimates
on the second derivatives of V.

3.2.2. Second energy level. Acting on Eq. (3.13) with the operator V10, + V.;0. + V;:0; and integrating
in (z,2) over R?, we introduce the second energy functional:

1
Ho = 5/ (I+EM+N)VE+ (24+4EM+N) (Vo + V) + VL + VA +2V72) dedz. (3.35)
]RZ

Long but straightforward computations show that the rate of change of the second energy functional is
given by

de 2
7] == nsy .
7 ng ‘ K (3 36)
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where

K= [JAP (V2 4+ V2 4+ V2) dodz,
]R?

Ky

—GS/Vtt (VtxMX + €Via My + 2¢| AP Vtt> dzdz,
RQ
1
Ks = g/z\ct (V2 + V2 - V2) dadz,
RQ
Ki— / N [VitaVie + VieaVie + Vit (Vias + Vios)] dadz,
RQ

K5 = 62(,,,;(2) / (A)w0 (PpVig + P.Vi, + P V) dadz,

R2

Ko = 2wl / Ple(Ax),, Via + ((iwoA),, + € (Az),,) Viz + (= (iwoA),,, + € (Ar),, ) Vi) dadz,
R2

Ky = —2ie5wo/V (Vs |AP + eViedz | AP + Vi | AP dad,

R2
Kg = —2ie*wy / AP (Vie Ve + Vie Vi + Vi Vi) daedz,

R2
Ko = / (evmangv) + V;0,RY) + Vtt&gRéV)) dadz.

R2

We estimate the terms in (3.36) as follows:

K| < 264 (| A  Ha,

165] < 468 (||V (.2 M]| o + € AN ) s,

|[Ks| < [[N]| o Ha,

Kl <IN oo (Wil 2+ 1 Vaeell o + [Vatll gz + [Veztll 2) 1y,

|Ks| < 2v2E208 | Al oo 2V Pl o + [1P2] ) 5%,

Kol < 2V2203 | Pl o (e[ Axll e + € [ Az 1o + € [ Az e + 2w0 | All ) 5%,
|K7| < 4€%wo [ All e 1V ]| 2 (1Ax || oo + € 1Azl e + €| ATl ) Hy',

[Ks| < 126w || All7 - 21572,

K| < V2 (e oxr("| . +|o-r”| | +||ord”| ) My,
L% z L% z L% z
Let Q5 := 'H;/Z, and we want to ensure that
sup  Qz = O(€%), (3.37)

t€[To /€]
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for some d2 > 1 according to (3.34). To proceed further, we shall use the bounds

sup  [|[Vix,2)M|| oo <To sup ||Vix 200 M|,
Te[0,To] ,To)

<4Ty sup |[[Allp~ sup HV(X’Z)AHLOO
T€[0,To T€(0,To)

]

and

sup VP .. < 2V2T
te(0,To/€?]

Ty sup
t€[0,To/€?]

4N/2T,
X sup Qi+ ——= sup [|[VixnAll,.  sup Qs (3.38)
te[0,To/€2) wWo  Teo,To) t€[0,T0/€2]

VRELP)“ +CoToe™® sup Q1 +Coe? sup Qs
Lee t€[0,To /€2 t€[0,To /2]

) e

where we dropped terms which are of higher order of smallness under assumptions VRéP
L2 (R?), R{" € L™ (R?), VA € L™ (R?).

To estimate the K4 term, we control | N~ by using (3.30) and Corollary A:

INpoo < €Ty sup [ Nil| oo -
te[0,To/€?]

Additionally, we need to bound the third derivatives Viiz, Vitz, Vawt, Veze, in which L?-norms are con-
trolled in terms of the quantity Q3 that will be introduced later in Eq. (3.46), that is,

HV;‘/ta:HL2 3 H‘/ttz”LQ 5 ||szt||L2 5 ||Vrzzt||L2 S \/§Q3a sup QS = O(Eés)a (339)
te[0,70 /2]

for some d3 > 0. Then,

2 2
|Ky| < 2T, 262 ( sup ||A||Loo> +4Cy sup ||All ~ sup Q2+ 6_203 ( sup Qg)
T€[0,To) T€[0,Ty) te[0,To /2] te[0,To /€2

2
+e_6COT02< sup Q1> +202Toe*  sup Q1 sup Qo
te[0,T0 /€] te[0,7T0/€2] te[0,70 /2]

( sup Qg) Q2.
t€[0,To/ €2

Details for other K-terms in (3.36) can be elaborated using the previous bounds. Combining all
together and neglecting a priori smaller source terms in K9 in comparison with other terms, we obtain
from Eq. (3.36):

+4C()T06_2 sup Ql sup ||A||L°C
te[0,To/€2] T€(0,To]

=2 Lo+ IV + P sup Qs (3.40)

dQs
dt €[0,Ts /€2
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where

2
02
Iy =46Ty sup || Al [|[VA| ~ +262Co sup ||Af;~ sup Q2—|—20< sup Qg)
T€[0,To) T€[0,To) t€[0,To/e?] t€[0,To/e?]

+

e 1CRTE
2 te|

2
sup cm) +2¢72C0Ty sup (Al sup @
0,To/€?] T€[0,To) te[0,To /€2

+e'C{Ty sup Q1 sup Qo
t€[0,To/€?] te[0,Ty/€?]

I3 = 43Ty sup Al [2 sup [[Allp~ sup  Qu+V20p sup Qi suwp Qs
T

T€[0,To] €[0T te[0,To /€2 te[0,To/e2]  te[0,To/e?]
2
—2 TO 2 2
+e *— (2Cy + Crwy) sup Q1] +—€ sup [|All;~ sup Q2],
V2 te[0,To/€2] wWo  T€[0,To) t€[0,To/€2]

and

2 2
JQ(Q):TO 252< sup }||A||Loo> +4Cy sup ||All;~ sup Qg—l—e_QCg( sup Q2>

T€el0,Ty Te[0,To] t€[0,To/€?] te(0,To/€?]

te[0,T0/€2] te[0,To/e2]  te[0,Tn/e2]

2
+6600T02< sup Q1> +2674C3T0 sup @1 sup Qo

+4e72CoTy sup Al  sup @
T€[0,To] te[0,To/€?]

By Gronwall’s inequality (Proposition D) with Q2|;=¢ = 0, we obtain
@2 < T0672J2€I2T06_2, Jo = J2(1) + JQ(Q) sup  @s.
te[0,To/€2]
To bound the exponential factor as € — 0, we require Ioe~2 to be finite as € — 0, that is,
min {02, 202 — 2, 261 — 6, §; + J2 — 6, 5y — 4} > 0. (3.41)
Taking into account (3.33), this constraint reduces to the condition dy > % On the other hand, the source
term in Toe_2J2(1) yields sup;eqo,7, /e2) Q2 = O(€%/2), that is,

b2 = 3. (3.42)

Under this condition, the linear and quadratic terms with respect to SUPye[0,1; /€2] Q- are sufficiently small
in Toe=2.Jy, if Tp is sufficiently small and if we additionally require

b3 > 0,. (3.43)

Now, we proceed with a priori energy estimates on the next level to justify the constraint (3.43).

3.2.3. Third energy level. Acting on Eq. (3.13) with the operator V,.;102 + V. .10? 4+ V4407 and integrating
in (z,2) over R?, we introduce the third energy functional:

1 1
HS = 5/((1 + €2M + N) (V:czzt + szzt + ‘/t%t) + 5 (szxz + szz) + szmz + Vm2zz

R2
1

1
+5 Vazz — 2N V> + 3 Voo — 2N2Vtt]2> daxdz. (3.44)
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Long but straightforward computations show that the rate of change of the third energy functional is
given by

15
dHS Z L, (3.45)

where

= 64/|’4|2( xxt + zzt V;f%t) d(EdZ

Lo

/Nt a:;vt zzt 3‘/rftt) dl‘dZ

Lo = =€ [ Vit (VeasMcx + €VeaiMaz + Vi |AF) dad,

R2
Li= 26 / (Voat Vit Moy + Vi Vagy M) didz,
RQ
Ls = 7/ [Nac (2V3cxtvactt + Vawa Viee — Vq?tt) + N, (2szt‘/ztt A Vzttﬂ dzdz,
R2
LG = / [Wt (Nztvxx:r + Nztvzzz) + Vvt% (Ntt + 2N1Nzt + 2NzNzt)] d$d27
R2
L7 = 2/‘/&%@5 (N$2 +NZQ) dde,
R2
L=} [ (A), (PeaVest + PeaViw + PuVia) dd,
R2

Lg = 263/ (’LwOA) (Pz‘/;zz — Pt‘/ttt) dacdz,
RQ
Lyg = 26%wg / ((Ax)wo PoVigt +€(Az),, P:Vart +€(Ar),,, PVyy) dadz,

R2

Ly = €'wg / P ((Axx)y, Vaxt + € (Azz),, Vezt + € (A1), Vier) dadz,
R2

L12 = —2i66w0 / V (thai ‘A|2 + 62‘/22758% |A|2 + 62‘/;5“6% |A|2) dde,
R2

L13 = —4ie5w0/ (vamtax |A|2 =+ GV;VZZtaZ |A|2 + 6‘/;,‘/tttaT |A|2) dl’dZ,
R2

L14 = _2i€4w0 / ‘A|2 (wawat + Vtzzvtzzt + V:ft‘/ttt) d.’L’dZ,
R2

Lis=e / ( 2V,000% R + V. 2RY) + Vi 02RY )d:cdz.

R2
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We shall estimate these terms as follows:
|La| < 26 Al M,
|La| < ([ Nell oo M3,
|Ls| < 2¢* (IIMxxll e + € [|Mzzll oo + 26 | All oo [|AT] 1) Hs,
|La| < 4€% (| Mx || e + € [|Mz]| o) Hs,
|Ls| < 12||VN|| ;o Ha,
|Lo| < 4|V Nl oo HY*HE? + 2 (| Nutll e + 8V N | e VN3] ) Mo,
Ll <16 | VN7 Hy *Hy',
|Ls| < 2v26%03 | All oo (1AP] 12 + | Prell 1) 15/,
|Lo| < 4v26%w3 | All poo (IV Pl 2 + | Prll o) H3'2,
|Lio| < 4V2¢23 [(| Ax Il + € 1Azl o) IV P 12 + € | ATl oo | Pell 2] M52,
L11| < 2v2ew? (| Axx || e + € Azl e + € | Arr ] ) Hy?
|L12] < 4v2e%w0 |V 12 (1Al e [1Ax X NI + [ Az2] e + € | AT o]

1 AxIF + Az~ + € 1Azl ) 72,
|Lus| < 326%w0 | All o (1Ax [l + € | Azl e + € | Az oo ) Hy/ 2152,
|Lia| < 1264w || A|2 o MY/ PHY2,
Lol < VB2 (28| +]

2 (V) 2 p(V) 1/2
o2r| .+ orre?] )

Let Q3 := Hém, and we want to ensure that

sup Qs = O(e”), (3.46)
te[To/€?]
for §3 > 9o = % At this energy level, there will be no restriction on the upper bound of the time interval;
therefore, we do not necessarily need to keep track of particular expressions of all the L-terms estimates,
instead we will be looking at their order of smallness only.
To control the right-hand side of Eq. (3.45), we use (3.38), Corollary A, and Propositions B and C to
obtain the following estimates

2
e sup [ Al +2€6 sup (Al IU]] e
T€[0,To] T€[0,To]

sup  ||[VN|| ~ < 2Tpe 2 sup
t€[0,To/€?] te[0,T /€]

HVU |3 + U] oo IVU | e

)

sup  AP| . < Toe? sup
te]0,To/€2) t€[0,To/e?]

2 arE)| o AR i,
L%LZ Lee

42

2
P €
R | 18V et awo sup (Al Vel a4 sup [[A] o AV
T€[0,T0] Wo T€[0,To]

)

+2 [Vl poo 1AV 2 +2C5 [VV I L2 [[AV ][ 2

+ 2¢4 sup
L% » te[0,To /2]

an”|

sup [Pl < €% sup

P s Vil
t€[0,To /2] t€[0,To /2] L

* te[0,Ty /€]
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+2¢* sup
tE[O,Tg/Gz]

O sup V4 swp fJAlle sup Vil
L te(0,Ty /2] T€[0,T) t€[0,Ty /€2

2

€

+4—  sup |Allp~  sup  |[[Villpz+2 sup [V  sup Vi,
Wo te[0,To /2] t€[0,To/€2] t€[0,To/€2] €[0,T0/€?]

2
sup IIVNtILooS464wo< sup IAIILoo> +dwo sup [|Al g sup U]
te[0,To/€?] Te[0,To] T€e[0,To] te[0,T0/€?]

+4e® sup [[Alpe  sup  [[VU[pe +2 sup  [VU[pe  sup U],
T€[0,To] t€(0,T0/¢€?] t€[0,To/€?] t€[0,To/€?]

2
sup IINttle<4e4wo< sup IAIILoo> +4€wy sup Al sup (U] e
t€[0,T /€] TE[0,T0)] Te[0,To] +€[0, T /€2]

+4€® sup Al sup  [[VU[pe +2 sup  [[VU[,«  sup  [[U] e,
T€[0,T0] te[0,Tn /€2] te[0,To/e?] te[0,To /€2]

and

2
sup | A¢x, ) M|| .. < 4T (sup IIVAIILOQ> + sup Al sup [|AA] |,
T€[0,T0] Te[0,To] Te[0,T0] Te[0,To]

where smaller terms are neglected under assumption AA, VA, 9rA € L*>® (RQ).
Taking into account (3.33), (3.42) and (3.43), we can drop a priori smaller terms and hence obtain

d
s —oury sup Al
dt TE[0,To]

e sup Al -~ +2 sup Q2‘|H3
T€(0,To] t€[0,Ty /€2]

€ 2CowoTy sup @1 sup Qo
t€[0,To/€?] te[0,To/€?]

+8woTy sup ||Al
T€E[0,To]

2
+ Cowo sup Q2| +4€® sup VAl sup Qo Hé/Q
t€[0,T0 /€2] T€[0,To] [0, /€2]

2
+8¢%wy sup  [|Al; < [sup ]Q2> (62 sup [|Al| o +Co sup ]Q2> . (3.47)
te 2 2

T€[0,T] 0,To/¢ T€[0,To] t€[0,To /<
The source term can be dropped if
min {4 + 202, 2+ 392} > max {205 + 2,3 + 202} , (3.48)
hence, 03 < 14—3. Neglecting the source term in (3.47), we obtain

d
733 < Qs+ Js, (3.49)

where

Iy =121y sup ||A[;~ |€ sup ||A|l;« +2 sup Qof,
TE[0,To] TE[0,To] t€[0,To/€?]
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and

€ ?CowoTy sup Q1 sup Qo
t€[0,To/€?] t€[0,To/€?]

J3 = 4woTy sup | A
Te[0,To]

2
4+ Cowo sup Q| +4€? sup IVA| « sup Qo
te[0,To/€?] T€[0,To] te[0,Ty/€2]

By Gronwall’s inequality (Proposition D) with Qs|;=¢ = 0, we obtain

€2CoTy sup Q1 sup Qo
te0,To/e?]  te[0,To/€?]

—2
sup Qg < 4de PwiTge ™ sup Al
te[0,Ty /2] T€(0,To]

2
+ Co sup Q2| +4¢® sup [[VA|,~ sup @
te[0,To/€?] Te[0,To] te[0,Ty/€?]

Taking into account (3.33), (3.42), and (3.43), we deduce that sup,c(o 1, /e2) @3 = O(e%/?), that is,

83 = (3.50)

2 )
which is compatible with the condition &5 < 12 that follows from the inequality (3.48). Hence, the third
energy level is controlled, and all a priori energy estimates are closed.

3.3. Proof of Theorem 1

According to (3.33),(3.42), and (3.50), we have the following estimates

sup  [[V|2 = O?),  sup  |[VV] . = O(?), (3.51)
t€[0,To/€?] te(0,To/€?]

sup AV = O(2),  sup  [[VAV]|. = O(2), (3.52)
te[0,To/€?] te[0,To/€?]

and
sup || P2 = O(?), sup  [|[VP| . = O(?), sup AP . = O(&/?).
t€[0,To /e?] t€[0, T /€2] t€[0,To /€2]
(3.53)

From (3.16), (3.17), and the previous bounds, we obtain bounds (3.15) with ag = fy = 2. Combining
these bounds with similar bounds for the L2?-norms of derivatives of V' and P, we obtain the bounds
(1.19) of Theorem 1.

Note that, the estimates involving Rév), Rép), Rép)7 and RELP) rely on the smoothness of A(X, Z,T),
B(X,Z,T), and D(X, Z,T). This smoothness is gained with the use of Lemma 3 and Remark 2 provided
that the initial data Ag (X, Z) are sufficiently smooth. Indeed, the most stringent requirements come from
the estimates performed on the third energy level, where we have imposed conditions 9% A, 0% A, 02 A €
L (R?) for all T € [0,Tp) and 8% RS, 93R\", 2R\ € L? (R?) for all ¢ € [0,Ty/e*]. Expressing
T-derivatives from Eqgs. (2.23), (3.10) and (3.11) and differentiating one more time with respect to T', we
can see that these requirements are satisfied if Ag € H® (R2).

We have already obtained a bound for sup,c(o 1, /e2) [|U||, when performing estimates on the first
energy level. Similarly, applying Sobolev’s embeddings (Proposition B) to the derivatives of (3.8) and
using (3.51)—(3.52), we control
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sup Ul = O(¥%),  sup  [[VU[|pe =O(?),  sup  |Us]l e = O(?).  (3.54)
te[0,To /€] t€[0,To/€?] t€[0,To /€]

This allows us to apply Lemma 2 to extend validity of local solution E with small initial data up to the
time tg = Tp/e? while preserving the accuracy of the error bounds (1.19). The proof of Theorem 1 is
complete.

Appendix A: Elements of functional analysis

For a positive integer s, we denote the L?-based Sobolev space by H* (R2) = W2 (Rz) and endow it
with the norm:

1/2

1/2
2
e = D /|a’;a§f| dzdz + /|f|2 dzdz
R2

k+l=s R2
For any p > 1, Lebesgue spaces LP (RQ) are endowed with the norm
1/p

1]l = / .2 dedz
R2

The L*° space is obtained in the limiting procedure:

[fllLoe := Hm [|f[[L, = ess sup |f(z,2)].
p—oo (z,2)ER?

Now, we assume that functions f in H* (Rz) depend on an additional variable t € R,. We will often
write f € H® (RQ) implying f (,-,t) € H® (]Rz) for fixed t¢.

Lemma A. Assume that f, 0,f € L (R?) and | f||» # 0. Then for any 1 < p < oo, we have

O fllLe < N0:ef1l o - (A.1)
Proof. Clearly,

O fILe = 21T O I 1l - (A.2)

On the other hand, for 1 < p < oo, Lebesgue’s dominated convergence theorem (valid since f €
LP(R?), 8, f € LP(R?)) ensures that differentiation can be performed under the integral sign which is
then followed by an application of Holder’s inequality

at ||f||1[)/p = p/ |f (xaz7t)‘p_l atf (QT,Z,t) dxdz S p pr_lHLp/(pfl) ||atfHLP =D Hf||1£;1 HatfHLP . (A3)
R2

Comparison of (A.2) and (A.3) furnishes the result (A.1). O
Corollary A. Assume that f, O,f € L? (R?) for all't € [0,t9] and some p > 1. Then, we have

1fllzr <to sup
te[o,t

[0,t0

] Hatf”Lp + (||fHLP)|t:()7 te [07150] . (A'4)

Proof. For p = 0o, the result follows from the fundamental theorem of calculus and integral Minkowski’s
inequality
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t
1]l < / 0.1d7|  + (1fllp)s
0

L()()
<to sup [|0ufllpe + (Ifllp=)l=g, T € [0, t0].
te[0,to]
For p < oo, this result follows directly from Lemma A. O

Corollary B. Let f, 0,f € H® (RQ) for all t € [0,t0] and some s > 0. Then, we have

[fll s < to sup (|0cf || = + ([l 5r2)
t€[0,to]

=0 te [O,to] . (A5)

Proof. By Plancherel’s theorem, we can employ the estimate (A.4) for p = 2 on the Fourier transform
side f (&) € L? (R?)

171 = | (116" 5

L2

s/2 . s/2 .
<to s [[(1+168) " ad| + (|(1+167)"d] )
te[0,to] L2 L2/ 1t=0
Using Plancherel’s theorem again, we obtain (A.5). O

We shall now list useful results: Banach algebra property, Sobolev embedding theorem, Gagliardo—Ni-
renberg inequality and Gronwall’s inequality, and Banach fixed-point theorem. For the proofs, see [1] and
Appendix B in [16].

Proposition A. (Banach algebra property) For any s > 1, H® (]RQ) is a Banach algebra with respect to

multiplication, that is, if f, g € H® (RQ) , then there is a constant Cs > 0 (depending only on index s)
such that

19l e < CsllFll e N9l e - (A.6)

Proposition B. (Sobolev embedding) Assume that f € H*® (]RQ) for s > 2. Then, the function [ is
continuous on R? decaying at infinity, and there is a constant Cy > 0 such that

[l < Cs 11 - (A7)

Proposition C. (Gagliardo-Nirenberg inequality) Let f € H! (Rg). Then, for any o > 0, there exists a
constant C, > 0 such that

LAY, < Co IV LI 1IF1 2 - (A.8)

Proposition D. (Gronwall’s inequality) Assume g (t) € C* ([0,t0]) satisfies

d%it) <ag(t)+0b, tel0to.

for some constants a, b > 0 and g (0) > 0. Then, we have

g(t) < (9(0) +bto) e, te[0,to]. (A.9)
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Proposition E. (Banach fixed-point theorem) Let B be a closed nonempty set of the Banach space X,
and let K : B — B be a contraction operator, that is, for any x, y € B, there exists 0 < q < 1 such that
|K (z) = K (W)l x < allz =yl . Then, there exists a unique fized point of K in B, in other words, there
exists a unique solution xg € B such that K (xg) = xg.
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