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This special issue of Studies in Applied Mathematics and the one that follows are dedicated to Prof.

Roger H. J. Grimshaw on the occasion of his 80th birthday. Roger Grimshaw is a world-leading

applied mathematician, one of those people who has shaped the modern state of the area of nonlinear

waves in fluids, with particularly important applications in geophysical fluid dynamics and theoretical

oceanography.

Roger Grimshaw was born on December 13, 1938 in Auckland, New Zealand. He graduated from

Auckland University (BSc 1960, MSc 1961) and obtained his PhD from the University of Cambridge

in 1964, under the supervision of Prof. F.G. Friedlander. His PhD dissertation was on the subject

of “Topics in the theory of wave propagation.” After completion of his PhD, Roger received the Full-

bright Travel grant (1964) to take up a postdoctoral fellowship at the Courant Institute of Mathematical

Sciences in New York University, followed by the Royal Society and Nuffield Foundation Common-

wealth Bursary (1969) to be a Senior Visitor at the Department of Applied Mathematics and Theoretical

Physics at the University of Cambridge.

Over the course of his career, Roger has held positions in Australia and the United King-

dom. In particular, he was a Senior Lecturer (1965–1969) and then Reader (1970–1985) in the

Department of Mathematics of the University of Melbourne. Later, he was a Professor of Applied

Mathematics in the School of Mathematics of the University of New South Wales (1982–1992)

and Monash University (1992–1999), before coming to the Department of Mathematical Sciences

of Loughborough University (2000–2013). He is currently a Visiting Professor at Loughborough

University and the University of Exeter, and he is a Senior Research Associate at University College

London.

Roger has served on the editorial boards of 15 journals, including as an Associate Editor for Studies

in Applied Mathematics from 1990, and he has held positions of significant management responsibility,

including as Head of Department at both the University of New South Wales and Monash University.

He has supervised numerous PhD students and postdoctoral fellows, many of whom actively work in

the area of nonlinear waves in fluids.
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Roger's service to applied mathematics was recognized with his election to the Australian Academy

of Science in 1990, the award of a Centenary Medal of Australia in 2002 and the ANZIAM medal of

Australia in 2004, and his election as a Fellow of the Australasian Fluid Mechanics Society in 2012

and of the Australian Mathematical Society in 2014. Two international conferences took place in his

honor: at Loughborough University in September 2012 and at University of Southern Queensland in

November 2018.

Roger has published many seminal research papers at the cutting edge of his research field, start-

ing with his first papers on slowly varying solitary waves,1–4 internal gravity-wave packets,5,6 inter-

nal waves in stratified shear flows7,8 and in rotating ocean.9 Notably, he has developed asymptotic

schemes for the derivation of model nonlinear equations describing internal waves in a variable envi-

ronment as well as wave-mean flow interaction; he has studied the nonlinear dynamics described by

these model equations in detail, successfully using a combination of analysis and numerical simula-

tions. Throughout his research, Roger has studied the formation and dynamics of various nonlinear

coherent structures. Roger's results have formed the modern framework for the interpretation of many

oceanic observations and modeling results.

Perhaps most significantly, Roger has carried out detailed and paradigm-forming studies of

oceanic and atmospheric nonlinear internal waves. These studies include, in particular, resonant wave

interactions,10,11 wave generation by flow interaction with topography,12,13 propagation of solitary

waves and undular bores on oceanic shelves and in inhomogeneous media,14–17 and the effects of

background rotation.18–21 Roger has obtained important results on solitary waves accompanied by

oscillatory tails22,23 and strongly interacting solitary waves.24,25 Despite his age, Roger is still very

active in research on internal waves in stratified shear flows,26 oceanic internal solitary waves,27

undular bores,28 and tidal flows over topography.29

The present issue focuses on modulation theory and other methods of analysis of classical nonlinear

wave equations. The second issue will focus on the theory of nonlinear gravity-capillary and inter-

nal waves, effects of variable bottom topography and rotation, and related asymptotic and numerical

methods.

The first four papers of this issue are devoted to Whitham modulation theory. In,30 modulation

theory is used to construct approximate traveling dispersive shock wave solutions of the fifth-order

Korteweg–de Vries (KdV) equation. The traveling waves are shown to be modulationally stable in the

presence of sufficiently small third-order dispersion. In,31 the authors develop a universal analytical

description of dispersive shock waves generated in Riemann problems for a broad class of integrable

and non-integrable nonlinear dispersive equations. Several representative, physically relevant exam-

ples are considered to illustrate the efficiency of the developed general theory. In,32 dispersive shock

waves are considered in the defocusing radial nonlinear Schrödinger (NLS) equation in two spatial

dimensions. In,33 the authors relate a transition of Whitham equations from hyperbolic to elliptic cases

to the “sign characteristic” of real eigenvalues of Hermitian matrix pencils. The theory is applied to

the two-phase traveling wave solutions of coupled NLS equations.

The other three papers of the issue are devoted to the study of nonlinear evolution equations with

the help of various numerical and asymptotic methods. In,34 the authors study the defocusing NLS

equation written in the hydrodynamic form through the Madelung transform. To resolve the major

numerical challenges, the authors introduce a two-parameter family of extended Lagrangians, whose

Euler–Lagrange equations are hyperbolic and accurately approximate NLS equation in a certain limit.

The corresponding hyperbolic equations are studied and solved numerically using Godunov-type meth-

ods. In,35 generalized solitary waves with exponentially small nondecaying oscillatory tails are con-

structed for a singularly perturbed differential equation generalizing the higher order KdV equation.

In,36 the author studies collisions of any number of solitons and breathers in the Gardner equation
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with positive cubic nonlinearity. The magnification factor for the wave amplitude in the focal point is

calculated exactly to show that this factor is greater when solitons have alternating polarities.
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