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1. Introduction

We address quadratic eigenvalue problems arising in the context of stability of discrete vortices

in multi-dimensional discrete nonlinear Schrödinger equations, see [5,7] for details. The Lyapunov–

Schmidt reductionmethod is applied for continuation of a limiting vortex configuration from the anti-

continuum limit when the coupling constant between lattice nodes is small. Since lattice equations
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linearized at the limiting vortex configuration admit a non-empty finite-dimensional null space, the

Lyapunov–Schmidt reduction method results in a finite-dimensional eigenvalue problem.

The eigenvalue problemassociatedwith the Lyapunov–Schmidt reductions at odd orderswas found

in the form

M2k+1c = 1

2
γ 2c, k ∈ N,

whereM2k+1 is a symmetric matrix in Rn and γ is the spectral parameter, which determines the time

evolution of the perturbed discrete vortex. Since σ(M2k+1) ∈ R, all positive eigenvalues ofM2k+1 re-

sult in anunstable timeevolutionwithγ ∈ R,while all negative eigenvalues result in aneutrally stable

time evolutionwith γ ∈ iR. Since the corresponding eigenvector gives negative values of 〈M2k+1c, c〉,
the Krein signature of eigenvalues γ ∈ iR is negative such that these eigenvalues may bifurcate to

an unstable domain if the vortex configuration is continued beyond the anti-continuum limit [7].

This count of eigenvalues bifurcating from the zero eigenvalue agrees with the standard results in the

Lyapunov–Schmidt reduction method for solitary waves [3,4].

On the other hand, the eigenvalue problem associated with the Lyapunov–Schmidt reductions at

even orders was found in the form of a quadratic eigenvalue problem

M2kc = γ L2kc + 1

2
γ 2c, k ∈ N,

whereM2k is a symmetric matrix in Rn and L2k is an antisymmetric matrix in Rn. Particular examples

of the quadratic eigenvalue problem were considered in [7], e.g.

M2 = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 −1 0 0 0 −1 0

0 0 0 1 0 −2 0 1

−1 0 2 0 −1 0 0 0

0 1 0 0 0 1 0 −2

0 0 −1 0 2 0 −1 0

0 −2 0 1 0 0 0 1

−1 0 0 0 −1 0 2 0

0 1 0 −2 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

L2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 −1

−1 0 1 0 0 0 0 0

0 −1 0 1 0 0 0 0

0 0 −1 0 1 0 0 0

0 0 0 −1 0 1 0 0

0 0 0 0 −1 0 1 0

0 0 0 0 0 −1 0 1

1 0 0 0 0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using a simple transformation M = 2M2k , L = 2iL2k , and λ = iγ , the quadratic eigenvalue problem

is reduced to the form

P(λ)c =
(
λ2I + λL + M

)
c = 0, (1)

whereMT = M and LT = L = −L are Hermitian matrices in Cn, and I is an identity matrix in Cn. We

note thatM has real-valued coefficients and L has purely imaginary coefficients.

Our main goal is to study the number of unstable eigenvalues λ with Im λ > 0 in connection to

the number of positive and negative eigenvalues of M. This count is useful to analytically prove the

numerical results of [7], which are found to be different from the standard count of eigenvalues in the

Lyapunov–Schmidt reduction method for solitary waves [4].

If L and M commute, then their eigenvectors are the same and the quadratic eigenvalue problem

(1) is diagonalized into n quadratic equations

λ2 + νjλ + μj = 0, j = 1, 2, . . . , n,
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where {νj}nj=1 and {μj}nj=1 are eigenvalues of L and M. Therefore, the unstable eigenvalues of the

quadratic eigenvalue problem can be counted in this case from the number of positive and negative

eigenvalues of M using the quadratic equations above. However, matrices L and M do not commute

generally and neither do they in the explicit example above.

On the other hand, setting d = −λc, the quadratic eigenvalue problem (1) can be rewritten as the

generalized eigenvalue problem[
M 0

0 −I

] [
c

d

]
= λ

[−L I

I 0

] [
c

d

]
(2)

for two self-adjoint matrix operators in C2n. Therefore, the count of unstable eigenvalues of the

quadratic eigenvalue problem is related to the count of unstable eigenvalues in the generalized eigen-

value problem. This approach for a different quadratic eigenvalue problem was undertaken in [2].

A general count of unstable eigenvalues of the generalized eigenvalue problem was studied in [1].

Both works [1,2] rely on the Pontryagin Invariant Subspace Theorem and the parameter continuation

arguments. In this article, we will follow this approach to obtain the count of unstable eigenvalues

for the particular quadratic eigenvalue problem (1) arising in stability of discrete vortices. A general

spectral theory of polynomial operator pencils can be found in the book [6].

The structure of this article is as follows. Section 2 develops a general formalism of quadratic

eigenvalue problems and gives a general count of eigenvalues in the particular problem (1). A more

specific class of matrices M and L is considered in Section 3, where more details in the count of

unstable eigenvalues are obtained with the parameter continuation arguments. Another application

of the method is reported in Section 4 in the context of stability of front–pulse solutions in neuron

networks with piecewise constant nonlinear functions [8].

2. General formalism

LetM and L be bounded, invertible, self-adjoint operators acting in someHilbert space X with inner

product 〈·, ·〉. Define an operator-valued function P(λ) = λ2I + λL + M, called the quadratic operator

pencil. The following abstract definitions characterize eigenvalues of the quadratic eigenvalue problem

P(λ)c = 0 in X .

Definition 1. A point λ0 ∈ C is said to be a regular point of the operator pencil P(λ) if 0 is a regular

point of the operator P(λ0).

Definition 2. A nontrivial vector c0 ∈ X is an eigenvector of the operator pencil P(λ) for an eigenvalue

λ0 ∈ C if P(λ0)c0 = 0.

Definition 3. Vectors {c0, c1, c2, . . . , cm} ∈ X form a Jordan chain of the generalized eigenvectors

associated with eigenvalue λ0 ∈ C if

∑k

j=0

1

j!
dj

dλj
P(λ0)ck−j = 0

for k = 0, 1, . . . ,m. Ifm = 0, the eigenvalue λ0 is called simple.

To apply the spectral theory of a self-adjoint operator acting in a Pontryagin space, we use the

following factorization of the matrix pencil P(λ):

T =
[
0 −I

M −L

]
,

which follows fromthegeneralizedeigenvalueproblem(2).Werepresent theHilbert space foroperator

T as X2 = X × X and equip it with inner product (·, ·).
Lemma 1. Eigenvalues of the operator pencil P(λ) in X are equivalent to eigenvalues of operator T in X2.
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Proof. If λ is a simple eigenvalue of the operator T , then there exists vector [c, d] ∈ X2 such that

−d = λc, Mc − Ld = λd

or, after a substitution, P(λ)c = 0. In the opposite direction, if λ is a simple eigenvalue of the operator

pencil P(λ) and c ∈ X is the corresponding eigenvector, thenλ and [c,−λc] ∈ X2 form an eigenvalue–

eigenvector pair of the operator T . Using the same but longer computations, one can show a relation

between Jordan blocks of the operator pencil P(λ) and those of the operator T . �

Define operator J as

J =
[
M 0

0 −I

]

Operator T is considered in Pontryagin space equippedwith the indefinite inner product generated

by the quadratic form [·, ·] = (J·, ·).
Proposition 1. The matrix T is J-symmetric with respect to [·, ·] = (J·, ·).
Proof. The statement is proved by straightforward computations

∀f , g ∈ X2 : [Tf , g] = (JTf , g) = (Jf , Tg) = [f , Tg],
where we can use thatM and L are self-adjoint with respect to 〈·, ·〉. �

Definition 4. The subspace X− (X+) of X2 is called non-positive (non-negative) with respect to the

indefinite inner product if for any vector x ∈ X− (x ∈ X+), it holds that [x, x] � 0 ([x, x] � 0). A finite-

dimensional sign-definite subspace is called maximal if it is not a part of a higher-dimensional sign-

definite subspace.

Theorem 1 (Pontryagin, 1944). Let J be a bounded invertible self-adjoint operator in X2 with a finite-

dimensional positive (negative) invariant subspace of dimension κ. Let T be a J-symmetric operator with

respect to [·, ·] = (J·, ·). There exists a maximal non-negative (non-positive) subspace of X2, which is

invariant under T and has the dimension κ.

Proof. See [1,2] for a restored proof of this theorem. �

As an application of the Pontryagin Theorem, we can now formulate and prove the main result on

the count of unstable eigenvalues of the quadratic eigenvalue problem (1).

Theorem 2. Let dim(X) = n, M = MT be a real-valued matrix with nM negative and n − nM positive

eigenvalues, and LT = L = −L be a matrix with purely imaginary elements. Then,

n − nM = Ni + 2Nc + 2N+
r , (3)

n + nM = Ni + 2Nc + 2N−
r , (4)

where Ni is dimension of the maximal invariant subspace of T associated with eigenvalues in

C+
i = {λ ∈ C : Re λ = 0, Im λ > 0}

Nc is dimension of the maximal invariant subspace of T associated with eigenvalues in

CI = {λ ∈ C : Re λ > 0, Im λ > 0}
and N+

r (N−
r ) is dimension of the maximal invariant subspace of T associated with eigenvalues in

C+
r = {λ ∈ C : Re λ > 0, Im λ = 0},

such that (Jx, x) � 0 ((Jx, x) � 0) for all eigenvectors of T in the invariant subspaces.
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Proof. According to the Pontryagin Theorem, we need to count eigenvalues of operator T whose

eigenvectors lie in the non-negative and non-positive invariant subspaces of T . To simplify the count,

we assume that all eigenvalues are simple. (A more general application of the Pontryagin theorem for

multiple eigenvalues and semi-bounded differential operators is considered in [1].) We note that if

x = [c, d] is an eigenvector of T for an eigenvalue λ, then

[x, x] = (Jx, x) = 〈Mc, c〉 − |λ|2〈c, c〉. (5)

On the other hand, constructing quadratic forms for an eigenvalue of P(λ) with an eigenvector c, we

obtain a quadratic equation for λ,

〈Mc, c〉 + λ〈Lc, c〉 + λ2〈c, c〉 = 0, (6)

all coefficients of which are real-valued. Since M is invertible, no zero eigenvalues of T exist. Three

cases of non-zero eigenvalues of T are described as follows:

• If Re λ = 0, then 〈Lc, c〉 = 0 and (Jx, x) = 0.

• If Re λ /= 0 and Im λ /= 0, then 0 /= |〈Lc, c〉|2 < 4〈c, c〉〈Mc, c〉 and (Jx, x) = 0.

• If Im λ = 0, then |〈Lc, c〉|2 � 4〈c, c〉〈Mc, c〉 and
(Jx, x) = 〈Mc, c〉 − λ2〈c, c〉 = −λ〈(L + 2λ)c, c〉. (7)

If the eigenvalue λ ∈ R is simple and λ /= 0, then (Jx, x) /= 0.

Eigenvalues of P(λ) have two symmetries:

• If λ is an eigenvalue of P(λ) with the eigenvector c, then −λ̄ is also an eigenvalue of P(λ) with the

eigenvector c̄.

• If λ is an eigenvalue of P(λ) with the eigenvector c, then −λ is also an eigenvalue of P(λ) with the

eigenvector ĉ such that PT (λ)ĉ = P(−λ)ĉ = 0.

Thefirst statement follows fromthe fact thatM is real-valuedand L is purely imaginary, such that the

complex conjugation of P(λ)c = (λ2I + λL + M)c = 0 gives ((λ̄2I − λ̄L + M)c̄ = P(−λ̄)c̄ = 0. The

second statement follows fromtheequality detPT (λ) = detP(λ), such that if there exists c ∈ NullP(λ),
then there exists ĉ ∈ NullPT (λ) with PT (λ) = P(−λ) sinceMT = M and LT = −L.

With the above properties of quadratic forms and symmetries of eigenvalues, we develop count of

eigenvalues λ associated with non-negative and non-positive invariant subspaces of X under T .

• The symmetries imply that there exists a pair of eigenvalues ±λ ∈ iR associated with real-valued

eigenvectors c and ĉ. According to the count of complex eigenvalues [1], Ni appears both in non-

positive and non-negative subspaces with respect to (Jx, x).
• The symmetries imply that there exists a quartet of complex eigenvalues ±λ,±λ̄ ∈ C associated

with complex-valued eigenvectors c, c̄, ĉ, ˆ̄c. According to the count of complex eigenvalues [1], 2Nc

appears both in non-positive and non-negative subspaces with respect to (Jx, x).
• The symmetries imply that there exists a pair of eigenvalues±λ ∈ R associated with eigenvectors

c and ĉ = c̄. Both eigenvalues have the same sign of (Jx, x). Therefore, if (Jx, x) > 0, then 2N+
r

appears in (3), while if (Jx, x) < 0, then 2N−
r appears in (4). (The case (Jx, x) = 0 is excluded if the

real eigenvalue is simple.)

Adding the counts for all simple eigenvalues of P(λ), we finish the proof of the theorem. �

Corollary 1. If Im λ /= 0, then

|〈Lc, c〉|
2‖c‖2

< |λ| � ‖M‖,
where the lower bound makes sense only if Re(λ) /= 0.



M. Chugunova, D. Pelinovsky / Linear Algebra and its Applications 431 (2009) 962–973 967

Proof. The upper bound follows from the fact that if Im λ /= 0, then (Jx, x) = 〈Mc, c〉 − |λ|2〈c, c〉 = 0.

The lower bound follows from (5) and (6) since |〈Lc, c〉|2 < 4〈c, c〉〈Mc, c〉 = 4|λ|2‖c‖4. �

Example 1. We shall consider the quadratic eigenvalue problem (1) with matricesM2 and L2 given in

Section 1. It is easy to compute

σ(M2) = {−2, 0, 0, 1, 1, 1, 1, 2} ,
σ(iL2) = {−2,−√

2,−√
2, 0, 0,

√
2,

√
2, 2}

and to check that the null space of M2 and L2 coincide. Therefore, the quadratic eigenvalue problem

(1) has a quadruple zero eigenvalue, while its non-zero eigenvalues are defined in an orthogonal

complement of Null(M2) = Null(iL2), denoted as X with n = dim(X) = 6. Since nM = 1, the count of

Theorem 2 gives

Ni + 2Nc + 2N+
r = 5, Ni + 2Nc + 2N−

r = 7. (8)

Explicit computationof eigenvaluesof thequadratic eigenvalueproblem in [7] shows thatNi = 1,Nc =
0,N+

r = 2 andN−
r = 3with a pair {±i

√√
80 − 8}, a quadruple pair {±√

2} and a pair {±
√√

80 + 8}.
To justify this count, we shall look into a detailed structure of the matrices M and L.

3. Parameter continuations and instability bifurcations

Following to themain example in [7], we shall consider a particular formofM and L in the quadratic

eigenvalue problem (1). We set

M = 1

4
L2 − aR, (9)

where R is a positive operator in X and a is a parameter. The operator P(λ) is factorized by P(λ) =(
1
2
L + λI

)2 − aR. By Lemma 31.1 in [6, p. 169], the spectrum of a hyperbolic pencil P(λ) is real and

the eigenvalues of T have equal algebraic and geometric multiplicities. Therefore, all eigenvalues λ
of the quadratic eigenvalue problem P(λ)c = 0 are real-valued for a� 0. We shall hence consider

continuations of eigenvalues with respect to parameter a > 0 and characterize the onset of unstable

eigenvalues λ.
For small values of a, we have the following perturbation result.

Lemma 2. There exists a0 > 0, such that for any a ∈ (0, a0), the spectrum of the quadratic eigenvalue

problem

(
1

2
L + λI

)2

c = aRc (10)

is real and the corresponding eigenvalues of T have equal algebraic and geometric multiplicities. If λ is

a simple positive eigenvalue with a positive (negative) sign of (Jx, x), then it decreases (increases) with

a > 0.

Proof. If a = 0, all eigenvalues of the quadratic problem (1) are real-valued and have even multi-

plicities. Because L is self-adjoint, an invariant subspace of L for a particular eigenvalue λ0 ∈ R+ is

spanned by a complete set of linearly independent eigenvectors. Let us pick up a particular eigenvector

c0. Since 〈(L + 2λ0)c0, c0〉 = 0, we have (Jx, x) = 0 for the corresponding eigenvalue. If c0 ∈ Null(R),
the double eigenvalue is preserved at λ0 for any a > 0. If c0 /∈ Null(R), the double eigenvalue splits

into two simple eigenvalues, according to the perturbation theory for a double root of the quadratic

equation (6):

(λ − λ0)
2 = a

〈Rc0, c0〉
〈c0, c0〉 + O(a2) > 0 for a > 0,

since R is positive and c0 /∈ Null(R).
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Let λa be a simple positive eigenvalue for a > 0 with the eigenvector ca, such that

lim
a→0

λa = λ0, lim
a→0

ca = c0.

If λa is simple, then (Jxa, xa) /= 0 for the corresponding eigenvector. By the perturbation theory for

simple eigenvalues, we obtain

dλa

da
= 〈Rca, ca〉

〈(L + 2λa)ca, ca〉 , for a > 0.

If λa > 0 for small a > 0, it follows from (7) and the positivity of R that the eigenvalue with a positive

sign of (Jxa, xa) decreases with a and the eigenvalue with a negative sign of (Jxa, xa) increases with

a. �

In what follows, we assume again that L is a Hermitian matrix with purely imaginary elements.

Therefore, real eigenvalues of L are symmetric about the origin. Thus, n is even and we can consider

only positive eigenvalues. Since positive eigenvalues of the quadratic problem (10) for a > 0 move to

each other and have opposite signature (Jx, x), we may expect instability bifurcations for a > a0 with

appearanceofmanycomplexunstableeigenvaluesλ. Tobeprecise, ifnM = 0andalln/2pairsofdouble
eigenvalues are distinct for a = 0, at most n/2 − 1 eigenvalues may coalesce and split into complex

domain upon continuation in a > 0, in agreement with the counts (3) and (4) resulting in Ni = 0,

Nc � n/2 − 1 and N+
r = N−

r � 1 under the conditions above. Examples 2, 3, and 4 of the particular

matrices L and R show, however, a surprisedly low number of unstable eigenvalues. This property

is explained by the decomposition of X into R-invariant orthogonal subspaces. To accommodate this

property into the count of unstable eigenvalues, we will need the following elementary result.

Proposition 2. Assume that there exists a splitting X = X1 ⊕ X2 with X2 = X⊥
1 uniformly in a, such that

M =
[
M1 0

0 M2

]
, L =

[
L1 0

0 L2

]
.

Then, the quadratic eigenvalue problem (1) decomposes into two problems

P1(λ1)c1 =
(
λ2I + λL1 + M1

)
c1 = 0,

P2(λ)c2 =
(
λ2I + λL2 + M2

)
c2 = 0,

associated with the following matrices T and J:

T =
⎡
⎢⎢⎣

0 −I 0 0

M1 −L1 0 0

0 0 0 −I

0 0 M2 −L2

⎤
⎥⎥⎦ , J =

⎡
⎢⎢⎣
M1 0 0 0

0 −I 0 0

0 0 M2 0

0 0 0 −I

⎤
⎥⎥⎦ .

No instability bifurcation occurs in parameter continuation in a if the coalescent eigenvalues correspond to

different blocks of matrices T and J.

Proof. The proof follows by direct substitutions. �

When eigenvalues of the quadratic problem (10) are continued in a� a0, the instability bifurcations

may occur due to two reasons:

1. Real eigenvalues of opposite signatures (Jx, x) associated with the same subspace in the a-uniform

decomposition ofM and L coalesce at a = a∗ and split off the real axis for a > a∗.
2. Real eigenvalues associated with the same subspace in the a-uniform decomposition of M and L

coalesce at the origin at a = a∗ and split off the real axis for a > a∗ whenM has eigenvalues passing

the origin at a = a∗ from positive to negative values.
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In the first case, the left-hand-side in the counts (3) and (4) remains unchanged, but the right-hand-

side leads to a decrease of N+
r and N−

r with the corresponding increase in Nc .

In the second case, the left-hand-side in the counts (3) and (4) is decreased and increased, respec-

tively. If themultiplicity k of the zero eigenvalue ofM is odd, there exists at least one eigenvalue pair in

Ni after the crossing of the zero eigenvalue. Generally, at most k eigenvaluesmay bifurcate inNi + 2Nc

after the crossing.

Example 2. We shall complete the count of eigenvalues in Example 1. Indeed, matrix M can be rep-

resented in the form (9) with a = 2 and R = η0 ⊕ ηT
0 , where η0 = [0, 1, 0,−1, 0, 1, 0,−1]T and the

outer product is used. It is clear by Lemma 2 that

a = 0 : Ni = Nc = 0, N+
r = N−

r = 3,

which remains valid for small a > 0. Because nM = 1 for a = 2, the only negative eigenvalue ofM has

to giveNi = 1 due to the bifurcation of type 2 at a = a∗ ∈ (0, 2). As a result, the numberN+
r is reduced

by 1 for a > a∗. On the other hand, thematricesM and L are block-diagonalized simultaneously to the

form

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 − 2a 2a 0 0 0 0 0 0

2a 4 − 2a 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0

0 0 −2
√

2 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 2
√

2 0 0

0 0 0 0 0 0 2
√

2 0

0 0 0 0 0 0 0 −2
√

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which shows that all bifurcations of type 1 do not occur in parameter continuations for a > 0. As a

result, the count (8) becomes more precise:

a = 2 : Ni = 1, Nc = 0, N+
r = 2, N−

r = 3,

exactly according to the numerical data in Example 1. By Proposition 2, the quadruple pair of eigen-

values λ = ±√
2 with (Jx, x) = 0 and N+

r = N−
r = 2 persists because the two eigenvectors of L for

the double eigenvalue 2
√

2 are located in the null space of R = (L2/4 − M)/a.

We shall now consider amore interesting pattern of eigenvalues for examples of L and R in the form

(L)j,k = 2i
(
δk,j+1 − δk,j−1

)
mod(n), 1� j, k � n

and

R = η1 ⊕ ηT
1 + η2 ⊕ ηT

2 + η3 ⊕ ηT
3 + η4 ⊕ ηT

4 ,

wheren = 4m for afixed integerm� 3and the column-vectors {ηj}4j=1 have the elements for 1� k � n:

(η1)k = δk,2 − δk,4m, (η2)k = δk,m+2 − δk,m,

(η3)k = δk,2m+2 − δk,2m, (η4)k = δk,3m+2 − δk,3m.
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Table 1

Eigenvalues and their multiplicities form = 3.

M at a = 0 M at a = 2 T at a = 0 T at a = 2

4, “2” 3, “2” ±2, “2” ±3.69, “1”

3, “4” 2.56, “2” ±1.73, “4” ±3.21, “2”

1, “4” 1, “2” ±1, “4” ±2.25, “1”

0, “2” 0, “2” 0, “4” ±1, “2”

−1, “2” ±0.28±0.63 i, “1”

−1.56, “2” 0, “4”

±0.54 i, “2”

It is clear that the matrix R has rank 4. Although we consider continuation of matrix M in a > 0,

the value of a needed for applications in [7] is a = 2.

Example 3. For the simplest case m = 3, the two-dimensional null spaces of M and L coincide, such

that n = dim(X) = 10 in the orthogonal complement of Null(M). By Lemma 2, we have

a = 0 : Ni = Nc = 0, N+
r = N−

r = 5,

which remains valid for small a > 0. Since nM = 4 for a = 2 (see Table 1), the count of Theorem 2

gives

Ni + 2Nc + 2N+
r = 6, Ni + 2Nc + 2N−

r = 14.

Fig. 1 shows eigenvalues ofM (left) and real and imaginary parts of the eigenvalues of the quadratic

problem (1) (right) versus parameter a on [0, 2]. Different colors correspond to different blocks in the

block-diagonal representations ofM and L. Although eigenvalues of opposite Krein signatures of (Jx, x)
coalesce when a > 0 is increased, all coalescences for a < 1 do not result in unstable eigenvalues,

since the coalescent eigenvalues correspond to different blocks of thematricesM and L. There are two

crossings of positive eigenvalues of M through the origin at a = 1 and a = 1.5. Both crossing involve

double eigenvalues of multiplicity k = 2. In the first case, the crossing does not lead to instability

bifurcations since they correspond to different blocks of the matrices M and L. After the crossing, the

number N+
r is reduced by 1 and the number N−

r is increased by 1. In the second case, the crossing

involves eigenvalues of the same block and results in bifurcation of type 2 with Ni = 2. The number

N+
r is reduced by 2 after the bifurcation. Additionally, the real eigenvalues of the same block and

opposite Krein signature (Jx, x) coalesce at a ≈ 1.2 and lead to the bifurcation of type 1 with Nc = 1.
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Fig. 1. Eigenvalues ofM (left) and real and imaginary parts of eigenvalues of the quadratic problem (1) (right) versus parameter

a on [0, 2] for the casem = 3.
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Fig. 2. Same as Fig. 1 but for the casem = 4.

Table 2

Eigenvalues and their multiplicities form = 4.

M at a = 0 M at a = 2 T at a = 0 T at a = 2

4, “2” 4, “1” ±2, “2” ±3.46, “1”

3.4, “4” 3.4, “2” ±1.85, “4” ±3.25, “2”

2, “4” 2, “3” ±1.4, “4” ±2.97, “1”

0.58, “4” 1.4, “2” ±0.76, “4” ±1.41, “2”

0, “2” 0.58, “2” 0, “4” ±1±0.37 i, “2”

0, “3” 0, “6”

−1.4, “2” ±0.68 i, “1”

−2, “1” ±0.54 i, “2”

Both numbers N+
r and N−

r are reduced by 1 after the bifurcation. Thus, we obtain the exact count of

eigenvalues by

a = 2 : Ni = 2, Nc = 1, N+
r = 1, N−

r = 5.

Eigenvalues and their multiplicities for a = 0 and a = 2 are summarized in Table 1.

Example 4. For the case m = 4, matrices M and L have again the same two-dimensional null space,

so that n = 14. We have again

a = 0 : Ni = Nc = 0, N+
r = N−

r = 7,

which remains valid for small a > 0. Fig. 2 shows again eigenvalues ofM (left) and real and imaginary

parts of the eigenvalues of the quadratic problem (1) (right) versus parameter a on [0, 2], where differ-

ent colors correspond to different blocks in the block-diagonal representations ofM and L. Eigenvalues

and theirmultiplicities for a = 0 and a = 2 are summarized in Table 2.We can see that the case a = 2

is a bifurcation sinceM has zero eigenvalue of multiplicity 3. Therefore, we shall count eigenvalues at

a = 2 − δ for any small δ > 0. Since nM = 3 for a = 2 − δ, the count of Theorem 2 gives

Ni + 2Nc + 2N+
r = 11, Ni + 2Nc + 2N−

r = 17.

There is only one bifurcation of type 2 at a = 1, when the zero eigenvalue has multiplicity k = 3.

Because of the block-diagonal decomposition of M and L, all real eigenvalues crossing zero become

imaginary, resulting in Ni = 3 and a decrease of the number N+
r by 3. Additionally, there exists a

bifurcationof type1at a ≈ 0.36 in the sameblock, resulting in adoublequartet of complex eigenvalues

with Nc = 2 and in a decrease in numbers N+
r and N−

r by 2. Therefore, we obtain the exact count of

eigenvalues by
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a = 2 − δ : Ni = 3, Nc = 2, N+
r = 2, N−

r = 5.

Of course, the case a = 2 is bifurcation and, therefore, the count will change for a = 2 + δ.

4. Application to front–pulse solutions

To show the generality of our method for quadratic eigenvalue problems, we consider a different

example of P(λ) arising in the stability analysis of front–pulse solutions in neuron networks with

piecewise constant nonlinear functions [8]. By using a projection algorithm for a system of integral-

differential equations, the authors of [8] derived the quadratic eigenvalue problem in the form

P(λ)c =
(
λ2I + λL + M

)
c = 0, (11)

where MT = M and LT = L are real-valued matrices in Rn and n is the number of front transitions

in the front–pulse solution. Because of the translational symmetry, matrix M has always a nontrivial

null space. When n is odd, the solution resembles a front from one stable equilibrium to another

one with (n − 1)/2 interior pulses. When n is even, the solution resembles a bound state of n/2
pulses. Instability of front–pulse solutions in the time evolution of the system of integral–differential

equations corresponds to the case when the quadratic problem (11) has eigenvalues with Re λ > 0. If

all eigenvalues have Re λ < 0, we say that front–pulse solutions are asymptotically stable. The case of

eigenvalues with Re λ = 0 is interpreted as the instability bifurcation of front–pulse solutions.

We can now formulate and prove the main result on the count of eigenvalues in the quadratic

eigenvalue problem (11).

Theorem 3. LetM = MT be a real-valuedmatrixwith a simple zero, nM negative and n − nM − 1 positive

eigenvalues and LT = L be a real-valued matrix. Assume that Lc0 = λ0c0 with λ0 /= 0 for c0 ∈ Null(M).
Then,

n − nM − 1 = N+ + N+
r , (12)

n + nM = N− + N−
r , (13)

where N+ (N− = N+) is the dimension of the invariant subspace of T associated with eigenvalues in the

upper (lower) half-plane and N+
r (N−

r ) is dimension of the maximal invariant subspace of T associated

with real non-zero eigenvalues, such that (Jx, x) � 0 ((Jx, x) � 0) for all eigenvectors of T in the invariant

subspaces.

Proof. Theonly symmetryoneigenvaluesof (11) isdue to the fact thatM and L are real-valuedmatrices.

As a result, if λ is an eigenvalue of P(λ) with the eigenvector c, then λ̄ is also an eigenvalue of P(λ)
with the eigenvector c̄. Under the condition that Lc0 = λ0c0 with λ0 /= 0 for c0 ∈ Null(M), operator T
has a simple zero eigenvalue with the eigenvector (c0, 0). In addition, the quadratic problem (11) has

a real eigenvalue λ = −λ0 in the count N−
r since

(Jx0, x0) = 〈Mc0, c0〉 − |λ0|2〈c0, c0〉 = −λ2
0‖c0‖2 < 0.

Let P0 be an orthogonal projection to the complement of Null(M). Then,

T =
[

0 −I

P0MP0 P0LP0

]
, J =

[
P0MP0 0

0 −I

]
(14)

satisfy conditions of Theorem1with n − nM − 1 positive eigenvalues and n + nM − 1 negative eigen-

values of J. (The number n + nM is reduced by one because the identity matrix I in representation

(14) acts in Rn−1 after the orthogonal projection P0.) The rest of the proof coincides with the proof

of Theorem 2. The count (13) is increased by one because of the real eigenvalue λ = −λ0 with

(Jx0, x0) < 0. �
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Since the stability boundary Re λ = 0 separate eigenvalues in all numbers N± and N±
r , we have to

conclude that Theorem 3 is not useful in the context of stability analysis. For instance, if n = 1, then

nM = 0, N+ = N− = N+
r = 0 and N−

r = 1 but the real eigenvalue λ = −λ0 can be either positive

or negative depending on the value of (scalar) L. A more useful conclusion on stability of front–pulse

solutions is formulated in [8, p. 85] without a proof and is proved here for consistency.

Theorem 4. Under the conditions of Theorem 3, the following properties are true:
1. The front–pulse solutions are stable only if P0MP0 is positive.
2. The front–pulse solutions are asymptotically stable if L and P0MP0 are positive.
3. There may exist at most n − 1 Andronov–Hopf instability bifurcations with Re λ = 0 and Im λ /= 0

and at most one real bifurcation with λ = 0 if P0MP0 is positive.

Proof. To prove the first statement, we will show that there exist at least nM real positive eigenvalues

if nM � 1. Indeed, if nM � 1, and L = 0, there exist 2nM real eigenvalues of the quadratic problem

(11) in N−
r with 〈Mcj , cj〉 < 0 for the corresponding eigenvectors. Let us replace L by aL and consider

parameter continuation from a = 0 to a = 1. If a = 0, the 2nM eigenvalues form nM symmetric pairs

of real eigenvalues λ = ±〈Mcj , cj〉/〈cj , cj〉 for j = 1, 2, . . . , nM . Each eigenvalue has a negative Krein

signature, since

(Jxj , xj) = 〈Mcj , cj〉 − λ2
j 〈cj , cj〉 < 0, j = 1, 2, . . . , nM.

If M is fixed and a is increased from 0 to 1, pairs of real eigenvalues move along real axis but may

not cross the origin (since P0MP0 has empty kernel) and may not bifurcate due to coalescence with

other eigenvalues (since (Jxj , xj) is negative for the corresponding eigenvectors). As a result, at least

nM eigenvalues remain positive if nM � 1, so that the front–pulse solution is stable only if nM = 0.

To prove the second and third statements, we consider quadratic forms associated to the quadratic

eigenvalue problem (11):

λ2〈c′, c′〉 + λ〈Lc′, c′〉 + 〈Mc′, c′〉 = 0, (15)

where c′ = P0c. If P0LP0 and P0MP0 are positive, all roots of the quadratic equation (15) have Re λ <
0. If P0MP0 is positive, then eigenvalues with Re λ = 0 must have Im λ /= 0, that is all instability

bifurcations are of the Andronov–Hopf type, except for a possible bifurcation of the real eigenvalue

λ = −λ0, where λ0 is defined in Theorem 3. The counts (12) and (13) with nM = 0 show that there

may be at most n − 1 pairs of eigenvalues with Re λ = 0 and Im λ /= 0 in N+ = N−. �
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