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We derive exact solutions to the sine-Gordon equation
describing localized structures on the background
of librational and rotational travelling waves. In
the case of librational waves, the exact solution
represents a localized spike in space-time coordinates
(a rogue wave) that decays to the periodic background
algebraically fast. In the case of rotational waves, the
exact solution represents a kink propagating on the
periodic background and decaying algebraically
in the transverse direction to its propagation.
These solutions model the universal patterns in
the dynamics of fluxon condensates in the semi-
classical limit. The different dynamics are related to
modulational instability of the librational waves and
modulational stability of the rotational waves.

1. Introduction
This paper is inspired by the series of works [1–3]
on dynamics of the sine-Gordon equation in the semi-
classical limit. This physical regime is relevant for
propagation of the magnetic flux along superconducting
Josephson junctions [4]. Other physical applications of
the sine-Gordon equation include crystal dislocations,
DNA double helix, fermions in the quantum field theory
and structures in galaxies (see reviews in [5,6]).

The sine-Gordon equation in the semi-classical limit
can be written in the form:

ε2uTT − ε2uXX + sin(u) = 0, (1.1)

where the subscripts denote partial derivatives of u =
u(X, T) and the parameter ε is small. By using the
initial data with zero displacement and large velocity,
u(X, 0) = 0 and εuT(X, 0) = G(X), the authors of [1–3]
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studied the sequence {εN}N∈N with εN → 0 as N → ∞, where εN is defined from the N-soliton
(reflectionless) potential associated with the ε-independent velocity profile G(X). The sequence of
solutions was termed as the fluxon condensate. The regime of rotational waves with ‖G‖L∞ > 2 was
studied in [1], whereas the regime of librational waves with ‖G‖L∞ < 2 was studied recently in
[3], the classification corresponds to the dynamics of a pendulum with an angle θ = θ (t) satisfying

θ ′′(t) + sin(θ (t)) = 0. (1.2)

It was suggested in [2] that the dynamics of fluxon condensates are different between the
librational and rotational regimes. In both cases, the initial evolution in the semi-classical limit
can be modelled by the travelling wave with slowly varying parameters. Dynamics of librational
waves are affected by the gradient catastrophe and the emergence of a universal pattern of
rogue waves (localized spikes in space-time on a distributed background) [3]. Dynamics of
rotational waves are accompanied by the emergence of a universal pattern of propagating
kinks and antikinks at the interface between the rotational and librational motion of the fluxon
condensate [1].

Figure 1 (reproduced from [2]) shows the dynamics of cos(u) in the sine-Gordon equation (1.1)
with ε = εN for N = 4, 8, 16. Figure 1a shows the regime of librational waves induced by the initial
data u(X, 0) = 0 and εuT(X, 0) = G(X) with ‖G‖L∞ < 2. Figure 1b shows the regime of rotational
waves, for which ‖G‖L∞ > 2.

The analysis of [1–3] relies on the reformulation of the Riemann–Hilbert problem used in
the integration of the sine-Gordon equation and careful asymptotic estimates. The purpose of
our work is to develop a short and simple algebraic method, which allows us to construct the exact
solutions for the principal waveforms that make dynamics of librational and rotational waves
so different. In the case of librational waves, we derive a closed-form solution for a rogue wave
decaying algebraically to the periodic background in all directions. In the case of rotational waves,
we derive a closed-form solution for propagating kinks and antikinks that decay algebraically
to the periodic background in the transverse direction to their propagation. These solutions
with localized structures on librational and rotational waves are associated with the particular
eigenvalues in the Lax spectrum for which the eigenfunctions are bounded and periodic in space–
time coordinates. Since we are not dealing with the initial-value problem in the semi-classical
limit, we can scale the space-time coordinates and consider the normalized sine-Gordon equation:

utt − uxx + sin(u) = 0, (1.3)

where u = u(x, t).
Although the algebraic method used for librational and rotational waves is similar, the

outcomes are different dynamically. This difference is explained by the different types of spectral
stability of the travelling periodic waves [7–9] (see also [10–12] for recent contributions). In the
superluminal regime (which is the only regime we are interested in), the librational periodic
waves are spectrally unstable and the Floquet–Bloch spectrum forms a figure eight intersecting
at the origin. Such instability is usually referred to as modulational instability [7,8]. On the other
hand, the rotational periodic waves are modulationally stable in the sense that the only Floquet–
Bloch spectrum near the origin is represented by the vertical bands along the purely imaginary
axis. The rotational waves are still spectrally unstable in the superluminal regime but the unstable
band is given by bubbles away from the origin (see fig. 2 in [7], figs 1–2 in [9], fig. 6 in [10] and
fig. 1 in [12]).

We develop the algebraic method that was previously applied to the modified KdV equation
in [13,14] and the focusing cubic NLS equation in [15–17]. The travelling periodic waves and the
periodic eigenfunctions in space-time coordinates are characterized by using non-linearization
of the Lax equations [18]. This method allows us to find particular eigenvalues in the Lax
spectrum, for which the first solutions to the Lax equations are bounded and periodic whereas
the second, linearly independent solutions are unbounded and non-periodic. When the second
solutions of the Lax equations are used in the Darboux transformation, new solutions of
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Figure 1. Surface plots of cos(u) in space–time coordinates for the dynamics of fluxon condensates in the semi-classical limit.
(a) Librational waves and (b) rotational waves. Reproduced from [2] with permission of the authors.

integrable equations are generated from the travelling periodic wave solutions. The new solutions
represent algebraically localized structures on the background of travelling periodic waves.
Similar solutions but in a different functional-analytic form were obtained in [19] for the NLS
equation and in [20] for the sine-Gordon equation.

The algebraic method can be applied similarly to what was done in [13,14] because the sine-
Gordon equation is related to the same Lax spectral problem as the modified KdV, the cubic
NLS and other integrable equations considered in the seminal work [21]. In order to enable this
application, we have to rewrite the sine-Gordon equation in the characteristic coordinates and
use the chain rule for the inverse transformation of variables. We derive explicit expressions for
w := −(ut + ux) and obtain sin(u) = wt − wx by differentiation. Note that the explicit expressions
for w are important for practical applications of extreme waves in self-induced transparency
systems [22]. Since the computational details are similar, we will omit many computations and
refer to [13,14] or to [23], where computational details can be found.
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Figure 2. Surface plots of sin(u) versus (x, t) for rogue waves on the background of librational waves for k = sin(π6 ) (a) and
k = sin( 11π24 ) (b). (Online version in colour.)
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Figure 3. Surface plots of sin(u) versus (x, t) for kinks and antikinks propagating on the background of rotational waves for
k = sin(π6 ) (a) and k = sin( 11π24 ) (b). (Online version in colour.)

Rogue waves on the background of librational waves are displayed in figure 2, where surface
plots of sin(u) are plotted versus (x, t). The wave patterns are very similar to the solutions from
appendix D of [3] or the rogue wave observed on figure 1a (left). This confirms that rogue waves
on a background of librational waves model defects in the fluxon condensate obtained in [3] from
the Riemann–Hilbert problem.

Kinks and antikinks propagating on the background of rotational waves are shown in figure 3,
where the surface plots of sin(u) are plotted versus (x, t). The wave patterns appear very similar
to the propagation of kinks and antikinks seen in figure 1b (left) in the dynamics of the fluxon
condensate in the semi-classical limit [1,2].

This article is organized as follows. Travelling periodic waves of the sine-Gordon equation
are expressed by elliptic functions in §2. Lax equations are introduced for the sine-Gordon
equation in characteristic variables in §3. The algebraic method is developed in §4, where
the bounded periodic eigenfunctions in space–time coordinates are explicitly computed for
particular eigenvalues in the Lax spectrum. The new solutions on the background of the
rotational (librational) waves are constructed in §5 (§6). Section 7 concludes the paper with the
summary.
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Figure 4. Orbits of the second-order equation (2.2) on the phase plane ( f , f ′). (Online version in colour.)

2. Travelling periodic waves
Travelling wave solutions of the sine-Gordon equation (1.3) are written in the form u(x, t) =
f (x − ct), where c is the wave speed and f (x) : R → R is the wave profile satisfying the following
differential equation:

(c2 − 1)f ′′ + sin( f ) = 0, (2.1)

where the prime corresponds to differentiation in x (after translation to the right by ct).
Superluminal motion corresponds to c2 > 1, in which case the following transformation f (x) = f̂ (x̂)
with x̂ = x/

√
c2 − 1 results in the dimensionless equation:

f̂ ′′ + sin(f̂ ) = 0, (2.2)

where the prime now corresponds to differentiation in x̂. In what follows, we drop hats for
simplicity of notations.

The reason why the travelling wave solutions to the sine-Gordon equation (1.3) can be
expressed without the wave speed c is the following Lorentz transformation for c2 > 1 (a similar
transformation exists for c2 < 1):

x̂ = x − ct√
c2 − 1

, t̂ = t − cx√
c2 − 1

, û = π + u, (2.3)

where û = û(x̂, t̂) satisfies the same sine-Gordon equation (1.3). The time-independent function
û(x̂, t̂) = π + f̂ (x̂) satisfies the differential equation (2.2).

The second-order equation (2.2), where hats are now dropped, is integrable with the first-order
invariant:

E( f , f ′) := 1
2 ( f ′)2 + 1 − cos( f ). (2.4)

It is straightforward to verify that E( f , f ′) is constant in x along the solutions of the second-order
equation (2.2). The level sets of E( f , f ′) represent all solutions to the differential equation (2.2) as
orbits on the phase plane ( f , f ′). Figure 4 plots the level sets of E( f , f ′). There are three different
cases for f ∈ [−π , π ]. When E ∈ (0, 2), the level curve is a periodic orbit centred around (0, 0), which
corresponds to librational motion. When E = 2, there are two heteroclinic orbits connecting (−π , 0)
to (π , 0) which are referred to as kinks and antikinks depending on the sign of f ′. Orbits for E > 2
yield rotational motion.
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Exact analytical solutions for the librational and rotational waves are available in terms of
Jacobi elliptic functions sn, cn and dn. These elliptic functions are derived from the inversion of
the elliptic integral of the first kind

z = F(τ , k) =
∫ τ

0

dt√
1 − k2 sin2 t

,

where k ∈ (0, 1) is the elliptic modulus. The complete elliptic integral is defined as K(k) = F( π
2 , k).

The first two Jacobi elliptic functions are defined by sn(z, k) = sin τ and cn(z, k) = cos τ such that

sn2(z, k) + cn2(z, k) = 1. (2.5)

These functions are smooth, sign-indefinite and periodic with the period 4K(k). The third Jacobi
elliptic function is defined from the quadratic formula

dn2(z, k) + k2sn2(z, k) = 1. (2.6)

The function dn(z, k) is given by the positive square root of (2.6), so that it is smooth, positive and
periodic with the period 2K(k). The Jacobi elliptic functions are related by the derivatives:

d
dz

sn(z, k) = cn(z, k) dn(z, k),

d
dz

cn(z, k) = −sn(z, k) dn(z, k),

d
dz

dn(z, k) = −k2sn(z, k) cn(z, k).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.7)

For E ∈ (0, 2), the librational waves of the first-order invariant (2.4) are given up to an arbitrary
translation in x by

cos( f ) = 1 − 2k2sn2(x, k),

sin( f ) = 2ksn(x, k)dn(x, k)

f ′ = 2kcn(x, k),

⎫⎪⎪⎬
⎪⎪⎭ (2.8)

where E = 2k2 ∈ (0, 2). In order to verify the validity of (2.8), we note that the first-order invariant
(2.4) is satisfied due to (2.5), the trigonometric identity is satisfied due to (2.6), and the derivative
of cos( f ) and sin( f ) are consistent due to (2.7). The period of the librational waves (2.8) is L = 4K(k).

For E ∈ (2, ∞), the rotational waves of the first-order invariant (2.4) are given up to an arbitrary
translation in x by

cos( f ) = 1 − 2sn2(k−1x, k),
sin( f ) = ±2sn(k−1x, k)cn(k−1x, k)

f ′ = ±2k−1dn(k−1x, k),

⎫⎪⎬
⎪⎭ (2.9)

where E = 2k−2 ∈ (2, ∞) and the upper/lower sign corresponds to the orbit in the upper/lower
half plane in figure 4. Again, the first-order invariant (2.4) is satisfied due to (2.6), the
trigonometric identity is satisfied due to (2.5), and the derivative of cos( f ) and sin( f ) are consistent
due to (2.7). The period of the rotational waves (2.9) is L = 2kK(k).

3. Lax equations in characteristic coordinates
Lax equations for the sine-Gordon equation (1.3) are rather cumbersome [2,10]. Therefore, we
adopt the following characteristic coordinates:

ξ = 1
2 (x + t) and η = 1

2 (x − t). (3.1)

The sine-Gordon equation (1.3) can be written in a simpler form:

uξη = sin(u), (3.2)



7

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20200490

...........................................................

where u = u(ξ , η). The travelling periodic wave is now given by u(ξ , η) = f̂ (ξ − η), where
f̂ (ξ ) : R → R satisfies the second-order equation (2.2), with the prime representing the derivative
with respect to x̂ = ξ − η = t. Note that t and x̂ are equivalent due to the Lorenz transformation
(2.3).

Lax equations for the sine-Gordon equation in characteristic coordinates (3.2) are given by the
following system:

∂

∂ξ

[
p
q

]
= 1

2

[
λ −uξ

uξ −λ

][
p
q

]
(3.3)

and

∂

∂η

[
p
q

]
= 1

2λ

[
cos(u) sin(u)
sin(u) − cos(u)

][
p
q

]
, (3.4)

where λ ∈ C is the spectral parameter and χ := (p, q)T is an eigenfunction written in variables (ξ , η).
Validity of the sine-Gordon equation (3.2) as the compatibility condition χξη = χηξ can be checked
by direct differentiation [21]. The first equation (3.3) is referred to as the AKNS spectral problem
with the potential w := −uξ .

When w = −f̂ ′(x̂) is a travelling periodic wave with the fundamental period L, the AKNS
spectral problem determines the Lax spectrum in L2(R) as the set of all admissible values of λ

for which χ ∈ L∞(R). By the Floquet theorem, bounded solutions of the linear equation (3.3) can
be represented in the form

χ (ξ , η) = φ(ξ − η) eiμ(ξ−η)+Ωη, (3.5)

where φ is L-periodic, μ is defined in the fundamental region [−π
L , π

L ] and Ω is a new spectral
parameter arising in the separation of variables in the second Lax equation (3.4). The admissible
values of λ in C are defined by periodic solutions of the following eigenvalue problem:

⎡
⎢⎣2

d
dx̂

+ 2iμ f̂ ′(x̂)

f̂ ′(x̂) −2
d
dx̂

− 2iμ

⎤
⎥⎦φ = λφ, (3.6)

where x̂ := ξ − η and μ ∈ [−π
L , π

L ]. The spectral parameter Ω determines an eigenvalue of the
spectral stability problem for the travelling periodic wave evolving with respect to the coordinate
η (see theorem 5.1 in [10] for spectral stability of the travelling periodic wave evolving with
respect to the time variable t). Compared with [10], we will not explore the spectral stability
of travelling periodic waves but will construct solutions to the Lax equations (3.3) and (3.4) that
correspond to Ω = 0. Such eigenfunctions χ are bounded in both ξ and η, hence in the space–time
coordinates (x, t).

4. Algebraic method
The purpose of the algebraic method is to find relationships between solutions of the nonlinear
integrable equation and solutions of the associated linear Lax equations in order to obtain
an explicit expression for the particular eigenvalues of the Lax spectrum. These eigenvalues
correspond to bounded eigenfunctions in the space–time coordinates. Our presentation of the
algebraic method follows closely to [13,14] devoted to the mKdV equation because the AKNS
spectral problem (3.3) is identical with the potential w(x̂) := −f̂ ′(x̂), where x̂ = ξ − η = t. As
previously mentioned, we will drop hats for the simplicity of notations.

Assume that (p1, q1) is a solution to the AKNS spectral problem (3.3) for a fixed value of λ = λ1.
Assume that the solution u = u(ξ , η) to the sine-Gordon equation (3.2) is related to the squared
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eigenfunctions by
− uξ = p2

1 + q2
1. (4.1)

The linear equation (3.3) with the constraint (4.1) becomes a nonlinear Hamiltonian system with
Hamiltonian

H(p1, q1) = λ1p1q1 + 1
4 (p2

1 + q2
1)2, (4.2)

so that

∂

∂ξ

[
p1
q1

]
= 1

2

[
0 1

−1 0

]⎡⎢⎢⎣
∂H
∂p1
∂H
∂q1

⎤
⎥⎥⎦ . (4.3)

Let us denote the constant value of H(p1, q1) at the solutions of (4.3) by H0 so that

λ1p1q1 = H0 − 1
4 ( f ′)2. (4.4)

Recall that u(ξ , η) = f (x) solves the second-order equation

f ′′ + sin( f ) = 0, (4.5)

derivative of which yields
f ′′′ + cos( f )f ′ = 0. (4.6)

Comparing (4.6) with (2.4) and eliminating cos( f ) produces the third-order equation

f ′′′ = f ′(E − 1) − 1
2 ( f ′)3, (4.7)

where E is constant.
Differentiating the constraint (4.1) twice and using (4.3) gives

− f ′′ = λ1(p2
1 − q2

1) (4.8)

and
f ′′′ = λ2

1f ′ + 2λ1f ′p1q1. (4.9)

Substituting (4.4) for λ1p1q1 into (4.9) yields

f ′′′ = λ2
1f ′ + 2H0f ′ − 1

2 ( f ′)3. (4.10)

Comparing (4.10) with (4.7) gives the following relation:

E = λ2
1 + 2H0 + 1. (4.11)

In order to determine the explicit formula for λ1 in terms of E, we shall integrate the nonlinear
system (4.3) by using the Lax equation:

2
∂

∂ξ
W(λ) = Q(λ)W(λ) − W(λ)Q(λ), (4.12)

where

Q(λ) =
[

λ p2
1 + q2

1
−p2

1 − q2
1 −λ

]
, W(λ) =

[
W11(λ) W12(λ)

W12(−λ) −W11(−λ)

]
(4.13)

with

W11(λ) = 1 − p1q1

λ − λ1
+ p1q1

λ + λ1
and W12(λ) = p2

1
λ − λ1

+ q2
1

λ + λ1
. (4.14)

Substituting (4.1), (4.4) and (4.8) into (4.14) yields the following expressions:

W11(λ) = 1 − 4H0 − ( f ′)2

2(λ2 − λ2
1)

, W12(λ) = −λf ′ − f ′′

λ2 − λ2
1

. (4.15)
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The determinant of W(λ) is computed from (4.14) as

det[W(λ)] = −[W11(λ)]2 − W12(λ)W12(−λ)

= −1 + 4λ1p1q1 + (p2
1 + q2

1)2

λ2 − λ2
1

= −1 + 4H0

λ2 − λ2
1

,

where we have used (4.4). Hence, det[W(λ)] only admits simple poles at λ = ±λ1. On the other
hand, the determinant of W(λ) is computed from (4.15) as

det[W(λ)] = −1 + 4H0 − ( f ′)2

λ2 − λ2
1

+ (λ2 + 2H0)( f ′)2 − ( f ′′)2 − 4H2
0 − 1

4 ( f ′)4

(λ2 − λ2
1)2

= −1 + 4H0

λ2 − λ2
1

+ 4(λ2
1 + 2H0)( f ′)2 − 4( f ′′)2 − 16H2

0 − ( f ′)4

4(λ2 − λ2
1)2

.

Comparison of these two equivalent expressions yields the constraint:

(λ2
1 + 2H0)( f ′)2 − ( f ′′)2 − 4H2

0 − 1
4 ( f ′)4 = 0. (4.16)

By a fundamental trigonometric identity, we obtain from (2.4) and (4.5):

1 = sin2( f ) + cos2( f ) = ( f ′′)2 + 1
4 ( f ′)4 + (1 − E)( f ′)2 + (1 − E)2. (4.17)

Comparing (4.16) and (4.17) yields the relation

4H2
0 = E(E − 2), (4.18)

in addition to (4.11). Expressing H0 from (4.18) and substituting into (4.11) yields admissible
values of λ1 by

λ2
1 = E − 1 ∓

√
E(E − 2), (4.19)

where the plus and minus sign correspond to the two roots in

2H0 = ±
√

E(E − 2). (4.20)

For the rotational waves (2.9), we have E = 2/k2, so that one can extract the square root from
(4.19) and obtain two real pairs of admissible values ±λ1 with

λ1 = 1 ∓
√

1 − k2

k
, (4.21)

where the upper and lower signs correspond to the choice of signs in

H0 = ±
√

1 − k2

k2 . (4.22)

For the librational waves (2.8), we have E = 2k2 so that one can again extract the square root
from (4.19) and obtain a complex quadruplet of admissible values {±λ1, ±λ̄1} with

λ1 = k + i
√

1 − k2, (4.23)

where the unique λ1 is located in the first quadrant of the complex plane. This eigenvalue
corresponds to

H0 = −ik
√

1 − k2. (4.24)

We approximate numerically the Lax spectrum of the AKNS spectral problem (3.3) by using
the Floquet theorem and converting the spectral problem to the form (3.6). By using discretization
of the spatial domain [0, L] and the range of the μ values in [−π

L , π
L ], we reduce (3.6) to the

matrix eigenvalue problem for each μ; this problem is handled using Matlab’s eig function. The
derivative operator d

dx̂ is replaced with the 12th-order finite difference matrix to ensure high
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Figure 5. The Lax spectrum of (3.3) associated with the rotational (a,b) and librational (c,d) waves for k = 0.85 (a,c) and k =
0.95 (b,d). Red dots represent eigenvalues (4.21) and (4.23). (Online version in colour.)

accuracy of computations. The union of each set of eigenvalues associated for each μ defines
the Lax spectrum.

Figure 5 shows the numerically constructed Lax spectra for the rotational and librational waves
using certain values of k. The endpoints of the spectral bands outside iR shown by red dots
correspond to the eigenvalues (4.21) and (4.23).

Lax spectra in figure 5 correspond to the AKNS spectral problem (3.3) for the sine-Gordon
equation in characteristic variables (ξ , η). The location of the Lax spectrum in space–time
coordinates (x, t) is different because the bounded eigenfunctions in ξ are located at different
values of λ ∈ R compared with bounded functions in x = ξ + η. Nevertheless, the eigenvalues
(4.21) and (4.23) belong to the Lax spectrum in (x, t) because the corresponding eigenfunctions are
bounded and periodic both in x and t. The same eigenvalues are shown by crosses in fig. 7 in [10],
from which it is clear that the eigenvalues (4.21) and (4.23) do not appear as the endpoints of the
Lax spectrum in the space–time coordinates (x, t).

5. New solutions on the background of rotational waves
Let (p, q) be a solution to the linear equations (3.3) and (3.4) for a fixed value of λ and for the
solution u = u(ξ , η) of the sine-Gordon equation (3.2). As is shown in [13], the new solution û =
û(ξ , η) to the sine-Gordon equation is given by the onefold Darboux transformation:

ŵ = w + 4λpq
p2 + q2 , (5.1)
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where w := −uξ and ŵ := −ûξ . If u = f (ξ − η) is the rotational wave given by (2.9) with x = ξ − η

and λ = λ1 is given by the algebraic method with the eigenfunction (p, q) = (p1, q1) satisfying (4.1)
and (4.4), the onefold Darboux transformation (5.1) yields

ŵ = w + 4λ1p1q1

p2
1 + q2

1
= w + 4H0 − w2

w
= 4H0

w
. (5.2)

Since w = −f ′ is given by (2.9) and H0 is given by (4.22), we obtain up to the sign changes:

ŵ = ±2k−1
√

1 − k2

dn(k−1x; k)
= ±2k−1 dn(k−1x + K(k); k). (5.3)

The new solution (5.3) is just a half-period translated and reflected version of the rotational wave,
which is periodic with the period L = 2kK(k).

In order to construct a new solution to the sine-Gordon equation on the background of the
rotational wave (2.9), we are looking for the second, linear independent solution to the linear
equations (3.3) and (3.4) with the same value of λ = λ1. We will define the second solution in the
same form as is used in [14]:

p̂1 = p1φR − q1

p2
1 + q2

1
and q̂1 = q1φR + p1

p2
1 + q2

1
, (5.4)

where the function φR = φR(ξ , η) satisfies the system of scalar equations:

∂φR

∂ξ
= − 2λ1p1q1

(p2
1 + q2

1)2
and λ1

∂φR

∂η
= (p2

1 − q2
1) sin( f ) − 2p1q1 cos( f )

(p2
1 + q2

1)2
. (5.5)

The representation (5.4) is non-singular for the rotational waves because w = p2
1 + q2

1 = −f ′ has the
sign-definite f ′ in (2.9). As we prove below, the exact expression for φR is given by

φR(ξ , η) = C + 1
2

(ξ + η) − 2H0

∫ ξ−η

0

dx
( f ′)2 , (5.6)

where C is an arbitrary constant of integration. Indeed, by using (4.1), (4.4) and (4.8), we rewrite
(5.5) in the form:

∂φR

∂ξ
= 1

2
− 2H0

( f ′)2 and λ2
1
∂φR

∂η
= −2f ′′ sin( f ) + (4H0 − ( f ′)2) cos( f )

2( f ′)2 . (5.7)

By using (2.4), (4.5), (4.11) and (4.16), the second equation of system (5.7) is simplified to

∂φR

∂η
= 1

2
+ 2H0

( f ′)2 , (5.8)

which implies (5.6) due to the first equation of system (5.7) and f = f (ξ − η).
If f and (p1, q1) are L-periodic functions in x := ξ − η with period L = 2kK(k), the function φR

and (p̂1, q̂1) are non-periodic. When the second, linearly independent solution (p, q) = (p̂1, q̂1) is
used in the onefold Darboux transformation (5.1), it generates a new solution with an algebraic
structure on the background of the rotational waves. The new solution approaches the rotational
wave along the directions in the (ξ , η) plane where |φR| grows to infinity.

We recall (2.9) and (5.3) to rewrite (5.6) in the equivalent form:

φR(ξ , η) = C + 1
2

(ξ + η) − H0k3

2(1 − k2)

∫ k−1(ξ−η)

0
dn2(z + K(k); k) dz. (5.9)

Also recall the complete elliptic integral of the second kind

E(k) =
∫K(k)

0
dn2(z; k) dk.
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Over the period L = 2kK(k), the integral in (5.9) is incremented by 2E(k), hence |φR(ξ , η)| → ∞
along every direction in the (ξ , η)-plane with the exception of the direction of the straight line:

Ω :=
{

(ξ , η) ∈ R
2 : (ξ + η) − H0k2E(k)

(1 − k2)K(k)
(ξ − η) = 0

}
. (5.10)

The integration constant C serves as a parameter that translates the straight line Ω in the (ξ , η)-
plane within the period of the rotational wave.

Let us now take the onefold Darboux transformation (5.1) with the second linearly
independent solution (5.4) for the admissible eigenvalues λ1 given by (4.21). By using the relations
(4.1), (4.4) and (4.8), we obtain

ŵ = w + 4λ1p̂1q̂1

p̂2
1 + q̂2

1

= w + 4λ1[p1q1(φ2
Rw2 − 1) + φRw(p2

1 − q2
1)]

(p2
1 + q2

1)(φ2
Rw2 + 1)

= w + (4H0 − w2)(φ2
Rw2 − 1) + 4φRw∂ξ w

w(φ2
Rw2 + 1)

, (5.11)

where ŵ = −ûξ and w = −uξ .
We show next that the new solution (5.11) describes a kink propagating on the background

of the rotational wave. Indeed, the function φR(ξ , η) : R
2 �→ R is bounded and periodic in the

direction of the line Ω given by (5.10). In every other direction on the (ξ , η)-plane, |φR(ξ , η)| → ∞
so that the new solution (5.11) satisfies the limit:

lim
|φR|→∞

ŵ = w + 4H0 − w2

w
= 4H0

w
, (5.12)

which coincides with (5.2). As follows from (5.3), this limit is a half-period translated and
reflected version of the rotational wave. Since the divergence of |φR(ξ , η)| → ∞ is linear in (ξ , η)
as follows from (5.9), the new solution (5.11) approaches the translated and reflected rotational
wave algebraically fast.

Along the direction Ω , the new solution (5.11) does not approach the rotational wave. It follows
from (5.11) at the critical point of w = −f ′, where ∂ξ w = −f ′′ is zero, that the maximum of |ŵ|
happens at the points, where φR = 0 and

ŵ|φR=0 = w − 4H0 − w2

w
= 2w − 4H0

w
. (5.13)

Compared with the maximum of the rotational wave sup(ξ ,η)∈R2 |w(ξ , η)| = 2k−1, the maximum of
the new solution (5.11) is attained at sup(ξ ,η)∈R2 |ŵ(ξ , η)| = 2k−1M, where M is the magnification
factor given by

M(k) = 2 ∓
√

1 − k2. (5.14)

The sign choice in (5.14) corresponds to the sign choice in (4.21) and (4.22). The magnification
factor M determines the maximum of the localized wave propagating on the background of the
rotational waves in the direction of the straight line Ω . The position of the localized wave is
changed by the parameter C for the integration constant. The localized wave is greater for the
lower sign in (4.21) and (4.22). Note that the magnification factor in (5.14) was previously derived
for similar solutions to the NLS and mKdV equations in [13,15].

Figure 6 illustrates the exact solution (5.11) for k = 0.95 and two sign choices in (4.21). The
value of C is set to 0 in (5.9). It follows that the solution surface of |ŵ(ξ , η)| achieves its maximum
at (ξ , η) = (0, 0) and is repeated along the direction of Ω . This is the direction of propagation of
the localized wave on the background of the rotational waves. The localized wave has a bigger
magnification for the larger value of λ1 (figure 6b) and smaller magnification for the smaller value
of λ1 (figure 6a).
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Figure 6. Localized waves on the rotational wave with k = 0.95 generated from the onefold Darboux transformation using
eigenvalues (4.21) with the upper (a) and lower (b) signs. (Online version in colour.)

The kink and antikink in figure 6 propagate into opposite directions for the different sign
choices of λ1 in (4.21). Indeed, it follows from (4.22) and (5.10) in variables (x, t) that the kink and
antikink propagate along the straight lines

x = ± E(k)√
1 − k2K(k)

t, (5.15)

hence the propagation directions are opposite to each other. Since E(k) >
√

1 − k2K(k), the speed
of propagation exceeds one, hence these solutions are relevant for the superluminal dynamics of
the sine-Gordon equation (1.3).

Kink and antikinks can be added together on the background of the rotational wave using
the twofold Darboux transformation. Let (p1, q1) and (p2, q2) be solutions to the linear equations
(3.3) and (3.4) with fixed values of λ = λ1 and λ = λ2 such that λ1 	= ±λ2. As is shown in [13], the
twofold Darboux transformation takes the form:

ŵ = w + 4(λ2
1 − λ2

2)[λ1p1q1(p2
2 + q2

2) − λ2p2q2(p2
1 + q2

1)]

(λ2
1 + λ2

2)(p2
1 + q2

1)(p2
2 + q2

2) − 2λ1λ2[4p1q1p2q2 + (p2
1 − q2

1)(p2
2 − q2

2)]
, (5.16)

where w := −uξ and ŵ := −ûξ . Figure 7 illustrates the exact solution obtained from (5.16) with λ1
and λ2 given by (4.21) for different sign choices. We have computed sin(û) = ûξη by numerically
differentiating ŵ = −ûξ in η with a forward difference. The corresponding surface plots of sin(û)
in (x, t) are presented in figure 3.

6. New solutions on the background of librational waves
If the new solution û = û(ξ , η) to the sine-Gordon equation (3.2) is given by the onefold Darboux
transformation (5.11) and u = u(ξ , η) is the librational wave, then û is no longer real-valued
because H0 and λ1 are complex-valued in (4.23) and (4.24). The twofold Darboux transformation
(5.16) is required to generate new real-valued solutions on the background of the librational
waves. We take λ1 and H0 as in (4.23) and (4.24), and define λ2 = λ̄1 with p2 = p̄1 and q2 = q̄1.
By using (4.1), (4.4), (4.8) and (4.16), we obtain from (5.16):

ŵ = w + 4(λ2
1 − λ̄2

1)(H0 − H̄0)w

(λ2
1 + λ̄2

1)w2 − 2[−4H2
0 + 1

4 w4 + (w′)2]
= −w. (6.1)

The new solution (6.1) is simply a reflected version of the librational wave. Therefore, we are
looking for the second, linearly independent solution to the linear equations (3.3) and (3.4) for
the same value of λ1. One representation for the second solution is given by (5.4). However, w =
p2

1 + q2
1 = −f ′ crosses zero for librational waves, hence the representation (5.4) becomes singular
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Figure 7. Localized waves on the rotational wave with k = 0.95 generated from the twofold Darboux transformation using
both the eigenvalues (4.21) with the upper and lower signs. (Online version in colour.)

at some points. For librational waves, we should define the second solutions in a different form
used in [13]:

p̂1 = φL − 1
q1

and q̂1 = φL + 1
p1

, (6.2)

where the function φL = φL(ξ , η) satisfies the system of scalar equations:

∂φL

∂ξ
= f ′(p2

1 − q2
1)

2p1q1
φL − f ′(p2

1 + q2
1)

2p1q1
and λ1

∂φL

∂η
= (p2

1 + q2
1) sin( f )

2p1q1
φL − (p2

1 − q2
1) sin( f )

2p1q1
. (6.3)

The representation (6.2) is non-singular because if either p1 or q1 vanish in some points, then
equations (4.1) and (4.8) yield a contradiction with real f and complex λ1. As we prove below, the
exact expression for φL is given by

φL(ξ , η) = (4H0 − ( f ′)2)

(
C + η

2λ1
+

∫ ξ−η

0

2λ1( f ′)2 dx
(4H0 − ( f ′)2)2

)
, (6.4)

where C is an arbitrary constant of integration. By substituting (4.1), (4.4) and (4.8) in (6.3), we
obtain:

∂φL

∂ξ
= 2f ′f ′′

( f ′)2 − 4H0
φL − 2λ1( f ′)2

( f ′)2 − 4H0
and λ1

∂φL

∂η
= − 2λ1f ′f ′′

( f ′)2 − 4H0
φL + 2( f ′′)2

( f ′)2 − 4H0
. (6.5)

By using

φL = (4H0 − ( f ′)2)Υ , (6.6)

with Υ = Υ (ξ , η), system (6.5) can be simplified to the form:

∂Υ

∂ξ
= 2λ1( f ′)2

(4H0 − ( f ′)2)2 and λ1
∂Υ

∂η
= − 2( f ′′)2

(4H0 − ( f ′)2)2 . (6.7)

If follows from (4.16) and (6.7) that
∂Υ

∂ξ
+ ∂Υ

∂η
= 1

2λ1
, (6.8)

which implies that

Υ (ξ , η) = C + η

2λ1
+ G(ξ − η), (6.9)
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for some function G(x) : R �→ C to be determined. Substituting this into (6.7) yields

G′ = 2λ1( f ′)2

(4H0 − ( f ′)2)2 ,

so that integration and substitution into (6.6) and (6.9) yields (6.4).
The functions f and (p1, q1) are L-periodic functions with period L = 4K(k) for librational waves,

however, the functions φL and (p̂1, q̂1) are non-periodic. We shall prove that |φL(ξ , η)| → ∞ as |ξ | +
|η| → ∞ everywhere in the (ξ , η)-plane. Indeed, by factoring out 1

2λ1
in the second term of equation

(6.4) and by using periodicity of 4H0 − ( f ′)2, we have |φL(ξ , η)| → ∞ if and only if |φ̃L(ξ , η)| → ∞,
where

φ̃L(ξ , η) = η +
∫ ξ−η

0

4λ2
1( f ′)2

(( f ′)2 − 4H0)2 dx

= η +
∫ ξ−η

0

4[(2k2 − 1) + 2ik
√

1 − k2]( f ′)2

(( f ′)2 + 4ik
√

1 − k2)2
dx.

Taking the imaginary part yields

Im[φ̃] = 8k
√

1 − k2
∫ ξ−η

0

( f ′)4 − 4(2k2 − 1)( f ′)2 − 16k2(1 − k2)
(( f ′)4 + 16k2(1 − k2))2 ( f ′)2 dx

= 128k3
√

1 − k2
∫ ξ−η

0

k2cn4(x; k) + (1 − 2k2)cn2(x; k) + k2 − 1
(( f ′)4 + 16k2(1 − k2))2 ( f ′)2 dx

= −128k3
√

1 − k2
∫ ξ−η

0

sn2(x; k)dn2(x; k)
(( f ′)4 + 16k2(1 − k2))2 ( f ′)2 dx,

where we have used (2.8) in order to express f ′(x) = 2kcn(x; k) and simplify the elliptic functions.
The integrand is clearly positive for every k ∈ (0, 1). This means that Im[φ̃] remains bounded only
in the diagonal direction on the (ξ , η) plane, however, in this direction Re[φ̃] grows linearly in η.
Hence, |φL(ξ , η)| → ∞ along every direction in the (ξ , η) plane.

Let us now take the twofold Darboux transformation (5.16) with the second, linearly
independent solution (6.2) to the linear equations (3.3) and (3.4) for λ1 = k + i

√
1 − k2 and λ2 = λ̄1.

The new solution is written in the form:

ŵ = w + 4(λ2
1 − λ2

2)[λ1p̂1q̂1(p̂2
2 + q̂2

2) − λ2p̂2q̂2(p̂2
1 + q̂2

1)]

(λ2
1 + λ2

2)(p̂2
1 + q̂2

1)(p̂2
2 + q̂2

2) − 2λ1λ2[4p̂1q̂1p̂2q̂2 + (p̂2
1 − q̂2

1)(p̂2
2 − q̂2

2)]
, (6.10)

where (p̂2, q̂2) are taken as the complex conjugate to (p̂1, q̂1).
We will prove that the new solution (6.10) describes an isolated rogue wave arising on the

background of the librational wave. Indeed, the function φL(ξ , η) : R
2 �→ R is unbounded in every

direction on the (ξ , η) plane, so that

lim
|φL|→∞

ŵ = w + 4(λ2
1 − λ̄2

1)(H0 − H̄0)w

(λ2
1 + λ̄2

1)w2 − 2[−4H2
0 + 1

4 w4 + (w′)2]
= −w, (6.11)

which coincides with (6.1). The divergence of |φL(ξ , η)| → ∞ is again linear in (ξ , η) as follows
from (6.4), hence the new solution (6.10) approaches the reflected librational wave algebraically.

It follows from (6.10) at the critical points of w = −f ′, where ∂ξ w = −f ′′ is zero, that the
maximum of |ŵ| happens at the points, where φL = 0 and

ŵ|φL=0 = w − 4(λ2
1 − λ̄2

1)(H0 − H̄0)w

(λ2
1 + λ̄2

1)w2 − 2[−4H2
0 + 1

4 w4 + (w′)2]
= 3w. (6.12)

Compared with the maximum of the librational wave sup(ξ ,η)∈R2 |w(ξ , η)| = 2k, the maximum of
the new solution (6.10) is attained at sup(ξ ,η)∈R2 |ŵ(ξ , η)| = 6k, hence the rogue wave has triple
magnification compared with the background wave. Note that the rogue wave (6.10) and the
triple magnification factor were previously obtained for the mKdV equation in [13].
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Figure 8. Rogue waves on the librational wave with k = 0.5 (a) and k = 0.8 (b). (Online version in colour.)
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Figure 9. The magnification factor M of the rogue wave ŵ given by (6.10) versus the constant of integration C in (6.4) for
k = 0.8.

Figure 8 illustrates the exact solution (6.10) for two particular values of k. The value of C
is set to 0 in (6.4). It is clear that the solution surface of |ŵ(ξ , η)| achieves its maximum at
(ξ , η) = (0, 0) where φL vanishes. The modulus is shown for a better resolution of the oscillations
of the librational wave background. Based on the same solution formula (6.10), we have
computed sin(û) = ûξη by numerically differentiating ŵ = −ûξ in η with a forward difference. The
corresponding surface plots of sin(û) in (x, t) are presented in figure 2.

Note that the rogue wave (6.10) can be represented in a shorter form directly for û(ξ , η)
by using another form of the Darboux transformations [20]. Moreover, higher-order Darboux
transformations can be used to generate more rogue waves forming the same triangular pattern
as in figure 1a (middle), see fig. 1 in [20]. Another representation of the same solutions follows
from the Riemann–Hilbert problem, as in appendix C of [3].

Finally, we inspect how the magnification of the rogue wave depends on the constant of
integration C in (6.4) and (6.10). The magnification factor is defined as

M :=
sup(ξ ,η)∈R2 |ŵ(ξ , η)|
sup(ξ ,η)∈R2 |w(ξ , η)| .
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Figure 9 presents the plot of M versus C for k = 0.8. When C = 0, the magnification factor is
maximal at M = 3. It is periodically continued with respect to C and it reaches the minimal value
below 2. The minimal value of M depends on k.

7. Conclusion
We have presented new solutions to the sine-Gordon equation using an algebraic method and
the Darboux transformations. The new solutions describe localized structures on the background
of rotational and librational waves. These localized structures are obtained for the particular
eigenvalues of the linear Lax equations that correspond to bounded solutions in the space–time
coordinates. The Darboux transformations use the second, linearly independent solutions to the
linear Lax equations that are unbounded in space–time coordinates.

For the rotational waves, the localized structure represents a kink or an antikink propagating
along a straight line. It appears from infinity and goes to infinity. This outcome is related to the
modulational stability of the rotational waves.

For the librational waves, the localized structure represents a rogue wave appearing from
nowhere and disappearing without a trace. The rogue wave is related to the modulational
instability of the librational waves.

New solutions for localized structures on the background of rotational and librational waves
can be used for modelling of dynamics of the fluxon condensates. They represent the principal
waveforms in the universal dynamics of the sine-Gordon equation in the semi-classical limit.
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