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Based on the recent work �Komech et al., “Dispersive estimates for 1D discrete
Schrödinger and Klein-Gordon equations,” Appl. Anal. 85, 1487 �2006�� for com-
pact potentials, we develop the spectral theory for the one-dimensional discrete
Schrödinger operator, H�= �−�+V��=−��n+1+�n−1−2�n�+Vn�n. We show that
under appropriate decay conditions on the general potential �and a nonresonance
condition at the spectral edges�, the spectrum of H consists of finitely many eigen-
values of finite multiplicities and the essential �absolutely continuous� spectrum,
while the resolvent satisfies the limiting absorption principle and the Puiseux ex-
pansions near the edges. These properties imply the dispersive estimates
�eitHPa.c.�H��l

�
2→l−�

2 � t−3/2 for any fixed ��
5
2 and any t�0, where Pa.c.�H� denotes

the spectral projection to the absolutely continuous spectrum of H. In addition,
based on the scattering theory for the discrete Jost solutions and the previous results
by Stefanov and Kevrekidis �“Asymptotic behaviour of small solutions for the
discrete nonlinear Schrödinger and Klein-Gordon equations,” Nonlinearity 18,
1841 �2005��, we find new dispersive estimates �eitHPa.c.�H��l1→l� � t−1/3, which are
sharp for the discrete Schrödinger operators even for V=0. © 2008 American In-
stitute of Physics. �DOI: 10.1063/1.3005597�

I. INTRODUCTION

We consider a stationary one-dimensional discrete Schrödinger equation in the form

H� ª �− � + V�� = �� ⇔ − ��n+1 + �n−1 − 2�n� + Vn�n = ��n, �1�

where V is a real-valued potential on Z, ��C is a spectral parameter, and � is an eigenfunction in
an appropriate space. We will use plain letters V and � to denote sequences �Vn�n�Z and ��n�n�Z.
We will also use standard weighted spaces l�

2 and l�
1 on Z equipped with the norms

�u�l
�
2 = �	

n�Z
�1 + n2��
un
2�1/2

, �u�l
�
1 = 	

n�Z
�1 + n2��/2
un
 �2�

for some fixed ��0. In what follows, we denote the space of bounded linear operators from l�
2 to

l��
2 by B�� ,��� and from l1 to l� by B�1,��.

Our work is motivated by recent advances in analysis of the discrete Schrödinger operators in
one dimension. Spectral theory and dispersive estimates in B�� ,−�� for H with compact V were
considered by Komech et al.6 by extending the previous work on continuous wave and
Schrödinger equations �these results were generalized by Komech et al.7 for two-dimensional
discrete operators�. Independently to this work, dispersive estimates in B�1,�� for H with V=0
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were obtained by Stefanov and Kevrekidis12 by analyzing integrals with fast oscillations. We shall
extend the results of Refs. 6 and 12 to general potentials V under some decay conditions at infinity.

Our ultimate goal in this work is to prove asymptotic stability of single-humped solitons in the
discrete one-dimensional nonlinear Schrödinger equations. Asymptotic stability of solitary waves
in continuous nonlinear Schrödinger equations was considered in recent works of Cuccagna,1

Perelman,9 Schlag,10 and others. Although orbital stability of single-humped solitons in the dis-
crete nonlinear Schrödinger equations has been proved long ago by Weinstein,14 no work has been
reported toward the proof of asymptotic stability of single-humped solitons in the long-time
evolution. This paper is the first step in this direction. With the help of recent works by
Mizumachi8 and Cuccagna2 for continuous one-dimensional nonlinear Schrödinger equations, we
expect our results to be useful for analysis of asymptotic stability of small solitons, but this will be
a subject of the forthcoming work.

Let R���= �−�+V−��−1 denote the resolvent operator for H=−�+V and R0���= �−�−��−1

denote the free resolvent for H0=−�. Since the spectrum of H0 is purely continuous and located
on �0,4�, we are particularly interested in the behavior of the resolvent R��� near the interval �0,4�
on Im �=0. We will use letter 	 to indicate values of � on the open interval �0,4� and letter � to
indicate values on C \ �0,4�.

Our article is structured as follows. We review properties of the free resolvent R0��� in Sec. II.
These properties are used to prove the limiting absorption principle for the resolvent R��� on �0,4�
in Sec. III, the Puiseux expansions of the resolvent R��� associated with a generic potential V near
the end points 0 and 4 in Sec. IV, and the dispersive estimates on the time evolution of u̇= iHu in
Sec. V. Appendices A–D give proofs to technical lemmas used in the main part of the article.

II. PROPERTIES OF THE FREE RESOLVENT

Let ��C \ �0,4� and define 
=
��� to be a unique solution of the transcendental equation

2 − 2 cos 
 = � �3�

in the domain D= �−��Re 
�� , Im 
0�. If �=	� i� and �↓0, then 
���=
��	 ,��
+ i���	 ,�� satisfies the expansion

2 − 2 cos 
� = 	 + O��2�, �� = �
�

2 sin 
�

+ O��3� .

Since ��0 for ��0, we obtain that roots of 2−2 cos 
�=	 for 	� �0,4� and �=0 lie in the
intervals 
+� �−� ,0� and 
−� �0,�� with the symmetry 
+=−
−.

Let � solve the difference equation �−�−���= f for any f � l2�Z� and define the free resolvent
operator R0��� by its solution �=R0���f . Then, direct substitution shows that R0��� is explicitly
represented by

�n = �R0���f�n = −
i

2 sin 

	

m�Z
e−i

n−m
fm. �4�

In what follows, we summarize properties of the free resolvent. See Secs. II and III of Ref. 6 for
further details.

�1� Since the sequence �e−i

n
�n�Z is exponentially decaying as 
n
→� if Im 
0 and l�
2 is

closed with respect to convolution for any ��
1
2 , we can see that R0��� is defined in B�� ,��

for any ��C \ �0,4� and ��
1
2 .

�2� Since the sum of the double-infinite sequence

� e−i
�
n−m


�1 + n2���1 + m2��
m,n�Z

on m ,n�Z is bounded if ��
1
2 and 
sin 
�
�0 if 	� �0,4�, then
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R0
��	� = lim

�↓0
R0�	 � i��

are Hilbert–Schmidt operators in B�� ,−�� for 	� �0,4� and ��
1
2 .

�3� For any 	� �0,4�, the operators R0
��	� map l1�Z� to l��Z� since

�R0
��	�f�l� �

1

2
sin 
�

�f�l1

and 
sin 
�
�0 for 	� �0,4�.
�4� The free resolvent R0

��	� diverges near 	=0 and 	=4 because sin 
� vanishes in the limit.
Without loss of generality, we consider only the case 	=0, where 
+=
−=0. Using the
asymptotic expansion

sin 
��� = −�� −
�2

4
= − ���1 + O���� ,

where the minus sign is chosen to ensure that Im 
0 if 0arg����� near �=0, we write
a formal Puiseux expansion of the free resolvent in the form

�R0���f�n =
i

2��
	

m�Z
fm −

1

2 	
m�Z


n − m
fm + r0���f , �5�

where r0��� is the remainder term and 0arg�����. Substituting �=	 for R0
+�	� and �

=	e2�i for R0
−�	�, we obtain, therefore,

�R0
��	�f�n = �

i

2�	
	

m�Z
fm −

1

2 	
m�Z


n − m
fm + r0
��	�f , �6�

where 	�0 is small. The first two terms in �6� are Hilbert–Schmidt operators in space
B�� ,−�� for ��

3
2 , while the remainder term r0

��	� is estimated to be of the order of O��	�
in space B�� ,−�� for ��

5
2 . Therefore, if we fix ��

5
2 , we can write �6� in the form

R0
��	� = �

iR−1

�	
+ R0 + O��	� , �7�

where

�R−1f�n =
1

2
�1, f�, �R0f�n = −

1

2 	
m�Z


n − m
fm

and 	�0 is small.

�5� Due to the symmetry 
���=−
��̄� of roots of Eq. �3� for all ��C \ �0,4�, the following

symmetry holds R0
−�	�= R̄0

+�	� for all 	� �0,4�. Therefore, it is sufficient to consider only
R0

+�	� and drop the superscript from the rest of the article.

III. LIMITING ABSORPTION PRINCIPLE

To study how the resolvent operator R���, defined for ��C \ �0,4�, is extended to the interval
	� �0,4�, we shall use the standard resolvent properties,

R��� = �I + R0���V�−1R0��� = R0����I + VR0����−1. �8�

The second identity is due to the fact that the operators R0��� and R��� are self-adjoint in l2 for
��C \ �0,4�. If V� l2�

� �Z�, that is,
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sup
n�Z

�1 + n2��
Vn
  � �9�

for any fixed ��
1
2 , then V : l−�

2 � l�
2 . We note that

�V�l2�
� � �V�l2�

2 � �V�l2�
1 ,

so that we will sometimes use condition V� l2�
1 instead of condition �9�. Since R0�	� : l�

2 → l−�
2 for

every fixed 	� �0,4� and ��
1
2 , then VR0�	� is a bounded Hilbert–Schmidt operator in B�� ,��

for ��
1
2 . Therefore, the operator I+VR0�	� is invertible in l�

2 if and only if it has a trivial kernel.
We will show that the kernel of I+VR0�	� is indeed trivial for 	� �0,4�, which leads to the
limiting absorption principle formulated as follows.

Theorem 1: Fix ��
1
2 and assume that V� l2�

1 . The resolvent R���= �−�+V−��−1 satisfies

sup
�↓0

�R�	 � i���B��,−��  � . �10�

for any fixed 	� �0,4�. As a consequence, there exist R��	�=lim�↓0 R�	� i�� in the norm of
B�� ,−��.

Proof: By property �5� and identity �8�, the symmetry R−�	�= R̄+�	� holds so it is sufficient to
consider R+�	� and drop the superscript from the formalism. We will show that

�I + VR0�	��−1 � B��,��

for any fixed 	� �0,4� and ��
1
2 . Since R0�	��B�� ,−�� by property �2�, the proof of the

theorem will follow from the second resolvent identity �8�. To show that the kernel of I
+VR0�	� is trivial in l�

2 for any fixed 	� �0,4� and ��
1
2 , we will assume the opposite and obtain

a contradiction.
Let f � l�

2 be an eigenvector of I+VR0�	�. Then, it solves the difference equation

fn − iVn 	
m�Z

e−i

n−m


2 sin 

fm = 0, n � Z . �11�

Multiplying both sides of �11� by f̄ n /Vn, taking the imaginary part, and summing over n�Z, we
obtain

Im�i 	
m,n�Z

e−i

m−n
fmf̄n� = 	
m,n�Z

cos�
�m − n��fmf̄n = 0,

whence

� 	
m�Z

cos�
m�fm�2
+ � 	

m�Z
sin�
m�fm�2

= 0. �12�

Therefore, the eigenvector f lies in the constrained subspace of l�
2 of codimension 2,

l̃�
2 = � f � l�

2: 	
n�Z

cos�
n�fn = 	
n�Z

sin�
n�fn = 0 . �13�

Define an operator R̃0 : l�
2 → l−�

2 by

�R̃0f�n = − 	
m�Z

sin�

n − m
�
2 sin 


fm.

Then, f +VR̃0f =0, which implies that f may be taken to be real-valued, which we assume hence-

forth. To restrict operator R̃0 to the subspace l̃�
2 , we introduce �a1 ,a2� as solutions of the algebraic

system
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�a1 cos 
 + a2 cos�2
� = 0

a1 sin 
 + a2 sin�2
� = 1,



which is nonsingular, since its determinant equals to sin 
0 for any fixed 
� �−� ,0�. Let K̃ be
an operator defined by

�K̃f�n = VnR̃0fn − �	
m

Vm�R̃0f�mcos�
m���n,0 − �	
m

Vm�R̃0f�msin�
m���a1�n,1 + a2�n,2� .

Since VR̃0 is a Hilbert–Schmidt operator in B�� ,�� under the condition �9�, then K̃ is a compact

operator from l̃�
2 to l̃�

2 . If f is an eigenvector of f +VR̃0f =0 and f � l̃�
2 , then fn+Vn�R̃0f�n=0, and

thus

	
m

Vm�R̃0f�mcos�
m� = − 	
m

fm cos�
m� = 0,

	
m

Vm�R̃0f�msin�
m� = − 	
m

fm sin�
m� = 0,

so that fn+ �K̃f�n= fn+Vn�R̃0f�n=0. Therefore, if f exists, then −1�specl̃
�
2�K̃�.

Now, we shall approximate the potential V by the compactly supported potential VN with the

entries Vn
N=	 j=−N+1

N−1 Vj�n,j. Let K̃N be the compact operator obtained from the operator K̃ when V is

replaced by VN. If −1�specl̃
�
2�K̃�, then, by Lemma A in Appendix A, there exists a subsequence

of eigenvalues −�aNj
+ ibNj

� of the operators K̃Nj with eigenvectors fNj � l̃�
2 , so that limj→��aNj

+ ibNj
�=1 and limj→��fNj − f�l̃

�
2 =0. For simplicity, we drop the subscript j from Nj. More precisely,

the eigenvectors satisfy

�aN + ibN�fn
N + Vn

N�R̃0fN�n = �	
m

Vm
N�R̃0fN�mcos�
+m���n,0

+ �	
m

Vm
N�R̃0fN�msin�
+m���a1�n,1 + a2�n,2� . �14�

Equation �14� implies that the support of fN is finite.
Define the discrete Fourier transform F : l2�Z�→L2�0,2�� by

u = �un� ↔ û��� = F�u� = 	
n=−�

�

unein�.

Since fN has a compact support, then f̂N���=F�fN� is a trigonometric polynomial. Since fN belongs

to l̃�
2 , it satisfies the two constraints in �13�, which implies that f̂N�
�= f̂N�−
�=0. Define a se-

quence �N via the inverse Fourier transform of

�̂N��� =
f̂N���

2 − 2 cos � − 	
.

Since the denominator is equal to zero exactly at �= �
, which are also among zeros of the

numerator, and since f̂N��� is a trigonometric polynomial in �, we conclude that �̂N��� is a
trigonometric polynomial as well. Therefore, �N has a compact support. By definition, �N is found
from equation �−�−	��N= fN, which is equivalent to the equation
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− �n+1
N − �n−1

N + �2 − 	��n
N +

Vn

aN + ibN
�n

N = �1�n,0 + �2�a1�n,1 + a2�n,2� , �15�

where

�1 =
1

aN + ibN
	
m

Vm
N�R̃0fN�mcos�
m� ,

�2 =
1

aN + ibN
	
m

Vm
N�R̃0fN�msin�
m� .

The only compact support solution of �15� has a nonzero value at n=1. Therefore, the eigenvector
fN has a compact support at n= �0,1 ,2�. By limN→��fN− f�l̃

�
2 =0, we conclude that the support of f

is also at the three nodes n= �0,1 ,2�. Therefore, the function �, defined by a solution of �−�
−	��= f , is also compactly supported at n=1. However, � is also a solution of �−�+V−	��
=0, and the only compact support solution of this equation is ��0. Hence f �0, and we obtain a
contradiction. This contradiction implies, of course, that I+VR0�	� is an invertible operator on l�

2 ,
as claimed. �

IV. PUISEUX EXPANSIONS AT THE SPECTRAL EDGES

The free resolvent R0�	� has a singular behavior as 	↓0, as follows from expansion �6�.
Recall that the superscripts are dropped for R0�	� and R�	�. We will show that the resolvent
operator R�	� has a regular behavior in the same limit provided that V is a generic potential in the
following sense.

Definition 1: V� l1
1 is called a generic potential if no solution �0 of equation �−�+V��0

=0 exists in l−�
2 for 1

2 ��
3
2 .

Remark 1: We show in Appendix B that solutions of �−�+V��0=0 always belong to l−�
2 for

��
3
2 .
Since R0�	� : l�

2 � l−�
2 for any fixed 	� �0,4� and ��

1
2 and since V : l−�

2 � l�
2 if V� l2�

1 ,
T�	�= I+R0�	�V is a bounded Hilbert–Schmidt operator in B�−� ,−�� for ��

1
2 . Since R0�	� is

represented by expansion �7� for ��
5
2 , we obtain

T�	� =
iT−1

�	
+ T0 + O��	� ,

where

�T−1f�n =
1

2 	
m�Z

Vmfm, �T0f�n = fn −
1

2 	
m�Z


n − m
Vmfm

and 	�0 is small. We shall denote T̃�	�=T�	�− iT−1 /�	=T0+O��	�. We will show that the

operator T̃�	� is invertible near 	=0 if no solution u0 of equation T0u0=0 exists in l−�
2 for any

��
3
2 and �V ,T0

−11��0, where angular brackets denote inner products in l2 and 1 is the vector with
1n=1 for all n�Z. Lemma B in Appendix B shows that this condition is equivalent to the
condition that V is a generic potential of Definition 1. Puiseux expansion of the resolvent near
	=0 is defined in the following theorem.

Theorem 2: Fix ��
5
2 and assume that V� l2�

1 is generic in the sense that no solution u0 of
equation T0u0=0 exists in l−�

2 for any ��
3
2 and �V ,T0

−11��0. The resolvent R�	�, defined for
	� �0,4�, has the expansion

R�	� = R�0� + O��	� �16�

in the norm of B�� ,−�� for sufficiently small 	�0.
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Proof: We will first fix ��
3
2 and show that T̃�	��B�−� ,−�� is invertible for any fixed small

	�0, provided that the potential V� l2�
1 is generic. Let u=u�+c�	�V, where c�	� is a coefficient

and u� satisfies the orthogonal projection �V ,u��=0. For any f � l−�
2 , equation T�	�u= f is equiva-

lent to

T̃�	�u� + c�	�T�	�V = f . �17�

Since V is decaying as 
n
→�, we have u�� l−�
2 if and only if u� l−�

2 for any fixed ��
1
2 . Since

T̃�	�−T0→0 as 	↓0 in B�−� ,−�� for ��
3
2 , the operator T̃�	� is invertible if T0 is invertible.

Under the condition �9�, we have

	
m,n�Z


n − m
2Vm
2 �1 + m2��

�1 + n2��
� C 	

m,n�Z


n − m
2

�1 + m2���1 + n2��
 �

for some C�0 and any ��
1
2 . Therefore, T̃0=T0− I is a Hilbert–Schmidt operator in B�−� ,−�� for

any fixed ��
3
2 , such that T0 is invertible if and only if the kernel of T0 is empty in l�

2 for �
�

3
2 , which is a condition that V is a generic potential.

Since T̃�	� is invertible for sufficiently small 	�0, a unique solution of �17� is

u� = �T̃�	��−1�f − c�	�T�	�V� = − cV + �T̃�	��−1� f −
ic�	�
�	

T−1V� .

To find uniquely the coefficient c�	� in the decomposition u=u�+c�	�V, we let S�	�= �T̃�	��−1

and define the adjoint operators �S�	��� and �T̃�	��� as bounded maps in B�� ,�� for any fixed
��

3
2 . Since �V�l2�

2 � �V�l2�
1 and V� l2�

1 , then W=S�V� l�
2 for any ��

3
2 .

Let us now fix ��
5
2 and represent T̃�	� by T0+O��	�. Then, S�	�=S0+O��	�, where S0

=T0
−1. Using the inner products in l2, we obtain �W , T̃�	�u��= �V ,u��=0, such that

c�	� =
�W, f�

�W,T�	�V�
=

�V,S�	�f�
�V,S�	�T�	�V�

,

provided that �V ,S�	�T�	�V�= 
V
l2
2 �1+ i

2�	
�V ,S�	�1���0 for sufficiently small 	�0. Since

S�	�−S0→0 as 	↓0 in B�� ,�� for ��
3
2 , this condition is satisfied if �V ,S01�= �V ,T0

−11��0,
which is true for generic potentials V.

The first resolvent identity �8� implies that if T�	�u= f for some f � l−�
2 and f =R0�	�� for

some �� l�
2 , then u=R�	�� for a fixed 	� �0,4�. We shall now finish the proof of theorem by

computing the limit 	↓0 in the following chain of identities:

R�	�� = u = u� + c�	�V = �T̃�	��−1�R0
+�	�� −

ic�	�
�	

T−1V� , �18�

where

c�	� =
�V,S�	�R0�	���
�V,S�	�T�	�V�

=

i

2�	
�V,S�	�1��1,�� + �V,S�	�R̃0�	���

�V�l2
2 � i

2�	
�V,S�	�1� + 1� ,

where R̃0�	�=R0�	�− iR−1 /�	. Therefore, lim	↓0 c�	�=c�0� exists and the singular term of �18�
is canceled because of the explicit computation
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i

2�	
	

m�Z
�m −

ic�0�
�	

T−1V =
i

2�	
��1,�� −

�1,���V�l2
2

�V�l2
2 � = 0.

As a result, the expansion �16� is proven with

R�0�� = S0R0� + � �1,��
�V,S01�

−
�V,S0R0��

�V,S01� �S01,

where we have used again that �V ,S01��0 for generic potentials. �

Remark 2: Not only Theorem 2 generalizes Theorems 5.1 and 6.1 in Ref. 6 from compact to
spatially decaying potentials V but also the class of generic potentials V is defined more precisely
compared to Definition 5.1 in Ref. 6. In addition, the values of � can be taken for ��

5
2 compared

to ��
7
2 in Ref. 6, since no terms of O��	� in the expansions of T�	� and S�	� are used to obtain

the leading order term of R�0�.

V. DISPERSIVE ESTIMATES

Using the previous analysis of the resolvent operator R�	�, we switch our focus to the dis-
cussion of the dispersive estimates for the time-dependent discrete Schrödinger equation ut= iHu
with initial data u�0�=u0 in an appropriate function space. We have two types of dispersive
estimates. The first one describes decay of the semigroup eitH acting on the weighted l2 spaces, and
it is an extension of Theorem 7.1 in Ref. 6. The second, more delicate estimate describes decay of
the semigroup that maps l1 into l�, and it is an extension of the dispersive estimate of the free
resolvent in Ref. 12.

Let Pj denote projections on the eigenspaces corresponding to the eigenvalues 	 j �R \ �0,4�
of the self-adjoint operator H. We shall prove that the discrete spectrum is finite dimensional, such
that j can be enumerated from j=1 to j=n�. By the spectral theory, projection to the essential
�absolutely continuous� spectrum of H is defined by Pa.c.�H�= I−	 j=1

n Pj.
Lemma 1: Fix ��

5
2 and assume that V� l2�

1 is generic in the sense of Definition 1. The
discrete spectrum of H is finite dimensional and located in the two segments �	min,0�� �4,	max�,
where

	min = min
n�Z

�0,Vn�, 	max = max
n�Z

�4,4 + Vn� .

Proof: Since H is self-adjoint in l2�Z�, eigenvalues of the discrete spectrum are all located on R.
By Theorem 1, no embedded eigenvalues may occur in �0,4� if ��

1
2 . By Theorem 2, no eigen-

values are located at 0 and 4 if ��
5
2 and V is a generic potential in the sense of Definition 1. The

upper and lower bounds on the location of eigenvalues follow from the fact that 0� �� ,−���
�4���l2

2 . Since the resolvent operator R��� is a meromorphic function on ��R \ �0,4� with
bounded limits in B�� ,−�� for ��

5
2 as �→0 and �→4, it has a finite number of poles in the

compact domain �	min,0�� �4,	max�. Therefore, the discrete spectrum of H is finite dimensional.
�

Remark 3: Isolated eigenvalues of the discrete Schrödinger equation outside �0,4� can be
supported by the potential V with the range in [0,4]. Appendix in Ref. 6 gives examples of such
eigenvalues for compact potentials supported at one or two nodes with any nonzero values of V.
The main result of Ref. 5 states that if V�0 with some decay at infinity, H has always spectrum
outside �0,4�.

The results on the dispersive estimates for the one-dimensional discrete Schrödinger equation
are described in the following two theorems.

Theorem 3: Fix ��
5
2 and assume that V� l2�

1 is generic in the sense of Definition 1. Then,
there exists a constant C depending on V, so that

�eitHPa.c.�H��l
�
2→l−�

2 � Ct−3/2 �19�
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for any t�0.
Proof: The proof of �19� is standard and it follows the outline in Ref. 6. By the Cauchy

formula in B�� ,−��, we obtain

eitHPa.c.�H� =
1

2�i
�

0

4

eit	�R+�	� − R−�	��d	 =
1

�
�

0

4

eit	 Im R�	�d	 , �20�

where we have dropped the superscript for R+�	�. By the representation of the perturbed resolvent
in Theorem 2 �in particular, by the fact that R�0� is real�, we have

�R�	��B��,−�� � C, �Im R�	��B��,−�� � C	1/2 �21�

and

� dj

d	 j R�	��
B��,−��

� C	1/2−j, j = 1,2 �22�

for some C�0. Introduce smooth cutoff functions �1 ,�2�C0
�, so that �1+�2=1 for all 	

� �0,4�, while supp��1�� �0,3� and supp��2�� �1,4�. Write

eitHPa.c.�H� =
1

2�i
�

0

3

eit	�1�	�Im R�	�d	 +
1

2�i
�

1

4

eit	�2�	�Im R�	�d	 . �23�

To each of the two terms, one can apply Lemma C from Appendix C. Note that the conditions on
the function F�w�=Im R�	��1�	��B�� ,−�� are satisfied because of the bounds �21� and �22�. �

Theorem 4: Fix ��
5
2 and assume that V� l�

1 is generic in the sense of Definition 1. Then,
there exists a constant C depending on V, so that

�eitHPa.c.�H��l1→l� � Ct−1/3 �24�

for any t�0.
To prove Theorem 4, we develop scattering theory for fundamental solutions of the discrete

Schrödinger equation, following the works of Weder13 and Goldberg and Schlag3 for the continu-
ous Schrödinger equation. Let �� be two linearly independent solutions of

�n+1 + �n−1 + �	 − 2��n = Vn�n, �25�

according to the boundary conditions 
�n
�−e�in

→0 as n→ ��, where 
 is a root of

2 − 2 cos 
 = 	 �26�

for 	� �0,4�. Since the solutions depend on 
, we may use ���
� instead of ��. The Green
function representations of the two solutions are

�n
+�
� = e−in
 −

i

2 sin 

	
m=n

�

�ei
�m−n� − e−i
�m−n��Vm�m
+ �
� ,

�n
−�
� = ein
 −

i

2 sin 

	

m=−�

n

�ei
�n−m� − e−i
�n−m��Vm�m
− �
� .

Let �n
��
�=e�in
fn

��
� for all n�Z. Writing the Green function representation for f+�
� in the
form
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fn
+�
� = 1 −

i

2 sin 

	
m=n

�

�1 − e−2i
�m−n��Vmfm
+ �
� �27�

and using the formula

�1 − e−2i
x

2i sin 

� � C0
x
, ∀ 
 � �− 
0,
0�, ∀ x � R ,

for some C0�0 and fixed 0
0� /2, it follows from the Neumann series that the sequence
�fn

+�
��N0

� is uniformly bounded in l� on �−
0 ,
0� if V� l1
1, where N0 is defined as the smallest

integer, for which

C0	
k=1

�

k
VN0+k
  1.

Moreover, the sequence �fn
+�
��N0

� is analytically continued in the strip �0= �−
0�Re 


�
0 , Im 
�0�, such that �
f+�
� exists in the interior of �0. By taking the derivative of �27� in

, we obtain

�
fn
+�
� = 	

m=n

�

�
�1 − e−2i
�m−n�

2i sin 

�Vmfm

+ �
� −
i

2 sin 

	
m=n

�

�1 − e−2i
�m−n��Vm�
fm
+ �
� .

By the same argument, it follows from the Neumann series that the sequence ��
fn
+�
��N0

� is
uniformly bounded in l� on �−
0 ,
0� if V� l2

1. Therefore, if V� l2
1, then

sup

��−
0,
0�

���
f+�
��l���N0,��� + ��
f+�
��l���N0,����  � .

If N0�0, then the above bound can be extended in l��Z+� since the finite sequence �fn
+�
��n=0

N0

satisfies a second-order difference equation with analytic coefficients and analytic boundary values
fN0

+ �
� and fN0+1
+ �
� in the strip �0. Similar estimates hold for �fn

−�
��n�Z−
. Thus, if V� l2

1�Z�, then
�fn

��
��n�Z�
are analytic in the strip �0 and there exist uniform bounds

F� = sup

��−
0,
0�

��f��
��l��Z�� + ��
f��
��l��Z���  � . �28�

Let us define the discrete Wronskian

W��+,�−� = �n
+�n+1

− − �n+1
+ �n

− � W�
� , �29�

which is independent of n�Z and analytic in �0. The discrete Green function for the resolvent
operators R��	� has the kernel

�R��	��n,m =
1

W�
����n
+�
���m

− �
�� for n � m

�m
+ �
���n

−�
�� for n  m ,


where 
−=−
+ and 
−� �0,�� for 	� �0,4� �see Sec. II�. Using �20�, we represent eitHPa.c.�H� by
its kernel for nm,

�eitHPa.c.�H��n,m =
1

2�i
�

0

4

eit	��m
+ �
+��n

−�
+�
W�
+�

−
�m

+ �
−��n
−�
−�

W�
−� �d	

=
i

�
�

−�

�

eit�2−2 cos 
��m
+ �
��n

−�
�
W�
�

sin 
d
 , �30�

where we have unfolded the branch points 	=0 and 	=4 by using the transformation �26�. If V
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is a generic potential in the sense of Definition 1, then Appendix B shows that the two solutions
���0� are linearly independent, such that W�0��0 �the point 
=0 corresponds to 	=0�. A similar
analysis applies to the points 
= �� which correspond to 	=4.

Let �0 ,��C0
� :�0�
�+��
�=1 for all 
� �−� ,��, so that supp �0� �−
0 ,
0�� �−� ,−�

+
0�� ��−
0 ,�� and supp �� �
0 /2,�−
0 /2�� �−�+
0 /2,−
0 /2�, where 0
0�� /4. Here
the value 
0 is the same number, which is used in the bounds �28�. �If the original number 
0

�� /4, we reassign it to be 
0=� /4.� It is important for our argument that the support of � stays
away �by a fixed number 
0 /2!� from both 0 and �.

We can now formulate and prove two technical lemmas needed for the proof of Theorem 4.
Lemma 2: Assume V� l2

1 and W�0��0. Then, there exists C�0 such that

sup
nm
��

−�

�

eit�2−2 cos 
��0�
�
�m

+ �
��n
−�
�sin 


W�
�
d
� � Ct−1/2 �31�

for any t�0.
Proof: The proof is different for regions n0m, 0nm, and nm0. In the case n

0m, we write

sup
n0m

��
−�

�

eit�2−2 cos 
��0�
�
�m

+ �
��n
−�
�

W�
�
sin 
d
� = sup

n0m
��

−
0


0

eit�2−2 cos 
�ei�n−m�
gn,m�
�d
� ,

where gn,m�
�=sin 
�0�
�fm
+ �
�fn

−�
� /W�
�. Since fn
+�
� and fm

− �
� are continuously differentiable
on �−
0 ,
0� and satisfy the uniform bounds �28� if V� l2

1 and since 
W�
�
�W0�0 if W�0��0,
the dispersive estimate �31� follows by Lemma D of Appendix D.

In the case 0nm, the above estimate is not sufficient since fn
−�
� grows linearly as n

→�. Therefore, we use the scattering theory for fundamental solutions of �25� and represent

�−�
� = a�
��+�
� + b�
��+�− 
� ,

where

a�
� =
W��−�
�,�+�− 
��

2i sin 

, b�
� =

W��−�
�,�+�
��
− 2i sin 


=
W�
�

2i sin 

,

and the discrete Wronskian is defined by �29�. As a result, we write

sup
0nm

��
−�

�

eit�2−2 cos 
��0�
�
�m

+ �
��n
−�
�

W�
�
sin 
d
�

�
1

2
sup

0nm
��

−�

�

eit�2−2 cos 
�ei−�n+m�
�0�
�
fm

+ �
�fn
+�
�W��−�
�,�+�− 
��

W�
�
d
�

+
1

2
sup

0nm
��

−�

�

eit�2−2 cos 
�e−i�m−n�
�0�
�fm
+ �
�fn

+�− 
�d
� .

Each term here is estimated by the bound �38� of Lemma D for an appropriate function g�
�. The
last case nm0 is estimated similarly to the case 0nm by using the scattering theory for
�+�
� in terms of �−�
� and �−�−
�. �

It remains to treat the case, when the cutoff � is placed on �
0 /2,�−
0 /2�� �−�+
0 /2,
−
0 /2�, where 0
0�� /4 is a fixed number. Using the original representation �20�, we need to
estimate the operator norm of
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IV = �
−�

�

eit�2−2 cos 
���
�Im R�2 − 2 cos 
�sin 
d


in B�1,��. This estimate is given by the following lemma. Clearly, Lemma 2 and Lemma 3 imply
Theorem 4.

Lemma 3: Fix ��
5
2 and assume that V� l�

1 . Then, there exists C�0 such that

��
−�

� �
−�

�

eit�2−2 cos
���
�Im R�2 − 2 cos 
�sin 
d
�
B�1,��

� Ct−1/3 �32�

for any t�0.
Proof: We start by recalling the finite Born series,

R�	� = R0�	� − R0�	�VR0�	� + R0�	�VR�	�VR0�	� ,

which follows by iterating the resolvent identity �8�. We can write IV= I1− IV
2 + IV

3 , where

I1 = �
−�

�

eit�2−2 cos 
���
�Im R0�2 − 2 cos 
�sin 
d
 ,

IV
2 = �

−�

�

eit�2−2 cos 
���
�Im R0�2 − 2 cos 
�VR0�2 − 2 cos 
�sin 
d
 ,

IV
3 = �

−�

�

eit�2−2 cos 
���
�Im R0�2 − 2 cos 
�GV�
�R0�2 − 2 cos 
�sin 
d
 ,

where GV�
�ªVR�2−2 cos 
�V. For I1, we observe that this is, in fact, a solution of the free
Schrödinger equation and can be written as

�I1f�n = −
1

2 	
m�Z

fm�
−�

�

eit�2−2 cos 
���
�cos��n − m�
�d
 .

Clearly,

�I1�B�1,�� �
1

2
sup
n�Z
��

−�

�

eit�2−2 cos 
���
�ein
d
� � sup
a�R
��

−�

�

eit�2−2 cos 
−a
���
�d
� .

The last expression has been shown in Theorem 3 of Ref. 12 to decay like t−1/3 and this dispersive
estimate is sharp. The argument relies on the van der Corput lemma formulated in Appendix D.
Indeed, if h�
�=2−2 cos�
�−a
, then h��
1�=h��
1�=0 and h��
1�=4 for a=2 and 
1=� /2, such
that the van der Corput lemma can be applied with k=3 to produce t−1/3 decay.

Proceeding further with IV
2 , we have

�IV
2 f�n = 	

m,l�Z
Vmfl�

−�

�

eit�2−2 cos 
� cos�
�
n − m
 + 
m − l
��
��
�

4 sin�
�
d
 ,

such that
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�IV
2�B�1,�� � sup

n,l�Z
� 	

m�Z
Vm�

−�

�

eit�2−2 cos 
�−i
�
n−m
+
m−l
� ��
�
4 sin�
�

d
�
� �V�l1sup

a�R
��

−�

�

eit�2−2 cos 
−a
� ��
�
4 sin�
�

d
� .

Thus, we can apply again the van der Corput lemma with

h�
� = 2 − 2 cos 
 − a
, g�
� =
��
�

4 sin 

.

Since � is supported away from 0,−� ,�, the function g�
� is smooth and vanishes in a neigh-
borhood of the end points −� ,�. On the other hand, the function h�
� is the same as in the
estimate I1.

Finally, we deal with IV
3 . We claim first that for all ��5 /2,

sup

��−�,��

	
m


Gm�
�
 + � d

d

Gm�
�� � C�V�l

�
2

2 �f�l1. �33�

We will work with the derivative only, since the estimates for Gm�
� are similar. We have

d

d

Gm�
� = �V

d

d

�R�2 − 2 cos 
��Vf�

m
= 2Vm sin 
R��2 − 2 cos 
��Vf�m.

By �22� for j=1, we obtain for every 
� �−� ,��,

	
m
� d

d

Gm�
�� � C
sin 

�V�l

�
2�R��2 − 2 cos 
�Vf�l−�

2 � C�V�l
�
2


sin 


�2 − 2 cos 


�Vf�l
�
2 � C�V�l

�
2

2 �f�l1.

This finishes the proof of the claim �33�. Thus, we write

�IV
3 f�n = 	

l�Z
f l 	

m�Z
�

−�

�

eit�2−2 cos 
� cos�
�
n − m
 + 
m − l
��
��
�Gm�
�

4 sin�
�
d
 ,

such that

�IV
3�B�1,�� � C sup

l�Z
	

m�Z
��

−�

�

eit�2−2 cos 
�e−i
�
n−m
+
m−l
���
�Gm�
�
4 sin�
�

d
� .

We write

h�
� = 2 − 2 cos 
 − 
at,n,m,l, gm�
� =
��
�
sin 


Gm
+ �
� ,

where at,n,m,l= �
n−m
+ 
m− l
� / t. Our aim is to estimate

	
m�Z

��
−�

�

eith�
�gm�
�d
� ,

where gm�
� vanishes in a neighborhood of the end points −� ,� and h�
� has the property

max�
h��
�
, 
h��
�
, 
h��
�
� � 1,

as discussed earlier. This is valid for every fixed t ,n ,m , l. We can therefore apply the van der
Corput lemma from Appendix D with either k=1,2 ,3. In the worst possible scenario, that is, k
=3, we obtain
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m�Z

��
−�

�

eith�
�gm�
�d
� � Ct−1/3 	
m�Z

�
−�

� � d

d

gm�
��d
 � Ct−1/3�V�l

�
2

2 �f�l1,

where the last inequality follows from �33�. This finishes the proof of Lemma 3. �

Appendix A: Approximation of compact operators

Here we will prove a lemma, which is used in the proof of Theorem 1.
Lemma A: Let X be a Banach space and �Kn�n�N :X→X be a sequence of compact operators,

such that limn→��Kn−K�B�X,X�=0 for some K :X→X. Then for every ��0, such that ����K� with
an eigenvector f �0, such that Kf =�f , there exists a subsequence ��nj

� j�N of eigenvalues with
eigenvectors �fnj

� j�N, such that Knj
fnj

=�nj
fnj

, such that limj→� �nj
=� and limj→��fnj

− f�B�X,X�=0.
Proof: First, we show the existence of a subsequence of eigenvalues �nj

of Knj
that converges

to eigenvalue � of K. Then, we construct eigenvectors fnj
. Assume the contrary, that is, there exists

�0�0, so that

0  �0 � lim sup
n→�

dist���Kn�,�� .

By the functional calculus, there exists a subsequence �Knj
� j�N, such that

��Knj
− ��−1�B�X,X� � 2�0

−1.

Pick any eigenvector f for the eigenvalue �, such that Kf =�f and �f�X=1. Let gj = �Knj
−��f

= �Knj
−K�f . Clearly, �gj�X� �Knj

−K�B�X,X�→0. On the other hand,

1 = �f�X = ��Knj
− ��−1gj�X � 2�0

−1�gj�X → 0.

A contradiction arises, whence there is a subsequence ��nj
� j�N which converges to �. Pick eigen-

vectors fnj
, such that Knj

fnj
=�nj

fnj
and �fnj

�X=1. Since K is compact, it follows that Kfnj
will have

a convergent subsequence, call it again fnj
. Let gª limj→� Kfnj

. We have

�g − �fnj
�X � 
� − �nj


 + �Kfnj
− g�X + ��K − Knj

�fnj
�X

� 
� − �nj

 + �Kfnj

− g�X + ��K − Knj
��B�X,X� → 0.

Thus, the subsequence �fnj
� j�N converges to fªg /� in B�X ,X� norm if ��0. Also, �f =g

=limj→� Kfnj
=Kf . �

Appendix B: Conditions on generic potentials

Let us consider the difference equation �−�+V��=0 or

�n+1 + �n−1 = �2 + Vn��n, n � Z . �34�

Two fundamental solutions of �34� are defined by the discrete Green function in the form

�n
+ = 1 − 	

m=n

�

�n − m�Vm�m
+ ,

�n
− = 1 + 	

m=−�

n

�n − m�Vm�m
− .

It is straightforward to check that the discrete Wronskian,

113501-14 D. E. Pelinovsky and A. Stefanov J. Math. Phys. 49, 113501 �2008�

Downloaded 04 Nov 2008 to 130.113.105.64. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



W��+,�−� = �n+1
− �n

+ − �n+1
+ �n

−,

is constant on n�Z. Therefore, the Green function representation of �+ and �− immediately
implies that 	m�ZVm�m

+ =	m�ZVm�m
− or simply �V ,�+�= �V ,�−�. If V� l1

1, then

lim
n→+�

�n
+ = lim

n→−�
�n

− = 1

and

− lim
n→−�

�n
+

n
= lim

n→+�

�n
−

n
= �V,�+� = �V,�−� .

It follows by this construction that the solution of �−�+V��0=0 spanned by the fundamental
solutions �+ and �− always exists in l−�

2 for ��
3
2 �Remark 1�. We can now prove the equivalence

of conditions in Definition 1 and the conditions in Theorem 2.
Lemma B: Let V� l1

1. The two conditions are equivalent.

�1� No solution �0 of equation �−�+V��0=0 exists in l−�
2 for 1

2 ��
3
2

�2� No solution u0 of equation T0u0=0 exists in l−�
2 for any ��

3
2 and �V ,T0

−11��0.

Proof: Condition 1 is equivalent to the constraint �V ,�+��0. Indeed, if �V ,�+�=0, then �+

� l��Z�, and thus �+� l−�
2 for ��

1
2 . If �V ,�+��0, then no solution � of Eq. �34� exists in l−�

2 for
1
2 ��

3
2 .

Let u be a solution of T0u=1, which can be rewritten in the explicit form

un = 1 +
1

2 	
m=−�

n

�n − m�Vmum −
1

2 	
m=n

�

�n − m�Vmum. �35�

Direct computations show that u solves the same difference equation �34� and

lim
n→+�

un

n
= − lim

n→−�

un

n
= �V,u� .

Therefore, u=c��++�−� with c�0 and the constraint �V ,u�= �V ,T0
−11��0 is equivalent to the

constraint �V ,�+��0 that is condition 1.
Assume now that there exists a solution of equation T0u0=0 in l−�

2 for ��
3
2 . This function is

a solution of the same equation �35� but without the constant term on the right-hand side. There-
fore, u0 satisfies �34� and u0 is linearly independent of u, which is another solution of �34�.
Multiplying Eq. �35� by Vn�u0�n and summing over n�Z, we obtain

�V,u0� = 	
m�Z

Vmum��u0�m −
1

2 	
n�Z


m − n
Vm�u0�m� = 0.

Therefore, u0� l�
2 for ��

1
2 for exponentially decaying potentials V, that is, there exists �0 of Eq.

�34� in l�
2 for ��

1
2 . In the opposite direction, if there exists �0 of Eq. �34� in l�

2 for ��
1
2 , then

�0=c�+ with c�0 and, since �V ,�+�=0 in this case, one can choose c= 1
2	m�ZmVm��0�m so that

�0 solves T0�0=0, that is, there exists u0=�0. Therefore, the existence of �0 is equivalent to the
existence of u0. Combining both results together, we have established the equivalence of condi-
tions �1� and �2�. �

Appendix C: Jensen–Kato lemma

A general lemma to estimate the oscillatory integrals is provided in Ref. 4. Here, we formulate
and prove a simplified version, which is used in the proof of Theorem 3.

Lemma C: Let B be a Banach space, so that for F�C2�0,a ;B�, F�0�=F�a�=0, �F��	��B
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�C	−1/2, and �F��	��B�C	−3/2 as 	→0. Then for every t�1,

��
0

a

eitwF�	�d	�
B

� C
t
−3/2. �36�

Proof: Take an unit element b� in the dual space B�. Then, it is clearly enough to show

��
0

a

eitwb��F�	��d	� � C
t
−3/2,

where C is independent of B�. Thus, �36� follows from its scalar version, where F̃�	�
ªb��F�w��, since the estimates for F carry over F̃. That is without loss of generality, we may
assume that B=R.

Next, an integration by parts yields

�
0

a

eitwF�	�d	 =
i

t
�

0

a

eitwF��	�d	 =
i

t��0

min�1/
t
,a�

eitwF��	�d	 + �
min�1/
t
,a�

a

eitwF��	�d	� .

For the first integral, estimate by absolute value and 
F��	�
�C
	
−1/2,

C
1


t
�0

min�1/
t
,a�


	
−1/2d	 � 2C
t
−3/2.

For the second integral, perform one more integration by parts and 
F��	�
�C	−3/2,

1


t
��min�1/
t
,a�

a

eitwF��	�d	� �
C


t
2�
F��min�1/
t
,a��
 + �
min�1/
t
,a�

a


	
−3/2d	� � C1
t
−3/2.

These bounds complete the proof of the lemma. �

Appendix D: Estimation of oscillatory integrals

The van der Corput lemma is stated as a corollary on p. 334 in Ref. 11.
Van der Corput Lemma: Suppose � is a real-valued function, smooth in �a ,b� , so that


��k��x�
�1 for some integer k . (If k=1, we will have to also assume that ���x� is monotonic).
Then,

��
a

b

ei���x���x�dx� � ck�
−1/k���b� + �

a

b


���x�
dx� . �37�

Here we will prove a lemma which is used in the proof of Lemma 2. This lemma is basically a
corollary of the van der Corput lemma.

Lemma D: Assume that the function g�
� is continuously differentiable in �−
0 ,
0� for certain
0
0� /4 and sup−
0�
�
0

�
g��
�
+ 
g�
�
��C. Then

sup
a�R
�� eit�2−2 cos 
−a
��0�
�g�
�d
� � Ct−1/2 �38�

for any t�0.
Proof: To use the van der Corput lemma, we need to check that for a fixed parameter a and on

the support of the function �0, the phase function h�
�=2−2 cos 
−a
 satisfies the condition that
max�
h��
�
 , 
h��
�
��1 for every fixed 
. Assuming this claim and observing that 
→h��
�
=4 sin 
−a is a monotonic function, we may apply the van der Corput lemma with either k=1 or
k=2, which gives us �38�. Thus, compute h��
�=4 sin 
−a and h��
�=4 cos 
, whence
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�h��2 + �h��2 = 16 − 8a sin 
 + a2 � 8,

where the last inequality is a consequence of 
sin 

�1 /�2 in the interval under consideration.
Therefore, max�
h��
�
 , 
h��
�
��2�2�1. �
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