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Rogue periodic waves stand for rogue waves on
a periodic background. The nonlinear Schrödinger
equation in the focusing case admits two families of
periodic wave solutions expressed by the Jacobian
elliptic functions dn and cn. Both periodic waves
are modulationally unstable with respect to long-
wave perturbations. Exact solutions for the rogue
periodic waves are constructed by using the explicit
expressions for the periodic eigenfunctions of the
Zakharov–Shabat spectral problem and the Darboux
transformations. These exact solutions generalize
the classical rogue wave (the so-called Peregrine’s
breather). The magnification factor of the rogue
periodic waves is computed as a function of the
elliptic modulus. Rogue periodic waves constructed
here are compared with the rogue wave patterns
obtained numerically in recent publications.

1. Introduction
Nonlinear waves in fluids and optics are modelled
by the nonlinear Schrödinger (NLS) equation in many
physical situations. The same model is also relevant
to describe frequent occurrence of gigantic waves on
the ocean’s surface [1] and in optical fibres [2]. Such
gigantic waves bear the name of rogue waves: these
waves appear from nowhere and disappear without
a trace [3]. From a physical perspective, the rogue
waves emerge on the background of modulationally
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unstable nonlinear waves, e.g. constant waves, periodic waves or quasi-periodic spatially
temporal patterns [4–6].

In what follows, we take the focusing NLS equation in the normalized form

iut + uxx + 2|u|2u = 0. (1.1)

The NLS equation (1.1) appears as a compatibility condition of the following Lax pair of linear
equations on ϕ ∈ C

2:

ϕx = Uϕ, U =
(

λ u
−ū −λ

)
(1.2)

and

ϕt = Vϕ, V = i

(
2λ2 + |u|2 ux + 2λu
ūx − 2λū −2λ2 − |u|2

)
, (1.3)

where ū is the conjugate of u. The first equation (1.2) is usually referred to as the Zakharov–Shabat
spectral problem with the spectral parameter λ, whereas the second equation (1.3) determines the
time evolution of the eigenfunctions of the Zakharov–Shabat spectral problem.

The classical rogue wave up to the translations in the (x, t) plane is given by the exact rational
solution of the NLS equation (1.1)

u(x, t) =
[

1 − 4(1 + 4it)
1 + 4x2 + 16t2

]
e2it. (1.4)

As |t| + |x| → ∞, the rogue wave (1.4) approaches the constant wave background u0(x, t) = e2it.
At the origin (x, t) = (0, 0), the rogue wave reaches the maximum at |u(0, 0)| = 3, from which the
magnification factor of the constant wave background is defined to be M0 = 3. The rogue wave (1.4)
was derived by Peregrine [7] and is sometimes referred to as Peregrine’s breather. More complicated
rational solutions for rogue waves in the NLS equation (1.1) were constructed by applications of
the multi-fold Darboux transformations [8–10].

It is relatively less studied on how to construct rogue waves on the non-constant background.
Several recent publications offer different computational tools in the context of rogue waves on
the background of periodic or two-phase solutions.

Computations of rogue waves on the periodic background were performed for the first time in
[11], where solutions of the Zakharov–Shabat spectral problem were computed numerically and
these approximations were substituted into the onefold Darboux transformation. As the spectral
parameter was selected at random in [11] without connection to the band-gap spectrum of the
Zakharov–Shabat spectral problem, the resulting wave patterns do not single out a localized
rogue wave on the periodic background.

Computations of rogue waves on the two-phase background were achieved in [12] with a more
accurate numerical scheme. The authors constructed numerical solutions of the Zakharov–Shabat
spectral problem for particular branch points obtained also numerically, after which the onefold
Darboux transformation was used. The resulting wave patterns are periodic both in space and
time with a rogue wave placed at the origin and these patterns matched well with experimental
data for rogue waves in fluids [12].

General two-phase solutions of the focusing NLS equation (1.1) were analysed in [13] and in
[14,15]. Although the wave patterns for the general two-phase solutions are quasi-periodic both
in space and time, some parts of the quasi-periodic pattern look like rogue waves on the periodic
background. In particular, the magnification factor of a rogue wave was computed as a ratio
between the maximal amplitude and the mean value of the two-phase solution [14,15].

Integrable turbulence and rogue waves were observed numerically in [5] during the
modulational instability of the dn-periodic waves. In particular, the magnification factor of a
rogue wave arising as a result of two-soliton collisions was observed to be two, in agreement
with recent results of [16] obtained in the context of the focusing modified Korteweg–de Vries
(KdV) equation. The rogue wave at the time of their maximal elevation was observed to have a
quasi-rational profile similar to that of the Peregrine’s breather [5].
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The purpose of our work is to obtain exact analytical solutions for the rogue waves on the
periodic background, which we name here as rogue periodic waves. We show how to compute
exactly the branch points in the band-gap spectrum of the Zakharov–Shabat problem associated
with the periodic background, how to represent analytically the periodic and non-periodic
solutions of the Zakharov–Shabat problem, and how to generate accurately the rogue periodic
waves by means of the onefold or twofold Darboux transformations.

The standing periodic wave solutions to the focusing NLS equation (1.1) can be represented in
the form

u(x, t) = U(x) eict, (1.5)

where the periodic function U satisfies the following second-order equation:

d2U
dx2 + 2|U|2U = cU. (1.6)

The second-order equation (1.6) can be integrated to yield the following first-order invariant:∣∣∣∣dU
dx

∣∣∣∣2 + |U|4 = c|U|2 + d. (1.7)

Here c and d are real-valued constants, whereas U may be complex-valued. In addition to the
standing periodic wave solutions (1.5), there exist travelling periodic wave solutions with non-
trivial dependence of the wave phase (e.g. in [17]). For simplicity of our presentation, we only
consider rogue waves on the standing periodic waves (1.5) with real U.

There are two particular families of the periodic wave solutions in the focusing NLS equation
(1.1) expressed by the Jacobian elliptic functions dn and cn [18]. The positive-definite dn-periodic
waves are given by

U(x) = dn(x; k), c = 2 − k2, d = −(1 − k2), k ∈ (0, 1), (1.8)

whereas the sign-indefinite cn-periodic waves are given by

U(x) = k cn(x; k), c = 2k2 − 1, d = k2(1 − k2), k ∈ (0, 1). (1.9)

In both cases, the periodic waves are even and centred at the point x = 0 thanks to the translational
invariance of the NLS equation (1.1) in x. The parameter k ∈ (0, 1) is elliptic modulus and in the
limit k → 1; both solutions converge to the normalized NLS soliton

U(x) = sech(x), c = 1, d = 0. (1.10)

In the limit k → 0, the dn wave converges to the constant wave background u0(x, t) = e2it, whereas
the cn wave converges to the zero background.

Spectral stability of the periodic waves in the focusing NLS equation was investigated in
detail [17] (see also [19,20]). It was found that both dn- and cn-periodic waves are modulationally
unstable with respect to the long-wave perturbations (see review in [21]). The rogue periodic
waves constructed in our work are related to the modulational instability of the two periodic
waves with respect to the long-wave perturbations; see numerical experiments in [5] for dn-
periodic waves. The rogue waves are related to the modulational instability of the periodic
waves because they are constructed at the branch points λ of the band-gap spectrum of the
Zakharov–Shabat spectral problem (1.2) in the unstable domain with Re(λ) > 0; see also [6,12].

We will adopt the following definition of a rogue wave on the periodic background. For a given
periodic wave uper(x, t) = U(x) eict, we say that the new solution u is a rogue periodic wave if it is
different from an orbit of the periodic wave uper generated by translational and phase invariance
of the NLS equation (1.1) but

inf
x0,α0∈R

sup
x∈R

|u(x, t) − U(x − x0) eiα0 | → 0 as t → ±∞. (1.11)

This definition corresponds to the common understanding of rogue waves as the waves that
appear from nowhere and disappear without a trace as the time evolves [3].
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Our work relies on the analytical algorithm introduced recently in the context of periodic
waves in the focusing modified KdV equation [22]. First, by using the algebraic technique based
on nonlinearization of the Lax pair [23], we obtain the explicit expressions for the branch points
of the band-gap spectrum in the Zakharov–Shabat spectral problem (1.2) associated with the
dn- and cn-periodic waves. Only one periodic eigenfunction of the Zakharov–Shabat spectral
problem exists at each branch point. For each periodic eigenfunction, we construct the second,
linearly independent solution to the linear system (1.2)–(1.3), which is not periodic but linearly
growing in (x, t). Finally, substituting non-periodic solutions to the linear system (1.2)–(1.3) into
the onefold and twofold Darboux transformations [24] yields the rogue periodic waves in the
sense of definition (1.11).

The paper is organized as follows. Section 2 reports construction of the periodic eigenfunctions
of the linear system (1.2)–(1.3). Section 3 describes construction of the rogue periodic waves.
Section 4 concludes the paper with further discussions.

2. Periodic eigenfunctions of the Lax pair
The algebraic technique based on the nonlinearization of the Lax pair was introduced in [23]. It
was implemented for the linear system (1.2)–(1.3) in [25,26]. Here, we use this algebraic technique
for a novel purpose of constructing the explicit expressions for periodic eigenfunctions of the
Zakharov–Shabat spectral problem associated with the periodic wave solutions (1.8) and (1.9).

(a) Nonlinearization of the Lax pair
We introduce the following constraint [25,26]:

u = p2
1 + q̄2

1, (2.1)

between the potential u and a particular non-zero solution ϕ = (p1, q1)T of the linear system (1.2)–
(1.3) for λ = λ1, where λ1 ∈ C is fixed arbitrarily.

Substituting (2.1) into the spectral problem (1.2) yields a finite-dimensional Hamiltonian
system in complex variables

dp1

dx
= ∂H

∂q1
and

dq1

dx
= − ∂H

∂p1
, (2.2)

which is associated with the real-valued Hamiltonian function

H = λ1p1q1 + λ̄1p̄1q̄1 + 1
2 (p2

1 + q̄2
1)(p̄2

1 + q2
1). (2.3)

Two constants of motion exist for the system (2.2)–(2.3)

F0 = i(p1q1 − p̄1q̄1) (2.4)

and
F1 = λ1p1q1 + λ̄1p̄1q̄1 + 1

2 (|p1|2 + |q1|2)2. (2.5)

Indeed, F0 is constant in x due to the following cancellation:

dF0

dx
= iq1[λ1p1 + (p2

1 + q̄2
1)q1] + ip1[−λ1q1 − (p̄2

1 + q2
1)p1]

− iq̄1[λ̄1p̄1 + (p̄2
1 + q2

1)q̄1] − ip̄1[−λ̄1q̄1 − (p2
1 + q̄2

1)p̄1] = 0,

whereas F1 is constant in x because it is related to the constant values of H and F0 as follows:

H − F1 = 1
2 [|p1|4 + p2

1q2
1 + p̄2

1q̄2
1 + |q1|4] − 1

2 [|p1|4 + 2|p1|2|q1|2 + |q1|4] = − 1
2 F2

0. (2.6)

Substituting (2.1) into the time-evolution system (1.3) yields another Hamiltonian system

dp1

dt
= ∂K

∂q1
and

dq1

dt
= − ∂K

∂p1
, (2.7)
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associated with the real-valued Hamiltonian function

K = i
[
2λ2

1p1q1 − 2λ̄2
1p̄1q̄1 + |p2

1 + q̄2
1|2(p1q1 − p̄1q̄1)

+(λ1p2
1 − λ̄1q̄2

1)(p̄2
1 + q2

1) + (p2
1 + q̄2

1)(λ1q2
1 − λ̄1p̄2

1)
]

. (2.8)

In the derivation of system (2.7)–(2.8) from system (1.3), we have used the constraint (2.1) and the
following constraint:

ux = 2p1(λ1p1 + (p2
1 + q̄2

1)q1) − 2q̄1(λ̄1q̄1 + (p2
1 + q̄2

1)p̄1)

= 2(λ1p2
1 − λ̄1q̄2

1) + 2(p2
1 + q̄2

1)(p1q1 − p̄1q̄1), (2.9)

which follows from the differentiation of (2.1) and the substitution of (2.2)–(2.3).
The two quantities F0 and F1 given by (2.4) and (2.5) are constants of motion for the system

(2.7)–(2.8). Indeed, F0 is constant in t due to the following cancelation:

dF0

dt
= −q1[(2λ2

1 + |u|2)p1 + (ux + 2λ1u)q1] − p1[−(2λ2
1 + |u|2)q1 + (ūx − 2λ1ū)p1]

− q̄1[(2λ̄2
1 + |u|2)p̄1 + (ūx + 2λ̄1ū)q̄1] − p̄1[−(2λ̄2

1 + |u|2)q̄1 + (ux − 2λ̄1u)p̄1]

= −[ūux + uūx + 2u(λ1q2
1 − λ̄1p̄2

1) + 2ū(λ̄1q̄2
1 − λ2

1p2
1)]

= 0,

where the last identity follows by (2.9) and its complex conjugate. To prove that F1 is constant in t,
it is sufficient to prove that H is constant in t, owing to the relation (2.6) between H, F0 and F1. To
do so, we introduce the complex Poisson bracket in C

2 associated with the symplectic structures
of the systems (2.2)–(2.3) and (2.7)–(2.8)

{f , g} := ∂f
∂p1

∂g
∂q1

− ∂f
∂q1

∂g
∂p1

+ ∂f
∂ p̄1

∂g
∂ q̄1

− ∂f
∂ q̄1

∂g
∂ p̄1

.

Then, it follows from (2.3), (2.8) and (2.9) that

{H, K} = i[(λ1q1 + ūp1)((2λ2
1 + |u|2)p1 + (ux + 2λ1u)q1)

+ (λ1p1 + uq1)((ūx − 2λ1ū)p1 − (2λ2
1 + |u|2)q1)

− (λ̄1q̄1 + up̄1)((2λ̄2
1 + |u|2)p̄1 + (ūx + 2λ̄1ū)q̄1)

− (λ̄1p̄1 + ūq̄1)((ux − 2λ̄1u)p̄1 − (2λ̄2
1 + |u|2)q̄1)]

= i[λ1(uxq2
1 + ūxp2

1) − λ̄1(ūxq̄2
1 + uxp̄2

1) + (ūux + ūxu)(p1q1 − p̄1q̄1)]

= i[ux(λ1q2
1 − λ̄1p̄2

1 + ū(p1q1 − p̄1q̄1)) + ūx(λ1p2
1 − λ̄1q̄2

1 + u(p1q1 − p̄1q̄1))]

= 0.

As H and K commute, it follows that H is constant in t and K is constant in x.
Let us summarize this first step of our computational algorithm. We have obtained two

commuting Hamiltonian systems (2.2)–(2.3) and (2.7)–(2.8) on the eigenfunction (p1, q1) of the
linear system (1.2)–(1.3) associated with the eigenvalue λ1 and the potential u related to (p1, q1) by
the algebraic constraint (2.1). In the next step, we obtain differential constraints on the potential u
from the integrability scheme for the Hamiltonian system (2.2)–(2.3). One differential constraint
is already obtained in (2.9), which can be written in the equivalent form

du
dx

= 2(λ̄1p2
1 − λ1q̄2

1) + 2(p2
1 + q̄2

1)(λ1 − λ̄1 + p1q1 − p̄1q̄1), (2.10)

where the ordinary derivatives are used for convenience and the time dependence is also
assumed. We will obtain other differential constraints on u, which resemble the second-order
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equation (1.6) and its first-order invariant (1.7) for the periodic waves (1.8) and (1.9). From here,
we will conclude that the differential constraints are satisfied if u is the periodic wave of the NLS
equation (1.1) given by (1.5). As u is a compatibility condition of the linear system (1.2)–(1.3), we
do not have to deal with the commuting Hamiltonian system (2.7)–(2.8), as the time evolution of
(p1, q1) can be deduced from the algebraic constraint (2.1) and the conserved quantities F0 and F1
in (2.4) and (2.5).

We note here that the extension of the constraint (2.1) is possible with several solutions of
the linear system (1.2)–(1.3) for distinct values of λ [25,26]. This multifunction construction is
related to the multiphase (quasi-periodic) solutions of the NLS equation (1.1) expressed by the
Riemann’s Theta function [27]. It remains open due to higher computational difficulties to obtain
rogue waves on the background of multiphase solutions.

(b) Differential constraints on the potential u
Hamiltonian system (2.2)–(2.3) is a compatibility condition for the Lax equation

d
dx

W(λ) = [Q(λ), W(λ)], λ ∈ C, (2.11)

where

Q(λ) =
(

λ p2
1 + q̄2

1
−p̄2

1 − q2
1 −λ

)
and W(λ) =

(
W11(λ) W12(λ)

W12(−λ̄) −W11(−λ̄)

)
(2.12)

with

W11(λ) = 1 − p1q1

λ − λ1
+ p̄1q̄1

λ + λ̄1

and

W12(λ) = p2
1

λ − λ1
+ q̄2

1

λ + λ̄1
.

In particular, the (1,2) entry of the Lax equation (2.11) is rewritten in the form

d
dx

W12(λ) = 2λW12(λ) − 2(p2
1 + q̄2

1)W11(λ). (2.13)

We rewrite W11(λ) and W12(λ) in terms of u and constants of motion F0 and F1 by using
relations (2.1), (2.4), (2.5) and (2.10). Some routine computations yield the following explicit
expressions:

W11(λ) = 1 − λ(p1q1 − p̄1q̄1) + λ̄1p1q1 + λ1p̄1q̄1

(λ − λ1)(λ + λ̄1)

= 1 + iF0(λ − λ1 + λ̄1) + (1/2)F2
0 − F1 + (1/2)|u|2

(λ − λ1)(λ + λ̄1)

and

W12(λ) = λ(p2
1 + q̄2

1) + λ̄1p2
1 − λ1q̄2

1

(λ − λ1)(λ + λ̄1)

= (λ − λ1 + λ̄1 + iF0)u + (1/2)ux

(λ − λ1)(λ + λ̄1)
.

Substituting these expressions for W11(λ) and W12(λ) into equation (2.13) yields the following
differential constraint on u:

d2u
dx2 + 2i(F0 + iλ1 − iλ̄1)

du
dx

+ 2|u|2u = 4(|λ1|2 + F1 − 1
2

F2
0 + iF0(λ1 − λ̄1))u. (2.14)
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This equation is to be compared with the second-order differential equation (1.6). To obtain the
first-order invariant (1.7), we consider the determinant of W(λ). As is well known [28],

— det W(λ) has simple poles at λ = λ1 and λ = −λ̄1;
— det W(λ) is independent of x and t as it is related to the integrals of motion F0 and F1 for

the Hamiltonian systems (2.2)–(2.3) and (2.7)–(2.8).

These two properties are verified with the following explicit computation:

det W(λ) = −W11(λ)W11(−λ̄) − W12(λ)W12(−λ̄)

= −1 + 2p1q1

λ − λ1
− 2p̄1q̄1

λ + λ̄1
+ (|p1|2 + |q1|2)2

(λ − λ1)(λ + λ̄1)

= − (λ − λ1)(λ + λ̄1) + 2i(λ − λ1 + λ̄1)F0 − 2F1

(λ − λ1)(λ + λ̄1)
.

On the other hand, as W11(−λ̄) = W11(λ), we can also use the explicit expressions for W11(λ) and
W12(λ) and rewrite det W(λ) in the following form:

det W(λ) = −
[

1 + iF0(λ − λ1 + λ̄1) + (1/2)F2
0 − F1 + (1/2)|u|2

(λ − λ1)(λ + λ̄1)

]2

+ [(λ − λ1 + λ̄1 + iF0)u + (1/2)ux][(λ − λ1 + λ̄1 + iF0)ū − (1/2)ūx]
(λ − λ1)2(λ + λ̄1)2

.

The representation above has double poles at λ = λ1 or λ = −λ̄1, which are identically zero due to
the properties of det W(λ). Removing the double poles at λ = λ1 or λ = −λ̄1 yields the following
two differential constraints on u:∣∣∣∣du

dx

∣∣∣∣2 + |u|4 − 2(iF0 + λ̄1)(ūux − ūxu)

+ 2(3F2
0 − 2F1 − 2iF0λ̄1 − 2λ̄2

1)|u|2 + (F2
0 + 2iF0λ̄1 − 2F1)2 = 0

and ∣∣∣∣du
dx

∣∣∣∣2 + |u|4 − 2(iF0 − λ1)(ūux − ūxu)

+ 2(3F2
0 − 2F1 + 2iF0λ1 − 2λ2

1)|u|2 + (F2
0 − 2iF0λ1 − 2F1)2 = 0.

Let us represent λ1 = α + iβ with α, β ∈ R. Subtracting one differential constraint from the
other, one yields the following simpler constraint on u:

ū
du
dx

− u
dū
dx

= 2i(2β − F0)|u|2 + 2iF0(F2
0 + 2F0β − 2F1). (2.15)

Substituting this constraint in either of the two differential constraints above yields another
equivalent differential constraint on u∣∣∣∣du

dx

∣∣∣∣2 + |u|4 + 2(F2
0 − 2F1 + 4F0β − 2α2 − 2β2)|u|2

+ (F2
0 + 2F0β − 2F1)(5F2

0 − 2F0β − 2F1) − 4F2
0α

2 = 0. (2.16)

The latter equation is to be compared with the first-order invariant (1.7).
We note here that the differential constraints (2.14)–(2.16) are more general than the differential

equations (1.6) and (1.7). In particular, the constraints can be used to address travelling periodic
wave solutions of the NLS equation (1.1) with a non-trivial dependence of the wave phase [17].
The corresponding straightforward extension is omitted for the sake of clarity.
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(c) dn- and cn-periodic waves
Let us connect the differential equations (1.6) and (1.7) for the periodic waves (1.8) and (1.9) with
the differential constraints (2.14)–(2.16). Both periodic waves give zero in the left-hand side of
equation (2.15). Hence, we obtain the following relations:

F0 = 2β, β(F1 − 4β2) = 0. (2.17)

Comparing coefficients in (1.6) and (1.7) with the coefficients in (2.14) and (2.16) yields

c = 4(α2 − 5β2 + F1) and d = 4(4α2β2 − (F1 − 4β2)(F1 − 8β2)), (2.18)

where the relations (2.17) have been taken into account. The second equation in (2.17) can be
satisfied with two choices: either β = 0 or β �= 0 and F1 = 4β2. Both choices are relevant for the
periodic waves (1.8) and (1.9).

If β = 0, then relations (2.17) yield F0 = 0, whereas relations (2.18) yield

c = 4(α2 + F1) and d = −4F2
1. (2.19)

As d < 0, we can only compare these expressions for (c, d) with those for the dn-periodic wave
in (1.8). This yields the following expressions for F1 and λ1 = α in terms of the elliptic modulus
k ∈ (0, 1):

F1 = ± 1
2

√
1 − k2 and λ2

1 = 1
4 [2 − k2 ∓ 2

√
1 − k2].

The expressions for λ1 give two real eigenvalues in the right half-plane

λ± := 1
2 (1 ±

√
1 − k2) (2.20)

and two symmetric eigenvalues −λ± in the left half-plane.
If β �= 0, then relations (2.17) yield F0 = 2β and F1 = 4β2, whereas relations (2.18) yield

c = 4(α2 − β2) and d = 16α2β2. (2.21)

As d > 0, we can only compare these expressions for (c, d) with those for the cn-periodic wave in
(1.9). This yields the following expression for λ1 = α + iβ in terms of the elliptic modulus k:

λ2
1 = 1

4 [2k2 − 1 ± 2ik
√

1 − k2].

The expressions for λ1 give the eigenvalue in the first quadrant

λI := 1
2 [k + i

√
1 − k2] (2.22)

and three symmetric eigenvalues λ̄I, −λI and −λ̄I in the other three quadrants.

(d) Periodic eigenfunctions
We complete the last step of the algorithm and obtain identities for the periodic eigenfunctions of
the Zakharov–Shabat spectral problem (1.2) associated with the periodic wave u. These identities
arise due to the constraints imposed on the periodic wave u and the eigenfunction (p1, q1). In
particular, relations (2.1), (2.4) and (2.9) set up the following linear system for (p2

1, q̄2
1):

p2
1 + q̄2

1 = u and λ1p2
1 − λ̄1q̄2

1 = 1
2 ux + iuF0.

As λ1 = α + iβ and F0 = 2β, we can obtain the squared eigenfunctions explicitly as follows:

p2
1 = 2λ1u + ux

2(λ1 + λ̄1)
and q̄2

1 = 2λ̄1u − ux

2(λ1 + λ̄1)
. (2.23)
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In what follows, it will be useful to separate the time dependence from the periodic wave u(x, t) =
U(x) eict. Then, representation (2.23) implies the following time dependence of the periodic
eigenfunction (p1, q1):

p1(x, t) = P1(x) eict/2 and q1(x, t) = Q1(x) e−ict/2. (2.24)

As U is real, the squared complex eigenfunctions are expressed by

P1(x)2 = 2λ1U(x) + U′(x)
2(λ1 + λ̄1)

and Q̄1(x)2 = 2λ̄1U(x) − U′(x)
2(λ1 + λ̄1)

. (2.25)

For the dn-periodic waves (1.8), we have U(x) = dn(x; k), β = 0 and α = λ+ given by (2.20). As
F0 = 0 and H = F1 = − 1

2

√
1 − k2 in this case, the representations (2.3) and (2.4) yield 4λ+p1q1 =

4λ+p̄1q̄1 = −|u|2 −
√

1 − k2, whereas the representation (2.5) yields (|p1|2 + |q1|2)2 = |u|2. The
previous two relations can be rewritten explicitly as

P1(x)Q1(x) = − 1
4λ+

[U(x)2 +
√

1 − k2] (2.26)

and

P1(x)2 + Q1(x)2 = U(x). (2.27)

It follows from (2.25) with λ1 = λ+ that the squared eigenfunctions P2
1 and Q2

1 are real. Then it
follows from (2.27) with U(x) = dn(x; k) > 0 that P1 and Q1 are real.

For the cn-periodic waves (1.9), we have U(x) = kcn(x; k), α = 1
2 k and β = 1

2

√
1 − k2, so that

λI = α + iβ is given by (2.22). As F0 = 2β, F1 = 4β2 and H = 2β2, it follows from (2.3) and (2.4) that
Re(p1q1) = −(1/2k)|u|2 and Im(p1q1) = − 1

2

√
1 − k2 so that 2kp1q1 = −|u|2 − ik

√
1 − k2, which can

be written explicitly as

P1(x)Q1(x) = − 1
2k

[U(x)2 + ik
√

1 − k2]. (2.28)

On the other hand, it follows from (2.5) and (2.28) that (|p1|2 + |q1|2)2 = 1 − k2 + |u|2, hence

|P1(x)|2 + |Q1(x)|2 = dn(x; k). (2.29)

Furthermore, by using F1 = F2
0, we derive another relation

λ1p1q1 + λ̄1p̄1q̄1 + p2
1q2

1 + p̄2
1q̄2

1 + 1
2 (|p1|2 − |q1|2)2 = 0,

which yields (|p1|2 − |q1|2)2 = |u|2 − |u|4/k2 due to (2.22) and (2.28). Taking the negative square
root yields the relation

|P1(x)|2 − |Q1(x)|2 = −k sn(x; k)cn(x; k). (2.30)

The reason why the negative square root must be taken is explained from the following argument.
By using (2.25), we know that

|P1(x)|4 = 1
4k2 [(kU(x) + U′(x))2 + (1 − k2)U(x)2]

and

|Q1(x)|4 = 1
4k2 [(kU(x) − U′(x))2 + (1 − k2)U(x)2],

where U′(x) = −ksn(x; k) dn(x; k). As dn(x; k) > 0, we have |P(x)| < |Q(x)| if sn(x; k)cn(x; k) > 0. This
is true for the negative square root in (2.30) and false for the positive square root.
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It follows from (2.29) and (2.30) that

|P1(x)|2 = dn(x; k) − ksn(x; k)cn(x; k)
2

and |Q1(x)|2 = dn(x; k) + ksn(x; k)cn(x; k)
2

. (2.31)

Furthermore, it follows from (2.22) and (2.25) that

P1(x)2Q̄1(x)2 = 1
4 [cn2(x; k) − sn2(x; k) dn2(x; k) + 2i

√
1 − k2 sn(x; k) cn(x; k) dn(x; k)].

Taking the negative square root yields the following relation:

P1(x)Q̄1(x) = −1
2

cn(x; k) dn(x; k) − i
2

√
1 − k2 sn(x; k). (2.32)

The choice of the negative square root is explained as follows. Combining (2.28) with (2.32) yields

P1(x)2|Q1(x)|2 = 1
4

(kcn3(x; k)dn(x; k) − (1 − k2)sn(x; k))

+ i
4

√
1 − k2 cn(x; k)(dn(x; k) + k sn(x; k) cn(x; k)),

which coincides with the expression for P1(x)2|Q1(x)|2 obtained from (2.25) and (2.31). In the case
of the positive square root in (2.32), the expression for P1(x)2|Q1(x)|2 obtained from (2.28) would
be negative to the one obtained from (2.25). Thus, the negative sign in (2.32) is justified.

3. Construction of rogue periodic waves
The rogue periodic waves can be constructed with the onefold or twofold Darboux
transformations involving the periodic eigenfunction (p1, q1) for the eigenvalue λ1 and possibly
another periodic eigenfunction (p2, q2) for the eigenvalue λ2, as two eigenvalues with positive real
parts were identified for each periodic wave. However, such Darboux transformations recover
only trivial solutions produced from the periodic wave by means of spatial translations. To obtain
non-trivial solutions which corresponds to a rogue wave on the periodic background in the sense
of definition (1.11), we will obtain the non-periodic solutions to the linear system (1.2)–(1.3) for
the same eigenvalue λ1.

(a) Non-periodic solutions of the Lax pair
Let u be a periodic wave of the NLS equation (1.1) and (p1, q1) be the x-periodic eigenfunctions of
the linear system (1.2) and (1.3) with λ = λ1. Let us now construct the second, linearly independent
solution of the linear system (1.2)–(1.3) with λ = λ1 denoted by (p1, q1). If λ1 is a simple eigenvalue
of the periodic spectral problem (1.2), then (p1, q1) is not periodic in x. We set

p1 = θ − 1
q1

and q1 = θ + 1
p1

, (3.1)

so that the Wronskian between the two linearly independent solutions (p1, q1) and (p1, q1) is
normalized by 2. Substituting (3.1) into (1.2) yields a first-order equation on θ

dθ

dx
= θ

uq2
1 − ūp2

1
p1q1

+ uq2
1 + ūp2

1
p1q1

. (3.2)

Note that this differential equation is invariant with respect to t thanks to the representation (1.5)
and (2.24). Hence we write

dθ

dx
= θU

Q2
1 − P2

1
P1Q1

+ U
Q2

1 + P2
1

P1Q1
, (3.3)

where U is real for both periodic waves (1.8) and (1.9).
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For the dn-periodic waves with U(x) = dn(x; k), it follows from (2.20) and (2.25) that

4λ+[P1(x)2 − Q1(x)2] = 2U′(x), (3.4)

where λ1 = λ+ is used. Together with (2.26) and (2.27) for real P1 and Q1, we rewrite the
differential relation (3.3) in the explicit form

d
dx

θ

U2 +
√

1 − k2
= − 4λ+U2

(U2 +
√

1 − k2)2
, (3.5)

which can be integrated to the form

θ (x, t) = [U(x)2 +
√

1 − k2]

[
−4λ+

∫ x

0

U(y)2

(U(y)2 +
√

1 − k2)2
dy + θ0(t)

]
, (3.6)

where θ0 is a constant of integration in x that may depend on t.
For the cn-periodic waves with U(x) = k cn(x; k), it follows from (2.22) and (2.25) that

2k[P1(x)2 − Q1(x)2] = 2U′(x) (3.7)

and

2k[P1(x)2 + Q1(x)2] = 2λIU(x), (3.8)

where λ = λI is used. Together with (2.28), we rewrite the differential relation (3.3) in the explicit
form:

d
dx

θ

|U|2 + ik
√

1 − k2
= − 4λIU2

(U2 + ik
√

1 − k2)2
, (3.9)

which can be integrated to the form

θ (x, t) = [U(x)2 + ik
√

1 − k2]

[
−4λI

∫ x

0

U(y)2

(U(y)2 + ik
√

1 − k2)2
dy + θ0(t)

]
, (3.10)

where θ0 is a constant of integration in x that may depend on t.
We shall now add the time dependence for the function θ . By using (2.24) and (3.1), we can

write the non-periodic solutions (p1, q1) in the form

p1(x, t) = θ (x, t) − 1
Q1(x)

eict/2 and q1(x, t) = θ (x, t) + 1
P1(x)

e−ict/2. (3.11)

Substituting (3.11) into (1.3) yields the following equation on θ :

∂θ

∂t
= i

2Q1(x)(U′(x) + 2λ1U(x))
P1(x)

.

By using (2.25), this equation can be further rewritten in the form

∂θ

∂t
= 8i Re(λ1)P1(x)Q1(x). (3.12)

For both dn- and cn-periodic waves, we substitute either (3.6) or (3.10) into (3.12) and use either
(2.26) or (2.28). Both cases yield the same equation θ ′

0(t) = −2i with the solution θ0(t) = −2it, where
the constant of integration in t is neglected due to translational invariance of the NLS equation
(1.1) with respect to t.

(b) Darboux transformation
The N-fold transformation for the NLS equation was derived and justified in [29] by using the
dressing method. Adopting the present notations with N = 1, λ1 = −iz1, (p1, q1) = σ3σ1s̄1, where
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s1 and z1 were used in [29] and σ1 and σ3 are standard Pauli matrices, we obtain the onefold
transformation in the explicit form

ũ = u + 4Re(λ1)p1q̄1

|p1|2 + |q1|2
. (3.13)

The onefold transformation (3.13) is fairly well known for the NLS equation (1.1) (e.g. [30] and
references therein). Note that (p1, q1) is any non-zero solution of the linear system (1.2)–(1.3) with
λ = λ1.

To obtain the twofold Darboux transformation by using the formalism of [29], we set N = 2,
λ1,2 = −iz1,2, (p1,2, q1,2) = σ3σ1s̄1,2 and the transformation matrix

M =

⎡
⎢⎢⎢⎣

|p1|2 + |q1|2
2Re(λ1)

p̄1p2 + q̄1q2

λ̄1 + λ2

p1p̄2 + q1q̄2

λ1 + λ̄2

|p2|2 + |q2|2
2Re(λ2)

⎤
⎥⎥⎥⎦=

[
M11 M12
M21 M22

]
.

By solving the linear system of the dressing method obtained in [29], we obtain solutions r1,2 of
the linear system (1.2)–(1.3) with λ1,2 and the new potential ũ, where r1, r2 and ũ are defined in
the form

r1 = 1
det(M)

[
q̄2M12 − q̄1M22
p̄1M22 − p̄2M12

]
, r2 = 1

det(M)

[
q̄1M21 − q̄2M11
p̄2M11 − p̄1M21

]

and

ũ = u + 2Σ

det(M)
, (3.14)

with

Σ = p1q̄1M22 + p2q̄2M11 − p1q̄2M12 − p2q̄1M21

= p1q̄1(|p2|2 + |q2|2)
2 Re(λ2)

+ p2q̄2(|p1|2 + |q1|2)
2 Re(λ1)

− p2q̄1(p1p̄2 + q1q̄2)
λ1 + λ̄2

− p1q̄2(p̄1p2 + q̄1q2)
λ̄1 + λ2

and

det(M) = M11M22 − M12M21

= (|p1|2 + |q1|2)(|p2|2 + |q2|2)
4 Re(λ1) Re(λ2)

− |p1p̄2 + q1q̄2|2
|λ1 + λ̄2|2

.

This solution was used in [29] to inspect two-soliton solutions of the NLS equation (1.1).
By using the non-periodic solutions of the linear system (1.2)–(1.3) and the Darboux

transformations (3.13) and (3.14), we can finally obtain the exact solutions for the rogue periodic
waves of the NLS equation (1.1) in the sense of definition (1.11).

(c) Rogue dn-periodic waves
Let u be the periodic wave given by (1.5) and (1.8), while (p1, q1) be the x-periodic eigenfunction
of the linear system (1.2)–(1.3) with λ = λ+ given by (2.20). Substituting (2.24), (2.26) and (2.27)
into the onefold Darboux transformation (3.13) yields a new solution to the NLS equation (1.1) in
the form

ũ(x, t) = −
√

1 − k2

dn(x; k)
eict = −dn(x + K(k); k) eict, (3.15)

where K(k) is the complete elliptic integral and table 16.8 in [18] has been used for the half-period
of the function dn(x; k) in x. The new solution ũ is just a translation of the dn-periodic wave in x,
hence it is not a new rogue wave in the sense of definition (1.11).

To obtain a rogue dn-periodic wave, we replace (p1, q1) in (3.13) by the non-periodic solution
(p1, q1) of the linear system (1.2)–(1.3) with λ = λ+ given by (2.20). Substituting (2.26), (2.27),
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Figure 1. The rogue dn-periodic wave of the NLS for k = 0.5 (a) and k = 0.999 (b). (Online version in colour.)

(3.4) and (3.11) into the onefold Darboux transformation (3.13) yields a new solution to the NLS
equation (1.1) in the form

ũ(x, t) = eict

[
U(x) − 4λ+(1 − 2i Im θ (x, t) − |θ (x, t)|2)P1(x)Q̄1(x)

(|θ (x, t)|2 + 1)(|P1(x)|2 + |Q1(x)|2) + 2 Re θ (x, t)(|Q1(x)|2 − |P1(x)|2)

]

= eict

[
dn(x; k) + (1 − 2i Im θ (x, t) − |θ (x, t)|2)(dn(x; k)2 +

√
1 − k2)

(|θ (x, t)|2 + 1) dn(x; k) + 2(1 −
√

1 − k2) Re θ (x, t)sn(x; k)cn(x; k)

]
,

where

θ (x, t) = [U(x)2 +
√

1 − k2]

[
−4λ+

∫ x

0

U(y)2

(U(y)2 +
√

1 − k2)2
dy − 2it

]
. (3.16)

The new solution ũ is no longer periodic in x. Owing to the separation of real and imaginary
parts in (3.16), |θ (x, t)| → ∞ as |x| + |t| → ∞ everywhere on the plane (x, t), so that

|ũ(x, t)| → dn(x + K(k); k) as |x| + |t| → ∞.

Hence, ũ is a rogue dn-periodic wave in the sense of definition (1.11). Similarly to the
computations in [22] one can show that the maximum of |ũ(x, t)| occurs at (x, t) = (0, 0), for
which we use θ (0, 0) = 0 and obtain |ũ(0, 0)| = 2 +

√
1 − k2. As the maximum of dn(x; k) is one,

the magnification factor of the rogue dn-periodic wave is Mdn(k) = 2 +
√

1 − k2.
Figure 1 illustrates the rogue dn-periodic waves for k = 0.5 (a) and k = 0.999 (b). In the small-

amplitude limit k → 0, the rogue dn-periodic wave looks like the Peregrine’s breather (1.4) but
the wave background is periodic rather than constant. In the soliton limit k → 1, the rogue dn-
periodic wave looks like a non-trivial interaction of the two adjacent NLS solitons (1.10). This
comparison is confirmed with the limits of the magnification factor Mdn(k). As k → 0, Mdn(k) →
M0 = 3, where M0 is the magnification factor of the Peregrine’s breather (1.4). As k → 1, Mdn(k) →
2 for two nearly identical NLS solitons (1.10) of unit amplitude. The latter result is in agreement
with the recent work [16], where it was shown in the context of the modified KdV equation that
the magnification factor of the rogue waves built from N nearly identical solitons is exactly N.

Note that the onefold Darboux transformation (3.13) can be used with the periodic function
(p1, q1) defined for λ1 = λ− given by (2.20). However, as U(x)2 −

√
1 − k2 vanishes for some x ∈

[0, K(k)], the expression for θ becomes singular. It is apparently a technical difficulty, which can be
resolved, but we leave this problem for future work.

(d) Onefold rogue cn-periodic waves
Let u be the periodic wave given by (1.5) and (1.9), while (p1, q1) be the x-periodic eigenfunction
of the linear system (1.2)–(1.3) with λ = λI given by (2.22). Substituting (2.24), (2.29) and (2.32) into
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Figure 2. The onefold rogue cn-periodic wave of the NLS for k = 0.5 (a) and k = 0.999 (b). (Online version in colour.)

the onefold Darboux transformation (3.13) yields a new solution to the NLS equation (1.1) in the
form

ũ(x, t) = − ik
√

1 − k2 sn(x; k)
dn(x; k)

eict = ikcn(x + K(k); k) eict, (3.17)

where table 16.8 in [18] has been used for the quarter-period of the function cn(x; k) in x. The new
solution is just a translation of the cn-periodic wave u by the gauge and spatial symmetries of the
NLS equation (1.1), hence it is not a rogue wave in the sense of definition (1.11).

To obtain a rogue cn-periodic wave, we replace (p1, q1) in (3.13) by the non-periodic solution
(p1, q1) of the linear system (1.2)–(1.3) with λ = λI given by (2.22). Substituting (2.29), (2.30), (2.32)
and (3.11) into the onefold Darboux transformation (3.13) yields a new solution to the NLS
equation (1.1) in the form

ũ(x, t) = eict

[
U(x) − 2k(1 − 2i Im θ (x, t) − |θ (x, t)|2)P1(x)Q̄1(x)

(|θ (x, t)|2 + 1)(|P1(x)|2 + |Q1(x)|2) + 2 Re θ (x, t)(|Q1(x)|2 − |P1(x)|2)

]

= eict

[
k cn(x; k) + k(1 − 2i Im θ (x, t) − |θ (x, t)|2)[cn(x; k) dn(x; k) + i

√
1 − k2sn(x; k)]

(|θ (x, t)|2 + 1) dn(x; k) + 2 Re θ (x, t)k sn(x; k) cn(x; k)

]
,

where

θ (x, t) = [U(x)2 + ik
√

1 − k2]

[
−4λI

∫ x

0

U(y)2

(U(y)2 + ik
√

1 − k2)2
dy − 2it

]
. (3.18)

The new solution ũ is no longer periodic in x. If

∫ 4K(k)

0

U(y)2(U(y)4 − k2(1 − k2))
(U(y)2 + k2(1 − k2))2 dy �= 0, (3.19)

which is satisfied at least for small k, then |θ (x, t)| → ∞ as |x| + |t| → ∞ everywhere on the plane
(x, t), so that

|ũ(x, t)| → k|cn(x + K(k); k)| as |x| + |t| → ∞.

Hence, ũ is a rogue cn-periodic wave in the sense of the definition (1.11). Similarly to the
computations in [22], one can show that the maximum of |ũ(x, t)| occurs at (x, t) = (0, 0), for which
we use θ (0, 0) = 0 and obtain |ũ(0, 0)| = 2k. As the maximum of cn(x; k) is one, the magnification
factor of the onefold rogue cn-periodic wave is Mcn(k) = 2 uniformly in k ∈ (0, 1).

Figure 2 illustrates the onefold rogue cn-periodic waves for k = 0.5 (a) and k = 0.999 (b). In the
small-amplitude limit k → 0, the rogue cn-periodic wave looks like a propagating solitary wave;
however, it is a visual illusion because the rogue wave is localized in space and time. In the soliton
limit k → 1, the rogue cn-periodic wave looks like a non-trivial interaction of the two adjacent NLS
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solitons (1.10) but it has a different pattern compared to the interaction of the two adjacent solitons
in the rogue dn-periodic wave (shown in figure 1b). It is surprising that the magnification factor
of the onefold rogue cn-periodic wave does not depend on the amplitude of the cn-periodic wave.

The onefold rogue cn-periodic wave does not exist for the modified KdV equation [22], because
the onefold Darboux transformation (3.13) with complex λ1 produces a complex-valued solution
of the modified KdV equation. As the NLS equation (1.1) is written for a complex-valued function
u, the onefold Darboux transformation (3.13) produces a new solution to the NLS equation.

(e) Twofold rogue cn-periodic waves
Let us now use the twofold Darboux transformation (3.14) with λ2 = λ̄1, where λ1 = λI is given by
(2.22). The periodic eigenfunction (p2, q2) is related to the periodic eigenfunction (p1, q1) in (2.24)
by the following relation:

p2(x, t) = P̄1(x) eict/2 and q2(x, t) = Q̄1(x) e−ict/2. (3.20)

Substituting (2.28)–(2.30), and (2.32) into the twofold Darboux transformation (3.14) yields a new
solution to the the NLS equation (1.1) in the form

ũ(x, t) = U(x) eict + 2k[(P1Q̄1 + P̄1Q1)(|P1|2 + |Q1|2) − 2k Re[(k + i
√

1 − k2)P1Q1(P̄2
1 + Q̄2

1)]]

(|P1|2 + |Q1|2)2 − k2|P2
1 + Q2

1|2
eict

=
[

k cn(x; k) + 2k cn(x; k)[k2 cn(x; k)2 − dn(x; k)2]
dn(x; k)2 − k2 cn(x; k)2

]
eict

= −k cn(x; k) eict,

which is again a reflection of u by the cubic symmetry.
To obtain a rogue cn-periodic wave, we replace (p1, q1) by the non-periodic solution (p1, q1) of

the same linear system (1.2)–(1.3) with λ1 = λI. The non-periodic solution (p1, q1) is given by (3.11)
with θ given by the same expression (3.18). For λ2 = λ̄1, the non-periodic solution (p2, q2) is given
by

p2(x, t) = θc(x, t) − 1

Q̄1(x)
eict/2 and q2(x, t) = θc(x, t) + 1

P̄1(x)
e−ict/2, (3.21)

where θc is given by

θc(x, t) = [U(x)2 − ik
√

1 − k2]

[
−4λ̄I

∫ x

0

U(y)2

(U(y)2 − ik
√

1 − k2)2
dy − 2it

]
. (3.22)

After some lengthy computations, we obtain a new solution to the NLS equation (1.1) in the form

ũ(x, t) = U(x) eict + 2kN(x, t)
D(x, t)

eict, (3.23)

where

D = (|P1|2|θ − 1|2 + |Q1|2|θ + 1|2)(|P1|2|θc − 1|2 + |Q1|2|θc + 1|2)

− k2|P2
1(θ − 1)(θ̄c − 1) + Q2

1(θ + 1)(θ̄c + 1)|2,

N = P1Q̄1(θ − 1)(θ̄ + 1)(|P1|2|θc − 1|2 + |Q1|2|θc + 1|2)

+ P̄1Q1(θc − 1)(θ̄c + 1))(|P1|2|θ − 1|2 + |Q1|2|θ + 1|2)

− k(k + i
√

1 − k2)P1Q1(θ − 1)(θ̄c + 1)(P̄2
1(θ̄ − 1)(θc − 1) + Q̄2

1(θ̄ + 1)(θc + 1))

− k(k − i
√

1 − k2)P̄1Q̄1(θc − 1)(θ̄ + 1)(P2
1(θ − 1)(θ̄c − 1) + Q2

1(θ + 1)(θ̄c + 1)).
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Figure 3. The twofold rogue cn-periodic wave of the NLS for k = 0.5 (a) and k = 0.999 (b). (Online version in colour.)

Under the same constraint (3.19), |θ (x, t)|, |θc(x, t)| → ∞ as |x| + |t| → ∞ everywhere on the
plane (x, t), so that

ũ(x, t) → −u(x, t) as |x| + |t| → ∞.

Hence ũ is a new rogue cn-periodic wave in the sense of definition (1.11). By using θ (0, 0) =
θc(0, 0) = 0, we obtain ũ(0, 0) = 3k. As the maximum of cn(x; k) is one, the magnification factor
of the twofold rogue cn-periodic wave is Mcn(k) = 3 uniformly in k ∈ (0, 1).

Figure 3 illustrates the twofold rogue cn-periodic waves for k = 0.5 (a) and k = 0.999 (b). In
the small-amplitude limit k → 0, the rogue cn-periodic wave looks like two propagating solitary
waves but they are again localized in space and time. In the soliton limit k → 1, the rogue cn-
periodic wave looks like a non-trivial interaction of the three adjacent NLS solitons (1.10) and
these explain why the magnification factor is three, in agreement with the recent work [16]. It
is still surprising that the magnification factor of the twofold rogue cn-periodic wave does not
depend on the amplitude of the cn-periodic wave.

4. Further discussion
We have developed a computational algorithm of constructing rogue periodic waves in the
context of the focusing NLS equation. As both dn- and cn-periodic waves are modulationally
unstable, both waves exhibit rogue waves on their background which appears from nowhere
and disappears without any trace. For the rogue dn-periodic waves, we were only able to use
onefold Darboux transformation because the non-periodic solutions were obtained in the closed
analytical form for only one branch point of the Zakharov–Shabat spectral problem. For the
rogue cn-periodic waves, we were able to use both onefold and twofold Darboux transformations
because the two branch points in the Zakharov–Shabat spectral problem are related to each other
by complex conjugation and reflection symmetries.

These results can be developed further in view of high interest to rogue waves in the focusing
NLS equation [11,12,14,15]. A relatively simple extension of these solutions would include
travelling periodic waves with a non-trivial dependence of the wave phase. A more difficult
problem is to extend the computational algorithm of constructing the rogue waves for Riemann’s
Theta functions, which represent quasi-periodic solutions including the two-phase solutions
considered in [12,14,15]. These open questions are left for further studies.
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27. Belokolos ED, Bobenko AI, Enolśkii VZ, Its AR, Matveev VB. 1994 Algebro–geomtric approach
to nonlinear integrable equations. Berlin, Germany: Springer.

28. Tu GZ. 1989 The trace identity, a powerful tool for constructing the Hamiltonian structure of
integrable systems. J. Math. Phys. 30, 330–338. (doi:10.1063/1.528449)

29. Contreras A, Pelinovsky DE. 2014 Stability of multi-solitons in the cubic NLS equation. J.
Hyperbolic Diff. Eqs. 11, 329–353. (doi:10.1142/S0219891614500106)

30. Sattinger DH, Zurkowski VD. 1987 Gauge theory of Bäcklund transformations. Phys. D 26,
225–250. (doi:10.1016/0167-2789(87)90227-2)

 on February 21, 2018http://rspa.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1063/1.2424554
http://dx.doi.org/doi:10.1063/1.528449
http://dx.doi.org/doi:10.1142/S0219891614500106
http://dx.doi.org/doi:10.1016/0167-2789(87)90227-2
http://rspa.royalsocietypublishing.org/

	Introduction
	Periodic eigenfunctions of the Lax pair
	Nonlinearization of the Lax pair
	Differential constraints on the potential u
	dn- and cn-periodic waves
	Periodic eigenfunctions

	Construction of rogue periodic waves
	Non-periodic solutions of the Lax pair
	Darboux transformation
	Rogue dn-periodic waves
	
	

	Further discussion
	References

