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Abstract. We analyze global bifurcations along the family of radially symmetric

vortices in the Gross–Pitaevskii equation with a symmetric harmonic potential

and a chemical potential µ under the steady rotation with frequency Ω. The fam-

ilies are constructed in the small-amplitude limit when the chemical potential µ

is close to an eigenvalue of the Schrödinger operator for a quantum harmonic

oscillator. We show that for Ω near 0, the Hessian operator at the radially sym-

metric vortex of charge m0 ∈ N has m0(m0 + 1)/2 pairs of negative eigenvalues.

When the parameter Ω is increased, 1+m0(m0−1)/2 global bifurcations happen.

Each bifurcation results in the disappearance of a pair of negative eigenvalues in

the Hessian operator at the radially symmetric vortex. The distributions of vor-

tices in the bifurcating families are analyzed by using symmetries of the Gross–

Pitaevskii equation and the zeros of Hermite–Gauss eigenfunctions. The vortex

configurations that can be found in the bifurcating families are the asymmetric

vortex (m0 = 1), the asymmetric vortex pair (m0 = 2), and the vortex polygons

(m0 ≥ 2).

Keywords: Gross–Pitaevskii equation, rotating vortices, harmonic potentials, Lya-

punov–Schmidt reductions, bifurcations and symmetries.

1. Introduction

This work addresses the Gross-Pitaevskii equation describing rotating Bose-Einstein
condensates (BEC) placed in a symmetric harmonic trap. It is now well established
from the energy minimization methods that vortex configurations become energeti-
cally favorable for larger rotating frequencies (see review [7] for physics arguments).
Ignat and Millot [13, 14] confirmed that the vortex of charge one near the center
of symmetry is a global minimizer of energy for a frequency above the first critical
value. Seiringer [30] proved that a vortex configuration with charge m0 becomes en-
ergetically favorable to a vortex configuration with charge (m0 − 1) for a frequency
above the m0-th critical value and that radially symmetrically vortices of charge
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m0 ≥ 2 cannot be global minimizers of energy. The questions on how the m0 in-
dividual vortices of charge one are placed near the center of symmetry to form an
energy minimizer remain open since the time of [13, 14, 30].

For the vortex of charge one, it is shown by using variational approximations [5]
and bifurcation methods [29] that the construction of energy minimizers is not triv-
ial past the threshold value for the rotation frequency, where the radially symmetric
vortex becomes a local minimizer of energy1. Namely, in addition to the radially sym-
metric vortex, which exists for all rotation frequencies, there exists another branch
of the asymmetric vortex solutions above the threshold value, which are represented
by a vortex of charge one displaced from the center of rotating symmetric trap. The
distance from the center of the harmonic trap increases with respect to the detuning
rotation frequency above the threshold value, whereas the angle is a free parameter
of the asymmetric vortex solutions. Although the asymmetric vortex is not a local
energy minimizer, it is nevertheless a constrained energy minimizer, for which the
constraint eliminates the rotational degree of freedom and defines the angle of the
solution family uniquely. Consequently, both radially symmetric and asymmetric
vortices are orbitally stable in the time evolution of the Gross–Pitaevskii equation
for the rotating frequency slightly above the threshold value [29].

Further results on the stability of equilibrium configurations of several vortices
of charge one in rotating harmonic traps were found numerically, from the pre-
dictions given by the finite-dimensional system for dynamics of individual vortices
[2, 21, 26]. The two-vortex equilibrium configuration arises again above the threshold
value for the rotation frequency with the two vortices of charge one being located
symmetrically with respect to the center of the harmonic trap. However, the sym-
metric vortex pair is stable only for small distances from the center and it losses
stability for larger distances. Once it becomes unstable, another asymmetric pair of
two vortices bifurcate, where one vortex has a smaller-than-critical distance from
the center and the other vortex has a larger-than-critical distance from the center.
The asymmetric pair is stable in numerical simulations and coexist for rotating fre-
quencies above the threshold value with the stable symmetric vortex pair located at
the smaller-than-critical distances [26]. The symmetric pair is a local minimizer of
energy above the threshold value, whereas the asymmetric pair is a local constrained
minimizer of energy, where the constraint again eliminates the rotational degree of
freedom [18].

This work continues analysis of local bifurcations of vortex configurations in the
Gross–Pitaevskii (GP) equation with a cubic repulsive interaction and a symmetric
harmonic trap. In a steadily rotating frame with the rotation frequency Ω, the main
model can be written in the normalized form

iut = −(∂2
x + ∂2

y)u+ (x2 + y2)u+ |u|2 u+ iΩ(x∂y − y∂x)u, (x, y) ∈ R2. (1.1)

1The threshold value of the rotation frequency for the bifurcation of local minimizers in [5, 29] is

smaller than the first critical value in [13, 14], at which the charge-one vortex becomes the global

minimizer of energy.
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The associated energy of the GP equation is given by

E(u) =

∫ ∫

R2

[
|∇u|2+|x|2|u|2+1

2
|u|4+ i

2
Ωū(x∂y − y∂x)u− i

2
Ωu(x∂y − y∂x)ū

]
dxdy.

(1.2)
Compared to work in [29], we do not use the scaling for the semi-classical limit
of the GP equation and parameterize the vortex solutions in terms of the chemical
potential µ arising in the separation of variables u(t, x, y) = e−iµtU(x, y). The profile
U satisfies the stationary GP equation in the form

µU = −(∂2
x + ∂2

y)U + (x2 + y2)U + |U |2 U + iΩ(x∂y − y∂x)U, (x, y) ∈ R2. (1.3)

Local bifurcations of small-amplitude vortex solutions in the GP equation (1.1)
have been addressed recently in many publications. We refer to these small-amplitude
vortex solutions as the primary branches. Classification of localized (soliton and vor-
tex) solutions from the triple eigenvalue was constructed by Kapitula et al. [16] with
the Lyapunov–Schmidt reduction method. Existence, stability, and bifurcations of
radially symmetric vortices with chargem0 ∈ N were studied by Kollar and Pego [20]
with shooting methods and Evans function computations. Symmetries of nonlinear
terms were used to continue families of general vortex and dipole solutions from the
linear limit by Contreras and Garćıa-Azpeitia [4] by using equivariant degree theory
[15] and bifurcation methods [8]. Existence and stability of stationary states were
analyzed in [9, 10] with the amplitude equations for the Hermite function decom-
positions and their truncation at the continuous resonant equation. Vortex dipoles
were studied with normal form equations and numerical approximations in [12]. Nu-
merical evidences of existence, bifurcations, and stability of such vortex and dipole
solutions can be found in a vast literature [22, 23, 25, 28, 31].

Compared to the previous literature, our results will explore the recent dis-
covery of [29] of how bifurcations of unconstrained and constrained minimizers of
energy are related to the spectral stability problem of radially symmetric vortices
in the small-amplitude limit, in particular, with the eigenvalues of negative Krein
signature which are known to destabilize dynamics of vortices [20]. Therefore, we
consider bifurcations of secondary branches of multi-vortex solutions from the pri-
mary branch of the radially symmetric vortex of chargem0 ∈ N. The primary branch
is parameterized by only one parameter ω := µ+m0Ω in the small-amplitude limit,
whereas the secondary branches of multi-vortex configurations are parameterized by
two parameters ω and Ω.

As a particular example with m0 = 2, we show that the asymmetric pair of
two vortices of charge one bifurcates from the radially symmetric vortex of charge
two for Ω below but near Ω0 = 2. Similarly to the symmetric charge-two vortex
[16, 20], the asymmetric pair of two charge-one vortices is born unstable but it is
more energetically favorable near the bifurcation threshold compared to the charge-
two vortex in the case of no rotation (Ω = 0). If the charge-two vortex is a saddle
point of the energy E in (1.2) with three pairs of negative eigenvalues for Ω = 0, it
has only one pair of negative eigenvalues for Ω below but near Ω0 = 2.
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We note that the bifurcation technique developed here is not feasible by the
methods developed in [16] because of the infinitely many resonances at Ω0 = 2.
Nevertheless, we show that these resonances are avoided for Ω below but near Ω0 = 2.

For a charge-one vortex, a similar bifurcation happens for Ω below but near
Ω0 = 2, which has been already described in [29] in other notations and with some-
what formal analysis. The results developed here allows us to give a full justification
of the results of [29] for a charge-one vortex, but also to extend the analysis to the
charge-two vortex, as well as to a radially symmetric vortex of a general charge
m0 ∈ N.

We also consider all other secondary bifurcations of the radially symmetric
vortices of charge m0 ∈ N when the frequency parameter Ω is increased from zero
in the interval (0, 2). We show that each bifurcation results in the disappearance of
a single pair of negative eigenvalues in the characterization of radially symmetric
vortices as saddle points of the energy E in (1.2).

As a particular example, we show that the symmetric charge-two vortex has a
bifurcation at Ω near Ω∗ = 2/3, where another secondary branch bifurcates. The new
branch contains three charge-one vortices at the vertices of an equilateral triangle
and a vortex of anti-charge one at the center of symmetry. Again, the secondary
branch inherits instability of the radially symmetric vortex along the primary branch
in the small-amplitude limit. Past the bifurcation point, the radially symmetric
vortex of charge two has two pairs of negative eigenvalues. The bifurcation result
near Ω∗ = 2/3 was not obtained in the previous work [16].

In the case of the multi-vortex configurations of the total charge two, we can
conjecture that the local minimizers of energy given by the symmetric pair of two
charge-one vortices as in [26] can be found from a tertiary bifurcation along the
secondary branch given by the asymmetric pair of charge-one vortices. However, it
becomes technically involved to approximate the secondary branch near the bifur-
cation point and to find the tertiary bifurcation point.

The following theorem represents the main result of our paper. A schematic
illustration is given on Figure 1.

Theorem 1. Fix an integer m0 ∈ N and denote ω := µ+m0Ω.

(i) There exists a smooth family of radially symmetric vortices of charge m0 with
a positive profile U satisfying (1.3) with ω = ω(a) given by

ω(a) = 2(m0 + 1) +
(2m0)!

4m0(m0!)2
a2 +O(a4),

where the “amplitude” a parameterizes the family.
(ii) For Ω = 0 and small a, the vortices are degenerate saddle points of the energy

E in (1.2) with 2N(m0) negative eigenvalues, a simple zero eigenvalue, and
2Z(m0) small eigenvalues of order O(a2), where

N(m0) =
1

2
m0(m0 + 1) and Z(m0) = m0.
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Figure 1. A schematic illustration of the bifurcation curves in the
parameter plane (Ω, a), where a defines ω. The bifurcating solutions
form surfaces parameterized by (Ω, a) close to the curves Ωm,n.

(iii) There exist Cm0 > 0 and Dm0 ≥ 0 such that for small a, 1 + B(m0) global
bifurcations occur when the parameter Ω is increased in the interval [a2Dm0 , 2−
a2Cm0 ], where

B(m0) =
1

2
m0(m0 − 1).

For Ω � a2Dm0, the family of radially symmetric vortices has only 2N(m0)
negative eigenvalues and a simple zero eigenvalue, and it losses two of these
negative eigenvalues past each non-resonant bifurcation point. If 1 ≤ m0 ≤ 16,
the family has 2(m0 − 1) negative eigenvalues for Ω � 2− a2Cm0.

(iv) A new smooth family of multi-vortex configurations is connected to the family of
radially symmetric vortices on one side of each non-resonant bifurcation point
(of the pitchfork type). Furthermore, on the right (respectively, left) side of the
bifurcation point, the new family has one more (respectively, one less) negative
eigenvalue compared to the family of radially symmetric vortices.

(v) For a non-resonant bifurcation point Ωm,n ∈ (0, 2) with m > m0 and n ≥ 0,
the new family has a polygon configuration of (m − m0) charge-one vortices
surrounding a center with total charge 2m0−m. For the “last” bifurcation point
Ωm0+1,0 = 2 + O(a2), the new family consists of the charge-one asymmetric
vortex (m0 = 1), the asymmetric pair of charge-one vortices (m0 = 2), and a
configuration of vortices near the center of total charge m0 (m0 ≥ 3).

Remark 1. By global bifurcation, we mean that the bifurcating family that origi-
nates from the family of radially symmetric vortices of charge m0 either reaches the
boundaries Ω = 0 or Ω = 2, diverges to infinity for a value of Ω ∈ (0, 2), or returns to
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another bifurcation point along the family of radially symmetric vortices of charge
m0.

Remark 2. For 1 ≤ m0 ≤ 3, we have Dm0 = 0 in item (iii), therefore, the 1+B(m0)
global bifurcations arise when Ω is increased from Ω = 0 to Ω = 2−a2Cm0 . However,
we do not know if Dm0 = 0 in a general case. If Dm0 �= 0, up to Z(m0) additional
bifurcations may appear if Ω is increased from Ω = 0 to Ω = a2Dm0 .

Remark 3. For 1 ≤ m0 ≤ 3, all bifurcation points are non-resonant in items (iii)–(v).
Resonant bifurcation points may exist in a general case for m0 ≥ 4. In this case, the
statements (i)-(iii) remain valid, but for each bifurcation point of multiplicity k, the
family of radially symmetric vortices losses 2k negative eigenvalues past the bifur-
cation point. In the resonant case, the statements (iv)–(v) require further estimates.
However, these resonances are unlikely to be present as the more likely scenario is
that the multiple eigenvalues at a = 0 split into simple nonzero eigenvalues of order
O(a2).

Remark 4. For m0 ≥ 4, there are R(m0) additional bifurcations near Ω0 = 2.
For 4 ≤ m0 ≤ 16, the additional bifurcation arise past the last bifurcation point
at Ωm0+1,0. For m0 ≥ 17, some of the R(m0) bifurcations arise before the “last”
bifurcation point. We have found numerically that R(4) = R(5) = 1, R(6) = 2,
R(7) = R(8) = 3, etc.

From a technical point of view, the proof of Theorem 1 is developed by using the
equivariance of the bifurcation problem under the action of the group O(2)×O(2).
The global bifurcation result is proven by using the restriction of the bifurcation
problem to the fixed-point space of a dihedral group. This restriction leads to a sim-
ple eigenvalue in the fixed-point space, which allows us to apply the global Crandall–
Rabinowitz result, see Theorem 3.4.1 of [27]. This method is also helpful to get addi-
tional information on the symmetries of the bifurcating solutions which is essential
to localize the distributions of zeros for the individual vortices in the multi-vortex
configurations.

The paper is structured as follows. In Section 2, we review eigenvalues of the
Schrödinger operator for quantum harmonic oscillator and give definitions for the
primary and secondary branches of multi-vortex solutions. In Section 3, we analyze
distribution of eigenvalues of the Hessian operators along the primary branches at
the secondary bifurcation points. In Section 4, we justify bifurcations of the sec-
ondary branches at the non-resonant bifurcation points by using bifurcation theo-
rems. In Section 5, we study distribution of individual vortices in the multi-vortex
configurations along the secondary branches.

2. Preliminaries

We denote the space of square integrable functions on the plane by L2(R2) and the
space of radially symmetric squared integrable functions integrated with the weight
r by L2

r(R+). We also use the same notations for the L2-based Sobolev spaces such
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as H2(R2) and H2
r (R+). The weighted subspaces of L2 with

∥∥| · |2u∥∥
L2 < ∞ are

denoted by L2,2(R2) and L2,2
r (R+).

We distinguish notations for the two sets: N = {1, 2, 3, . . .}, N0 = {0, 1, 2, 3, . . .}.
Notation b � a means that there is an a-independent constant C such that b ≤ Ca
for all a > 0 sufficiently small. If X is a Banach space, notation u = OX(a) means
that ‖u‖X � a for all a > 0 sufficiently small. Similarly, ω = O(a) means that
|ω| � a for all a > 0 sufficiently small.

2.1. Schrödinger operator for quantum harmonic oscillator

Recall the quantum harmonic oscillator with equal frequencies in the space of two
dimensions [3, 24]. In polar coordinates on R2, the energy levels of the quantum
harmonic oscillator are given by eigenvalues of the Schrödinger operator L written
as

L := −∆(r,θ) + r2 : H2(R2) ∩ L2,2(R2) → L2(R2), (2.1)

where ∆(r,θ) = ∂2
r + r−1∂r + r−2∂2

θ . As is well-known [3, 24], the eigenvalues of L
are distributed equidistantly and can be enumerated by two indices m ∈ Z for the
angular dependence and n ∈ N0 for the number of zeros of the eigenfunctions in the
radial direction. To be more precise, the eigenfunction fm,n for the eigenvalue λm,n

can be written in the form

fm,n(r, θ) = em,n(r)e
imθ, m ∈ Z, n ∈ N0,

where em,n is an L2
r(R+)-normalized solution of the differential equation

(
−∆m + r2

)
em,n(r) = λm,nem,n(r), ∆m := ∂2

r + r−1∂r − r−2m2 (2.2)

with n zeros on R+ and the eigenvalue λm,n is given explicitly as

λm,n = 2(|m|+ 2n+ 1), m ∈ Z, n ∈ N0. (2.3)

In particular, λ0,0 = 2 is simple, λ1,0 = λ−1,0 = 4 is double, λ2,0 = λ−2,0 = λ0,1 = 6
is triple, and so on. For fixed m ∈ Z, the spacing between the eigenvalues is 4.
Multiplicity of an eigenvalue λ = 2� for � ∈ N is �.

2.2. Primary branches of radially symmetric vortices

Stationary solutions of the GP equation (1.1) are given in the form u(t, x, y) =
e−iµtU(x, y), where U satisfies (1.3) and µ ∈ R is a free parameter which has the
physical meaning of the chemical potential. In polar coordinates (r, θ), U satisfies
the stationary GP equation in the form

µU = −∆(r,θ)U + r2U + |U |2U + iΩ∂θU. (2.4)

Radially symmetric vortices of a fixed charge m0 ∈ N are given in the form

U(r, θ) = eim0θψm0(r), ω = µ+m0Ω, (2.5)

where (ψm0 , ω) is a root of the nonlinear operator

f(u, ω) : H2
r (R+) ∩ L2,2

r (R+)× R → L2
r(R+), (2.6)

given by f(u, ω) := −∆m0u+ r2u+ u3 − ωu.
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By Theorem 1 in [4], for every m0 ∈ N, there exists a unique smooth family of
radially symmetric vortices of charge m0 parameterized locally by amplitude a such
that

ψm0(r) ≡ ψm0(r; a) = aem0,0(r) +OH1
r
(a3) (2.7)

and
ω ≡ ωm0(a) = λm0,0 + a2ωm0,0 +O(a4), (2.8)

where λm0,0 = 2(m0 + 1), ωm0,0 = ‖em0,0‖4L4
r
, and the normalization ‖em0,0‖L2

r
= 1

has been used. By using the explicit expression for the L2
r(R+)-normalized Hermite–

Gauss solutions of the Schrödinger equation (2.2) with λm0,0 = 2(m0 + 1) given
by

em0,0(r) =

√
2√

m0!
rm0e−

r2

2 , m0 ∈ N0, (2.9)

we compute explicitly

ωm0,0 = ‖em0,0‖4L4
r
=

(2m0)!

4m0(m0!)2
. (2.10)

Since em0,0(r) > 0 for all r > 0, the property ψm0(r; a) > 0, r > 0 holds2 at
least for sufficiently small a. The family of radially symmetric vortices approximated
by (2.7) and (2.8) in the small-amplitude limit is referred to as the primary branch.

Remark 5. Item (i) in Theorem 1 is just a reformulation of the result of Theorem 1
in [4].

Every solution U of the stationary GP equation (2.4) is a critical point of the
energy functional

Eµ(u) = E(u)− µQ(u), (2.11)

where E(u) is given by (1.2) and Q(u) = ‖u‖2L2 . Expanding Eµ(u) near the critical

point U given by (2.5) with u = U + v, where v is a perturbation term in H1(R2)∩
L2,1(R2), we obtain the quadratic form at the leading order

Eµ(U + v)− Eµ(U) = 〈Hv,v〉L2 +O(‖v‖3H1∩L2,1),

where the bold notation v is used for an augmented vector with components v and
v̄ and the Hessian operator H can be defined in the stronger sense as the linear
operator

H : H2(R2) ∩ L2,2(R2) → L2(R2), (2.12)

with

H =

[
−∆(r,θ) + r2 + iΩ∂θ − µ+ 2ψ2

m0
ψ2
m0

e2im0θ

ψ2
m0

e−2im0θ −∆(r,θ) + r2 − iΩ∂θ − µ+ 2ψ2
m0

]
.

(2.13)
By using the Fourier series

v =
∑
m∈Z

Vmeimθ, v̄ =
∑
m∈Z

Wmeimθ, (2.14)

2More general vortex families with n0 zeros on R+ have also been constructed in [4], but our work

will focus on the case n0 = 0.
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the operator H is block diagonalized into blocks Hm that acts on Vm and Wm−2m0

for m ∈ Z. We recall that ψm0 = ψm0(·; a), ω = µ +m0Ω = ωm0(a), and write the
blocks Hm as linear operators

Hm : H2
r (R+) ∩ L2,2

r (R+) → L2
r(R+), (2.15)

with explicit dependence on the parameters (a,Ω) as follows:

Hm(a,Ω) = Km(a)− Ω(m−m0)R, (2.16)

where

Km(a) =

[
−∆m + r2 − ωm0(a) + 2ψ2

m0
(r; a) ψ2

m0
(r; a)

ψ2
m0

(r; a) −∆m−2m0
+ r2 − ωm0

(a) + 2ψ2
m0

(r; a)

]

and

R =

[
1 0
0 −1

]
.

A secondary bifurcation along the primary branch of radially symmetric vortices
given by (2.7) corresponds to the nonzero solutions in H2

r (R+) ∩ L2,2
r (R+) of the

spectral problem

Km(a)

[
Vm

Wm−2m0

]
= Ω(m−m0)R

[
Vm

Wm−2m0

]
. (2.17)

This spectral problem (2.17) coincides with the stability problem for the primary
branch (2.7) in the absence of rotation. The spectral parameter λ of the stability
problem3 is given for each m ∈ Z by λ := Ω(m − m0). The parameter m for the
angular mode satisfying the eigenvalue problem (2.17) corresponds to the bifurcating
mode superposed on the primary branch of vortex solutions.

2.3. Secondary branches of multi-vortex solutions

We can look for the secondary branches bifurcating along the primary branch of
radially symmetric vortices given by (2.7) and (2.8). Consequently, we write

U(r, θ) = eim0θψm0(r; a) + v(r, θ), (2.18)

where v is a root of the nonlinear operator

g(v; a,Ω) : H2(R2) ∩ L2,2(R2)× R× R → L2(R2), (2.19)

given by

g(v; a,Ω) = −∆(r,θ)v + r2v + iΩ (∂θv − im0v) + 2ψ2
m0

(r; a)v + e2im0θψ2
m0

(r; a)v̄

+ e−im0θψm0(r; a)v
2 + 2eim0θψm0(r; a)|v|2 + |v|2v − ωm0(a)v. (2.20)

The Jacobian operator of g(v; a,Ω) at v = 0 is given by the Hessian operator (2.13),
which is block-diagonalized by the Fourier series (2.14) into blocks (2.15)–(2.16).

In the next two lemmas, we analyze symmetries of the individual blocks of the
spectral problem (2.17).

3When the vortex is unstable, a complex eigenvalue λ of the stability problem does not correspond

to the secondary bifurcation associated with the eigenvalue problem (2.17).
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Lemma 1. There exists a0 such that for every 0<a<a0, the spectrum of Hm0(a,Ω) =
Km0(a) is strictly positive except for a simple zero eigenvalue, which is related to
the gauge symmetry spanned by the eigenvector

Km0(a)

[
ψm0

−ψm0

]
=

[
0
0

]
. (2.21)

Consequently, no bifurcations arise in the Ω continuation from the block Hm0(a,Ω) =
Km0(a).

Proof. For m = m0, Hm0(a,Ω) = Km0(a) is independent of the rotation frequency
Ω. If the primary branch (2.7) describes vortices with ψm0(r; a) > 0 for all r > 0,
that is, if n0 = 0, then the assertion on the spectrum of Km0(a) for small a follows
from the previous works [6, 20]. �

Lemma 2. Eigenvalues of the spectral problem (2.17) with m < m0 are identical to
eigenvalues of the spectral problem (2.17) for m > m0.

Proof. We observe the symmetry ∆m = ∆m0+(m−m0) and ∆m−2m0 = ∆m0−(m−m0)

with respect to the symmetry point at m = m0. As a result, for each k ∈ N, if λ = Ωk
is an eigenvalue of the spectral problem (2.17) with m = m0 + k for the eigenvector
[Vm0+k,W−m0+k], then λ = Ωk is the same eigenvalue of the spectral problem (2.17)
with m = m0 − k for the eigenvector [Vm0−k,W−m0−k] = [W−m0+k, Vm0+k]. �

It follows from Lemmas 1 and 2 that it is sufficient to consider the spectrum
of Hm(a,Ω) for m > m0 and to count negative and zero eigenvalues of Hm(a,Ω) in
pairs. If a = 0 and Ω = 0, we have Hm(0, 0) = Km(0), where

Km(0) =

[
−∆m + r2 − λm0,0 0

0 −∆m−2m0 + r2 − λm0,0

]
. (2.22)

The spectrum of Km(0) is obtained from eigenvalues of the Schrödinger equation
(2.2). The first diagonal entry of Km(0) has strictly positive eigenvalues

µ+
m,n(0) := 2(m+ 2n−m0) > 0, m > m0, n ∈ N0.

The second diagonal entry of Km(0) has eigenvalues

µ−
m,n(0) := 2(|m− 2m0|+ 2n−m0), m > m0, n ∈ N0.

Let N(m0) and Z(m0) be the cardinality of the sets

N (m0) =
{
m > m0, n ∈ N0 : µ−

m,n(0) < 0
}

and

Z(m0) =
{
m > m0, n ∈ N0 : µ−

m,n(0) = 0
}
.

The following lemma gives the count of N(m0) and Z(m0).

Lemma 3. For every m0 ∈ N, we have

N(m0) =
m0(m0 + 1)

2
, Z(m0) = m0. (2.23)
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Proof. To count Z(m0), we note that µ
−
m,n(0) = 0 if and only if |m−2m0|+2n = m0.

The cardinality of the set {(�, n) ∈ Z × N0 : |�| + 2n = m0} coincides with the
multiplicity of the eigenvalue λm0,0 = 2(m0 + 1) of the Schrödinger equation (2.2),
which is m0 + 1. Since |�| ≤ m0 translates to m0 ≤ m ≤ 3m0 and since m = m0

contains one zero eigenvalue with n = 0, we obtain Z(m0) = m0 + 1− 1 = m0.

To count N(m0), we follow the same idea. The largest negative eigenvalue
µ−
m,n(0) = −2 corresponds to |m − 2m0| + 2n = m0 − 1, which coincides with

the multiplicity of the eigenvalue λm0−1,0 = 2m0, which is m0. The next negative
eigenvalue µ−

m,n(0) = −4 corresponds to |m− 2m0|+ 2n = m0 − 2, which coincides
with the multiplicity of the eigenvalue λm0−2,0 = 2(m0 − 1), which is m0 − 1. The
count continues until we reach the smallest negative eigenvalue µ−

m,n(0) = −2m0,
which corresponds to |m − 2m0| + 2n = 0 and which is simple for m = 2m0 and
n = 0. Summing integers from 1 to m0, we obtain N(m0) = 1 + 2 + · · · + m0 =
m0(m0 + 1)/2. �

Remark 6. Lemma 3 yields the proof of item (ii) of Theorem 1.

Let us give some explicit examples. If m0 = 1, then λ1,0 = 4 and



σ(K2) = {−2, 2, 2, 6, 6, · · · },
σ(K3) = {0, 4, 4, 8, 8, · · · },
σ(K4) = {2, 6, 6, 10, 10, · · · },
...

(2.24)

so that N(1) = 1 and Z(1) = 1.

If m0 = 2, then λ2,0 = 6 and



σ(K3) = {−2, 2, 2, 6, 6, · · · },
σ(K4) = {−4, 0, 4, 4, 8, 8, · · · },
σ(K5) = {−2, 2, 6, 6, 10, 10, · · · },
σ(K6) = {0, 4, 8, 8, 12, 12, · · · },
σ(K7) = {2, 6, 10, 10, 14, 14, · · · },
...

(2.25)

so that N(2) = 3 and Z(2) = 2.

If m0 = 3, then λ3,0 = 8 and




σ(K4) = {−2, 2, 2, 6, 6, · · · },
σ(K5) = {−4, 0, 4, 4, 8, 8, · · · },
σ(K6) = {−6,−2, 2, 6, 6, 10, 10, · · · },
σ(K7) = {−4, 0, 4, 8, 8, 12, 12, · · · },
σ(K8) = {−2, 2, 6, 10, 10, 14, 14, · · · },
σ(K9) = {0, 4, 8, 12, 12, 16, 16, · · · },
σ(K10) = {2, 6, 10, 14, 14, 18, 18, · · · },
...

(2.26)

so that N(3) = 6 and Z(3) = 3.
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In what follows, we fix a > 0 small enough and consider a continuation of
eigenvalues of Hm(a,Ω) given by (2.16) with respect to the parameter Ω in the
interval (0, 2). When one of the eigenvalues of Hm(a,Ω) reaches zero, we say that a
secondary bifurcation occurs along the primary branch of radially symmetric vortices
given by (2.7) and (2.8).

We will show that for every m = m0+2�, 1 ≤ � ≤ m0, there is an a-independent
constant Dm,m0 ≥ 0 such that the zero eigenvalue of Km(0) becomes a positive
eigenvalue ofHm(a,Ω) for small a and for Ω � Dm,m0a

2. The maximum ofDm0+2�,m0

for 1 ≤ � ≤ m0 is denoted by Dm0 .

We further show that there is another a-independent constant Cm0 > 0 such
that when Ω is increased in the interval (Dm0a

2, 2−Cm0a
2), then 1+B(m0) secondary

bifurcations occur, where B(m0) = m0(m0 − 1)/2, at which a negative eigenvalue
of Hm(a,Ω) for some m and for Ω below the bifurcation point becomes a positive
eigenvalue of Hm(a,Ω) for the same m and for Ω above the bifurcation point. The
first B(m0) secondary bifurcations occur for values of Ω sufficiently distant from the
value Ω0 = 2, whereas the last secondary bifurcation occurs for the value of Ω near
but below the value Ω0 = 2. The latter case has to be handled in the presence of
infinitely many resonances in the limit a → 0. The aforementioned claims proved in
Section 3 will provide proofs of item (iii) in Theorem 1.

At each non-resonant bifurcation point, a new secondary branch of vortex so-
lutions is born for Ω on one side of the bifurcation point among the roots of the
nonlinear operator g given by (2.19) and (2.20). The secondary branch represents a
multi-vortex configuration near the origin of the total charge m0, where the radial
symmetry is now broken. The aforementioned claims proved in Section 4 and 5 will
provide respectively proofs of items (iv) and (v) in Theorem 1.

3. Secondary bifurcations as Ω increases

Let the primary branch of radially symmetric vortices be defined by (2.7) and (2.8)
in the small-amplitude limit. Expanding the family of operators Km(a) in powers of
a, we obtain

Km(a) =

[
−∆m + r2 − λm0,0 0

0 −∆m−2m0 + r2 − λm0,0

]

+ a2
[
−ωm0,0 + 2e2m0,0

(r) e2m0,0
(r)

e2m0,0
(r) −ωm0,0 + 2e2m0,0

(r)

]
+O(a4),

where the correction term is given by a bounded potential on R+.

Also recall from (2.16) that the operator Hm(a,Ω) is expanded as a → 0 with
the leading-order term given by the diagonal operator Hm(0,Ω) with the entries
given by two linear operators:

{
L+ := −∆m + r2 − λm0,0 − Ω(m−m0),
L− := −∆m−2m0 + r2 − λm0,0 +Ω(m−m0).

(3.1)
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We shall now analyze how eigenvalues of Hm(a,Ω) cross zero when Ω is in-
creased in the interval (0, 2).

3.1. Zero eigenvalues of Km(0)

When a = 0 and Ω = 0, each operator block Hm(0, 0) = Km(0) has a simple zero
eigenvalue for m = m0 + 2�, 1 ≤ � ≤ m0. See examples in (2.24), (2.25), and (2.26).
The following lemma tells us that the zero eigenvalue of such Hm(0, 0) becomes a
positive eigenvalue of Hm(a,Ω) for every sufficiently small a, provided the values of
Ω are sufficiently large and positive.

Lemma 4. For every m0 ∈ N, there exists a0 > 0 and Dm0 ≥ 0 such that for every
0 < a < a0, Ω > Dm0a

2, and 1 ≤ � ≤ m0, there is a small positive eigenvalue of
Hm0+2�(a,Ω) which is continuous in (a,Ω) and converges to the zero eigenvalue of
Km0+2�(0) as a → 0 and Ω → 0.

Proof. The zero eigenvalue of Km(0) for m = m0 + 2�, 1 ≤ � ≤ m0 corresponds
to the second diagonal operator in Km(0). Let us show by the perturbation theory
argument that the zero eigenvalue is continued as a small O(a2) eigenvalue of Km(a)
for all a sufficiently small.

The eigenfunction ofKm(0) withm = m0+2� for the zero eigenvalue is obtained
from the balance

λm−2m0,n = λm0,0 ⇒ n(�) =
m0 − |2�−m0|

2
.

Since the zero eigenvalue of Km0+2�(0) is simple, the regular perturbation theory in
[17] implies the existence of a small eigenvalue µ�(a) of the linear operator Km0+2�(a)
and the corresponding eigenvector (Vm0+2�,W−m0+2�), which are analytic functions
of a. Their Taylor expansions are given by




Vm0+2� = a2Ṽm0+2� +OL2
r
(a4),

W−m0+2� = c−m0+2�e|m0−2�|,n(�) + a2W̃−m0+2� +OL2
r
(a4),

µ� = a2µ̃� +O(a4),

(3.2)

where c−m0+2� �= 0 is arbitrary, Ṽm0+2�, W̃−m0+2�, and µ̃� are obtained by the stan-
dard projection algorithm, and the correction terms are defined uniquely by the
method of Lyapunov–Schmidt reductions. In particular, µ̃� is obtained from

µ̃� = −ωm0,0 + 2〈e2m0,0, e
2
|m0−2�|,n(�)〉L2

r
. (3.3)

If µ̃� �= 0, the eigenvalue µ�(a) is generally nonzero but O(a2) small.

It follows from (3.1) that the Ω-term in L− is a positive perturbation to Km(0)
for m > m0. Therefore, there exists an a-independent constant D�,m0 ≥ 0 such that
the eigenvalue µ�(a) continued with respect to the parameter Ω is strictly positive
for Ω > D�,m0a

2. The assertion of the lemma is proved by taking the largest of D�,m0

for all admissible 1 ≤ � ≤ m0 as Dm0 . �

Remark 7. Lemma 4 yields the existence of constant Dm ≥ 0 in item (iii) of Theorem
1.
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Remark 8. If µ̃� > 0 in the perturbation result (3.3), then µ� > 0 for every small
a > 0 and Ω > 0. If this is true for every 1 ≤ � ≤ m0, then Dm0 = 0 in Lemma 4. In
particular, this is true for 1 ≤ m0 ≤ 3. Indeed, for � = m0 and n(�) = 0, we obtain
from (2.10) and (3.3):

µ̃m0 = ‖em0,0‖4L4
r
> 0.

For � = m0−1 and n(�) = 1, we use the following formula for the L2
r(R+)-normalized

Hermite–Gauss solutions of the Schrödinger equation (2.2) with λm,1 = 2(m+ 3):

em,1(r) =

√
2√

(m+ 1)!
rm(m+ 1− r2)e−

r2

2 . (3.4)

Then, we obtain from (3.3) for m0 ≥ 2:

µ̃m0−1 = 2〈e2m0,0, e
2
m0−2,1〉L2

r
− ‖em0,0‖4L4

r
=

(2m0)!(m
2
0 +m0 − 1)

4m0(m0!)2
> 0.

By the symmetry, we also have µ1 = µm0−1 > 0. Thus, for 1 ≤ m0 ≤ 3, we have
µ̃� > 0 for all admissible 1 ≤ � ≤ m0.

Remark 9. It remains unclear if µ̃� > 0 for the other values in 2 ≤ � ≤ m0 − 2 for
m0 ≥ 4.

3.2. Zero eigenvalues of Hm(a,Ω) for Ω ∈ (0, 2)

For m > m0, the leading-order diagonal operator Hm(0,Ω) given by the operators
L+ and L− in (3.1) has an eigenbasis

{(em,n, 0); (0, e|m−2m0|,n)}n∈N0 . (3.5)

Since Hm(a,Ω) is self-adjoint, by regular perturbation theory in [17], the operator
Hm(a,Ω) has a set of eigenvalues counted by n ∈ N0:{

µ+
m,n(a,Ω) := λm,n − λm0,0 − Ω(m−m0) +O(a2),

µ−
m,n(a,Ω) := λm−2m0,n − λm0,0 +Ω(m−m0) +O(a2).

(3.6)

For m > m0, n ∈ N0, and Ω < 2, we have

λm,n − λm0,0 − Ω(m−m0) = (2− Ω)(m−m0) + 4n > 0.

Therefore, the eigenvalues µ+
m,n(a,Ω) never become zero for small a and Ω < 2. On

the other hand, the eigenvalues µ−
m,n(a,Ω) become zero when Ω = Ωm,n(a) given by

Ωm,n(a) = 2
m0 − |m− 2m0|

m−m0
− 4n

m−m0
+O(a2). (3.7)

Let B(m0) denote the number of eigenvalues µ−
m,n crossing zero at Ω = Ωm,n(a) with

Ωm,n(0) ∈ (0, 2). The following lemma gives the count of B(m0).

Lemma 5. For every m0 ∈ N, we have

B(m0) =
m0(m0 − 1)

2
. (3.8)

Proof. To count B(m0), we count the values of m > m0 for the first values of n ∈ N0,
when Ωm,n(0) ∈ (0, 2):
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• For n = 0, the inequality 0 < m0 − |m− 2m0| < m−m0 is true for 2m0 + 1 ≤
m ≤ 3m0 − 1.

• For n = 1, the inequality 0 < m0 − |m − 2m0| − 2 < m − m0 is true for
m0 + 3 ≤ m ≤ 3m0 − 3.

• For n = 2, the inequality 0 < m0 − |m − 2m0| − 4 < m − m0 is true for
m0 + 5 ≤ m ≤ 3m0 − 5.

For a general n ∈ N, we have Ωm,n(0) ∈ (0, 2) for m0 + 2n+ 1 ≤ m ≤ 3m0 − 2n− 1
provided that the range for m is nonempty. Summing up all cases, we have

B(m0) = m0 − 1 +

∞∑
n=1

[2m0 − 4n− 1]+

where [a]+ is a when a ≥ 0 and 0 if a < 0. The sum is finite as n terminates at the
last entry for which 2m0 − 4n− 1 > 0. If m0 is odd, then the last entry corresponds
to N = (m0 − 1)/2 and we obtain

∞∑
n=1

[2m0 − 4n− 1]+ =

N∑
n=1

(2m0 − 4n− 1) =
m2

0 − 3m0 + 2

2
.

If m0 is even, then the last entry corresponds to N = m0/2− 1 and we obtain

∞∑
n=1

[2m0 − 4n− 1]+ =
N∑

n=1

(2m0 − 4n− 1) =
m2

0 − 3m0 + 2

2
.

Adding m0 − 1 to this number, we obtain (3.8) in both cases. �

In particular, we have B(1) = 0, B(2) = 1, B(3) = 3, and B(4) = 6. See
examples in (2.24), (2.25), and (2.26). Let us list the bifurcation values of Ω for
these examples:

• For m0 = 1, no bifurcations occur.
• For m0 = 2, the only bifurcation occurs at Ω5,0(0) = 2/3.
• For m0 = 3, three bifurcations occur at Ω7,0(0) = 1, Ω8,0(0) = 2/5, and
Ω6,1(0) = 2/3.

• For m0 = 4, six bifurcations occur at Ω9,0(0) = 6/5, Ω10,0(0) = 2/3, Ω11,0(0) =
2/7, Ω7,1(0) = 2/3, Ω8,1(0) = 1, and Ω9,1(0) = 2/5.

Remark 10. Lemma 5 yields the number B(m0) in item (iii) of Theorem 1. Note
that the bifurcation points of Ω are simple for 1 ≤ m0 ≤ 3. Multiple bifurcation
points exist in a general case for m0 ≥ 4, e.g. Ω10,0(0) = Ω7,1(0) = 2/3 for m0 = 4.

The following proposition summarizes properties of Hm(a,Ω) near each bifur-
cation point. These properties are needed for the bifurcation analysis in Section
4.

Proposition 1. For every m0 ∈ N, let Ω∗(a) be one of the bifurcation points defined by
(3.7). Assume it has multiplicity k and corresponds to m1, . . . ,mk > m0. There exists
a0 > 0, Cm0 > 0, and Em0 > 0 such that for every 0 < a < a0, |Ω−Ω∗(a)| < Cm0a

2,



346	 C. García{Azpeitia and D.E. Pelinovsky� Vol.85 (2017)16 C. Garćıa–Azpeitia and D.E. Pelinovsky

and every m > m0 such that m /∈ {m1, . . . ,mk}, the operator Hm(a,Ω) is invertible
in L2

r(R+) with the bound

‖Hm(a,Ω)−1‖
L2
r→H2

r∩L
2,2
r

≤ Em0 , m > m0, m /∈ {m1, . . . ,mk}. (3.9)

Moreover, the number of negative eigenvalues of Hm(a,Ω), m /∈ {m1, . . . ,mk} re-
mains the same for every Ω in |Ω−Ω∗(a)| < Cm0a

2. On the other hand, the number
of negative eigenvalues for Hm(a,Ω), m ∈ {m1, . . . ,mk} is reduced by one when Ω
crosses Ω∗(a) in |Ω− Ω∗(a)| < Cm0a

2.

Proof. First, we note that for each m > m0, there may be at most one eigenvalue of
Hm(a,Ω) which becomes zero at Ω = Ω∗(a). Bound (3.9) follows from the fact that
Hm(a,Ω∗(a)) withm /∈ {m1, . . . ,mk} has no eigenvalues in the neighborhood of zero.
On the other hand, each simple eigenvalue of Hm(a,Ω∗(a)) with m ∈ {m1, . . . ,mk}
is continued in Ω according to the derivative

∂Hm

∂Ω
(a,Ω) = −(m−m0)R. (3.10)

Let (Vm,Wm−2m0) be the corresponding eigenvector for the zero eigenvalue of
Hm(a,Ω∗(a)). Since m > m0, the eigenvalue is positive for Ω � Ω∗(a) and negative
for Ω � Ω∗(a) if Sm < 0, where

Sm := ‖Vm‖2L2
r
− ‖Wm−2m0‖2L2

r
. (3.11)

Since Vm → 0 as a → 0, we have Sm < 0 for each m ∈ {m1, . . . ,mk}, provided a is
small enough. �

Remark 11. The quantity Sm defined by (3.11) is referred to as the Krein quantity.
The sign of Sm gives the Krein signature of the neutrally stable eigenvalues of the
spectral stability problem associated with the radially symmetric vortices in the case
of no rotation [20].

Definition 1. If k = 1 in Proposition 1, we say that the bifurcation point Ω∗(a) is
non-resonant.

3.3. Zero eigenvalues of Hm(a,Ω) for Ω near 2

Consider the rotation frequency Ω = 2 +O(a2). According to (2.17) and (2.22), see
examples in (2.24), (2.25), and (2.26), there are infinitely many resonances for a = 0.

We will show that if Ω is defined at a particular value denoted by Ωm0+1,0(a) =
2 + O(a2), for which the spectral stability problem (2.17) with m = m0 + 1 ad-
mits a nontrivial solution, then the blocks Hm(a,Ω) of the Hessian operator for
every m ≥ m0 + 2 are invertible in L2

r(R+) near Ω = Ωm0+1,0(a) and the small-
est eigenvalue of Hm(a,Ωm0+1,0(a)) is proportional to O(a2). At the same time,
the block Hm0+1(a,Ωm0+1,0(a)) has a simple zero eigenvalue and a simple positive
eigenvalue proportional to O(a2). We also show for 1 ≤ m0 ≤ 16 that the blocks
Hm(a,Ωm0+1,0(a)) for m0+2 ≤ m ≤ 2m0 have exactly one small negative eigenvalue
proportional to O(a2), whereas all other eigenvalues are strictly positive.

The following lemma gives the precise location of Ωm0+1,0(a) = 2 +O(a2).
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Lemma 6. There exists a0 > 0 such that for every 0 < a < a0, there exists
Ωm0+1,0(a) < 2 given asymptotically by

Ωm0+1,0(a) := 2− (2m0)!

4m0m0!(m0 + 1)!
a2 +O(a4), (3.12)

such that Hm0+1(a,Ωm0+1,0(a)) has a simple zero eigenvalue.

Proof. We solve the bifurcation equation (2.17) for m = m0 + 1 near Ω = 2 in
powers of a. Since Ω = 2 is a double (semi-simple) eigenvalue of the bifurcation
equation (2.17) at a = 0, we use the two-parameter perturbation theory with the
Taylor expansion




Vm0+1 = cm0+1em0+1,0 + a2Ṽm0+1 +OL2
r
(a4),

W−m0+1 = c−m0+1em0−1,0 + a2W̃−m0+1 +OL2
r
(a4),

Ω = 2 + a2Ω̃ +O(a4),

(3.13)

where (cm0+1, c−m0+1) �= (0, 0) are to be determined, the correction terms Ṽm0+1,

W̃−m0+1, and Ω̃ are a-independent, and the reminder terms are uniquely defined by
the Lyapunov–Schmidt reductions. The admissible values of (cm0+1, c−m0+1) �= (0, 0)

and Ω̃ are found from the matrix eigenvalue problem

Ã

[
cm0+1

c−m0+1

]
= Ω̃

[
cm0+1

c−m0+1

]
,

where

Ã =

[
〈(−ωm0,0 + 2e2m0,0)em0+1,0, em0+1,0〉L2 〈e2m0,0em0−1,0, em0+1,0〉L2

−〈e2m0,0em0+1,0, em0−1,0〉L2 −〈(−ωm0,0 + 2e2m0,0)em0−1,0, em0−1,0〉L2

]

=




(2m0)!
4m0 (m0−1)!(m0+1)!

(2m0)!

4m0m0!
√

(m0−1)!(m0+1)!

− (2m0)!

4m0m0!
√

(m0−1)!(m0+1)!
− (2m0)!

4m0 (m0!)2


 ,

and we have used the explicit formula (2.9). Eigenvalues of Ã and their normalized
eigenvectors are given by

Ω̃ = 0 :

[
cm0+1

c−m0+1

]
=

1√
2m0 + 1

[ √
m0 + 1
−√

m0

]
(3.14)

and

Ω̃ = Ω̃m0+1,0 := − (2m0)!

4m0m0!(m0 + 1)!
:

[
cm0+1

c−m0+1

]
=

1√
2m0 + 1

[ √
m0

−
√
m0 + 1

]
. (3.15)

Substituting Ω̃ = Ω̃m0+1,0 from (3.15) to (3.13), we obtain the asymptotic expansion

(3.12). Since Ω̃m0+1,0 < 0 in (3.15), we have Ωm0+1,0(a) < 2 for small a. �

Remark 12. Lemma 6 yields the existence of constant Cm > 0 in item (iii) of
Theorem 1.
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In order to compute eigenvalues of the blocks Hm(a,Ωm0+1,0(a)) for small a,
we write explicitly the following expansion in powers of a:

Hm(a,Ωm0+1,0(a)) =

[
−∆m + r2 − 2(m+ 1) 0

0 −∆m−2m0 + r2 + 2(m− 2m0 − 1)

]

+ a2
[

−ωm0,0 − (m−m0)Ω̃m0+1,0 + 2e2m0,0(r) e2m0,0(r)

e2m0,0(r) −ωm0,0 + (m−m0)Ω̃m0+1,0 + 2e2m0,0(r)

]

+O(a4).

We consider now eigenvalues of Hm(a,Ωm0+1,0(a)) denoted by λ near zero as a → 0.
The following three lemmas summarize the results of computations of the perturba-
tion theory.

Lemma 7. There exists a0 > 0 such that for every 0 < a < a0, the block

Hm0+1(a,Ωm0+1,0(a))

has a simple zero eigenvalue and a simple positive eigenvalue of the order O(a2),
whereas all other eigenvalues are strictly positive.

Proof. For m = m0 + 1, computations of the perturbation theory similar to the
expansion (3.13) are repeated as follows:




Vm0+1 = cm0+1em0+1,0 + a2Ṽm0+1 +OL2
r
(a4),

W−m0+1 = c−m0+1em0−1,0 + a2W̃−m0+1 +OL2
r
(a4),

λ = a2λ̃+O(a4).

(3.16)

The Lyapunov–Schmidt reduction method results now in the matrix eigenvalue prob-
lem

Ã

[
cm0+1

c−m0+1

]
= λ̃

[
cm0+1

c−m0+1

]
,

where

Ã =




(2m0)!
4m0 (m0!)2

(2m0)!

4m0m0!
√

(m0−1)!(m0+1)!
(2m0)!

4m0m0!
√

(m0−1)!(m0+1)!

(2m0)!
4m0 (m0−1)!(m0+1)!


 .

Eigenvalues of A and their normalized eigenvectors are given by

λ̃ = 0 :

[
cm0+1

c−m0+1

]
=

1√
2m0 + 1

[ √
m0

−
√
m0 + 1

]
(3.17)

and

λ̃ =
(2m0 + 1)!

4m0m0!(m0 + 1)!
:

[
cm0+1

c−m0+1

]
=

1√
2m0 + 1

[ √
m0 + 1√
m0

]
. (3.18)

The zero eigenvalue in (3.17) corresponds to the choice Ω = Ωm0+1,0(a) at the
bifurcation point. The positive eigenvalue in (3.18) gives the positive eigenvalue of
the order O(a2) in (3.16). The other eigenvalues of Hm0(0, 2) are strictly positive
and they remain so in Hm0+1(a,Ωm0+1,0(a)) for small a. �
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Lemma 8. There exists a0 > 0 such that for every 0 < a < a0, the block

Hm(a,Ωm0+1,0(a))

with m ≥ 2m0 + 1 has a simple positive eigenvalue of the order O(a2), whereas all
other eigenvalues are strictly positive.

Proof. For m ≥ 2m0 + 1, the zero eigenvalue of Hm(0, 2) is simple and all other
eigenvalues are strictly positive. The one-parameter perturbation expansion for the
small eigenvalue is developed as follows:




Vm = cmem,0 + a2Ṽm +OL2
r
(a4),

Wm−2m0 = a2W̃m−2m0 +OL2
r
(a4),

λ = a2λ̃+O(a4).

(3.19)

The projection condition yields the only eigenvalue given by

λ̃ = 2〈e2m0,0em,0, em,0〉L2
r
− ωm0,0 − (m−m0)Ω̃m0,0

=
2(m0 +m)!

2m0+mm0!m!
+

(2m0)!(m− 2m0 − 1)

4m0m0!(m0 + 1)!
> 0. (3.20)

Since λ̃ > 0, the expansion (3.19) yields the positive eigenvalue of the order O(a2)
in the block Hm(a,Ωm0+1,0(a)) for small a. �

It remains to consider the blocks Hm(a,Ωm0+1,0(a)) for m0 + 2 ≤ m ≤ 2m0.
Before continuing with the technical details, we note the example of m0 = 2. The
results of [16, 20] imply that no real eigenvalues exist in the neighborhood of Ω = 2
and a = 0 among eigenvalues of the bifurcation equation (2.17) for m = 4 = 2m0.
This is due to oscillatory instability of the radially symmetric vortex of charge two
(m0 = 2), which arises in the small-amplitude limit of the primary branch. See
Remark 6.9 in [16]. More general results were obtained in [10], see Proposition 8.3,
where all vortices with m0 ≥ 2 were found unstable but the number of unstable
modes is smaller than m0 − 1 if m0 is sufficiently large. The following result is in
agreement with the outcomes of the stability computations in [10, 16].

Lemma 9. Let 2 ≤ m0 ≤ 16. There exists a0 > 0 such that for every 0 < a < a0,
the block Hm(a,Ωm0+1,0(a)) with m0 + 2 ≤ m ≤ 2m0 has two small eigenvalues of
the order O(a2) (one is positive and the other one is negative), whereas all other
eigenvalues are strictly positive.

Proof. For m0 + 2 ≤ m ≤ 2m0, the zero eigenvalue of Hm(0, 2) is double and all
other eigenvalues are strictly positive. The two-parameter perturbation expansion
for the small eigenvalue is developed as follows:




Vn = cmem,0 + a2Ṽm +OL2
r
(a4),

Wm−2m0 = cm−2m0e2m0−m,0 + a2W̃m−2m0 +OL2
r
(a4),

λ = a2λ̃+O(a4).

(3.21)
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The Lyapunov–Schmidt reduction method results in the matrix eigenvalue problem

Ã

[
cm

cm−2m0

]
= λ̃

[
cm

cm−2m0

]
, (3.22)

where

Ã =




2(m0+m)!
2m0+mm0!m!

+ (2m0)!(m−2m0−1)
4m0m0!(m0+1)!

(2m0)!

4m0m0!
√

m!(2m0−m)!
(2m0)!

4m0m0!
√

m!(2m0−m)!

2(3m0−m)!
23m0−mm0!(2m0−m)!

− (2m0)!(m+1)
4m0m0!(m0+1)!


 .

For m0 = 2 (with m = 4) and m0 = 3 (with m = 5, 6), the entries of Ã are computed
explicitly. Since the first diagonal entry is positive and the second diagonal entry
is negative, Ã has one positive and one negative eigenvalue λ̃. We have checked
numerically that this property remains true for every 2 ≤ m0 ≤ 16. The expansion
(3.21) yields one positive and one negative eigenvalue of the order O(a2) in the block
Hm(a,Ωm0+1,0(a)) for small a. �

Remark 13. For m0 ≥ 17, the matrix Ã for some m in the range m0+2 ≤ m ≤ 2m0

has two negative eigenvalues and the number of suchm-values grows with the number
m0. No zero eigenvalues of Ã are found numerically for at least m0 ≤ 100.

The following proposition summarizes the previous computations of the per-
turbation theory. The corresponding result is needed for the bifurcation analysis in
Section 4.

Proposition 2. For every integer 1≤m0≤16, there exist a0 > 0, Cm0 ∈ (0, |Ω̃m0+1,0|),
and Em0 > 0 such that for every 0 < a < a0, |Ω− Ωm0+1,0(a)| < Cm0a

2, and every
m ≥ m0 + 2, the operator Hm(a,Ω) is invertible in L2

r(R+) with the bound

‖Hm(a,Ω)−1‖
L2
r→H2

r∩L
2,2
r

≤ Em0a
−2, m ≥ m0 + 2. (3.23)

Moreover, all eigenvalues of Hm(a,Ω) are strictly positive, except for m0 − 1 simple
negative eigenvalues, which correspond to m0+2 ≤ m ≤ 2m0. On the other hand, all
eigenvalues of Hm0+1(a,Ω) are strictly positive except one simple eigenvalue, which
is negative for Ω � Ωm0+1,0(a) and positive for Ω � Ωm0+1,0(a).

Proof. Eigenvalues and invertibility of Hm(a,Ωm0+1,0(a)) for m ≥ m0 + 2 with the
bound (3.23) follows from the outcomes of the perturbation theory in Lemmas 7,
8, and 9, where the m-independent constant Em0 exists thanks to the fact that the
O(a2) positive eigenvalue in (3.20) is bounded away from zero.

It remains to prove that the zero eigenvalue of Hm0+1(a,Ωm0+1,0(a)) becomes
a small positive eigenvalue of Hm0+1(a,Ω) for Ω � Ωm0+1,0(a) and a small negative
eigenvalue ofHm0+1(a,Ω) for Ω � Ωm0+1,0(a). This follows from the derivative (3.10)
and the Krein signature of the zero eigenvalue of Hm0+1(a,Ωm0+1,0(a)) defined by
(3.11). We obtain from the expansion (3.16)

Sm0+1 = ‖Vm0+1‖2L2
r
− ‖W−m0+1‖2L2

r
= c2m0+1 − c2−m0+1 +O(a2), (3.24)
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where (cm0+1, c−m0+1) is given by the eigenvector of Ã that corresponds to λ̃ = 0.
From (3.17), we obtain Sm0+1<0, hence the corresponding eigenvalue ofHm0+1(a,Ω)
is an increasing4 function of Ω. �

Remark 14. Propositions 1 and 2 complete the proof of item (iii) in Theorem 1.

Remark 15. Eigenvalues λ := Ω(m − m0) of the bifurcation problem (2.17) near
λm,m0 = 2(m −m0) are either complex or real for m0 + 2 ≤ m ≤ 2m0, depending
on whether the m-th mode of the m0-th vortex is spectrally unstable or stable.
When all such eigenvalues are complex, which happens for 1 ≤ m0 ≤ 3, no other
bifurcation curve is connected to the point Ω0 = 2 from below, besides the curve
Ωm0+1,0. When m0 ≥ 4, we have found that there are R(m0) pairs of real eigenvalues
λ of the bifurcation problem (2.17) near λm,m0 , e.g.

• R(4) = 1 with m = 8;
• R(5) = 1 with m = 10;
• R(6) = 2 with m = 11, 12;
• R(7) = 3 with m = 12, 13, 14;
• R(8) = 3 with m = 14, 15, 16;

and so on. This finding corresponds to the result of Proposition 8.3 in [10] where
the number of complex eigenvalues is found to be smaller than m0 − 1 if m0 is
sufficiently large. If R(m0) �= 0, then there exist R(m0) bifurcation curves connected
to the point Ω0 = 2 from below. As follows from the count on negative eigenvalues
in

N(m0)−B(m0)− 1 = m0 − 1,

which coincides with the number of negative eigenvalues in Lemma 9, these addi-
tional bifurcation curves for 4 ≤ m0 ≤ 16 are located above the curve Ωm0+1,0.
However, for m0 ≥ 17, thanks to the computations in Remark 13, some of the pos-
itive eigenvalues of Hm(a,Ω) for m0 + 2 ≤ m ≤ 2m0 become negative eigenvalues
for Ω � Ωm0+1,0(a) and the total number of negative eigenvalues at Ω � Ωm0+1,0(a)
exceeds m0 − 1. Therefore, some of the R(m0) bifurcation curves are located below
the curve Ωm0+1,0 for m0 ≥ 17.

4. Secondary branches of multi-vortex solutions

Recall that the solution U to the stationary GP equation (2.4) is a critical point of
the energy functional Eµ(u) in (2.11), therefore, the bifurcation problem for g(v; a,Ω)
in (2.19)–(2.20) has a variational structure. The number of negative eigenvalues of
the Jacobian operator H(a,Ω) in (2.12)–(2.13) (which is known as the Morse index )
changes at every bifurcation curve as Ω crosses Ωm,n(a), according to Propositions

4If (cm0+1, c−m0+1) in (3.24) is given by the other eigenvector of Ã that corresponds to λ̃ > 0,

then it follows from (3.18) that Sm0+1 > 0. Hence, the corresponding small positive eigenvalue

of Hm0+1(a,Ω) is a decreasing function of Ω. Nevertheless, for Ω � Ωm0+1,0(a), these two small

eigenvalues of Hm0+1(a,Ω) are ranged in the same order of O(a2) as at Ω = Ωm0+1,0(a).
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1 and 2, where the values of Ωm,n(a) are given by Lemmas 5 and 6, see equations
(3.7) and (3.12).

Here we prove that for each fixed a and for each non-resonant bifurcation point,
there is a continuous branch of solutions of g(v; a,Ω) bifurcating from (0; a,Ωm,n(a))
on one side of the bifurcation point Ω = Ωm,n(a). The new family of multi-vortex
solutions is parameterized by two parameters (a,Ω).

Besides proving the local bifurcation result, we discuss symmetries of the bifur-
cating branches and their global continuation with respect to parameter Ω. For defi-
nitions and methods used to prove the equivariant bifurcation we refer to [1, 11, 15].

In section 4.1, symmetries of g(v; a,Ω), in particular, its equivariant properties
are analyzed. In section 4.2, we prove the local bifurcation result for a non-resonant
bifurcation point Ωm,n(a), with a simple zero eigenvalue of H(a,Ω). We also discuss
symmetries and asymptotic estimates of the bifurcating branches, which are needed
to study the location of the individual vortices in the multi-vortex configurations.
In section 4.3, we prove the global continuation of the solution branches.

4.1. Symmetries and equivariance of g(v; a,Ω)

We define the action of the group O(2) = S1 ∪ κS1 by

ρ(ϕ)v(r, θ) = e−im0ϕv(r, θ + ϕ), ρ(κ)v(r, θ) = v̄(r,−θ). (4.1)

The operator g(v; a,Ω) given by (2.19)–(2.20) is O(2)-equivariant by the action of
the group given by (4.1). That is, we have g(ρ(ϕ)v) = ρ(ϕ)g(v) since

eim0ϕg(ρ(ϕ)v)(r, θ − ϕ)

=
(
−ωm(a)−∆(r,θ) + r2 +Ωi(∂θ − im0)

)
v(r, θ)− eim0θψm0(r; a)

3

+
∣∣∣eim0θψm0(r; a) + v(r, θ)

∣∣∣
2 (

eim0θψm0(r; a) + v(r, θ)
)
= g(v)(r, θ)

Similarly, we have g(ρ(κ)v) = ρ(κ)g(v).

As is explained in Section 2.2, the component v is extended to the vector v =
(v, w) with the constraint w = v̄, so that the root finding problem is formulated for
the analytic nonlinear operator g(v) = (g(v, w), ḡ(v, w)). The natural extension of
the action of the group O(2) to the second component of v = (v, w) is

ρ(ϕ)w(r, θ) = eim0ϕw(r, θ + ϕ), ρ(κ)w(r, θ) = w̄(r,−θ). (4.2)

In the Fourier basis

v =
∑
m∈Z

Vm(r)eimθ, w =
∑
m∈Z

Wm(r)eimθ,

the action of the group O(2) = S1 ∪ κS1 is given by

ρ(ϕ)Vm = ei(m−m0)ϕVm, ρ(κ)Vm = V̄m,

ρ(ϕ)Wm = ei(m+m0)ϕWm, ρ(κ)Wm = W̄m.
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so that

ρ(ϕ)(Vm,Wm−2m0) = ei(m+m0)ϕ(Vm,Wm−2m0), (4.3)

ρ(κ)(Vm,Wm−2m0) = (V̄m, W̄m−2m0).

Therefore, the subspaces of functions (Vm,Wm−2m0) are composed of similar irre-
ducible representations under the action of the group O(2).

The subspace (Vm,Wm−2m0) has as isotropy group, the dihedral group Dm−m0

generated by the elements κ and ζ = 2π/(m − m0). The dihedral group Dm−m0

will be used to find the symmetry-breaking bifurcations of the primary branch into
the multi-vortex solutions along the secondary branches. Due to the symmetries of
Dm−m0 , the multi-vortex solution is represented by a (m−m0)-polygon of individual
vortices.

For a fixed value of m ∈ Z, the action of ρ(ζ) is given by

ρ(ζ)(Vj ,Wj−2m0) = exp

(
2πi

j −m0

m−m0

)
(Vj ,Wj−2m0), j ∈ Z.

The fixed point space

Fix(Dm−m0) = {(v, w) ∈ L2(R2) : ρ(γ)(v, w) = (v, w) for γ ∈ Dm−m0}
is composed of functions with real components (Vj ,Wj−2m0) such that j −m0 is a
multiple of m−m0. If (v, v̄) ∈ Fix(Dm−m0), then v can be characterized by

v(r, θ) =
∑

j∈m0+(m−m0)Z

Vj(r)e
ijθ = eim0θ

∑
j∈(m−m0)Z

Vm0+j(r)e
ijθ,

where all functions {Vj(r)}j∈m0+(m−m0)Z are real-valued. Writing v(r, θ) =

eim0θφ(r, θ), we deduce that φ satisfies the symmetry constraints:

φ(r, θ) = φ̄(r,−θ) = φ(r, θ + ζ). (4.4)

Since g is O(2)-equivariant, the operator g(v) restricted to Fix(Dm−m0) is well
defined. Therefore, we can consider the bifurcation problem

gDm−m0 (v; a,Ω) : X ∩ Fix(Dm−m0)× R× R → Fix(Dm−m0), (4.5)

where X := H2(R2) ∩ L2,2(R2) is the graph norm of the Jacobian operator H. A
schematic illustration of the local bifurcations of the primary and secondary branches
is given on Figure 2.

Figure 2. The isotropy lattice for the symmetry-breaking bifurcations.
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By Schur’s lemma, the Jacobian operator H for g has a diagonal decomposi-
tion in the subspaces of similar irreducible representations given by the components
(Vm,Wm−2m0). Indeed, this has been done in (2.13) and (2.16), where the operator
H in the subspace (Vm,Wm−2m0) is represented by the block Hm. Consequently, for
a fixed m ∈ Z, the Jacobian operator of gDm−m0 consists of the blocks Hj corre-
sponding to j −m0 ∈ (m−m0)Z. Moreover, in the subspace Fix(Dm−m0) we have
w = v̄, so that Wj−m0 = V−(j−m0) and the blocks Hj with negative j − m0 are
determined by those with j −m0 ∈ N. Hence, we denote

HDm−m0 = diag{Hj}j∈m0+(m−m0)N.

By Lemma 1, the operator H has a zero eigenvalue in the block j = m0 due to
the gauge invariance of the original problem. This zero eigenvalue is not present for
the operatorHDm−m0 in Fix(Dm−m0) because the reflection κ ∈ Dm−m0 excludes the
gauge invariance. Furthermore, the double eigenvalues of H in the blocks with posi-
tive and negative j −m0 become the simple eigenvalues of HDm−m0 in Fix(Dm−m0)
again due to the reflection κ.

4.2. Local bifurcation results

Here we prove a local bifurcation from a simple eigenvalue of HDm−m0 that exists
at Ω = Ωm,n(a) for small a, according to (3.7) and (3.12) in Lemmas 5 and 6. The
restriction of the space X to the fixed-point space Fix(Dm−m0) is useful in two
aspects. First, it allows us to prove the local bifurcation from a simple eigenvalue
by avoiding resonances from the components that are not contained in Fix(Dm−m0).
Second, it gives additional information on symmetries of the bifurcating solutions
v. The symmetries are useful to understand the distributions of individual vortices
in the (m−m0)-polygons.

The local bifurcation results are obtained for the non-resonance bifurcation
points, according to the following definition. This definition extends Definition 1.

Definition 2. For a fixed a > 0, we say that Ωm,n(a) ∈ (0, 2) is a non-resonant

bifurcation point if the kernel of HDm−m0 (Ωm,n(a)) has dimension one. We say that
Ωm,n ∈ (0, 2) is a non-resonant curve if this condition holds for each small a.

For each curve Ωm,n, the non-resonant condition is given by the following equiv-
alent conditions:

(i) Hj(a,Ωm,n(a)) is invertible;
(ii) Ωm,n(a) �= Ωj,k(a);

(iii) µ−
j,k(a,Ωm,n(a)) �= 0;

where j takes values in m0 + (m−m0)�, � ∈ N\{1}, k ∈ N0, and a > 0 is arbitrary
but sufficiently small.

As we discussed in Remark 10, the bifurcation curves are all non-resonant for
1 ≤ m0 ≤ 3 and the first resonance happens for m0 = 4 because Ω10,0(0) = Ω7,1(0) =
2/3. In view of the restriction on the range of j in the space Fix(Dm−m0), however,
the bifurcation curve Ω10,0 is non-resonant because HD6 is composed of blocks Hj

with j = 4, 10, 16, ... and the zero eigenvalue µ−
7,1(0,Ω10,0(0)) is not included in the
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spectrum of HD6 . On the other hand, the bifurcation curve Ω7,1 may be resonant
because HD3 is composed of blocks Hj with j = 4, 7, 10, ... and the zero eigenvalue
µ−
10,0(0,Ω7,1(0)) is included in the spectrum of HD3 . To know exactly if Ω7,1(a) is

resonant with Ω10,0(a) one needs to compute the normal form in a, which is out of
the scope of our presentation.

Remark 16. The curves Ωm,0 for 2m0 + 1 ≤ m ≤ 3m0 − 1 are non-resonant. Even if

the resonance occurs in H, e.g. for m0 = 4, it does not show up in HDm−m0 . Indeed,
if Ωm,0(0) = Ωj,k(0) for j −m0 = (m−m0)� with � ∈ N\{1}, then

f(m) = f(j)− 2k

j −m0
,

where

f(j) =
m0 − |j − 2m0|

j −m0
=

{
1 m0 < j ≤ 2m0

2m0
j−m0

− 1 2m0 < j

Note that f is a strictly decreasing function on [2m0,∞). If k = 0, then j > 2m0,
hence f(m) = f(j) is true only if j = m (� = 1), which is excluded. If k ≥ 1,
then f(m) < f(j), which implies that m > j or j − m0 < m − m0. There-
fore, the possible resonant block Hj with m0 < j < m is not in HDm−m0 =
diag(Hm0 , Hm, H2m−m0 , . . .).

Remark 17. The curve Ωm0+1,0(a) = 2+O(a2) is non-resonant as long as the matrices

Ã arising in the matrix eigenvalue problem (3.22) are invertible. We have checked
this condition numerically for 1 ≤ m0 ≤ 100.

The following proposition follows from the Crandall-Rabinowitz theorem, see
Theorem I.5.1 in [19]. It covers the non-resonant bifurcation curve Ωm,n, for which
Proposition 1 applies. It does not cover the curve Ωm0+1,0 in Remark 17.

Proposition 3. For each non-resonant curve Ωm,n ∈ (0, 2) parameterized by a > 0

sufficiently small, the operator gDm−m0 (v; a,Ω) in (4.5) admits a new family of roots
v ∈ Fix(Dm−m0) and Ω ∈ (0, 2) parameterized by real b such that

Ω(a, b) = Ωm,n(a) +O(b2) (4.6)

and
v(r, θ; a,Ω(a, b)) = bfm,n(r, θ; a) +OX(ab2, b3), (4.7)

where
fm,n(r, θ; a) = e|m−2m0|,n(r)e

i(2m0−m)θ +OX(a2) (4.8)

is the eigenvector of Hm(a,Ωm,n(a)) associated with the zero eigenvalue
µ−
m,n(a,Ωm,n(a)).

Proof. The local bifurcation problem (4.5) is well-defined for the operator gDm−m0 .
The operator gDm−m0 has a linearization given by HDm−m0 and its kernel is spanned
by the eigenvector fm,n associated to the simple zero eigenvalue µ−

m,n(a; Ωm,n(a))

under the assumption of the proposition. Since HDm−m0 has a uniformly bounded
inverse operator in the complement of the kernel, according to Proposition 1, we are
in the position to define the bifurcation equation as in Theorem I.5.1 in [19].
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The only condition to be verify is that

∂ΩHDm−m0fm,n = i∂θfm,n

is not in the range of HDm−m0 . Thanks to the basis in (3.5) and the fact that the zero
eigenvalue corresponds to µ−

m,n, the leading-order approximation of the eigenvector

fm,n is given by (4.8) for a > 0 sufficiently small. Then, i∂θfm,n /∈ Ran(HDm−m0 )
because

〈i∂θfm,n, fm,n〉L2 = m− 2m0 +O(a2) �= 0.

The existence of the new root of gDm−m0 (v; a,Ω) and the estimate (4.7) for a > 0
sufficiently small follow from the Crandall-Rabinowitz theorem, where the scaling
OX(ab2) is due to the cubic terms in the expressions for g in (2.20). This theorem
gives also the estimate Ω(a, b) = Ωm,n(a)+O(b). Furthermore, the S1-action (4.3) of
the element ϕ = π/(m+m0) in the kernel generated by fm,n is given by ρ(ϕ) = −1.

Therefore, the bifurcation equation is odd and ∂vvg
Dm−m0 (0)(fm,n, fm,n) = 0. The

estimate (4.6) is obtained from formula (I.6.3) in [19]. �

Remark 18. The new family (4.6) and (4.7) exists on one side of the bifurcation
curve Ωm,n, that is,

Ω(a, b) = Ωm,n(a) + cb2 +O(b4),

where c can be computed from (I.6.11) in [19]. If c > 0 the bifurcation is supercritical
pitchfork (to the right of the bifurcation curve) and the Jacobian operator at the
new (secondary) branch of solutions has one more negative eigenvalue compared
to that at the primary branch. If c < 0 the bifurcation is subcritical pitchfork (to
the left of the bifurcation curve) and the Jacobian operator at the new branch of
solutions has one less negative eigenvalue compared to that at the primary branch.
Because the new family can be rotated in the (x, y) plane, the Jacobian operator at
the new branch has an additional zero eigenvalue related to this rotation symmetry.

The following proposition covers the non-resonant bifurcation curve Ωm+1,0, for
which Proposition 2 applies.

Proposition 4. For the non-resonant curve Ωm0+1,0 parameterized by a > 0 suf-
ficiently small, the operator gD1(v; a,Ω) in (4.5) admits a new family of roots
v ∈ Fix(D1) and Ω ∈ (0, 2) parameterized by real b such that

Ω(a, b) = Ωm0+1,0(a) +O(a2b2) (4.9)

and
v(r, θ; a,Ω(a, b)) = a

[
bfm0+1,0(r, θ; a) +OX(b2)

]
, (4.10)

where fm0+1,0 is the eigenvector of Hm0+1(a,Ωm0+1,0(a)) associated with the zero
eigenvalue.

Proof. The scaling of a in (4.10) is needed due to the loss of O(a−2) in the bound
(3.23) on the inverse operator (HD1)−1, according to Proposition 2. Since ψm0 =
O(a), the nonlinear terms in the operator gD1(v; a,Ω) are now scaled by O(a3),
hence the loss of O(a−2) produces the terms of the expansion (4.10) at the order
O(a) and higher. Hence the bifurcation problem is closed at the order O(a) and
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the proof follows the one in Proposition 3 with a new parameter b, which is scaled
independently of a. �

Remark 19. The local bifurcation in Proposition 4 is also of the pitchfork type.
Thanks to the computations in Lemma 7, the leading-order approximation of the
eigenvector fm0+1,0 is given by

fm0+1,0(r, θ; a) = cm0+1em0+1,0(r)e
i(m0+1)θ

+ c−m0+1em0−1,0(r)e
i(m0−1)θ +OX(a2), (4.11)

for a > 0 sufficiently small, where (cm0+1, c1−m0) is an eigenvector of the matrix Ã
computed in (3.17).

Remark 20. Propositions 3 and 4 yield the proof of item (iv) in Theorem 1.

4.3. Global bifurcation

We obtain the global bifurcation result in the fixed-point space Fix(Dm−m0) by using
the topological degree theory in the case of simple eigenvalues. It is usually referred
to as the global Rabinowitz result, see Theorem 3.4.1 of [27]. The global bifurcation
result means that the solution branch (v,Ω) that originates at the non-resonant
bifurcation curve (0,Ωm,n) either reaches the boundaries Ω = 0 or Ω = 2, returns to
another bifurcation point (0,Ω∗), or diverges to infinite values of v for a finite value
of Ω ∈ [0, 2).

The following result holds because the Jacobian operator H given by (2.12) and
(2.13) is bounded and has closed range for |Ω| < 2.

Lemma 10. Let X = H2(R2)∩L2,2(R2) be the domain space for the Jacobian operator
H. For every |Ω| < 2 there is a positive constant c such that the operator (H+ cI) :

X → L2(R2) is positive definite and (H+ cI)−1 : X → X is compact.

Proof. The eigenvalues of H are given by µ±
m,n(a,Ω) expanded as in (3.6). For

|Ω| < 2, the eigenvalues µ±
m,n are bounded from below and do not accumulate

at a finite value. Therefore, there is a positive constant c such that the bounded
operator H+cI : X → L2(R2) is positive definite and invertible. Since X is com-

pactly included in L2(R2), then the inverse operator (H+ cI)−1 : X ↪→ L2 → X is
compact. �

Remark 21. Observe in (3.6) that for |Ω| = 2 the eigenvalues µ±
m,n(a,Ω) can accu-

mulate at a finite value as a → 0, while for |Ω| > 2 the eigenvalues µ±
m,n(a,Ω) are

unbounded both from above and from below. As a result, the operator H+cI : X →
L2(R2) does not have a closed range for |Ω| = 2, its inverse (H+ cI)−1 : L2(R2) → X

is not bounded, and the inverse operator (H+ cI)−1 : X → X is not compact.

By Lemma 10, the Jacobian operator H is Fredholm of the degree zero for Ω ∈
[0, 2). Also the restricted operatorHDm−m0 (Ω) is a self-adjoint Fredholm operator for
every Ω ∈ [0, 2). SinceHDm−m0 (Ω) is invertible for Ω close but different from the non-
resonant bifurcation curve Ωm,n, then the Morse index nDm−m0 (Ω) of HDm−m0 (Ω)
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restricted to kerHDm−m0 (Ωm,n) for Ω close to Ωm,n is well defined. Let ηDm−m0 (Ωm,n)

be the net crossing number of eigenvalues of HDm−m0 (Ω) defined by

ηDm−m0 (Ωm,n) := lim
ε→0

∣∣nDm−m0 (Ωm,n + ε)− nDm−m0 (Ωm,n − ε)
∣∣ . (4.12)

If Ωm,n is a non-resonant bifurcation curve, then it is obvious that ηDm,n(Ωm,n) = 1.
The following proposition gives the global bifurcation result for each non-resonant
bifurcation curve.

Proposition 5. Fix a > 0 sufficiently small, if ηDm−m0 (Ωm,n) is odd for Ωm,n ∈
[0, 2), the nonlinear operator g(v; a,Ω) has a global bifurcation of solutions (v,Ω) in
Fix(Dm−m0)× [0, 2) arising from (v,Ω) = (0,Ωm,n).

Proof. Since X is a Banach algebra with respect to pointwise multiplication and
g(0; a,Ω) = 0, we obtain the expansion

g(v; a,Ω) = H(Ω)v +OX(v2).

We can apply the global Rabinowtz theorem to the nonlinear operator

f(v,Ω) = (H+ cI)−1 g(v; a,Ω)v = Iv − c (H+ cI)−1 v +OX(v2),

where c > 0 is defined in Lemma 10. The operator f is also equivariant and can
be restricted to Fix(Dm−m0) denoted by fDm−m0 . The index for bifurcation of f in
Fix(Dm−m0) is up to an orientation factor, the jump on the local indices as Ω crosses
Ωm,n. That is, since ηDm−m0 (Ωm,n) is odd, then

deg
(
‖x‖ − ε, fDm−m0 (x,Ω);B2ε ×B2ρ

)

= deg(fDm−m0 (x,Ω− ρ);B2ε)− deg(fDm−m0 (x,Ω+ ρ);B2ε)

= ±
(
1− (−1)η

Dm−m0
)
= ±2, (4.13)

where B2ε and B2ρ are ball of radius 2ε and 2ρ around 0 ∈ X ∩ Fix(Dm−m0) and
Ωm,n ∈ [0, 2), respectively. �

Remark 22. If the branch from (0,Ωm,n) returns to another bifurcation point
(0,Ωm′,n′), then the sum of all the bifurcation indices (4.13) at the bifurcation points
has to be equal zero. Therefore, the knowledge of the exact factor ± in (4.13) is help-
ful to obtain information of where the branches can return. The exact factor ± in
(4.13) can be computed for all the bifurcation curves using the fact that

deg(fD(x,Ω);B2ε) = (−1)n
Dm−m0 (Ω),

since H+cI is positive definite. For example, for the last bifurcation from Ωm0+1,0

with 1 ≤ m0 ≤ 16, the exact index is

deg
(
‖x‖ − ε, fD1(x,Ω);B2ε ×B2ρ

)
= (−1)m0 − (−1)m0−1 = (−1)m02.

Therefore, this branch can return to a single bifurcation point Ω0 only if the latter
point has index −2(−1)m0 .

Remark 23. Proposition 5 provides a proof of the claim in item (iii) of Theorem 1
that the bifurcations in the interval [a2Dm0 , 2− a2Cm0 ] are global.
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5. Individual vortices in the multi-vortex configurations

We can assume a > 0 in the expansions (2.7) and (2.8) for the primary branch after
a change of phase. Also, we can choose the sign of b by a shift of θ, i.e. we can
assume b > 0 in the expansions (4.7) and (4.10) for the secondary branch. Here
we analyze the location of individual vortices in the multi-vortex configurations
bifurcating along the secondary branch.

First, we prove that the total vortex charge is preserved near the origin when
the secondary branch bifurcates off from the primary branch.

Lemma 11. Fix R > 0. There exists b0 > 0 such that the degree of the bifurcating
solution U along the secondary branch on the circle of the radius R is m0 for every
b ∈ [0, b0).

Proof. We recall that a > 0 and ψm0(r) > 0 for every r ∈ (0,∞). For every fixed
R > 0, there exists a sufficiently small b0 > 0 such that the bifurcating solution
U(r, θ) given by (2.18) is nonzero at r = R for every b ∈ [0, b0). This follows from
the smallness of the error terms in the expansions (4.7) and (4.10) in the norm of
X = H2(R2) ∩ L2,2(R2), which is embedded in C0(R2). Since U(r, θ) is nonzero at
r = R, the degree of U on the disk BR of radius R is well defined and does not
change for every b ∈ [0, b0). Since the degree is m0 at b = 0, it remains m0 for every
b ∈ [0, b0). �

Remark 24. Because ψm0(r) → 0 as r → ∞, we are not able to claim that additional
zeros of U(r, θ) cannot come from infinity as b �= 0. If such zeros exist, additional
individual vortices come from infinity on a very small background U(r, θ).

Next, we rewrite the eigenfunctions em,n(r) of the linear eigenvalue problem
(2.2) in the form

em,n(r) = pm,n(r)e
−r2/2, (5.1)

where pm,n(r) is a polynomial of degree |m|+ 2n, which is chosen to be positive for
r near zero. The first eigenfunctions em,0(r) and em,1(r) in (2.9) and (3.4) are given
by (5.1) with

pm,0(r) =

√
2√
m!

rm, pm,1(r) =

√
2√

(m+ 1)!
rm(m+ 1− r2). (5.2)

The following proposition deals with the secondary bifurcations described in
Proposition 3.

Proposition 6. Let 0 < b � a and consider the bifurcating solution to the stationary
GP equation (2.4) in the form (2.18) given by the expansions (2.7) and (4.7). Let
r0 be the first positive zero of the function

z(r) := apm0,0(r)− bp|m−2m0|,n(r) (5.3)

and assume that it is a simple zero5. Then, the bifurcating solution has simple zeros
arranged in the (m−m0)-polygon on a circle of radius ρ with ρ = r0 +O(a2).

5The assumption is always satisfied if 0 < b � a since p|m−2m0|,n(r) is positive for small r and

|m− 2m0| < m0.
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Proof. By combining (2.7), (2.18), (4.7), and (4.8), we obtain an asymptotic repre-
sentation of the bifurcating solutions U in the form

U(r, θ) = aem0,0(r)e
im0θ + be|m−2m0|,n(r)e

i(2m0−m)θ +OX(a3, a2b, ab2, b3).

Zeros of U(r, θ) are equivalent to the zeros of

e−im0θU(r, θ) = aem0,0(r) + be|m−2m0|,n(r)e
−i(m−m0)θ + φ(r, θ), (5.4)

where φ = OX(a3, a2b, ab2, b3) satisfies the symmetry constraints (4.4).

The function e−i(m−m0)θ is real only if θ = kζ and θ = (k + 1/2)ζ, where
ζ = 2π/ (m−m0) and k ∈ Z. For these angles, the function φ(θ, r) is real by
the symmetries (4.4). Therefore, the function (5.4) is real if and only if θ = kζ and
θ = (k+1/2)ζ. These two choices of angles give two choices of the (m−m0)-polygons
of zeros along a circle of radius ρ.

To determine the small radius ρ in the limit b → 0, we factorize the factor

e−r2/2 in the eigenfunctions (5.1) and truncate the error term φ. Since we assume
that pm,n(r) is positive for r near zero, then the right-hand side of (5.4) is strictly

positive for θ = kζ and r � 0. For θ = (k + 1/2)ζ, we have e−i(m−m0)θ = −1, hence
the right-hand side of (5.4) has a zero only if z(r) in (5.3) has a positive root.

Let r0 be the first positive root of z in (5.3) and assume that it is simple. Since
the function φ(r, θ) is small in the norm of X = H2(R2)∩L2,2(R2) by Proposition 3,
an application of the implicit function theorem proves that the representation (5.4)
with θ = ζ/2 = π/(m−m0) has the (m−m0) polygon of simple zeros at the circle
of radius ρ, where ρ = r0 +O(a2). �

Remark 25. For the last bifurcation with m = m0 + 1 described in Proposition
4, a similar result cannot be proven because the small parameter a is scaled out
from the expansion (4.10). The remainder term φ = OX(ab2) in the representation
for U(r, θ) may give a contribution to the distribution of individual vortices, which
is comparable with the leading-order term aψm0(r)e

im0θ and the bifurcating mode
abfm0+1,0(r, θ; a).

In the rest of this section, we study individual vortices in the bifurcating multi-
vortex configurations.

5.1. (m−m0)-polygons of vortices

Polygons made of vortices rotating at a constant speed have been studied for many
models: fluids, BECs and superconductors. It has been found that these relative
equilibria of m vortices are stable for m ≤ 7, see, e.g., [8, 21] and references therein.
We have found that similar multi-vortex configurations appear along the secondary
branches bifurcating from the primary branch of the radially symmetric vortex of
chargem0 ≥ 2. As an example, we give precise information about the vortex polygons
in the particular cases n = 0 and n = 1. For n = 1, the bifurcation is similar to
the bifurcation of complex multi-vortex solutions described in Lemma 3.3 of [16] for
m0 = 6.
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Figure 3. The left and right columns illustrate the norm and phase
of the truncated solution U in (5.6). Top: m0 = 2 near Ω5,0. Middle:
m0 = 3 near Ω7,0. Bottom: m0 = 3 near Ω8,0.
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5.1.1. Case n = 0: Vortex polygons with a central vortex. Bifurcation occurs at the
bifurcation curve Ωm,n ∈ (0, 2) with n = 0 and 2m0 + 1 ≤ m ≤ 3m0 − 1 (when
m0 ≥ 2) in accordance with Lemma 5, Propositions 1, 3, and 6. By using (5.2) and
(5.3), we write explicitly

z(r) = apm0,0(r)− bpm−2m0,0(r)

=

√
2√

m0!
rm−2m0

(
ar3m0−m − b

√
m0!√

(m− 2m0)!

)
,

where we recall that 2m0 < m < 3m0. If 0 < b � a, the first positive zero of z(r) is
located at

r0 =

(
b

a

√
m0!√

(m− 2m0)!

)1/(3m0−m)

. (5.5)

By Proposition 6, we have a (m−m0)-polygon of simple zeros of the function

U(r, θ) =
[
apm0,0(r) + bpm−2m0,0(r)e

−i(m−m0)θ
]
e−r2/2eim0θ + φ(r, θ)eim0θ, (5.6)

at points (r, θ) = (ρ, ζ/2 + kζ), where ζ = 2π/(m−m0), k ∈ {0, 1, ...,m−m0 − 1},
ρ = r0 +O(a2), and r0 is given by (5.5).

We claim that the degree of each simple zero of U(r, θ) is +1, which means
that each zero of U on the (m−m0)-polygon represents a vortex of charge one. By
symmetry of Dm−m0 , each zero in the (m−m0)-polygon has equal degree, hence it
is sufficient to compute the degree at the simple zero (r, θ) = (ρ, ζ/2). Using Taylor
expansion of U in (5.6) for b � a, we obtain

cU(r, θ) = z′(ρ)(r − ρ) + ib(m−m0)pm−2m0,0(ρ)(θ − ζ/2) +O(2),

where c ∈ C is constant and O(2) denotes quadratic remainder terms of the Taylor
expansion. Because m − 2m0 < m0, we have z(r) < 0 for r > 0 sufficiently small,
therefore, z′(ρ) > 0 for b > 0 sufficiently small. On the other hand, m > 2m0 and
pm−2m0,0(ρ) > 0 in the same limit. Therefore, the degree of U(r, θ) at (r, θ) = (ρ, ζ/2)
is +1.

In addition, U(r, θ) in (5.6) has a zero at r = 0 if the remainder term eim0θφ(r, θ)
is truncated. Let d be the degree of U in a neighborhood of r = 0. The degree in the
disk BR of a sufficiently large radius R is equal to sum of the local degrees in the
disk. By Lemma 11, we have d+m−m0 = m0, hence d = 2m0 −m < 0.

When the remainder term eim0θφ(r, θ) is taken into account in (5.6), the mul-
tiple zero of U at r = 0 may split from the origin. However, by the symmetry in
Dm−m0 , if the central vortex splits, then it breaks intom−m0 vortices of equal charge
|d|/(m−m0). Since m− 2m0 ≤ m0 − 1 < m0 +1 ≤ m−m0, then |d|/(m−m0) < 1
and the central vortex never splits.

Remark 26. For the case m0 = 2, we have the bifurcation point Ω5,0 = 2/3+O(a2).
Since m = 5 and n = 0, we have a configuration of three vortices of charge one that
form an equilateral triangle and a central vortex of charge d = 2m0 −m = −1 (top
panel of Figure 3).
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Remark 27. For the case m0 = 3, we have two bifurcation points Ω7,0 = 1 +O(a2)
and Ω8,0 = 2/5 + O(a2). At the former bifurcation, the bifurcating branch has
four vortices of charge one that form a square and the central vortex of charge
d = 2m0 − m = −1 (middle panel of Figure 3). At the latter bifurcation, the
bifurcating branch has five vortices of charge one that form an equilateral pentagon
and the central vortex of charge d = 2m0 −m = −2 (bottom panel of Figure 3).

5.1.2. Case n = 1: Vortex polygons without a central vortex. Bifurcation occurs at
the bifurcation curve Ωm,n with n = 1 and m0 + 3 ≤ m ≤ 3m0 − 3 (when m0 ≥ 3)
in accordance with Lemma 5, Propositions 1, 3, and 6. By using (5.2) and (5.3), we
write explicitly

z(r) = apm0,0(r)− bp|m−2m0|,1(r)

=

√
2√

m0!
r|m−2m0|

(
arm0−|m−2m0| − bCm,m0(|m− 2m0|+ 1− r2)

)
,

where

Cm,m0 =

√
m0!√

(|m− 2m0|+ 1)!

and we recall that |m − 2m0| < m0. If 0 < b � a, the first positive zero of z(r) is
located at

r0 =

(
b

a
Cm,m0(|m− 2m0|+ 1)

)1/(m0−|m−2m0|)
[
1 +O

((
b

a

)2/(m0−|m−2m0|)
)]

.

By Proposition 6, we have the (m−m0) polygon of vortices on the circle of radius
ρ = r0 +O(a2). Each vortex has charge one by using the same arguments as in the
case n = 0.

Remark 28. If m = 2m0, the polygon of m0 charge-one vortices surrounds the origin
with no central vortex. For m0 = 3, the bifurcation point is Ω6,1 = 2/3 + O(a2)
and the secondary branch has three charge-one vortices located at the equilateral
triangle. For m0 = 6 studied in [16], the bifurcation point is Ω12,1 = 4/3+O(a2) and
the secondary branch has six charge-one vortices at a hexagon (top panel of Figure
4).

Remark 29. If m �= 2m0, U(r, θ) has zero at r = 0 if the remainder term φ(r, θ) is
truncated. By Lemma 11, the central zero of U corresponds to the vortex of charge
d = 2m0 − m, where −m0 < d < m0. The central vortex may split into m − m0

vortices of equal charge only if |d| is divisible by m−m0.

5.2. Asymmetric vortex and asymmetric vortex pair

Bifurcation occurs at the bifurcation curve Ωm0+1,0 = 2 + O(a2) (when m0 ≥ 1)
in accordance with Lemma 6, Propositions 2 and 4. By using (4.10) and (4.11), we
write explicitly

U(r, θ) = a
[
pm0,0(r) + bcm0+1pm0+1,0(r)e

iθ + bc−m0+1pm0−1,0(r)e
−iθ

]
e−r2/2eim0θ

+ φ(r, θ)eim0θ,
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Figure 4. The left and right columns illustrate the norm and phase
of the truncated solution U . Top: m0 = 6 near Ω12,1. Center: m0 = 1
near Ω2,0. Bottom: m0 = 2 near Ω3,0.
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where (cm0+1, c−m0+1) is obtained from the eigenvector in (3.17) and φ = OX(ab2),
see Remark 25. In particular, we have cm0+1 > 0 and c−m0+1 < 0.

Remark 30. If m0 = 1 and 0 < b � a, the simple zero of U(r, θ) near the origin is
located at ρ = b|c0|+O(b2). The degree of U near the simple zero at (r, θ) = (ρ, π)
is again +1, so that the corresponding vortex has charge one. Since no other zeros of
U(r, θ) are located near the origin, the bifurcating solution at the secondary branch
corresponds to the asymmetric vortex obtained in [29] (center panel of Figure 4).

Remark 31. If m0 = 2 and 0 < b � a, the double zero of U(r, θ) at the origin
for b = 0 split to the distances ρ± = O(b) according to the roots of the quadratic
equation

r2 ± b|c−1|
√
2 + b2β = 0, (5.7)

where β is a numerical constant obtained from the remainder term φ(r, θ), whereas
the plus and minus signs correspond to the choice θ = 0 and θ = π respectively.
Only positive roots of the quadratic equations (5.7) are counted, and according to
Lemma 11, we should have the total of two positive roots at both sign combinations.
Indeed, if β > 0, the two positive roots ρ± = O(b) exist for θ = π and no positive
roots for θ = 0, while if β < 0, one positive root ρ+ exists for θ = 0 and one positive
root exists for θ = π. In both cases, ρ+ �= ρ−, so that the bifurcating solution at
the secondary branch corresponds to the asymmetric pair of two charge-one vortices
obtained in [26] (bottom panel of Figure 4 in the case β < 0).

Remark 32. If m0 ≥ 3 and 0 < b � a, the multiple root of U(r, θ) at the origin
for b = 0 split to the distances ρ± = O(b) according to the roots of the n-th order
polynomial equation, which is obtained from computations of the remainder term
φ(r, θ) up to the order of bn. By Lemma 11, there must exist exactly n roots to the
two polynomial equations for θ = 0 and θ = π but the precise characterization of
these roots depend on the coefficients of the polynomial equation.

Remark 33. Proposition 6 and computations in Sections 5.1 and 5.2 yield the proof
of item (v) of Theorem 1. All items of Theorem 1 have been proved.
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Dipoles in Anisotropic Bose-Einstein Condensates”, SIAM J. Appl. Dyn. Syst. 14 (2014),

699–729.

[13] R. Ignat and V. Millot, “The critical velocity for vortex existence in a two-dimensional

rotating Bose–Einstein condensate”, J. Funct. Anal. 233 (2006), 260–306.

[14] R. Ignat and V. Millot, “Energy expansion and vortex location for a two-dimensional

rotating Bose–Einstein condensate”, Rev. Math. Phys. 18 (2006), 119–162.

[15] J. Ize, A. Vignoli, Equivariant degree theory, De Gruyter Series in Nonlinear Analysis

and Applications 8. Walter de Gruyter, Berlin, 2003.

[16] T. Kapitula, P.G. Kevrekidis, and R. Carretero–González, “Rotating matter waves in

Bose–Einstein condensates”, Physica D 233 (2007), 112–137.

[17] T. Kato, Perturbation theory for linear operators (Springer–Verlag, Berlin, 1995).

[18] P.G. Kevrekidis and D.E. Pelinovsky, “On the characterization of vortex configurations

in the steady rotating Bose-Einstein condensates”, arXiv:1708.03683 (2017)
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