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Abstract

We consider a half-soliton stationary state of the nonlinear Schrödinger equation with the power nonlin-
earity on a star graph consisting of N edges and a single vertex. For the subcritical power nonlinearity, the 
half-soliton state is a degenerate critical point of the action functional under the mass constraint such that 
the second variation is nonnegative. By using normal forms, we prove that the degenerate critical point is a 
saddle point, for which the small perturbations to the half-soliton state grow slowly in time resulting in the 
nonlinear instability of the half-soliton state. The result holds for any N ≥ 3 and arbitrary subcritical power 
nonlinearity. It gives a precise dynamical characterization of the previous result of Adami et al. (2012) [2], 
where the half-soliton state was shown to be a saddle point of the action functional under the mass constraint 
for N = 3 and for cubic nonlinearity.
© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In many realistic physical experiments involving wave propagation in thin waveguides, multi-
dimensional models can be reduced approximately to the one-dimensional PDEs on graphs [9,
15,16,23]. Similarly, quantum nanowires and other thin structures in nanotechnology can be de-
scribed by the one-dimensional Schrödinger equation on graphs [18].

Spectral properties of Laplacian and other linear operators on graphs have been intensively 
studied in the past twenty years [10,14]. The time evolution of linear PDEs on graphs is well 
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defined by the standard semi-group theory, once a self-adjoint extension of the graph Laplacian 
is constructed. On the other hand, the time evolution of nonlinear PDEs on graphs is a more 
challenging problem involving interplay between nonlinear analysis, geometry, and the spec-
tral theory of non-self-adjoint operators. The nonlinear PDEs on graphs, mostly the nonlinear 
Schrödinger equation (NLS), has been studied in the past five years in the context of existence, 
stability, and propagation of solitary waves [25].

In a series of papers [1–5], Adami, Cacciapuoti, Finco, and Noja analyzed variational prop-
erties of stationary states on a star graph, which is the union of N half-lines (edges) connected 
at a single vertex. For the standard Kirchhoff boundary conditions at the vertex and for odd N , 
there is only one stationary state of the NLS on the star graph. This state is represented by 
the half-solitons along each edge glued by their unique maxima at the vertex. By using a one-
parameter deformation of the NLS energy constrained by the fixed mass, it was shown that the 
half-soliton state is a saddle point of the constrained NLS energy [2]. On the other hand, by 
adding a focusing delta impurity to the vertex, it was proven that there exists a global minimizer 
of the constrained NLS energy for a sufficiently small mass below the critical mass [1,3,4]. This 
minimizer coincides with the N -tail state symmetric under exchange of edges, which has mono-
tonically decaying tails and which becomes the half-soliton state if the delta impurity vanishes. 
In the concluding paper [5], it was proven that although the constrained minimization problem 
admits no global minimizers for a sufficiently large mass above the critical mass, the N -tail state 
symmetric under exchange of edges is still a local minimizer of the constrained NLS energy on 
a star graph when a focusing delta impurity is added on the vertex.

Due to local minimization property, the N -tail state symmetric under exchange of edges is 
orbitally stable in the time evolution of the NLS in the presence of the focusing delta impurity. 
Although the second variation of the constrained energy was mentioned in the first work [1], 
the authors obtained all the variational results in [3–5] from the energy formulation avoiding 
the linearization procedure. In the same way, the saddle point geometry of energy at the half-
soliton state in the case of vanishing delta impurity was not related in [2] to the instability of the 
half-soliton state in the time evolution of the NLS. It is quite well known that the saddle point 
geometry does not necessarily imply instability of stationary states in Hamiltonian systems. In 
the linearized Hamiltonian systems, eigenvalues of the negative energy may be accounted in the 
neutrally stable modes that are bounded for all times [21]. Nonlinear instability of such states 
may still appear in the nonlinear Hamiltonian systems due to resonant coupling between neu-
rally stable modes of negative energy and the continuous spectrum [22], however, this coupling 
can be avoided in some Hamiltonian systems [13].

The recent works of Adami, Serra, and Tilli [6,7] were devoted to the existence of ground 
states on the unbounded graphs that are connected to infinity after removal of any edge. It was 
proven that if the infimum of the constrained NLS energy on the unbounded graph coincides with 
the infimum of the constrained NLS energy on the infinite line, then it is not achieved (that is, 
no ground state exists) for every such a graph with the exception of graphs isometric to the real 
line [6]. The reason why the infimum is not achieved is a possibility to minimize the constrained 
NLS energy by a family of NLS solitary waves escaping to infinity along one edge of the graph. 
The star graph with vanishing delta impurity is an example of the unbounded graphs with no 
ground states, moreover, the constrained NLS energy of the half-soliton state is strictly greater 
than its infimum. Thus, the study in [6] provides a general argument of the computations in [2], 
where it is shown that the one-parameter deformation of the half-soliton state with the fixed mass 
reduces the NLS energy and connects the half-soliton state with the solitary wave escaping along 
one edge of the star graph.
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Further works on existence and stability of stationary states on the unbounded graphs have 
been developed in the context of the logarithmic NLS equation [8], the power NLS equation 
with δ′ interactions [28], the power NLS equation on the tadpole graph [26], and the cubic NLS 
equation on the periodic graph [17,30].

In the present work, we provide a dynamical characterization of the result in [2] for the NLS 
with the power nonlinearity and in the case of an arbitrary star graph. By using dynamical system 
methods (in particular, normal forms), we will verify that the half-soliton state is the saddle point 
of the constrained NLS energy on the star graph and moreover it is dynamically unstable due to 
the slow growth of perturbations. This nonlinear instability is likely to result in the destruction 
of the half-soliton state pinned to the vertex and the formation of a solitary wave escaping to 
infinity along one edge of the star graph.

Since the degenerate saddle points with positive second variation are rarely met in applications 
of the NLS equations, it is the first time to the best of our knowledge when the energy method is 
adopted to the proof of the nonlinear instability of the spectrally stable stationary states.

The paper is organized as follows. Section 2 states the main results for the NLS equation on 
the star graph. Positivity of the second variation of the action functional is proven in Section 3. 
Saddle point geometry near the half-soliton state is proven with normal forms in Section 4. 
Dynamical characterization of the nonlinear instability of the half-soliton state is developed with 
normal forms and energy estimates in Section 5.

2. Main results

Let � be a star graph, which is constructed by attaching N half-lines at a common vertex. Let 
us choose the vertex as the origin and parameterize each edge of � by R+. The Hilbert space on 
the graph � is given by

L2(�) = ⊕N
j=1L

2(R+).

Elements in L2(�) are represented as vectors � = (ψ1, ψ2, . . . , ψN)T of L2(R+)-functions with 
each component corresponding to one edge. The squared norm of such L2(�)-functions is given 
by

‖�‖2
L2(�)

:=
N∑

j=1

‖ψj‖2
L2(R+)

.

Similarly, we define the L2-based Sobolev spaces on the graph �

Hk(�) = ⊕N
j=1H

k(R+), k ∈ N

and equip them with suitable boundary conditions at the vertex. For the weak formulation of the 
NLS on �, we define H 1

� by using the continuity boundary conditions as in

H 1
� := {� ∈ H 1(�) : ψ1(0) = ψ2(0) = · · · = ψN(0)}, (2.1)

whereas for the strong formulation of the NLS on �, we define H 2
� by using the Kirchhoff bound-

ary conditions as in
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H 2
� :=

⎧⎨⎩� ∈ H 2(�) : ψ1(0) = ψ2(0) = · · · = ψN(0),

N∑
j=1

ψ ′
j (0) = 0

⎫⎬⎭ . (2.2)

The dual space to H 1
� is H−1

� := H−1(�).
We consider the NLS equation on the star graph � with the power nonlinearity in the normal-

ized form,

i
∂�

∂t
= −�� − (p + 1)|�|2p�, (2.3)

where p > 0, � = �(t, x), �� = (ψ ′′
1 , ψ ′′

2 , . . . , ψ ′′
N)T is the Laplacian operator defined in the 

componentwise sense with primes denoting derivatives in x, and the nonlinear term |�|2p� is 
interpreted as a symbol for (|ψ1|2pψ1, |ψ2|2pψ2, . . . , |ψN |2pψN)T .

In the weak formulation, stationary states of the NLS are defined as critical points of the action 
functional �ω(�) := E(�) + ωQ(�) in the energy space H 1

� , where ω ∈ R is a free parameter, 
whereas

E(�) = ‖�′‖2
L2(�)

− ‖�‖2p+2
L2p+2(�)

, Q(�) = ‖�‖2
L2(�)

(2.4)

are the energy and mass functionals, respectively. The local well-posedness of the NLS evolution 
in H 1

� follows by a standard contraction method. The energy E(�) and mass Q(�) are constants 
of motion in the time evolution of the NLS flow in H 1

�. See Propositions 2.1 and 2.2 in [4].

Remark 2.1. The local solutions of the NLS in H 1
� are extended globally in time by the energy 

conservation and Gagliardo–Nirenberg inequality for the L2-subcritical power nonlinearity with 
p ∈ (0, 2). On the other hand, local solutions to the NLS are known to blow up in a finite time in 
the H 1(�) norm for p = 2 (critical nonlinearity) and p > 2 (supercritical nonlinearity).

In the strong formulation, stationary states of the NLS are given by the standing wave solutions 
of the form

�(t, x) = eiωt
ω(x), 
ω ∈ H 2
�,

where (ω, 
ω) are real-valued solutions of the stationary NLS equation,

−�
ω − (p + 1)|
ω|2p
ω = −ω
ω, 
ω ∈ H 2
�. (2.5)

Remark 2.2. The weak and strong formulations of the stationary states of the NLS on � are 
equivalent to each other because the Kirchhoff conditions in H 2

� are natural boundary conditions 
for critical points of �ω in H 1

� .

No solution 
ω ∈ H 2
� to the stationary NLS equation (2.5) exists for ω ≤ 0, because 

σ(−�) ≥ 0 in L2(�) and 
ω(x), 
′
ω(x) → 0 as x → ∞ if 
ω ∈ H 2

� by Sobolev’s embedding 
theorems. Therefore, we consider ω > 0 in the stationary NLS equation (2.5). Since � consists 
of edges with the parametrization on R+, the scaling transformation



A. Kairzhan, D.E. Pelinovsky / J. Differential Equations 264 (2018) 7357–7383 7361

ω(x) = ω
1

2p 
(z), z = ω
1
2 x (2.6)

can be used to scale the positive parameter ω to unity. The normalized profile 
 is now a solution 
of the stationary NLS equation

−�
 + 
 − (p + 1)|
|2p
 = 0, 
 ∈ H 2
�. (2.7)

The stationary NLS equation (2.7) has a particular solution


(x) = φ(x)

⎛⎜⎜⎜⎝
1
1
...

1

⎞⎟⎟⎟⎠ with φ(x) = sech
1
p (px). (2.8)

This solution is labeled as the half-soliton state. If N is odd, the half-soliton state is a unique 
solution to the stationary NLS equation (2.7) in H 2

� , whereas if N is even, there exist additional 
solutions with the translational parameters. See Theorem 5 in [4]. These solutions with the trans-
lational parameters are labeled as the shifted states and studied in our companion paper [20]. In 
what follows, we only consider the half-soliton state for any N ≥ 3.

Our main results are given as follows. Thanks to the scaling transformation, we set ω = 1 and 
use notations � and 
 for �ω=1 and 
ω=1.

Theorem 2.3. Let �′′(
) be the Hessian operator for the second variation of �(�) at � = 
 in 
H 1

� . For every p ∈ (0, 2), it is true that 〈�′′(
)V, V 〉L2(�) ≥ 0 for every V ∈ H 1
� ∩ L2

c , where

L2
c :=

{
V ∈ L2(�) : 〈V,
〉L2(�) = 0

}
. (2.9)

Moreover, 〈�′′(
)V, V 〉L2(�) = 0 if and only if V ∈ H 1
� ∩ L2

c belongs to a (N − 1)-dimensional 
subspace Xc := span{U(1), U(2), . . . , U(N−1)} ⊂ L2

c , where the orthogonal vectors are con-
structed by induction in Remark 3.7 below. Consequently, V = 0 is a degenerate minimizer of 
〈�′′(
)V, V 〉L2(�) in H 1

� ∩ L2
c .

Remark 2.4. If p = 2, then 〈�′′(
)V, V 〉L2(�) = 0 if and only if V ∈ H 1
� ∩ L2

c belongs to a 
N -dimensional subspace of L2

c with an additional degeneracy. For p > 2, the second variation is 
not positive in H 1

� ∩ L2
c .

Theorem 2.5. Let Xc = span{U(1), U(2), . . . , U(N−1)} ⊂ L2
c be defined as in Theorem 2.3. For 

every p ∈ [ 1
2 ,2

)
, there exists δ > 0 such that for every c = (c1, c2, . . . , cN−1)

T ∈R
N−1 satisfying 

‖c‖ ≤ δ, there exists a unique minimizer of the variational problem

M(c) := inf
U⊥∈H 1

�∩L2
c∩[Xc]⊥

[
�(
 + c1U

(1) + c2U
(2) + · · · + cN−1U

(N−1) + U⊥) − �(
)
]

(2.10)
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such that ‖U⊥‖H 1(�) ≤ A‖c‖2 for a c-independent constant A > 0. Moreover, M(c) is sign-
indefinite in c. Consequently, 
 is a saddle point of � in H 1

� with respect to perturbations in 
H 1

� ∩ L2
c .

Remark 2.6. The restriction p ≥ 1
2 is used in order to expand �(
 + U) up to the cubic terms 

with respect to the perturbation U ∈ H 1
� ∩ L2

c and then to pass to normal forms. If p = 2, 
 is 
still a nonlinear saddle point of � in H 1

� ∩ L2
c but the proof needs to be modified by the fact 

that Xc is N -dimensional. If p > 2, it follows already from the second derivative test that 
 is a 
saddle point of � in H 1

� ∩ L2
c .

Theorem 2.7. For every p ∈ [ 1
2 ,2

)
, there exists ε > 0 such that for every δ > 0 (sufficiently 

small) there exists V ∈ H 1
� with ‖V ‖H 1

�
≤ δ such that the unique global solution �(t) ∈

C(R, H 1
�) ∩C1(R, H−1

� ) to the NLS equation (2.3) starting with the initial datum �(0) = 
 +V

satisfies

inf
θ∈R‖e−iθ�(t0) − 
‖H 1(�) > ε for some t0 > 0. (2.11)

Consequently, the orbit {
eiθ }θ∈R is unstable in the time evolution of the NLS equation (2.3) in 
H 1

� .

Remark 2.8. If p = 2, the instability claim of Theorem 2.7 follows from the same analysis as 
the one applied to the NLS equation on the real line [11,27]. If p > 2, the instability claim of 
Theorem 2.7 follows from the standard approach [19].

Theorems 2.3, 2.5, 2.7 are proven in Sections 3, 4, and 5, respectively.

3. Proof of Theorem 2.3

We set ω = 1 by the scaling transformation (2.6) and consider the half-soliton state 
 given 
by (2.8). Substituting � = 
 + U + iW with real-valued U, W ∈ H 1

� into the action functional 
�(�) = E(�) + Q(�) and expanding in U, W yield

�(
 + U + iW) = �(
) + 〈L+U,U 〉L2(�) + 〈L−W,W 〉L2(�) + N(U,W), (3.1)

where

〈L+U,U 〉L2(�) :=
∫
�

[
(∇U)2 + U2 − (2p + 1)(p + 1)
2pU2

]
dx,

〈L−W,W 〉L2(�) :=
∫
�

[
(∇W)2 + W 2 − (p + 1)
2pW 2

]
dx,

and

N(U,W) =
{

o(‖U + iW‖2
H 1(�)

), p ∈ (
0, 1

2

)
,

O(‖U + iW‖3
1 ), p ≥ 1 .
H (�) 2
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In the strong formulation, we can also define the two Hessian operators

L+ = −� + 1 − (2p + 1)(p + 1)
2p : H 2
� ⊂ L2(�) → L2(�), (3.2)

L− = −� + 1 − (p + 1)
2p : H 2
� ⊂ L2(�) → L2(�), (3.3)

where 
2p = (φ
2p
1 , φ2p

2 , . . . , φ2p
N )T . Both operators are extended as the self-adjoint operators 

in L2(�). The spectrum σ(L±) ⊂ R consists of the continuous and discrete parts denoted by 
σc(L±) and σp(L±) respectively.

By Weyl’s Theorem, since 
2p is bounded and decays exponentially fast to zero at infinity, 
we have σc(L±) = σ(−� + 1) = [1, ∞). Therefore, we are only concerned with the eigenvalues 
of σp(L±) in (−∞, 1). The following result shows that σp(L−) ≥ 0, 0 ∈ σp(L−) is simple, and 
L− is coercive in the subspace L2

c associated with a single constraint in (2.9).

Lemma 3.1. There exists C > 0 such that

〈L−W,W 〉L2(�) ≥ C‖W‖2
H 1(�)

for every W ∈ H 1
� ∩ L2

c, (3.4)

where L2
c is given by (2.9).

Proof. By using (2.8), we write for every W = (w1, w2, . . . , wN)T ∈ H 1
� ,

〈L−W,W 〉L2(�) =
N∑

j=1

+∞∫
0

[(dwj

dx

)2

+ w2
j − (p + 1)φ2pw2

j

]
dx. (3.5)

By using φ′′ = φ − (p + 1)φ2p+1, (φ′)2 = φ2 − φ2p+2, and integration by parts, we obtain

+∞∫
0

pw2
jφ

2pdx =
+∞∫
0

2wj

dwj

dx

φ′

φ
dx

and

+∞∫
0

(
w2

j − φ2pw2
j

)
dx =

+∞∫
0

w2
j

(
φ′

φ

)2

dx,

so that the representation (3.5) is formally equivalent to

〈L−W,W 〉L2(�) =
N∑

j=1

+∞∫
0

φ2
∣∣∣ d

dx

(wj

φ

)∣∣∣2dx ≥ 0. (3.6)

Since φ(x) > 0 for every x ∈ R
+ and ∂x logφ ∈ L∞(R), the representation (3.6) is justified for 

every W ∈ H 1. It follows from (3.6) that 〈L−W, W 〉L2(�) = 0 if and only if W ∈ H 1 satisfies
� �
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d

dx

(wj

φ

)
= 0 almost everywhere and for every j. (3.7)

Sobolev’s embedding of H 1(R+) into C(R+) and equation (3.7) imply that wj = cjφ for some 
constant cj . The continuity boundary conditions in the definition of H 1

� in (2.1) then yield c1 =
c2 = · · · = cN , which means that 0 is a simple eigenvalue of the operator L− in (3.3) with the 
eigenvector 
. Since eigenvalues of σp(L−) ∈ (−∞, 1) are isolated, the coercivity bound (3.4)
follows by the spectral theorem and Gårding inequality. �

In order to study σp(L+) in (−∞, 1), we review the construction of exponentially decaying 
solutions of the second-order differential equation

−u′′(x) + u(x) − (2p + 1)(p + 1) sech2(px)u(x) = λu(x), x ∈ (0,∞), λ < 1. (3.8)

The following two lemmas recall some well-known results on the Schrödinger equation (3.8).

Lemma 3.2. For every λ < 1, there exists a unique solution u ∈ C1(R+) to equation (3.8) such 
that

lim
x→+∞u(x)e

√
1−λx = 1. (3.9)

The other linearly independent solution to equation (3.8) diverges as x → +∞.

Proof. See, e.g., Lemma 5.2 in [26]. The existence of a unique decaying solution as x → +∞
is obtained after the boundary-value problem (3.8)–(3.9) is reformulated as the Volterra’s inte-
gral equation with a bounded kernel. The other linearly independent solution to the second-order 
equation (3.8) diverges as x → +∞ thanks to the x-independent and nonzero Wronskian deter-
minant between the two solutions. �
Lemma 3.3. If u(0) = 0 (resp. u′(0) = 0) for some λ0 < 1, the solution u of Lemma 3.2 is 
extended into an odd (resp. even) eigenfunction of the Schrödinger equation (3.8) on the infinite 
line. The point λ0 becomes the eigenvalue of the associated Schrödinger operator defined in 
L2(R). There exists exactly one λ0 < 0 corresponding to u′(0) = 0 and a simple eigenvalue 
λ0 = 0 corresponding to u(0) = 0, all other such points λ0 in (0, 1) are bounded away from zero.

Proof. The solution u in Lemma 3.2 is extended to an eigenfunction of the associated 
Schrödinger operator defined in L2(R) by the reversibility of the Schrödinger equation (3.8)
with respect to the transformation x �→ −x. The count of eigenvalues follows by Sturm’s nodal 
theorem since the odd eigenfunction for the eigenvalue λ0 = 0,

φ′(x) = − sech
1
p (px) tanh(px)

has one zero on the infinite line. Hence, λ0 = 0 is the second eigenvalue of the associated 
Schrödinger equation with exactly one simple negative eigenvalue λ0 < 0 that corresponds to 
an even eigenfunction. All other eigenvalues in (0, 1) are bounded away from zero. �
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Remark 3.4. For p = 1, the solution u in Lemma 3.2 is available in the closed analytic form:

u(x) = e−√
1−λx 3 − λ + 3

√
1 − λ tanhx − 3 sech2 x

3 − λ + 3
√

1 − λ
.

In this case, the eigenvalues and eigenfunctions in Lemma 3.3 are given by

λ = −3 : u(x) = 1

4
sech2 x,

λ = 0 : u(x) = 1

2
tanhx sechx.

No other eigenvalues of the associated Schrödinger operator on L2(R) exist in (−∞, 1).

By using Lemmas 3.2 and 3.3, we can now characterize σp(L+) in (−∞, 1). The follow-
ing result shows that σp(L+) includes a simple negative eigenvalue and a zero eigenvalue of 
multiplicity N − 1.

Lemma 3.5. Let u be a solution of Lemma 3.2 for λ ∈ (−∞, 1). Then, λ0 ∈ (−∞, 1) is an eigen-
value of σp(L+) if and only if either u(0) = 0 or u′(0) = 0 (both u(0) and u′(0) cannot vanish 
simultaneously). Moreover, λ0 in σp(L+) has multiplicity N − 1 if u(0) = 0 and multiplicity 1 if 
u′(0) = 0.

Proof. Let λ0 ∈ (−∞, 1) be an eigenvalue of σp(L+) and denote the eigenvector by U ∈ H 2
� . 

Since U(x) and U ′(x) decay to zero as x → +∞, by Sobolev’s embedding of H 2(R+) to the 
space C1(R+), we can parameterize U ∈ H 2

� by using u from Lemma 3.2 as follows

U(x) = u(x)

⎛⎜⎜⎜⎝
c1
c2
...

cN

⎞⎟⎟⎟⎠ ,

where (c1, c2, . . . , cN) are some coefficients. By using the boundary conditions in the definition 
of H 2

� in (2.2), we obtain a homogeneous linear system on the coefficients:

c1u(0) = c2u(0) = · · · = cNu(0), c1u
′(0) + c2u

′(0) + · · · + cNu′(0) = 0. (3.10)

The determinant of the associated matrix is

� = [u(0)]N−1u′(0)

∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 . . . 0
1 0 −1 . . . 0
1 0 0 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣
= N [u(0)]N−1u′(0). (3.11)

Therefore, U �= 0 is an eigenvector for an eigenvalue λ0 ∈ (−∞, 1) if and only if � = 0, which 
is only possible in (3.11) if either u(0) = 0 or u′(0) = 0. Moreover, multiplicity of u(0) and u′(0)
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in � coincides with the multiplicity of the eigenvalue λ0 because it gives the number of linearly 
independent solutions of the homogeneous linear system (3.10). The assertion of the lemma is 
proven. �
Corollary 3.6. There exists exactly one simple negative eigenvalue λ0 < 0 in σp(L+) and a zero 
eigenvalue λ0 = 0 in σp(L+) of multiplicity N − 1, all other possible eigenvalues of σp(L+) in 
(0, 1) are bounded away from zero.

Proof. The result follows from Lemmas 3.3 and 3.5. �
Remark 3.7. For the simple eigenvalue λ0 < 0 in σp(L+), the corresponding eigenvector is

U = u(x)

⎛⎜⎜⎜⎝
1
1
...

1

⎞⎟⎟⎟⎠ ,

where u(x) > 0 for every x ∈R
+ with u′(0) = 0. For the eigenvalue λ0 = 0 of multiplicity N −1

in σp(L+), the invariant subspace of L+ can be spanned by an orthogonal basis of eigenvectors 
{U(1), U(2), . . . , U(N−1)}. The orthogonal basis of eigenvectors can be constructed by induction 
as follows:

N = 3 : U(1) = φ′(x)

⎛⎝ 1
−1
0

⎞⎠ , U(2) = φ′(x)

⎛⎝ 1
1

−2

⎞⎠ ,

N = 4 : U(1) = φ′(x)

⎛⎜⎜⎝
1

−1
0
0

⎞⎟⎟⎠ , U(2) = φ′(x)

⎛⎜⎜⎝
1
1

−2
0

⎞⎟⎟⎠ , U(3) = φ′(x)

⎛⎜⎜⎝
1
1
1

−3

⎞⎟⎟⎠ ,

and so on.

The following result shows that the operator L+ is positive in the subspace L2
c associated 

with a scalar constraint in (2.9), provided the nonlinearity power p is in (0, 2), and coercive on a 
subspace of L2

c orthogonal to ker(L+).

Lemma 3.8. For every p ∈ (0, 2), 〈L+U, U〉L2(�) ≥ 0 for every U ∈ H 1
� ∩ L2

c , where L2
c is 

given by (2.9). Moreover 〈L+U, U〉L2(�) = 0 if and only if U ∈ H 1
� ∩ L2

c belongs to the 
(N − 1)-dimensional subspace Xc = span{U(1), U(2), . . . , U(N−1)} ⊂ L2

c in the kernel of L+. 
Consequently, there exists Cp > 0 such that

〈L+U,U 〉L2(�) ≥ Cp‖U‖2
H 1(�)

for every U ∈ H 1
� ∩ L2

c ∩ [Xc]⊥. (3.12)

Proof. Since σc(L+) = σ(−� + 1) = [1, ∞) by Weyl’s Theorem, the eigenvalues of σp(L+)

at λ0 < 0 and λ = 0 given by Corollary 3.6 are isolated. Since 〈U(k), 
〉L2(�) = 0 for every 
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1 ≤ k ≤ N − 1, L−1+ 
 exists in L2(�) and is in fact given by L−1+ 
 = −∂ω
ω|ω=1 up to an 
addition of an arbitrary element in ker(L+). By the well-known result (see Theorem 3.3 in [19]), 
L+|L2

c
(that is, L+ restricted on subspace L2

c) is nonnegative if and only if

0 ≥ 〈L−1+ 
,
〉L2(�) = −〈∂ω
ω|ω=1,
〉L2(�) = −1

2

d

dω
‖
ω‖2

L2(�)

∣∣∣∣
ω=1

. (3.13)

Moreover, ker(L+|L2
c
) = ker(L+) if 〈L−1+ 
, 
〉L2(�) �= 0. By the direct computation, we obtain

‖
ω‖2
L2(�)

= Nω
1
p

− 1
2

∞∫
0

φ(z)2dz

so that

d

dω
‖
ω‖2

L2(�)
= N

(
1

p
− 1

2

)
ω

1
p

− 3
2

∞∫
0

φ(z)2dz, (3.14)

so that L+|L2
c
≥ 0 if p ∈ (0, 2] and ker(L+|L2

c
) = ker(L+) if p ∈ (0, 2). This argument gives the 

first two assertions of the lemma. The coercivity bound (3.12) follows from the spectral theorem 
in L2

c and Gårding inequality. �
Proof of Theorem 2.3. It follows from the expansion (3.1) that

1

2
〈�′′(
)V,V 〉L2(�) = 〈L+U,U 〉L2(�) + 〈L−W,W 〉L2(�) with V = U + iW,

where U, W ∈ H 1
� are real-valued. The result of Theorem 2.3 follows by Lemmas 3.1

and 3.8. �
4. Proof of Theorem 2.5

To prove Theorem 2.5, it is sufficient to work with real-valued perturbations U ∈ H 1
� ∩ L2

c to 
the critical point 
 ∈ H 1

� of the action functional �. Assuming p ≥ 1
2 , we substitute � = 
 + U

with real-valued U ∈ H 1
� into �(�) and expand in U to obtain

�(
+U) = �(
)+〈L+U,U 〉L2(�) − 2

3
p(p + 1)(2p + 1)〈
2p−1U2,U 〉L2(�) +S(U), (4.1)

where

S(U) =
{

o(‖U‖3
H 1(�)

), p ∈ ( 1
2 ,1

)
,

O(‖U‖4
1 ), p ≥ 1.
H (�)
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Compared to the expansion (3.1), we have set W = 0 and have expanded the cubic term explicitly, 
under the additional assumption p ≥ 1

2 . In what follows, we inspect convexity of �(
 +U) with 
respect to the small perturbation U ∈ H 1

� ∩ L2
c .

The quadratic form 〈L+U, U〉L2(�) is associated with the same operator L+ given by (3.2). By 
Lemma 3.8, ker(L+) ≡ Xc = span{U(1), U(2), . . . , U(N−1)} for every p > 0, where the orthog-
onal vectors {U(1), U(2), . . . , U(N−1)} are constructed inductively in Remark 3.7. Furthermore, 
by Lemma 3.8, if U ∈ H 1

� ∩ L2
c , that is, if U satisfies 〈U, 
〉L2(�) = 0, then the quadratic form 

〈L+U, U〉L2(�) is positive for p ∈ (0, 2), whereas if U ∈ H 1
� ∩ L2

c ∩ [Xc]⊥, the quadratic form is 
coercive. Hence, we use the orthogonal decomposition for U ∈ H 1

� ∩ L2
c :

U = c1U
(1) + c2U

(2) + · · · + cN−1U
(N−1) + U⊥, (4.2)

where U⊥ ∈ H 1
� ∩ L2

c ∩ [Xc]⊥ satisfies 〈U⊥, U(j)〉L2(�) = 0 for every j and the coefficients 
(c1, c2, . . . , cN−1) are found uniquely by

cj = 〈U,U(j)〉L2(�)

‖U(j)‖2
L2(�)

, for every j.

The following result shows how to define a unique mapping from c = (c1, c2, . . . , cN−1)
T ∈

R
N−1 to U⊥ ∈ H 1

� ∩ L2
c ∩ [Xc]⊥ for small c.

Lemma 4.1. For every p ∈ [ 1
2 ,2

)
, there exists δ > 0 and A > 0 such that for every c ∈ R

N−1

satisfying ‖c‖ ≤ δ, there exists a unique minimizer U⊥ ∈ H 1
� ∩ L2

c ∩ [Xc]⊥ of the variational 
problem

inf
U⊥∈H 1

�∩L2
c∩[Xc]⊥

[
�(
 + c1U

(1) + c2U
(2) + · · · + cN−1U

(N−1) + U⊥) − �(
)
]
, (4.3)

satisfying

‖U⊥‖H 1(�) ≤ A‖c‖2. (4.4)

Proof. First, we find the critical point of �(
 + U) with respect to U⊥ ∈ H 1
� ∩ L2

c ∩ [Xc]⊥
for a given small c ∈ R

N−1. Therefore, we set up the Euler–Lagrange equation in the form 
F(U⊥, c) = 0, where

F(U⊥, c) : X ×R
N−1 �→ Y, X := H 1

� ∩ L2
c ∩ [Xc]⊥, Y := H−1

� ∩ L2
c ∩ [Xc]⊥ (4.5)

is given explicitly by

F(U⊥, c) := L+U⊥ − p(p + 1)(2p + 1)�c

2p−1

⎛⎝N−1∑
j=1

cjU
(j) + U⊥

⎞⎠2

− �cR

⎛⎝N−1∑
cjU

(j) + U⊥
⎞⎠ ,
j=1
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where �c : L2(�) �→ L2
c ∩ [Xc]⊥ is the orthogonal projection operator and R(U) satisfies

‖R(U)‖H 1(�) =
{

o(‖U‖2
H 1(�)

), p ∈ ( 1
2 ,1

)
,

O(‖U‖3
H 1(�)

), p ≥ 1.

Operator function F satisfies the conditions of the implicit function theorem:

(i) F is a C2 map from X ×R
N−1 to Y ;

(ii) F(0, 0) = 0;
(iii) DU⊥F(0, 0) = �cL+�c : X �→ Y is invertible with a bounded inverse from Y to X.

By the implicit function theorem (see Theorem 4.E in [32]), there are r > 0 and δ > 0 such that 
for each c ∈ R

N−1 with ‖c‖ ≤ δ there exists a unique solution U⊥ ∈ X of the operator equation 
F(U⊥, c) = 0 with ‖U⊥‖H 1(�) ≤ r such that the map

R
N−1 � c → U⊥(c) ∈ X (4.6)

is C2 near c = 0 and U⊥(0) = 0. Since DU⊥F(0, 0) = �cL+�c : X �→ Y is strictly positive, 
the associated quadratic form is coercive according to the bound (3.12), hence the critical point 
U⊥ = U⊥(c) is a unique infimum of the variational problem (4.3) near c = 0.

It remains to prove the bound (4.4). To show this, we note that

F(0, c) = −p(p + 1)(2p + 1)�c

2p−1

⎛⎝N−1∑
j=1

cjU
(j)

⎞⎠2

− �cR

⎛⎝N−1∑
j=1

cjU
(j)

⎞⎠
satisfies ‖F(0, c)‖L(�) ≤ Ã‖c‖2 for a c-independent constant Ã > 0. Since F is a C2 map from 
X × R

N−1 to Y and DcF(0, 0) = 0, we have DcU
⊥(0) = 0, so that the C2 map (4.6) satisfies 

the bound (4.4). �
Proof of Theorem 2.5. Let us denote

M(c) := inf
U⊥∈H 1

�∩L2
c∩[Xc]⊥

[
�(
 + c1U

(1) + c2U
(2) + · · · + cN−1U

(N−1) + U⊥) − �(
)
]
,

(4.7)

where the infimum is achieved by Lemma 4.1 for sufficiently small c ∈ R
N−1. Thanks to the 

representation (4.1) and the bound (4.4), we obtain M(c) = M0(c) + M̃(c), where

M0(c) := −2

3
p(p + 1)(2p + 1)

N−1∑
i=1

N−1∑
j=1

N−1∑
k=1

cicj ck〈
2p−1U(i)U(j),U(k)〉L2(�) (4.8)

and

M̃(c) =
{

o(‖c‖3), p ∈ ( 1
2 ,1

)
,

O(‖c‖4), p ≥ 1.
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In order to show that M0(c) is sign-indefinite near c = 0, it is sufficient to show that at least one 
diagonal cubic coefficient in M0(c) is nonzero. Since

+∞∫
0

φ2p−1(φ′)3dx = −
+∞∫
0

sech
2p+2

p (px) tanh3(px)dx = − p

2(p + 1)(2p + 1)
,

we obtain

〈
2p−1U(j)U(j),U(j)〉L2(�) = pj (j2 − 1)

2(p + 1)(2p + 1)
�= 0, j ≥ 2, (4.9)

where the algorithmic construction of the orthogonal vectors {U(1), U(2), . . . , U(N−1)} in 
Remark 3.7 has been used. Since the diagonal coefficients in front of the cubic terms 
c3

2, c
3
3, . . . , c

3
N−1 in M0(c) are nonzero, M0(c) and hence M(c) is sign-indefinite near c = 0. �

Remark 4.2. We give explicit expressions for the function M0(c):

N = 3 : M0(c) = 2p2(c2
1 − c2

2)c2,

N = 4 : M0(c) = 2p2(c2
1c2 + c2

1c3 − c3
2 + 3c2

2c3 − 4c3
3),

and so on. Note that the diagonal coefficients in front of c3
2 and c3

3 are nonzero, in agreement 
with (4.8) and (4.9).

5. Proof of Theorem 2.7

The half-soliton state 
 is a degenerate saddle point of the constrained action functional �. 
We develop the proof of nonlinear instability of 
 by using the energy method. The steps in the 
proof of Theorem 2.7 are as follows.

First, we use the gauge symmetry and project a unique global solution to the NLS equation 
(2.3) with p ∈ (0, 2) in H 1

� to the modulated stationary states {eiθ
ω}θ,ω with ω near ω0 = 1
and the symplectically orthogonal remainder term V . Second, we project the remainder term V
into the 2(N − 1)-dimensional subspace associated with the (N − 1)-dimensional subspace Xc

defined in Theorem 2.3 and the symplectically orthogonal complement V ⊥. Third, we define a 
truncated Hamiltonian system of (N −1) degrees of freedom for the coefficients of the projection 
on Xc. Fourth, we use the energy conservation to control globally the time evolution of ω and 
V ⊥ in terms of the initial conditions and the reduced energy for the finite-dimensional Hamilto-
nian system. Finally, we transfer the instability of the zero equilibrium in the finite-dimensional 
system to the instability result (2.11) for the NLS equation (2.3).

5.1. Step 1: Modulated stationary states and a symplectically orthogonal remainder

We start with the standard result, which holds if 〈
ω, ∂ω
ω〉L2(�) �= 0.

Lemma 5.1. For every p ∈ (0, 2), there exists δ0 > 0 such that for every � ∈ H 1
� satisfying

δ := inf ‖e−iθ� − 
‖H 1(�) ≤ δ0, (5.1)

θ∈R



A. Kairzhan, D.E. Pelinovsky / J. Differential Equations 264 (2018) 7357–7383 7371
there exists a unique choice for real-valued (θ, ω) and real-valued U, W ∈ H 1
� in the orthogonal 

decomposition

� = eiθ [
ω + U + iW ] , 〈U,
ω〉L2(�) = 〈W,∂ω
ω〉L2(�) = 0, (5.2)

satisfying the estimate

|ω − 1| + ‖U + iW‖H 1(�) ≤ Cδ, (5.3)

for some positive constant C > 0.

Proof. Let us define the following vector function G(θ, ω; �) :R2 × H 1
� �→ R

2 given by

G(θ,ω;�) :=
[ 〈Re(e−iθ� − 
ω),
ω〉L2(�)

〈Im(e−iθ� − 
ω), ∂ω
ω〉L2(�)

]
,

the zeros of which represent the orthogonal constraints in (5.2).
Let θ0 be the argument in infθ∈R ‖e−iθ� − 
‖H 1(�) for a given � ∈ H 1

� satisfying (5.1). 
Since the map R � ω �→ 
ω ∈ L2(�) is smooth, the vector function G is a C∞ map from R2 ×
H 1

� to R2. Thanks to the bound (5.1), there exists a δ-independent constant C > 0 such that 
|G(θ0, 1; �)| ≤ Cδ. Also we obtain

D(θ,ω)G(θ0,1;�) = −
[

0 〈
,∂ω
ω|ω=1〉L2(�)

〈
,∂ω
ω|ω=1〉L2(�) 0

]
+
[ 〈Im(e−iθ0� − 
),
〉L2(�) 〈Re(e−iθ0� − 
), ∂ω
ω|ω=1〉L2(�)

−〈Re(e−iθ0� − 
), ∂ω
ω|ω=1〉L2(�) 〈Im(e−iθ0� − 
), ∂2
ω
ω|ω=1〉L2(�)

]
,

where 〈
, ∂ω
ω|ω=1〉L2(�) �= 0 if p ∈ (0, 2) and the second matrix is bounded by Cδ with a 
δ-independent constant C > 0. Because the first matrix is invertible if p ∈ (0, 2) and δ is small, 
we conclude that there is δ0 > 0 such that D(θ,ω)G(θ0, 1; �) : R2 → R

2 is invertible with the 
O(1) bound on the inverse matrix for every δ ∈ (0, δ0). By the local inverse mapping theorem (see 
Theorem 4.F in [32]), for any � ∈ H 1

� satisfying (5.1), there exists a unique solution (θ, ω) ∈R
2

of the vector equation G(θ, ω; �) = 0 such that |θ − θ0| + |ω − 1| ≤ Cδ with a δ-independent 
constant C > 0. Thus, the bound (5.3) is satisfied for ω.

By using the definition of (U, W) in the decomposition (5.2) and the triangle inequality for 
(θ, ω) near (θ0, 1), it is then straightforward to show that (U, W) are uniquely defined in H 1

� and 
satisfy the bounds in (5.3). �

By global well-posedness theory, see Remark 2.1, if �0 ∈ H 1
� , then there exists a unique 

solution �(t) ∈ C(R, H 1
�) ∩ C1(R, H−1

� ) to the NLS equation (2.3) with p ∈ (0, 2) such that 
�(0) = �0. For every δ > 0 (sufficiently small), we set

�0 = 
 + U0 + iW0, ‖U0 + iW0‖H 1(�) ≤ δ, (5.4)

such that
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〈U0,
〉L2(�) = 0, 〈W0, ∂ω
ω|ω=1〉L2(�) = 0. (5.5)

Thus, in the initial decomposition (5.2), we choose θ0 = 0 and ω0 = 1 at t = 0.

Remark 5.2. Compared to the statement of Theorem 2.7, the initial datum V := �(0) − 
 =
U0 + iW0 ∈ H 1

� is required to satisfy the constraints (5.5). A more general unstable solution can 
be constructed by choosing different initial values for (θ0, ω0) in the decomposition (5.2).

Let us assume that �(t) satisfies a priori bound

inf
θ∈R‖e−iθ�(t) − 
‖H 1(�) ≤ ε, t ∈ [0, t0], (5.6)

for some t0 > 0 and ε > 0. This assumption is true at least for small t0 > 0 by the continuity of 
the global solution �(t). Fix ε = δ0 defined by Lemma 5.1. As long as a priori assumption (5.6)
is satisfied, Lemma 5.1 yields that the unique solution �(t) to the NLS equation (2.3) can be 
represented as

�(t) = eiθ(t)
[

ω(t) + U(t) + iW(t)

]
, (5.7)

with

〈U(t),
ω(t)〉L2(�) = 〈W(t), ∂ω
ω|ω=ω(t)〉L2(�) = 0. (5.8)

Since �(t) ∈ C(R, H 1
�) ∩ C1(R, H−1

� ) and the map R � ω �→ 
ω ∈ H 1
� is smooth, we obtain 

(θ(t), ω(t)) ∈ C1([0, t0], R2), hence U(t), W(t) ∈ C([0, t0], H 1
�) ∩ C1([0, t0], H−1

� ). The proof 
of Theorem 2.7 is achieved if we can show that there exists t0 > 0 such that the bound (5.6) is 
true for t ∈ [0, t0] but fails as t > t0.

Substituting (5.7) into the NLS equation (2.3) yields the time evolution system for the remain-
der terms:

d

dt

(
U

W

)
=
(

0 L−(ω)

−L+(ω) 0

)(
U

W

)
+ (θ̇ − ω)

(
W

−(
ω + U)

)
− ω̇

(
∂ω
ω

0

)
+
(−RU

RW

)
, (5.9)

where L+(ω) = −� + ω − (2p + 1)(p + 1)

2p
ω , L−(ω) = −� + ω − (p + 1)


2p
ω , and

RU = (p + 1)
[(

(
ω + U)2 + W 2
)p − 
2p

ω

]
W, (5.10)

RW = (p + 1)
[(

(
ω + U)2 + W 2
)p

(
ω + U) − 
2p
ω (
ω + U) − 2p
2p

ω U
]
. (5.11)

By using the orthogonality conditions (5.8) in the decomposition (5.7), we obtain from system 
(5.9) the modulation equations for parameters (θ, ω):
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( 〈
ω,W 〉L2(�) −〈∂ω
ω,
ω − U〉L2(�)

〈∂ω
ω,
ω + U〉L2(�) −〈∂2
ω
ω,W 〉L2(�)

)(
θ̇ − ω

ω̇

)
=
( 〈
ω,RU 〉L2(�)

〈∂ω
ω,RW 〉L2(�)

)
.

(5.12)

The modulation equations (5.12) and the time-evolution system (5.9) have been studied in 
many contexts involving dynamics of solitary waves [12,24,29,31]. In the context of orbital in-
stability of the half-soliton states, we are able to avoid detailed analysis of system (5.9) and (5.12)
by using conservation of the energy E and mass Q defined by (2.4). The following result provide 
some estimates on the derivatives of the modulation parameters θ and ω.

Lemma 5.3. Assume that ω ∈ R and U, W ∈ H 1
� satisfy

|ω − 1| + ‖U + iW‖H 1(�) ≤ ε (5.13)

for sufficiently small ε > 0. For every p ∈ [ 1
2 ,2

)
, there exists an ε-independent constant A > 0

such that

|θ̇ − ω| ≤ A
(
‖U‖2

H 1(�)
+ ‖W‖2

H 1(�)

)
, |ω̇| ≤ A‖U‖H 1(�)‖W‖H 1(�). (5.14)

Proof. If 〈
ω, ∂ω
ω〉L2(�) �= 0 for p �= 2 and under assumption (5.13), the coefficient matrix 
of system (5.12) is invertible with the O(1) bound on the inverse matrix for sufficiently small 
ε > 0. For every p ≥ 1

2 , the Taylor expansion of the nonlinear functions RU and RW in (5.10)
and (5.11) yield

RU = 2p(p + 1)
2p−1
ω UW + R̃U (5.15)

and

RW = p(p + 1)
2p−1
ω

[
(2p + 1)U2 + W 2

]
+ R̃W , (5.16)

where R̃U and R̃W satisfies

‖R̃U‖H 1(�) + ‖R̃W‖H 1(�) =
{

o(‖U + iW‖2
H 1(�)

), p ∈ ( 1
2 ,1

)
,

O(‖U + iW‖3
H 1(�)

), p ≥ 1.

The leading-order terms in (5.15)–(5.16) and the Banach algebra property of H 1(�) yield the 
bound (5.14). �
5.2. Step 2: Symplectic projections to the neutral modes

Let us recall the orthogonal basis of eigenvectors constructed algorithmically in Remark 3.7. 
We denote the corresponding invariant subspace by Xc := span{U(1), U(2), . . . , U(N−1)}. For 
each vector U(j) with 1 ≤ j ≤ N − 1, we construct the generalized vector W(j) from solutions 
of the linear system L−W(j) = U(j), which exists uniquely in L2

c thanks to the fact that U(j) ∈ L2
c

in (2.9) and ker(L−) = span{
}. Let us denote the corresponding invariant subspace by X∗
c :=

span{W(1), W(2), . . . , W(N−1)}.
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Lemma 5.4. Basis vectors in Xc and X∗
c are symplectically orthogonal in the sense

〈U(j),W(k)〉L2(�) = 0, j �= k and 〈U(j),W(j)〉L2(�) > 0. (5.17)

Moreover, basis vectors are also orthogonal to each other.

Proof. Let us represent U(j) by

U(j)(x) = φ′(x)ej ,

where ej ∈ R
N is x-independent and φ(x) = sech

1
p (px). Then W(j) can be represented by the 

explicit expression

W(j)(x) = −1

2
xφ(x)ej .

Since {e1, e2, . . . , eN−1} are orthogonal by the construction, the set {W(1), W(2), . . . , W(N−1)} is 
also orthogonal. Moreover, it is orthogonal to the set {U(1), U(2), . . . , U(N−1)}. It follows from 
the explicit computation

〈U(j),W(j)〉L2(�) = 1

4
‖φ‖2

L2(R+)
‖ej‖2 (5.18)

that 〈U(j), W(j)〉L2(�) > 0 for each j . Thus, (5.17) is proved. �
Although the coercivity of L+ was only proved with respect to the bases in Xc, see 

Lemma 3.8, the result can now be transferred to the symplectically dual basis.

Lemma 5.5. For every p ∈ (0, 2), there exists Cp > 0 such that

〈L+U,U 〉L2(�) ≥ Cp‖U‖2
H 1(�)

for every U ∈ H 1
� ∩ L2

c ∩ [X∗
c ]⊥. (5.19)

Proof. It follows from Lemma 3.8 that 〈L+U, U〉L2(�) ≥ 0 for p ∈ (0, 2) if U ∈ H 1
� ∩L2

c . More-
over, 〈L+U, U〉L2(�) = 0 if and only if U ∈ Xc. Thanks to the orthogonality and positivity of 
diagonal terms in the symplectically dual bases in Xc and X∗

c , see (5.17), the coercivity bound 
(5.19) follows from the bound (3.12) by the standard variational principle. �

Similarly, the coercivity of L− was proved with respect to the constraint in L2
c , see Lemma 3.1. 

The following lemma transfers the result to the symplectically dual constraint.

Lemma 5.6. For every p ∈ (0, 2), there exists Cp > 0 such that

〈L−W,W 〉L2(�) ≥ C‖W‖2
H 1(�)

for every W ∈ H 1
� ∩ (L2

c)
∗, (5.20)

where (L2
c)

∗ = {W ∈ L2(�) : 〈W, ∂ω
ω|ω=1〉L2(�) = 0}.
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Proof. It follows from Lemma 3.1 that 〈L−W, W 〉L2(�) ≥ 0 if W ∈ H 1
� . Moreover, 〈L−W,

W 〉L2(�) = 0 if and only if W ∈ span(
). Thanks to the positivity 〈∂ω
ω|ω=1, 
〉L2(�) > 0 in 
(3.13) and (3.14) for p ∈ (0, 2), the coercivity bound (5.20) follows from the bound (3.4) by the 
standard variational principle. �
Remark 5.7. By using the scaling transformation (2.6), we can continue the basis vectors for 
ω �= 1. For notational convenience, ω is added as a subscript if the expressions are continued 
with respect to ω.

Recall the symplectically orthogonal decomposition of the unique solution �(t) to the NLS 
equation (2.3) in the form (5.7)–(5.8). Let us further decompose the remainder terms U(t) and 
W(t) in (5.7) over the orthogonal bases in Xc and X∗

c , which are also symplectically orthogonal 
to each other by Lemma 5.4. More precisely, since ω(t) changes we set

U(t) =
N−1∑
j=1

cj (t)U
(j)

ω(t) + U⊥(t), W(t) =
N−1∑
j=1

bj (t)W
(j)

ω(t) + W⊥(t), (5.21)

and require

〈U⊥(t),W
(j)

ω(t)〉L2(�) = 〈W⊥(t),U
(j)

ω(t)〉L2(�) = 0, 1 ≤ j ≤ N − 1. (5.22)

Since {〈U(j)
ω , W(k)

ω 〉L2(�)}1≤j,k≤N−1 is a positive diagonal matrix by the conditions (5.17), the 
projections c = (c1, c2, . . . , cN−1)

T ∈ R
N−1 and b = (b1, b2, . . . , bN−1)

T ∈ R
N−1 in (5.21)

are uniquely determined by U and W and so are the remainder terms U⊥ and W⊥. Because 
ω(t) ∈ C1([0, t0], R) and U(t), W(t) ∈ C([0, t0], H 1

�) ∩ C1([0, t0], H−1
� ), we have c(t), b(t) ∈

C1([0, t0], RN−1) and U⊥(t), W⊥(t) ∈ C([0, t0], H 1
�) ∩ C1([0, t0], H−1

� ).
When the decomposition (5.21) is substituted to the time evolution problem (5.9), we obtain

dU⊥

dt
+

N−1∑
j=1

[
dcj

dt
− bj

]
U(j)

ω = L−(ω)W⊥ + (θ̇ − ω)W

− ω̇

⎡⎣∂ω
ω +
N−1∑
j=1

cj (t)∂ωU(j)
ω

⎤⎦− RU (5.23)

and

dW⊥

dt
+

N−1∑
j=1

dbj

dt
W(j)

ω = −L+(ω)U⊥ − (θ̇ − ω) [
ω + U ]

− ω̇

N−1∑
j=1

bj (t)∂ωW(j)
ω + RW, (5.24)

where RU and RW are rewritten from (5.10) and (5.11) after U and W are expressed by (5.21).
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By using symplectically orthogonal projections (5.22), we obtain from (5.23) and (5.24) the 
system of differential equations for the amplitudes (cj , bj ) for every 1 ≤ j ≤ N − 1:

〈W(j)
ω ,U(j)

ω 〉L2(�)

[
dcj

dt
− bj

]
= R

(j)
c , 〈W(j)

ω ,U(j)
ω 〉L2(�)

dbj

dt
= R

(j)
b , (5.25)

where

R
(j)
c = ω̇

[
〈∂ωW(j)

ω ,U⊥〉L2(�) −
N−1∑
i=1

ci〈W(j)
ω , ∂ωU(i)

ω 〉L2(�)

]

+ (θ̇ − ω)〈W(j)
ω ,W 〉L2(�) − 〈W(j)

ω ,RU 〉L2(�),

R
(j)
b = ω̇

[
〈∂ωU(j)

ω ,W⊥〉L2(�) −
N−1∑
i=1

bi〈U(j)
ω , ∂ωW(i)

ω 〉L2(�)

]

− (θ̇ − ω)〈U(j)
ω ,U 〉L2(�) + 〈U(j)

ω ,RW 〉L2(�),

and we have used the orthogonality conditions:

〈U(j)
ω ,
ω〉L2(�) = 〈W(j)

ω , ∂ω
ω〉L2(�) = 0, 1 ≤ j ≤ N − 1.

The terms ω̇ and θ̇ − ω can be expressed from the system (5.12), where U and W are again 
expressed by (5.21).

5.3. Step 3: Truncated Hamiltonian system of (N − 1) degrees of freedom

The truncated Hamiltonian system of (N − 1) degrees of freedom follows from the formal 
truncation of system (5.25) with ω = 1 at the leading order:⎧⎨⎩

γ̇j = βj ,

〈W(j),U(j)〉L2(�)β̇j = p(p + 1)(2p + 1)
N−1∑
k=1

N−1∑
n=1

〈
2p−1U(k)U(n),U(j)〉L2(�)γkγn.

(5.26)

By using the function M0(γ ) given by (4.8), we can write the truncated system (5.26) in the 
Hamiltonian form {

2〈W(j),U(j)〉L2(�)γ̇j = ∂βj
H0(γ,β),

2〈W(j),U(j)〉L2(�)β̇j = −∂γj
H0(γ,β),

(5.27)

which is generated by the Hamiltonian

H0(γ,β) :=
N−1∑

〈W(j),U(j)〉L2(�)β
2
j + M0(γ ). (5.28)
j=1
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The reduced Hamiltonian H0 arises naturally in the expansion of the action functional �. The fol-
lowing result implies nonlinear instability of the zero equilibrium point in the finite-dimensional 
Hamiltonian system (5.27)–(5.28).

Lemma 5.8. There exists ε > 0 such that for every δ > 0 (sufficiently small), there is an ini-
tial point (γ (0), β(0)) with ‖γ (0)‖ + ‖β(0)‖ ≤ δ such that the unique solution of the finite-
dimensional system (5.26) satisfies ‖γ (t0)‖ > ε for some t0 =O(ε−1/2).

Proof. We claim that γ1 = γ2 = · · · = γN−2 = 0 is an invariant reduction of system (5.26). In 
order to show this, we compute coefficients of the function M0(γ ) in (4.8) that contains γiγj γN−1
for either i �= N − 1 or j �= N − 1 or both:

〈
2p−1U(i)U(j),U(N−1)〉L2(�) = 〈ei, ej 〉
∞∫

0

φ2p−1(φ′)3dx

Since 〈ei, ej 〉 = 0 for every i �= j , the function M0(γ ) depends on γN−1 only in the terms 
γ 2

1 γN−1, γ 2
2 γN−1, . . . , γ 2

N−2γN−1, as well as γ 3
N−1. Therefore, γ1 = γ2 = · · · = γN−2 = 0 is 

an invariant solution of the first (N − 2) equations of system (5.26). The last equation yields the 
following second-order differential equation for γN−1:

〈W(N−1),U(N−1)〉L2(�)γ̈N−1 = p(p + 1)(2p + 1)〈
2p−1U(N−1)U(N−1),U(N−1)〉L2(�)γ
2
N−1,

(5.29)

where the coefficient is nonzero thanks to (4.9) and (5.18). Since the zero equilibrium is unstable 
in the scalar equation (5.29), it is then unstable in system (5.26). If γ (t) = O(ε) for t ∈ [0, t0], 
then ε2t2

0 = O(ε), hence the nonlinear instability develops at the time span [0, t0] with t0 =
O(ε−1/2). �
Remark 5.9. For N = 3, we have M0(γ ) = 2p2(γ 2

1 − γ 2
2 )γ2. Computing the normalization con-

ditions (5.18), we obtain the following finite-dimensional system of degree two:{ ‖φ‖2
L2(R+)

γ̈1 = −4p2γ1γ2,

3‖φ‖2
L2(R+)

γ̈2 = −2p2(γ 2
1 − 3γ 2

2 ).
(5.30)

For N = 4, we have M0(γ ) = 2p2(γ 2
1 γ2 + γ 2

1 γ3 − γ 3
2 + 3γ 2

2 γ3 − 4γ 3
3 ). Computing the normal-

ization conditions (5.18), we obtain the following finite-dimensional system of degree three:⎧⎪⎪⎨⎪⎪⎩
‖φ‖2

L2(R+)
γ̈1 = −4p2γ1(γ2 + γ3),

3‖φ‖2
L2(R+)

γ̈2 = −2p2(γ 2
1 − 3γ 2

2 + 6γ2γ3),

3‖φ‖2
L2(R+)

γ̈3 = −p2(γ 2
1 + 3γ 2

2 − 12γ 2
3 ).

(5.31)

Remark 5.10. For N = 3, the zero point (γ1, γ2) = (0, 0) is the only equilibrium point of system 
(5.30). For N = 4, the zero point (γ1, γ2, γ3) = (0, 0, 0) is located at the intersections of three 
lines of equilibria of system (5.31): γ1 = 0, γ2 = 2γ3; γ1 = 3γ3, γ2 = −γ3; and γ1 = −3γ3, 
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γ2 = −γ3. The lines of equilibria correspond to the shifted states studied in our companion paper 
[20] for every even N .

5.4. Step 4: Expansion of the action functional

Recall the action functional �(�) = E(�) + Q(�), for which 
 is a critical point. By using 
the scaling transformation (2.6), we continue the action functional for ω �= 1 and define the 
following function:

�(t) := E(
ω(t) + U(t) + iW(t)) − E(
) + ω(t)
[
Q(
ω(t) + U(t) + iW(t)) − Q(
)

]
.

(5.32)

As long as a priori bound (5.6) is satisfied, one can expand � by using the primary decomposition 
(5.7) as follows:

� = D(ω) + 〈L+(ω)U,U〉L2(�) + 〈L−(ω)W,W 〉L2(�) + Nω(U,W), (5.33)

where the dependence of all quantities on t is ignored, D(ω) is defined by

D(ω) := E(
ω) − E(
) + ω [Q(
ω) − Q(
)] ,

and

Nω(U,W) =
{

o(‖U + iW‖2
H 1(�)

), p ∈ (
0, 1

2

)
,

O(‖U + iW‖3
H 1(�)

), p ≥ 1
2 ,

is a continuation of N(U, W) defined by (3.1) with respect to ω.
Since D′(ω) = Q(
ω) − Q(
) thanks to the variational characterization of 
ω, we have 

D(1) = D′(1) = 0, and

D(ω) = (ω − 1)2〈
,∂ω
ω|ω=1〉L2(�) + D̃(ω), (5.34)

where D̃(ω) = O(|ω − 1|3). Thanks to conservation of the energy E and mass Q defined by 
(2.4) and to the phase invariance in the NLS, we represent �(t) in terms of the initial data 
ω(0) = ω0 = 1, U(0) = U0, and W(0) = W0 as follows:

�(t) = �0 + (ω(t) − 1) [Q(
 + U0 + iW0) − Q(
)] , (5.35)

where

�0 := E(
 + U0 + iW0) − E(
) + Q(
 + U0 + iW0) − Q(
) (5.36)

is a constant of motion.
Let us now consider the secondary decomposition (5.21)–(5.22). If the solution given by (5.7)

and (5.21) satisfies a priori bound (5.6) for some t0 > 0 and ε > 0, then the coefficients of the 
secondary decomposition (5.21) are required to satisfy the bound
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|ω(t) − 1| + ‖c(t)‖ + ‖b(t)‖ + ‖U⊥(t) + iW⊥(t)‖H 1(�) ≤ Aε, t ∈ [0, t0], (5.37)

for an ε-independent constant A > 0. We substitute the secondary decomposition (5.21)–(5.22)
into the representation (5.33) and estimate the corresponding expansion.

Lemma 5.11. Assume that ω ∈ R, c, b ∈ R
N−1, and U⊥, W⊥ ∈ H 1

� satisfy the bound (5.37) for 
sufficiently small ε > 0. For every p ≥ 1

2 , there exists an ε-independent constant A > 0 such that 
the representation (5.33) is expanded as follows:

� = D(ω) + 〈L+(ω)U⊥,U⊥〉L2(�) + 〈L−(ω)W⊥,W⊥〉L2(�)

+
N−1∑
j=1

〈W(j),U(j)〉L2(�)b
2
j + M0(c) + �̃(ω, c, b,U⊥,W⊥), (5.38)

with

|�̃(ω, c, b,U⊥,W⊥)| ≤ A
(
μ(‖c‖) + ‖c‖2‖U⊥‖H 1(�) + ‖U⊥‖3

H 1(�)
+ |ω − 1|‖b‖2

+ ‖c‖‖b‖2 + ‖c‖‖W⊥‖2
H 1(�)

+ ‖b‖2‖U⊥‖H 1(�) + ‖U⊥‖H 1(�)‖W⊥‖2
H 1(�)

)
, (5.39)

where M0(c) is given by (4.8) and

μ(‖c‖) =
{

o(‖c‖3), p ∈ ( 1
2 ,1

)
,

O(‖c‖4), p ≥ 1.
(5.40)

Proof. For every p ≥ 1
2 , Taylor expansion of Nω(U, W) yields

Nω(U,W) = −2

3
p(p + 1)(2p + 1)〈
2p−1U2,U 〉L2(�)

− 2p(p + 1)〈
2p−1W 2,U 〉L2(�) + Sω(U,W),

where

Sω(U,W) =
{

o(‖U + iW‖3
H 1(�)

), p ∈ ( 1
2 ,1

)
,

O(‖U + iW‖4
H 1(�)

), p ≥ 1

is a continuation of S(U) defined by (4.1) with respect to W and ω. The expansion (5.38) holds 
by substituting of (5.21) into (5.33) and estimating the remainder terms thanks to Banach algebra 
property of H 1(�) and the assumption (5.37). Only the end-point bounds are incorporated into 
the estimate (5.39). �

We bring (5.35) and (5.38) together as follows:

�0 − H0(c, b) = D(ω) − (ω − 1) [Q(
 + U0 + iW0) − Q(
)]

+ 〈L+(ω)U⊥,U⊥〉L2(�) + 〈L−(ω)W⊥,W⊥〉L2(�) + �̃(ω, c, b,U⊥,W⊥), (5.41)
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where H0(c, b) is given by (5.28). Recall that the energy E(�) and mass Q(�) are bounded in 
H 1

� , whereas 
 is a critical point of E under fixed Q. Thanks to the bound (5.4) on the initial 
data, the orthogonality (5.5), and the representation (5.36), there is an δ-independent constant 
A > 0 such that

|�0| + |Q(
 + U0 + iW0) − Q(
)| ≤ Aδ2. (5.42)

Thanks to the representations (4.8) and (5.28), there is a generic constant A > 0 such that

|H0(c, b)| ≤ A
(
‖c‖3 + ‖b‖2

)
. (5.43)

The value of ω near ω0 = 1 and the remainder terms U⊥, W⊥ in the H 1(�) norm can be con-
trolled in the time evolution of the NLS equation (2.3) by using the energy expansion (5.41). The 
following lemma presents this result.

Lemma 5.12. Consider a solution to the NLS with p ≥ 1
2 given by (5.7) and (5.21) with ω(t) ∈

C1([0, t0], R), c(t), b(t) ∈ C1([0, t0], RN−1), and U⊥(t), W⊥(t) ∈ C([0, t0], H 1
�) satisfying the 

bound (5.37) for sufficiently small ε > 0. Then, there exists an ε-independent constant A > 0
such that for every t ∈ [0, t0],

|ω − 1|2 + ‖U⊥ + iW⊥‖2
H 1(�)

≤ A
[
δ2 + |H0(c, b)| + μ(‖c‖) + ‖c‖‖b‖2 + ‖b‖3

]
, (5.44)

where μ(‖c‖) is the same as in (5.40).

Proof. The bound on |ω − 1|2 follows from (5.34), (5.39), (5.41), and (5.42) thanks to the pos-
itivity of D′′(1) = 2〈
, ∂ω
ω|ω=1〉L2(�). The bounds on ‖U⊥‖2

H 1(�)
and ‖W⊥‖2

H 1(�)
follow 

from (5.39), (5.41), and (5.42) thanks to the coercivity of L+(ω) and L−(ω) in Lemmas 5.5
and 5.6. �
5.5. Step 5: Closing the energy estimates

By Lemma 5.8, there exists a trajectory of the finite-dimensional system (5.26) near the zero 
equilibrium which leaves the ε-neighborhood of the zero equilibrium. This nonlinear instability 
develops over the time span [0, t0] with t0 = O(ε−1/2). The second equation of system (5.26)
shows that if γ (t) = O(ε) for t ∈ [0, t0] and t0 = O(ε−1/2), then β(t) = O(ε3/2) for t ∈ [0, t0]. 
It is also clear that the scaling above is consistent with the first equation of system (5.26). The 
scaling above suggests to consider the following region in the phase space RN−1 ×R

N−1:

‖c(t)‖ ≤ Aε, ‖b(t)‖ ≤ Aε3/2, t ∈ [0, t0], t0 ≤ Aε−1/2, (5.45)

for an ε-independent constant A > 0. The region in (5.45) satisfies a priori assumption (5.37) for 
c and b. The following result shows that a trajectory of the full system (5.25) follows closely to 
the trajectory of the finite-dimensional system (5.26) in the region (5.45).

Lemma 5.13. Consider a solution γ (t), β(t) ∈ C1([0, t0], RN−1) to the finite-dimensional sys-
tem (5.26) in the region (5.45) with sufficiently small ε > 0. Then, a solution c(t), b(t) ∈
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C1([0, t0], RN−1) to system (5.25) remains in the region (5.45) and there exist an ε-independent 
constant A > 0 such that

‖c(t) − γ (t)‖ ≤ Aν(ε), ‖b(t) − β(t)‖ ≤ Aε1/2ν(ε), t ∈ [0, t0], (5.46)

where

ν(ε) =
{

o(ε), p ∈ ( 1
2 ,1

)
,

O(ε3/2), p ≥ 1.
(5.47)

Proof. By the bounds (5.43) and (5.44), as well as a priori assumption (5.45), there exists an 
(δ, ε)-independent constant A > 0 such that

|ω(t) − 1| + ‖U⊥(t) + iW⊥(t)‖H 1(�) ≤ A
(
δ + ε3/2

)
, t ∈ [0, t0]. (5.48)

It makes sense to define δ = O(ε3/2) in the bound (5.4) on the initial data, which we will adopt 
here. By using the decomposition (5.21) and the bounds (5.45) and (5.48) in (5.14), we get

|θ̇ − ω| ≤ Aε2, |ω̇| ≤ Aε5/2, (5.49)

for an ε-independent constant A > 0. By subtracting the first equation of system (5.26) from the 
first equation of system (5.25), we obtain

ċj − γ̇j = bj − βj + [F(c, b)]j , (5.50)

where the vector F(c, b) ∈R
N−1 satisfies the estimate

‖F(c, b)‖ ≤ Aε5/2, (5.51)

thanks to (5.15), (5.21), (5.48), and (5.49). By subtracting the second equation of system (5.26)
from the second equation of system (5.25), we obtain

ḃj − β̇j = p(p + 1)(2p + 1)

N−1∑
k=1

N−1∑
n=1

〈
2p−1U(k)U(n),U(j)〉L2(�)

〈W(j),U(j)〉L2(�)

(ckcn − γkγn)

+ [G(c,b)]j , (5.52)

where the vector G(c, b) ∈R
N−1 satisfies the estimate

‖G(c,b)‖ ≤ Aεν(ε), (5.53)

thanks to (5.16), (5.21), (5.48), and (5.49), where ν(ε) is given by (5.47).
Let us assume that γ (0) = c(0) and β(0) = β(0). Integrating equations (5.50) and (5.52) over 

t ∈ [0, t0] with t0 ≤ Aε−1/2 in the region (5.45), we obtain
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‖c(t) − γ (t)‖ ≤
t∫

0

‖b(t ′) − β(t ′)‖dt ′ + Aε2 (5.54)

and

‖b(t) − β(t)‖ ≤ Aε

t∫
0

‖c(t ′) − γ (t ′)‖dt ′ + Aε1/2ν(ε), (5.55)

for a generic ε-independent constant A > 0. Gronwall’s inequality for

‖b(t) − β(t)‖ + Aε1/2‖c(t) − γ (t)‖

yields (5.46). �
Proof of Theorem 2.7. Let us consider the unstable solution (γ, β) to the finite-dimensional 
system (5.26) according to Lemma 5.8. This solution belongs to the region (5.45). By 
Lemma 5.13, the correction terms satisfy (5.46), hence the solution (c, b) to system (5.25) also 
satisfies the bound (5.45) over the time span [0, t0] with t0 =O(ε−1/2).

By Lemma 5.12 and the elementary continuation argument, the components ω, U⊥, and W⊥
satisfy the bound (5.48) with δ = O(ε3/2), so that the solution to the NLS equation (2.3) given 
by (5.7) and (5.21) satisfies the bound (5.6) for t ∈ [0, t0].

Finally, the solution γ to the finite-dimensional system (5.26) grows in time and reaches the 
boundary in the region (5.45) by Lemma 5.8. The same is true for the full solution to the NLS 
equation (5.21) thanks to the bounds (5.46) and (5.48). Hence, the solution starting with the initial 
data satisfying the bound (5.4) with δ = O(ε3/2) reaches and crosses the boundary in (2.11) for 
some t0 =O(ε−1/2). �
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