
SIAM J. APPLIED DYNAMICAL SYSTEMS c© 2016 Society for Industrial and Applied Mathematics
Vol. 15, No. 4, pp. 2017–2050

Self-Similar Solutions for Reversing Interfaces in the Slow Diffusion Equation
with Strong Absorption∗

Jamie M. Foster† and Dmitry E. Pelinovsky‡

Abstract. We consider the slow nonlinear diffusion equation subject to a strong absorption rate and construct
local self-similar solutions for reversing (and antireversing) interfaces, where an initially advancing
(receding) interface gives way to a receding (advancing) one. We use an approach based on invariant
manifolds, which allows us to determine the required asymptotic behavior for small and large values
of the concentration. We then “connect” the requisite asymptotic behaviors using a robust and
accurate numerical scheme. By doing so, we are able to furnish a rich set of self-similar solutions for
both reversing and antireversing interfaces. The stability of these self-similar solutions is validated
against direct numerical simulation in the case of constant absorption.
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1. Introduction. We address reversing and antireversing properties of interfaces in the
following one-dimensional slow diffusion equation with absorption,

(1.1)
∂h

∂t
=

∂

∂x

(
hm

∂h

∂x

)
− hn,

where h is a positive function on a compact support, e.g., a concentration of some species, and
x and t denote space and time, respectively. Restricting the exponents to the ranges m > 0
and n < 1 corresponds to slow diffusion and strong absorption, respectively. We emphasize
that the nonlinear diffusion equation (1.1) is defined on a compact, time-dependent spatial
domain, subject to appropriate conditions at the moving interfaces (or free boundaries) of the
spatial domain.

Interfaces correspond to the points on the x-axis where regions for positive solutions for
h are connected with the regions where h is identically zero. The initial condition h|t=0 = h0
is assumed to be compactly supported and strictly positive inside the compact support. The
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motion of the interfaces is determined from conditions [8] that require the function h be
continuous (i.e., vanishing at the interface) and the flux of h through the interface to be zero;
see conditions (1.2) or (1.3) below.

We note the contrasting terminology used here and in the fluid dynamics literature. Most
fluid dynamicists use the term “interface” for the free surface of a fluid (i.e., the air-liquid
interface), whereas the term “contact line” would typically be used to refer to the triple
junction where the air, liquid, and substrate all meet.

The slow diffusion equation with strong absorption (1.1) describes a variety of different
physical processes, including (i) the slow spreading of a slender viscous film over a horizontal
plate subject to the action of gravity and a constant evaporation rate [1] (when m = 3 and
n = 0); (ii) the dispersion of a biological population subject to a constant death rate [10]
(when m = 2 and n = 0); (iii) nonlinear heat conduction along a rod with a constant rate of
heat loss [11] (when m = 4 and n = 0); (iv) and fluid flows in porous media with a drainage
rate driven by gravity or background flows [2, 16] (when m = 1 and either n = 1 or n = 0).

In the presence of slow diffusion (m > 0), the interfaces of compactly supported solutions
have a finite propagation speed [11]. In the presence of strong absorption (0 < n < 1), the
solution vanishes for all x after some finite time, which is referred to as finite-time extinction
[13, 15]. Therefore, the interfaces for compactly supported initial data coalesce in a finite time.
Depending on the shape of h0 and the values of m and n, the interfaces may change their
direction of propagation in a number of different ways. It was proved by Chen, Matano, and
Mimura [3] that bell-shaped initial data remain bell shaped for all time before the compact
support shrinks to a point. However, the possible types of dynamics of interfaces for this
bell-shaped data were not identified in [3].

Let us denote the location of the left interface by x = �(t) and the limit x ↘ �(t), where
h is nonzero, by x = �(t)+. If m > 0, 0 < n < 1, and m + n ≥ 1, it was proved in [8]
that the position of the interface, �(t), is a Lipschitz continuous function of time. In the case
m+ n = 1, the function �(t) is found from the boundary conditions h|x=�(t) = 0 and

d�

dt
= −hm−1∂h

∂x

∣∣∣
x=�(t)+

+

(
hm−1 ∂h

∂x

∣∣∣
x=�(t)+

)−1

.(1.2)

In the case m + n > 1, the spatial derivatives at x = �(t)+ are not well defined [8] and the
zero flux condition (1.2) must be written as

d�

dt
=

⎧⎪⎨
⎪⎩

−hm−1 ∂h
∂x

∣∣∣
x=�(t)+

if �′ ≤ 0,

hn
(
∂h
∂x

)−1
∣∣∣
x=�(t)+

if �′ ≥ 0,
(1.3)

where a prime denotes differentiation with respect to time.
The analysis of [15, 3, 8] on weak solutions to the slow diffusion equation (1.1) was re-

stricted to the range 0 < n < 1, in which case the zero solution satisfies (1.1) on the infinite
line. Weak formulation of the slow diffusion equation (1.1) was also considered in the range
1 − m < n ≤ 0 (for m > 1) in [14], where existence of weak solutions was proven for the
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modified equation

(1.4)
∂h

∂t
=

∂

∂x

(
hm

∂h

∂x

)
− hnχ{h>0}.

The modification involves the characteristic function χ and is included to ensure that the
zero solution satisfies (1.4) on the infinite line. Under suitable conditions on the initial data,
weak solutions to (1.4) were constructed and it was proven in [14] that the weak solutions are
classical at the points (x, t), for which h is positive. It is our understanding that the work of
[3, 8] can be applied to the modified equation (1.4) with 1−m < n ≤ 0 verbatim, so that the
positive solution of the slow diffusion equation (1.1) with m > 0, n < 1, and m+ n > 1 can
be closed at the left interface x = �(t) subject to the interface equation (1.3).

One could choose to close the slow diffusion equation (1.1) on a compact interval in a
variety of ways, e.g., by supplying analogous conditions at the right interface, or by supplying
a Dirichlet or Neumann condition at a symmetry point. For instance, if h0 is even in x, then
the solution h remains even in x for all times and, therefore, the slow diffusion equation (1.1)
can be closed on the compact interval [�(t), 0] by imposing ∂h/∂x|x=0 = 0. However, such
details do not concern us here because we are interested in studying the behavior of solutions
to (1.1) local to the left interface x = �(t) only.

We reiterate further the main question of this work on the possible types of dynamics in
the slow diffusion equation with strong absorption (1.1). Working with bell-shaped, compactly
supported initial data h0, one can anticipate a priori that the compact support of the bell-
shaped solution can either (i) decrease monotonically in time, (ii) first expand and then
subsequently shrink, (iii) or have more complicated behavior where multiple instances of
expansion and contraction are observed. This phenomenon brings about both “reversing”
and “antireversing” dynamics of an interface. Here the term reversing describes a scenario
where the velocity of the left interface x = �(t) satisfies �′(t) < 0 before the reversing time
and �′(t) > 0 after the reversing time, whereas the term antireversing refers to the opposite
scenario with �′(t) > 0 before and �′(t) < 0 after the reversing time.

The first analytical solution to (1.1) exhibiting a reversing interface was obtained by
Kersner [15] for the case m+ n = 1. This explicit solution takes the form

(1.5) um(x, t) =
m

2(m+ 1)(m+ 2)t

[
Ct

2
m+2 − (m+ 2)2t2 − x2

]
+
,

where the plus subscript denotes the positive part of the function, and C > 0 is an arbitrary
parameter. The interfaces are located symmetrically at x = ±�(t) with

(1.6) �(t) =

√
Ct

2
m+2 − (m+ 2)2t2.

More recently, Foster et al. [6] considered the case m+n > 1 and explored the asymptotic
and numerical construction of self-similar solutions for (1.1)—some related, yet different, self-
similar solutions to other nonlinear diffusion equations have previously been constructed using
a combination of asymptotic analysis and numerical shooting; see, e.g., [7, 19].

The self-similar solutions capture the relevant dynamics of reversing interfaces near the
corresponding points in space and time (which can be placed at the origin of x and t without
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the loss of generality). Based on a classical point symmetry analysis of the porous medium
equation (1.1)—provided in [9]—the authors of [6] found that reversing interfaces can be
described via the self-similar reductions

(1.7) h(x, t) = (±t) 1
1−n H±(ξ), ξ = x(±t)−m+1−n

2(1−n) , ±t > 0,

where the functions H± satisfy the following pair of second-order differential equations:

(1.8)
d

dξ

(
Hm

±
dH±
dξ

)
± m+ 1− n

2(1− n)
ξ
dH±
dξ

= Hn
± ± 1

1− n
H±,

where m > 0, n < 1, and m+ n > 1 is assumed in what follows.
We seek positive solutions H± of the differential equations (1.8) on the semi-infinite line

[A±,∞) that satisfy the following conditions:

(i) H±(ξ) → 0 as ξ → A±,(1.9)

(ii) H±(ξ) is monotonically increasing for all ξ > A±,(1.10)

(iii) H±(ξ) → +∞ as ξ → +∞.(1.11)

The first of these conditions, (1.9), are the self-similar counterparts of the condition h|x=�(t) =
0 for (1.1). In addition, the behavior of H−(ξ) and H+(ξ) in the far field must be matched
from the condition

(1.12) lim
ξ→∞

H+(ξ)

H−(ξ)
= 1.

The requirement (1.12) is tantamount to enforcing that the solution h to the slow diffusion
equation (1.1) does not “jump” as t passes through zero—this can be verified by taking both
the limits t↘ 0 and t↗ 0 in the self-similar reduction (1.7).

Existence of solutions to the differential equations (1.8) on [A±,∞) with the required
behavior (1.12) implies, via the self-similar reduction (1.7), the existence of a reversing (if
A± > 0) or antireversing (if A± < 0) left interface at x = �(t), which behaves like

(1.13) �(t) = A±(±t)
m+1−n
2(1−n) , ±t > 0,

after placing the reversing point at the origin of the space-time plane. If m + n > 1, the
velocity of the interface, given by �′(t), changes sign continuously as t passes through zero.

By combining formal asymptotic constructions of the solutions H± near the small and
large values with a numerical shooting method, the authors of [6] claimed that for n = 0
and for integer values of m = 2, 3, 4, there exists a unique positive value of A−, which leads
to a monotonically growing function H− on the entire semiaxis [A−,∞). Using the far-field
matching condition (1.12), a unique, monotonically growing function H+ is found on [A+,∞)
for a positive value of A+. These solutions correspond to a reversing left interface x = �(t).
No solutions exhibiting an antireversing interface were found in [6].

In the present work, we address the same problem using a dynamical system framework [12,
18]. The dynamical system theory allows us to justify the formal asymptotic approximations
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of H± for small and large values, as well as to set up an accurate and robust numerical
procedure for furnishing appropriate solutions to the differential equations (1.8). Qualitatively,
we recover the results of [6] for n = 0 and m = 3, 4, but with better precision, and we
generalize these results for all noninteger values of m > 0, n < 1, and m+n > 1. In addition,
we demonstrate that the result for n = 0 and m = 2, reported in [6], is incorrect and no
self-similar reversing interface solutions exist in this case. Finally, we discover new reversing
and antireversing interface solutions of the same differential equations (1.8) for other values
of m when n = 0.

Our approach explores invariant manifolds for the singular differential equations after
appropriate unfolding (which is sometimes referred to as the blow-up technique [5, 17]). The
main analytical results of this work are given by the following theorems.

Theorem 1.1. For every m > 0, n < 1, m + n > 1 and for every A± �= 0, there exists
a unique solution of the differential equations (1.8) such that H±(ξ) → 0 as ξ → A±. If
±A± > 0, this unique solution has the following asymptotic behavior,

(1.14) H±(ξ) =
[
± 2(1 − n)2

(m+ 1− n)A±
(ξ −A±)

]1/(1−n)

[1 +O ((ξ −A±)κ)] as ξ → A±,

with κ := min{1, (m + n − 1)/(1 − n)}, whereas if ±A± < 0, it has the following asymptotic
behavior,

(1.15) H±(ξ) =
(
∓m(m+ 1− n)A±

2(1 − n)
(ξ −A±)

)1/m [
1 +O

(
(ξ −A±)

m+n−1
m

)]
as ξ → A±.

Theorem 1.2. For every m > 0, n < 1, and m+n > 1, there exists a one-parameter family
of solutions of the differential equation (1.8) for the lower sign such that H−(ξ) → +∞ as
ξ → +∞, and this family has the following asymptotic behavior,

(1.16) H−(ξ) ∼
(
ξ

x0

) 2
m+1−n

as ξ → +∞,

where x0 > 0 is an arbitrary parameter. There exists a two-parameter family of solutions of
the differential equation (1.8) for the upper sign such that H+(ξ) → +∞ as ξ → +∞, and
this family has the same asymptotic behavior (1.16) for some x0 > 0.

The main problem is to connect the two asymptotic behaviors of the differential equations
(1.8) which are defined for small and large values of H± by Theorems 1.1 and 1.2. We know
from [6] that there exists an exact solution of the connection problem if A± = 0. This exact
solution is given by

(1.17) H±(ξ) =
(
(m+ 1− n)2

2(m+ n+ 1)
ξ2
) 1

m+1−n

, ξ ∈ (0,∞).

However, the exact profile (1.17) corresponds to a solution to the slow diffusion equation (1.1)
with an interface that remains stationary for all time, thus we do not examine it further here.
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Some connection results for nonzero values of A± are available for the differential equations
(1.8) in Lemmas 4.1 and 4.4 below. Although these results are not sufficient for an analyt-
ical solution of the connection problem, we can set up a numerical method, which detects
connections of the two solutions described in Theorems 1.1 and 1.2.

We emphasize in passing that the asymptotic behavior of the self-similar solutions H±
constructed in Theorem 1.1 coincide with the interface conditions (1.3). For simplicity, we
consider the reversing event with A± > 0. For �′(t) > 0, t > 0, we use (1.3), (1.7), and (1.14)
to obtain

(1.18)
d�

dt
= lim

x→�(t)+
hn

(
∂h

∂t

)−1

= t
m+1−n
2(1−n)

−1
lim

ξ→A+
+

Hn
+

(
H+

dξ

)−1

=
m+ 1− n

2(1 − n)
A+t

m+1−n
2(1−n)

−1
.

This equation matches with the interface equation (1.13). Similarly, for �′(t) < 0, t < 0, we
use (1.3), (1.7), and (1.15) to obtain

(1.19)
d�

dt
= − lim

x→�(t)+
hm−1 ∂h

∂t
= t

m+1−n
2(1−n)

−1
lim

ξ→A+
−
Hm−1

−
H−
dξ

=
m+ 1− n

2(1− n)
A−t

m+1−n
2(1−n)

−1
.

This equation matches again with the interface equation (1.13). Thus, the self-similar solutions
constructed in this work satisfy the weak formulation of solutions to the slow diffusion equation
with strong absorption constructed in [3, 8, 14].

The remainder of the paper is organized as follows. The unfolding and invariant manifolds
for the differential equations (1.8) near small values of H± are described in section 2. The
corresponding results near large values of H± are reported in section 3. Theorems 1.1 and 1.2
are proved in these two sections. The connection problem between the invariant manifolds
near small and large values of H± is considered in section 4. The relevant numerical technique
is implemented in section 5, where the main findings are discussed for n = 0 and compared
with the previous results from [6]. In section 6, we carry out direct numerical simulation
of (1.1) to provide numerical evidence of the relevance of the self-similar solutions to the
dynamics of (1.1) in the case n = 0. Finally, the summary of this work is provided in the
concluding section 7.

2. Invariant manifolds for small values of H±. We shall rewrite the scalar equations (1.8)
as vector systems for variables u = H± and w = Hm± dH±/dξ. In the interests of simplicity of
notation, we drop the plus and minus subscripts in the definitions of the variables u and w.
The nonautonomous vector system for u and w is as follows:

(2.1)
du

dξ
=

w

um

and

(2.2)
dw

dξ
= un ± 1

1− n
u∓ m+ 1− n

2(1− n)

ξw

um
.

If m and n are nonintegers, we require the constraint u ≥ 0. In either case, only positive
solutions for u need to be considered.
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The interface, in self-similar variables, is assumed to be located at ξ = A ∈ R, where
u = 0—a requirement of the condition on the continuity of h(x, t) at x = �(t). Since the
value u = 0 is singular in the nonautonomous system (2.1), we shall unfold the singularity by
introducing a convenient parameterization of solutions with a new time variable τ defined by

(2.3)
dξ

dτ
= um, u ≥ 0.

The map τ �→ ξ is increasing and if ξ → A as τ → −∞, then ξ > A for finite values of τ .
With the parameterization τ �→ ξ, we obtain the autonomous dynamical system in R

3,

(2.4)

⎧⎨
⎩

ξ̇ = um,
u̇ = w,
ẇ = um+n ± 1

1−nu
m+1 ∓ m+1−n

2(1−n) ξw,

where the dots stand for the derivatives of (ξ, u, w) in τ . The last two equations of system (2.4)
are continuously differentiable near zero values of u because m > 0, n < 1, and m+ n > 1. If
m ∈ (0, 1), the first equation of system (2.4) is not continuously differentiable at u = 0, but
this singularity is induced by the parameterization of the map τ �→ ξ defined by (2.3).

The family of equilibrium points for the system (2.4) is given by (ξ, u, w) = (A, 0, 0), where
A ∈ R is an arbitrary parameter. If m > 1, each equilibrium point is associated with the
Jacobian matrix ⎡

⎣ 0 0 0
0 0 1
0 0 ∓m+1−n

2(1−n) A

⎤
⎦ .

This Jacobian matrix has a double zero eigenvalue (with two linearly independent eigenvectors)
and a simple nonzero eigenvalue ∓A(m+ 1− n)/(2− 2n). Therefore, the linearization of the
dynamical system (2.4) at the equilibrium point (A, 0, 0) with ±A > 0 has a two-dimensional
center manifold and a one-dimensional stable manifold, whereas the linearized system with
±A < 0 has a two-dimensional center manifold and a one-dimensional unstable manifold.

If m > 1, n < 1, and m + n > 1, the dynamical system (2.4) is C1 smooth, so that
a straightforward application of the invariant manifold theorems [12, 18] asserts that the
equilibrium point (A, 0, 0) with A �= 0 is located at the intersection of the two invariant
manifolds, which are tangential to the invariant manifolds of the linearized system. The
limited smoothness of the first equation in system (2.4) for m ∈ (0, 1) can also be incorporated
into analysis. We formulate the corresponding results in the following Propositions 2.1 and
2.2. The relevant conclusions on the behavior of solutions of the differential equations (1.8)
for small values of H±, expressed in Theorem 1.1, follow from these two propositions.

Proposition 2.1. For every m > 0, n < 1, and m+n > 1 and for every A �= 0, there exists
a two-dimensional center manifold of the dynamical system (2.4) near the equilibrium point
(A, 0, 0), which can be parameterized as follows:

(2.5) Wc(A, 0, 0) =
{
w = um+nη(ξ, u), ξ ∈ (A,A+ δ), u ∈ (0, δ)

}
,

where

(2.6) η(ξ, u) = ± 2(1− n)

(m+ 1− n)A
+O(ξ −A, umin{1−n,m+n−1})
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and δ > 0 is small. Dynamics of the system (2.4) on the center manifold Wc(A, 0, 0) is
topologically equivalent to the dynamics at the truncated normal form

(2.7)

{
ξ̇ = um,

u̇ = ±2(1−n)um+n

(m+1−n)A .

In particular, for every A �= 0, there exists exactly one trajectory on Wc(A, 0, 0), which ap-
proaches the equilibrium point (A, 0, 0) as τ → −∞ if ±A > 0 and τ → +∞ if ±A < 0.

Proof. Existence of a two-dimensional center manifold Wc(A, 0, 0), which is tangent to
that of the linearized system

Ec(A, 0, 0) =
{
w = 0, (ξ, u) ∈ R

2
}
,

follows from [4, Theorem 4.1]. We develop an approximation of Wc(A, 0, 0) by writing

(2.8) w = um+nη(ξ, u),

where um+nη(ξ, u) is C1 at the point (ξ, u) = (A, 0) with zero partial derivatives. Dynamics
along Wc(A, 0, 0) is given by the two-dimensional system

(2.9)

{
ξ̇ = um,
u̇ = um+nη(ξ, u).

The function η is to be found by substituting (2.8) into the three-dimensional system (2.4)
and using the two-dimensional system (2.9). On doing so, we obtain the following PDE

(2.10) 1∓ m+ 1− n

2(1− n)
Aη = ∓ 1

1− n
u1−n ± m+ 1− n

2(1 − n)
(ξ −A)η + η

∂

∂u
(um+nη) + um

∂η

∂ξ
.

If m > 0, n < 1, m + n > 1, and um+nη(ξ, u) is a C1 function at (ξ, u) = (A, 0) with zero
partial derivatives, then (2.10) has a solution, which is represented asymptotically by (2.6).
This computation yields the center manifold Wc(A, 0, 0) in the form (2.5). Substituting (2.6)
into (2.9) and truncating the remainder term, we obtain the truncated normal form (2.7).

From the second equation of the system (2.7), it follows that if ±A > 0, then u̇ > 0
such that u(τ) → 0 as τ → −∞, whereas if ±A < 0, then u̇ < 0 such that u(τ) → 0 as
τ → +∞. From the first equation of the system (2.7), the constant of integration for ξ is
arbitrary, so that ξ(τ) → Ã in the same limit with some Ã. Hence, dynamics along the two-
dimensional manifold Wc(A, 0, 0) is decomposed between a curve of equilibrium states with
u = 0 and weakly unstable (if ±A > 0) or weakly stable (if ±A < 0) evolution along a curve
parameterized by small positive u.

Persistence of the dynamics on Wc(A, 0, 0) with respect to the remainder terms in (2.6)
follows from analysis of the system (2.9).

Proposition 2.2. For every m > 1, n < 1, and m + n > 1 and for every ±A < 0, there
exists a one-dimensional unstable manifold of the dynamical system (2.4) near the equilibrium
point (A, 0, 0), which can be parameterized as follows:

(2.11) Wu(A, 0, 0) =

{
ξ = A+O(um), w = ∓m+ 1− n

2(1− n)
Au+O(um+n), u ∈ (0, δ)

}
,
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where δ > 0 is small. Dynamics of the system (2.4) on the unstable manifold Wu(A, 0, 0) is
topologically equivalent to dynamics of the linear equation

(2.12) u̇ = ∓m+ 1− n

2(1− n)
Au.

Proof. Existence of a one-dimensional unstable manifold Wu(A, 0, 0), which is tangent to
that of the linearized system

Eu(A, 0, 0) =

{
ξ = A, w = ∓m+ 1− n

2(1 − n)
Au, u ∈ R

}
,

follows from [4, Theorem 4.1]. We develop an approximation of Wu(A, 0, 0) by writing

(2.13)

{
ξ = A+ umφ(u),
w = ∓m+1−n

2(1−n) Au+ um+nθ(u),

where umφ(u) and um+nθ(u) are C1 with the zero derivative at u = 0. Dynamics along
Wu(A, 0, 0) are given by the one-dimensional system

(2.14) u̇ = ∓m+ 1− n

2(1 − n)
Au+ um+nθ(u).

The functions φ and θ are to be found by substituting (2.13) into the three-dimensional system
(2.4) and using the one-dimensional system (2.14). By doing so, we obtain the following system
of differential equations

(2.15)

(
mφ(u) + u

dφ

du

)(
∓m+ 1− n

2(1− n)
A+ um+n−1θ(u)

)
= 1

and (
(m+ n)θ(u) + u

dθ

du

)(
∓m+ 1− n

2(1− n)
A+ um+n−1θ(u)

)

= 1± 1

1− n
u1−n +

m+ 1− n

2(1 − n)
φ(u)

(
m+ 1− n

2(1 − n)
Au1−n ∓ umθ(u)

)
.(2.16)

If m > 1, n < 1, and m+ n > 1, while umφ(u) and um+nθ(u) are C1 with the zero derivative
at u = 0, then system (2.15) and (2.16) has a solution such that

(2.17) φ(u) = ∓ 2(1 − n)

m(m+ 1− n)A
+O(um+n−1)

and

(2.18) θ(u) = ∓ 2(1− n)

(m+ n)(m+ 1− n)A
+O(umin{m,1−n,m+n−1}).

The representation (2.13) with (2.17) and (2.18) is equivalent to (2.11). Substituting (2.17)
for θ(u) into (2.14) and truncating the remainder terms, we obtain the linear equation (2.12).
Persistence of the linear dynamics on Wu(A, 0, 0) with respect to the remainder terms in θ(u)
follows from analysis of the differential equation (2.14).

Remark 1. For every m > 1, n < 1, m+ n > 1 and for every ±A > 0, one can construct a
one-dimensional stable manifoldWs(A, 0, 0) of the dynamical system (2.4) near the equilibrium
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point (A, 0, 0), which exists for ξ > A, u > 0, and w < 0. However, this stable manifold does
not contain trajectories that approach the equilibrium point (A, 0, 0) as τ → −∞.

Remark 2. If m ∈ (0, 1), the function umφ(u) in the proof of Proposition 2.2 is no longer
C1 at u = 0. However, the expansions (2.17) and (2.18) are well defined for every m > 0,
n < 1, and m+n > 1. Therefore, the result of Proposition 2.2 can be extended for m ∈ (0, 1)
and m = 1.

Proof of Theorem 1.1. For every m > 0, n < 1, m + n > 1 and for every ±A �= 0,
Proposition 2.1 states that the equilibrium state (A, 0, 0) is connected by the trajectories of
the dynamical system (2.4) with u(τ) > 0 as τ → −∞ if and only if ±A > 0. In this case,
there exists exactly one trajectory with u > 0 such that u(τ) → 0 as τ → −∞. This trajectory
belongs to the center manifold Wc(A, 0, 0), whose dynamics satisfy the system (2.9). From
this system, we obtain a first-order nonautonomous equation

(2.19)
du

dξ
= unη(ξ, u) = ± 2(1− n)

(m+ 1− n)A
un

[
1 +O(ξ −A, umin{1−n,m+n−1})

]
,

where the approximation is defined in the limit of ξ → A and u→ 0. Integrating (2.19) near
ξ = A, we recover the asymptotic behavior (1.14).

For every m > 0, n < 1, m + n > 1 and for every ±A < 0, Proposition 2.2 and Re-
mark 2 state that the equilibrium state (A, 0, 0) is connected by exactly one trajectory of the
dynamical system (2.4) with u > 0 and u(τ) → 0 as τ → −∞. This trajectory belongs to the
unstable manifold Wu(A, 0, 0) with the dynamics satisfying (2.14). From (2.13) and (2.17),
we obtain

(2.20) ξ = A+ um
[
∓ 2(1 − n)

m(m+ 1− n)A
+O(um+n−1)

]
as u→ 0.

Inverting this nonlinear equation near ξ = A, we recover the asymptotic behavior (1.15).

3. Invariant manifolds for large values of H±. The trajectories departing from the
equilibrium point (A, 0, 0) of the dynamical system (2.4) are expected to arrive at infinite
values for ξ and u. In order to study the behavior of trajectories near infinite values for ξ
and u, we shall define y = 1/u, which maps an infinite value for u to a zero value for y. The
other variables ξ and w must be adjusted accordingly for small values of y. Let us consider
the following scaling transformation,

(3.1) ξ =
x

yp
, u =

1

y
, w =

z

yq
,

where (x, y, z) is the set of new variables, and the positive parameters p and q are to be chosen
below. Substituting the transformation (3.1) into the dynamical system (2.4), we obtain the
following autonomous system in R

3:

(3.2)

⎧⎨
⎩

ẋ = yp−m − pxzy1−q,
ẏ = −zy2−q,
ż = ± 1

1−ny
q−m−1 + yq−m−n ∓ m+1−n

2(1−n) xzy
−p − qz2y1−q,

where a dot still denotes a derivative with respect to the time variable τ .
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The system (3.2) is singular at y = 0, no matter what positive values of p and q are chosen.
To unfold the singularity, we can now introduce a convenient parameterization of solutions
with the time variable s instead of the variable τ such that

dτ

ds
= yp, y ≥ 0.

The map s �→ τ is increasing and we can consider solutions parameterized by the new time
variable s such that y → 0 as s → +∞ (which could correspond to a finite value for the old
time variable τ).

With the parameterization s �→ τ , the system (3.2) can be rewritten in the equivalent
form

(3.3)

⎧⎨
⎩

x′ = y2p−m − pxzyp+1−q,
y′ = −zyp+2−q,
z′ = ± 1

1−ny
p+q−m−1 + yp+q−m−n ∓ m+1−n

2(1−n) xz − qz2yp+1−q,

where a prime denotes a derivative with respect to the new time variable s. With the choice
p+ 1 = q, the system (3.3) is rewritten as

(3.4)

⎧⎨
⎩

x′ = y2p−m − pxz,
y′ = −zy,
z′ = ± 1

1−ny
2p−m + y2p−m+1−n ∓ m+1−n

2(1−n) xz − qz2.

The power singularity is unfolded if we choose 2p−m = 1−n and replace y1−n with another
variable. Thus, a suitable choice of parameters p and q is given by

(3.5)

{
p+ 1 = q,
2p−m = 1− n,

⇒
{
p = m+1−n

2 ,
q = m+3−n

2 .

Denoting y1−n by ỹ and dropping the tilde notation, we finally obtain the explicit form of the
transformations (3.1),

(3.6) ξ =
x

y
m+1−n
2(1−n)

, u =
1

y
1

1−n

, w =
z

y
m+3−n
2(1−n)

.

With the transformation (3.6), the system (3.4) is rewritten in the simplest nonsingular form
with a quadratic vector field:

(3.7)

⎧⎨
⎩

x′ = y − m+1−n
2 xz,

y′ = −(1− n)zy,
z′ = ± 1

1−ny + y2 ∓ m+1−n
2(1−n) xz − m+3−n

2 z2,

where we recall that m > 0, n < 1, and m+ n > 1.
The family of equilibrium points for the system (3.7) is given by (x, y, z) = (x0, 0, 0),

where x0 ∈ R is an arbitrary parameter. Each equilibrium point is associated with the
Jacobian matrix ⎡

⎣ 0 1 −m+1−n
2 x0

0 0 0
0 ± 1

1−n ∓m+1−n
2(1−n) x0

⎤
⎦ .
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This Jacobian matrix has a double zero eigenvalue (with two linearly independent eigenvectors)
and a simple eigenvalue ∓x0(m+ 1− n)/(2 − 2n).

In the context of reversing and antireversing interfaces, we are interested in the behavior
of solutions for which ξ → +∞ and u → +∞. It follows from the transformation (3.6),
that this requirement restricts our consideration to the family of critical points (x0, 0, 0) with
x0 > 0. If x0 > 0, the linearization of the dynamical system (3.7) at the equilibrium point
(x0, 0, 0) has a two-dimensional center manifold and a one-dimensional stable (upper sign) or
unstable (lower sign) manifold. Since the vector field of the dynamical system (3.7) is analytic
(quadratic), another straightforward application of the invariant manifold theorems [12, 18]
yields that the equilibrium point (x0, 0, 0) with x0 > 0 is located at the intersection of the two
invariant manifolds, which are tangential to the invariant manifolds of the linearized system.
We formulate these results in the following Propositions 3.1 and 3.2. The relevant conclusions
on the behavior of solutions of the differential equations (1.8) for large values of H± expressed
in Theorem 1.2 follow from these two propositions.

Proposition 3.1. Assume m > 0, n < 1, and m + n > 1. For every x0 > 0, there exists
a two-dimensional center manifold of the dynamical system (3.7) near the equilibrium point
(x0, 0, 0), which can be parameterized as follows:

(3.8) Wc(x0, 0, 0) =

{
y =

m+ 1− n

2
xz + z2g(x, z), x ∈ (x0 − δ, x0 + δ), z ∈ (−δ, δ)

}
,

where

(3.9) g(x, z) = ±(1− n)

(
m+ n+ 1

2
− (m+ 1− n)2

4
x20

)
+O(x− x0, z)

and δ > 0 is small. The dynamics of the system (3.7) on the center manifold Wc(x0, 0, 0) is
topologically equivalent to the dynamics at the truncated normal form

(3.10)

{
x′ = ±(1− n)

(
m+n+1

2 − (m+1−n)2

4 x20

)
z2,

z′ = −(1− n)z2.

In particular, there exists exactly one trajectory on Wc(x0, 0, 0), which approaches the equilib-
rium point (x0, 0, 0) as s→ +∞.

Proof. Existence of a two-dimensional center manifold Wc(x0, 0, 0), which is tangent to
that of the linearized system

Ec(x0, 0, 0) =

{
y =

m+ 1− n

2
x0z, (x, z) ∈ R

2

}
,

follows from [4, Theorem 4.1]. We develop an approximation of Wc(x0, 0, 0) by writing y =
f(x, z) and expanding f using a Taylor series in small values of both x− x0 and z. Dynamics
along Wc(x0, 0, 0) is given by the two-dimensional system

(3.11)

{
x′ = f(x, z)− m+1−n

2 xz,
z′ = ± 1

1−nf(x, z) + f(x, z)2 ∓ m+1−n
2(1−n) xz − m+3−n

2 z2.
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The function f is to be found from the PDE

∂f

∂x

[
f − m+ 1− n

2
xz

]
+
∂f

∂z

[
± 1

1− n
f + f2 ∓ m+ 1− n

2(1− n)
xz − m+ 3− n

2
z2
]

+ (1− n)zf = 0.(3.12)

Equations (3.11) and (3.12) suggest the following near-identity transformation of the function
f given by

(3.13) f(x, z) =
m+ 1− n

2
xz + z2g(x, z).

After the near-identity transformation (3.13), the dynamics along Wc(x0, 0, 0) are given by
the two-dimensional system

(3.14)

{
x′ = z2g(x, z),

z′ = z2
[
± 1

1−ng(x, z) − m+3−n
2 +

(
m+1−n

2 x+ zg(x, z)
)2]

.

The function g is now to be found from the PDE

m+ 1− n

2
(1− n)x+ zg

(
m+ 3− 3n

2
+ z

∂g

∂x

)

+

(
m+ 1− n

2
x+ 2zg + z2

∂g

∂z

)(
± 1

1− n
g +

(
m+ 1− n

2
x+ zg

)2

− m+ 3− n

2

)
= 0,

which has a solution satisfying the asymptotic expansion (3.9). Representation (3.13) yields
(3.8). Substituting (3.9) into (3.14) and truncating at the cubic terms, we obtain the truncated
normal form (3.10).

From the second equation of the system (3.10), it follows that there exists a unique solution
such that z(s) → 0 as s→ +∞ with z > 0. From the first equation of the system (3.10), the
constant of integration for x is arbitrary, so that x(s) → x̃0 as s→ +∞ with some x̃0. Hence,
dynamics along the two-dimensional manifold Wc(x0, 0, 0) is decomposed between a curve of
equilibrium states with z = 0 and weakly stable evolution along a curve parameterized by
small positive z. Persistence of the dynamics on Wc(x0, 0, 0) with respect to the remainder
terms in (3.9) follows from analysis of the system (3.14).

Proposition 3.2. Assume m > 0, n < 1, and m+ n > 1. For every x0 > 0, there exists a
one-dimensional stable (upper sign) or unstable (lower sign) manifold of the dynamical system
(3.7) near the equilibrium point (x0, 0, 0), which can be expressed explicitly:
(3.15)

Ws/u(x0, 0, 0) =

{
y = 0, z = ∓m+ 1− n

2(1− n)
x

[
1−

(
x

x0

) 2
m+1−n

]
, x ∈ (x0 − δ, x0 + δ)

}
,

where δ > 0 is small. The dynamics of the system (3.7) on the manifold Ws/u(x0, 0, 0) is
topologically equivalent to the dynamics of the linear equation

(3.16) x′ = ∓m+ 1− n

2(1 − n)
x0(x− x0).
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Proof. The linearized system has the stable/unstable manifold

Es/u(x0, 0, 0) =

{
y = 0, z = ± 1

1− n
(x− x0), x ∈ R

}
.

Existence of a one-dimensional manifold Ws/u(x0, 0, 0) that is tangent to Es/u(x0, 0, 0) fol-
lows from [4, Theorem 4.1]. We notice from (3.7) that y = 0 is an invariant reduction of
the three-dimensional system. Therefore, we can set y = 0 and seek a parameterization of
Ws/u(x0, 0, 0) by working with z = ψ(x), where ψ(x0) = 0 and ψ′(x0) = ± 1

1−n . Dynamics
along Ws/u(x0, 0, 0) are given by the one-dimensional system

(3.17) x′ = −m+ 1− n

2
xψ(x).

From the three-dimensional system (3.7), we obtain a linear differential equation for nonzero
ψ:

(3.18) x
dψ

dx
=
m+ 3− n

m+ 1− n
ψ(x) ± 1

1− n
x.

This equation completed with the initial condition ψ(x0) = 0 admits a unique solution

(3.19) ψ(x) = ∓m+ 1− n

2(1− n)
x

[
1−

(
x

x0

) 2
m+1−n

]
.

Note that ψ′(x0) = ±1/(1−n), becauseWs/u(x0, 0, 0) is tangent to Es/u(x0, 0, 0). Substituting

(3.20) ψ(x) = ± 1

1− n
(x− x0) +O((x− x0)

2)

into the differential equation (3.17) and truncating at the quadratic remainder term, we obtain
the linear equation (3.16). Persistence of the linear dynamics onWs/u(x0, 0, 0) with respect to
the remainder term follows from analysis of the system (3.17) with the expansion (3.20).

Proof of Theorem 1.2. For every x0 > 0, Proposition 3.1 states that there exists exactly
one trajectory with y > 0 such that y(s) → 0 as s → +∞. This trajectory belongs to
the center manifold Wc(x0, 0, 0), whose dynamics satisfy the system (3.11). We recover the
asymptotic behavior (1.16) by eliminating y from the transformation (3.6) and setting x = x0.

For every x0 > 0, Proposition 3.2 states that the point (x0, 0, 0) is an intersection of
the two-dimensional center manifold Wc(x0, 0, 0) and the one-dimensional stable/unstable
manifold Ws/u(x0, 0, 0) for the upper/lower sign. Therefore, the point can be reached in
the direction s → +∞ along Ws(x0, 0, 0) but cannot be reached along Wu(x0, 0, 0). This
guarantees that the trajectory in Proposition 3.1 with y > 0 such that y(s) → 0 as s → +∞
is unique for the lower sign. Therefore, for every x0 > 0, there exists a one-dimensional set
of solutions of the differential equation (1.8) for the lower sign such that H−(ξ) → +∞ as
ξ → +∞.

On the other hand, the span of the trajectory in Proposition 3.1 and the trajectory in
Proposition 3.2 is a two-dimensional set that hosts all trajectories with y > 0 such that
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y(s) → 0 as s → +∞. Therefore, for every x0 > 0, there exists a two-dimensional set of
solutions of the differential equation (1.8) for the upper sign such that H+(ξ) → +∞ as
ξ → +∞. The rate of change along Ws(x0, 0, 0) is exponential in s and the rate of change
along Wc(x0, 0, 0) is algebraic in s. Therefore, solutions along the two-dimensional set still
obey the asymptotic behavior (1.16).

4. Connection of invariant manifolds. Let us summarize the results of the previous two
sections on the existence of solutions H± to the differential equations (1.8) on the semi-
infinite line (A±,∞) that satisfy the properties (1.9)–(1.11). Such solutions are related to
the trajectories of the dynamical systems (2.4) and (3.7), which depart from the equilibrium
points where H± is zero and arrive at the equilibrium point where H± is infinite. In what
follows, we will consider separately the two different systems for H+ and H−.

4.1. The system for H+(t > 0). By Propositions 2.1 and 2.2, for every nonzero A ≡ A+,
there is a unique trajectory of the dynamical system (2.4) in variables (ξ, u, w) that departs
from the equilibrium point (A+, 0, 0) as τ → −∞ and belongs to the domain u > 0. This
trajectory is contained in the center manifold Wc(A+, 0, 0) if A+ > 0 and in the unstable
manifold Wu(A+, 0, 0) if A+ < 0.

By Propositions 3.1 and 3.2, for every x0 > 0, there is a two-dimensional set of trajectories
of the dynamical system (3.7) in variables (x, y, z) that reaches the equilibrium point (x0, 0, 0)
as s→ +∞ and belongs to the domain y > 0.

We shall now establish that the same trajectory departing from the equilibrium point
(A+, 0, 0) in (2.4) arrives at the equilibrium point (x0, 0, 0) in (3.7). This trajectory determines
a unique solution H+ of the differential equation (1.8) with the upper sign satisfying properties
(1.9)–(1.11).

Lemma 4.1. Fix A+ ∈ R\{0} and consider a one-parameter trajectory of the dynamical
system (2.4) for the upper sign such that (ξ, u, w) → (A+, 0, 0) as τ → −∞ and u > 0. Then,
there exists a τ0 ∈ R (or τ0 = +∞) such that ξ(τ) → +∞ and u(τ) → +∞ as τ → τ0.

Proof. We introduce the energy-like quantity for the dynamical system (2.4) with the
upper sign:

(4.1) E(w, u) :=
1

2
w2 − 1

m+ n+ 1
um+n+1 − 1

(m+ 2)(1 − n)
um+2.

Computing the derivative of E in τ along a solution of system (2.4), we obtain

(4.2)
dE

dτ
= −m+ 1− n

2(1 − n)
ξw2.

If A+ > 0, then ξ(τ) ≥ A+ > 0, and E is a strictly decreasing function of τ as long as the
solution to system (2.4) exists and w(τ) �= 0. By the representation (2.5) of Wc(A+, 0, 0) in
Proposition 2.1, we have w(τ) > 0 for sufficiently large negative τ . Now w(τ) cannot vanish
for any τ because

(4.3) if w = 0, then ẇ = um+n +
1

1− n
um+1 > 0,
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which contradicts the positivity of w before vanishing. Therefore, w is bounded away from
zero and E(w, u) decreases to −∞ in finite or infinite time τ . Because E(0, u) ≤ E(w, u), we
have u→ +∞ if E(w, u) → −∞.

If A+ < 0, then E is an increasing function of τ at least for sufficiently large negative τ .
By the representation (2.11) of Wu(A+, 0, 0) in Proposition 2.2, we still have w(τ) > 0 for
sufficiently large negative τ . Also, w(τ) cannot vanish for any τ by the same contradiction,
since (4.3) holds. Therefore, ξ(τ) and u(τ) are still increasing functions, and there is a finite
τ1 ∈ R such that ξ(τ1) = 0 and ξ̇(τ1) > 0. For τ > τ1, E becomes a strictly decreasing
function and the energy method described above proves again that u(τ) → +∞ in finite or
infinite time τ .

We shall now prove that ξ(τ) → +∞ as τ → τ0, where τ0 is either finite or infinite. Since
w > 0 for all τ ∈ (−∞, τ0), the map τ → u is monotonically increasing, so that we can
parameterize both ξ and w by u and consider the limit u→ +∞. From the last two equations
of the system (2.4), we obtain

(4.4) w
dw

du
= um+n +

1

1− n
um+1 − m+ 1− n

2(1 − n)
ξw.

Since ξ(τ) > 0 for τ close to τ0 and w(τ) > 0 for all τ ∈ (−∞, τ0), we estimate for τ close to
τ0,

d

du

(
1

2
w2

)
≤ um+n +

1

1− n
um+1.

Integrating this differential inequality, we obtain

(4.5) w2 ≤ C +
2

m+ n+ 1
um+n+1 +

2

(m+ 2)(1 − n)
um+2,

where C > 0 is a constant of integration. Therefore, as u → ∞, there exists a constant
w∞ > 0 such that w ≤ w∞u(m+2)/2 for sufficiently large u. From the first two equations of
the system (2.4), we obtain

(4.6)
dξ

du
=
um

w
≥ u

m−2
2

w∞
.

Integrating this differential inequality, we obtain a lower bound for ξ given by

(4.7) ξ ≥ C +
2

mw∞
u

m
2 ,

where C > 0 is another constant of integration. This lower bound yields ξ → +∞ as u →
+∞.

Corollary 4.2. The trajectory of Lemma 4.1 such that ξ(τ) → +∞ and u(τ) → +∞ corre-
sponds to the trajectory of system (3.7) approaching the equilibrium state (x0, 0, 0) for some
x0 ∈ [0,∞). Consequently, one can define a piecewise C1 map

(4.8) R\{0} � A+ �→ x0 ∈ R
+.
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Proof. We can use the transformation (3.6). Since u→ ∞, then y → 0. From the bound
(4.5), we obtain

(4.9) z = wu−
m+3−n

2 ≤ w∞u−
1−n
2 .

Therefore, z → 0 as u→ ∞. On the other hand, from the bound (4.7), we only obtain

x = ξu−
m+1−n

2 ≥ Cu−
1−n
2 ,

which is not sufficient to claim that x remains bounded as u→ ∞.
Using (3.6), (4.4), and (4.6), we obtain the following system for x and z in the variable u:

(4.10)
dx

du
=

1

u

[
1

zu1−n
− m+ 1− n

2
x

]

and

(4.11)
dz

du
=

1

1− n

dx

du
+

1

u

[
1

zu2−2n
− m+ 3− n

2
z

]
.

It follows from the bound (4.9) and (4.11) that there is a positive constant C such that

d

du

(
z − 1

1− n
x

)
≥ −Cu− 3−n

2

for sufficiently large u. Since u−(3−n)/2 is integrable as u→ +∞, then z−x/(1−n) is bounded
from below by a negative constant. Since z is bounded and approaches zero as u → ∞, we
obtain that x is bounded from above by a positive constant for all sufficiently large u. Finally,
(x0, 0, 0) is an equilibrium state of system (3.7); therefore, the trajectory approaches (x0, 0, 0)
for some x0 ∈ [0,∞).

Remark 3. Integrating (4.10), we obtain

x =
c

u
m+1−n

2

+
1

u
m+1−n

2

∫
u

m−1−n
2 du

u1−nz
,

where c is an arbitrary constant. If we can prove that limu→∞ u1−nz(u) = a∞ > 0, then

lim
u→∞x(u) =

2

a∞(m+ 1− n)
∈ (0,∞).

This would indicate that the bound (4.9) is not sharp. However, we only have numerical data
supporting this claim for every A+ ∈ R.

We will show numerically in section 5 for n = 0 that both pieces of the map (4.8) are
monotonically increasing for all A+ ∈ R and intersecting at x = xQ for A+ = 0, where

(4.12) xQ :=

√
2(m+ n+ 1)

m+ 1− n
.

The exact value xQ corresponds to the exact solution (1.17) of the scalar differential equations
(1.8). This exact solution is recovered with the following elementary result.
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Proposition 4.3. There exists an exact solution of the dynamical system (3.7) given by

(4.13)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(s) = xQ,

y(s) = b
√
m+n+1√

2(1+(1−n)bs)
,

z(s) = b
1+(1−n)bs ,

s > − 1

b(1− n)
,

where xQ is given by (4.12) and b is an arbitrary positive parameter.

Proof. Consider the system (3.7) and try the reduction x = x0, where x0 is constant in s.
Then, on setting y = m+1−n

2 x0z we obtain the following differential equations:

y′ = −(1− n)zy, z′ = y2 − m+ 3− n

2
z2.

This system is compatible with the constraint on y if z′ = −(1 − n)z2 and x20 = x2Q. The

general solution of z′ = −(1− n)z2 is

z(s) =
b

1 + (1− n)bs

for a positive parameter b. The solution is defined for s > −1/(b(1 − n)).

Remark 4. It follows from (3.6) and (4.13) that ξ → 0 and u→ 0 as s→ −1/(b(1 − n)).
Therefore, the exact solution of Proposition 4.3 corresponds to the choice A+ = 0 in Lemma 4.1.

4.2. The system for H−(t < 0). By Propositions 2.1 and 2.2, for every nonzero A ≡ A−,
there is a unique trajectory of the dynamical system (2.4) in variables (ξ, u, w) that departs
from the equilibrium point (A−, 0, 0) as τ → −∞ and belongs to the domain u > 0. This
trajectory is contained in the unstable manifold Wu(A−, 0, 0) if A− > 0 and in the center
manifold Wc(A−, 0, 0) if A− < 0.

By Propositions 3.1 and 3.2, for every x0 > 0, there is a unique trajectory of the dynamical
system (3.7) in variables (x, y, z) that reach the equilibrium point (x0, 0, 0) as s → +∞ and
belongs to the domain y > 0. This trajectory is contained in the center manifold Wc(x0, 0, 0).

If we try an argument used in the proof of Lemma 4.1, then it becomes clear that most of
the trajectories departing from the equilibrium point (A−, 0, 0) in system (2.4) will not arrive
at the equilibrium point (x0, 0, 0) in system (3.7) but instead reach the value u = 0 in a finite
τ ∈ R. This indicates that, first, there are very few values of A−, for which the trajectories
may reach infinite values for u and, second, the numerical method should not be based on the
trajectories departing from the equilibrium point (A−, 0, 0) (such a shooting method was used
previously in [6]). Instead, it may be better to look for the unique trajectory departing the
equilibrium point (x0, 0, 0) in system (3.7) in the negative direction of the time variable s.

To illustrate the previous point, we show on Figure 1 the trajectories of the system (2.4)
with m = 3 and n = 0 starting from the equilibrium point (A±, 0, 0) along either center (for
A+ > 0) or unstable (for A− > 0) manifolds. The trajectories of the system for H+ extend
from small to infinite values of H+; see panel (a). In contrast, the trajectories of the system
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Figure 1. Panels (a) and (b) show trajectories of the system (2.4) with m = 3 and n = 0 for H+ and H−,
respectively. In both cases, the trajectories start from the equilibrium point (A±, 0, 0) and depart along either
the center or the unstable manifolds.

for H− turn back and return to small values of H−; see panel (b). Note that the return time
is significantly different between the first two and the last two trajectories. This indicates
the presence of a particular value of A− for which there exists a trajectory that extends from
small to infinite values of H−; see (5.4) below.

In order to justify our numerical scheme, we shall prove that the trajectory departing the
equilibrium point (x0, 0, 0) in system (3.7) in the negative s direction either intersects the
plane u = 0 or the plane w = 0 of system (2.4).

Lemma 4.4. Fix x0 > 0 and consider a one-parameter trajectory of the dynamical system
(3.7) for the lower sign such that (x, y, z) → (x0, 0, 0) as s → +∞ and y > 0. Then, there
exists an s0 ∈ R (or s0 = −∞) such that

(i) either z(s0) = 0 and y(s0) ∈ (0,∞]

(ii) or y(s) → +∞ as s→ s0, whereas lims→s0 z(s)y(s)
−m+3−n

2(1−n) ∈ [0,∞).

Proof. For convenience, let us reverse the time variable, by transforming s → −s, and
rewrite system (3.7) with the lower sign in the negative direction of s:

(4.14)

⎧⎪⎨
⎪⎩

x′ = m+1−n
2 xz − y,

y′ = (1− n)zy,

z′ = 1
1−ny − y2 − m+1−n

2(1−n) xz +
m+3−n

2 z2.

By Proposition 3.1, we have y > 0 and z > 0 for the trajectory departing from the equilibrium
point (x0, 0, 0) (in negative s) along Wc(x0, 0, 0). From the second equation of system (4.14),
y remains an increasing function of negative s as long as z remains positive. Therefore, we
have an alternative: either z vanishes before y diverges or y diverges before z vanishes.

The first choice of the alternative gives case (i). For the second choice, let us consider
variables ξ and w given by (3.6) and parameterized by y in the limit y → +∞ (the map s �→ y
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is one-to-one and onto). By dividing the first and third equations in system (4.14) by the
second equation, we obtain

dx

dy
=
m+ 1− n

2(1− n)

x

y
− 1

(1− n)z
,

dz

dy
=

1− (1− n)y

(1 − n)2z
− m+ 1− n

2(1 − n)2
x

y
+
m+ 3− n

2(1− n)

z

y
.

By using variables ξ and w given by (3.6), we obtain

(4.15)
dξ

dy
= − 1

(1− n)y
m+2−n

1−n w
,

dw

dy
=

1− (1− n)y

(1− n)2y
m+3−n

1−n w
− m+ 1− n

2(1− n)2
ξ

y
2−n
1−n

.

To show that the second choice of the alternative above gives case (ii), we will prove that
w remains finite as y → +∞. This is done by a contradiction. Assume that w → +∞ as
y → +∞. Therefore, there exists w0 > 0 such that w ≥ w0 for all sufficiently large y. Then,
from the first equation of system (4.15), we have for sufficiently large y,∣∣∣∣dξdy

∣∣∣∣ ≤ 1

(1− n)y
m+2−n

1−n w0

.

Because y−(m+2−n)/(1−n) is integrable at infinity, there is a finite positive ξ∞ such that |ξ| ≤ ξ∞
for all sufficiently large y. Then, from the second equation of system (4.15), we obtain for
sufficiently large y, ∣∣∣∣dwdy

∣∣∣∣ ≤ 1

(1− n)y
m+2
1−n w0

+
m+ 1− n

2(1− n)2
ξ∞
y

2−n
1−n

.

Since both y−(m+2)/(1−n) and y−(2−n)/(1−n) are integrable at infinity, there is a finite positive
w∞ such that w ≤ w∞ for all sufficiently large y, contradicting the assumption that w → +∞
as y → +∞. Therefore, case (ii) is proved.

Corollary 4.5. The trajectory of system (3.7) departing from the equilibrium point (x0, 0, 0)
with x0 > 0 in the negative direction of s intersects either the half-plane w = 0 and u ≥ 0 in
system (2.4) in case (i) of Lemma 4.4 or the half-plane u = 0, w ≥ 0 in system (2.4) in case
(ii). Moreover, in the corresponding cases,

(i) if lims→s0 u(s) > 0, then lims→s0 |ξ(s)| <∞;
(ii) if lims→s0 w(s) > 0, then lims→s0 |ξ(s)| <∞.
Consequently, one can define two piecewise C1 maps

(4.16) (i) R
+ � x0 �→ (ξ, u) ∈ R× R

+ and (ii) R
+ � x0 �→ (ξ, w) ∈ R× R

+.

Proof. In case (i), it is trivial to see that z(s0) = 0 and y(s0) ∈ (0,+∞] corresponds to the
half-plane w = 0 and u ≥ 0. The first equation of systems (4.14) and (4.15) can be written
for the variable ξ as follows:

ξ′ = −y 1−m−n
2(1−n) ,

where the prime still denotes the derivative with respect to the time variable s in the negative
direction of s. If y remains finite as s → s0, then ξ is bounded as s → s0, since the third
equation of system (4.14) implies that s0 is finite in this case.
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In case (ii), it is also trivial to see that lims→s0 y(s) = +∞ and

lim
s→s0

z(s)y(s)−(m+3−n)/(2−2n) ∈ [0,∞)

corresponds to the half-plane u = 0 and w ≥ 0. If w remains nonzero in the limit y → +∞,
then there exists w0 > 0 such that w ≥ w0 for all sufficiently large y. Then, the same analysis
as in Lemma 4.4 applies to the first equation of system (4.15) and shows that ξ remains finite
as y → +∞.

Unfortunately, we do not control the value of ξ at the intersection of the two piecewise
C1 maps (4.16). However, we will show numerically in section 5 for n = 0 that the piecewise
C1 maps (4.16) are typically connected at the points where u = w = 0 and ξ = A ∈ R. In
this case, a true solution H− of the differential equation (1.8) with the lower sign satisfying
properties (1.9)–(1.11) exists.

5. Numerical results for the self-similar solutions. Let us describe a new numerical
approach, based on the results of Lemmas 4.1 and 4.4, that will be used to furnish meaningful
solutions to the differential equations (1.8), for H− and H+. In sections 5.1 and 5.2 we
describe the numerical procedures for finding solutions for H− and H+, respectively. Finally,
in section 5.3, we summarize the results of the numerical experiments and compare them with
the results found in Foster et al. [6]. In this section, we set n = 0 for all computations.

5.1. Solutions for H−(t < 0). As discussed in section 4.2, we wish to numerically
construct a unique trajectory from infinite to finite values of H−. To do so, we integrate the
system (3.7) from near the equilibrium point (x0, 0, 0) in the far field towards the equilibrium
point (A−, 0, 0) of the system (2.4) in the near field. The numerical procedure is carried out
as follows:

1. Select a value of x0 > 0. Ideally, one would like to begin by using this choice of x0
to specify unique initial values for (x, y, z) = (x0, 0, 0), and then numerically integrating the
system (3.7) backward in the “time” variable s. Equivalently, one could integrate the system
(4.14) forwards in time. However, since (x0, 0, 0) is an equilibrium point, it is not possible
to escape (x0, 0, 0) in a finite time. Thus, in order to ensure that any numerical integration
scheme can depart from near the equilibrium point along the center manifold,Wc(x0, 0, 0), it is
necessary to take a “small step”, say δ � 1, away from (x0, 0, 0) using the relevant asymptotic
behavior. Using (3.8) and (3.10) with n = 0, we find that a trajectory on the center manifold
Wc(x0, 0, 0) has the local behavior

(5.1)

⎧⎪⎨
⎪⎩

x = x0 +
(
m+1
2 − (

m+1
2

)2
x20

)
δ +O(δ2),

y = m+1
2 x0δ +O(δ2),

z = δ

for small positive values of δ. Having selected values for both x0 and δ, the behaviors (5.1)
may be used to specify unique (pseudo)initial values for (x, y, z) and to begin the numerical
integration of the system (3.7) in the direction of decreasing s. In this study, numerical
integration of the system (3.7) was carried out using the ode45 routine in MATLAB with
the default settings, except AbsTol and RelTol which were both set to have a value of 10−10.
Selecting an appropriate value of δ is a somewhat ad-hoc procedure: there is trade-off between
taking δ too small, which renders it difficult for the numerical integration to escape the
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neighborhood of the equilibrium point (leading to poor accuracy of the integration), and taking
δ too large which could result in low accuracy of the asymptotic expansion (5.1). However,
we found that choosing δ ∈ (10−3, 10−2) gave good results over the ranges of parameters we
studied. Robustness of the results with respect to changes in (i) the choice of δ and (ii) the
number of terms in the asymptotic expansion (5.1) were verified.

2. The result of Corollary 4.5 asserts that all such trajectories will ultimately—in either
a finite or infinite time—intersect with either the plane w = 0 or u = 0; see the maps (4.16).
To ensure accurate numerical integration of the system in the near field, in variables (ξ, u, w),
it is necessary to “switch” from integrating the far-field system (3.7) to the near-field system
(2.4) backward in time. The choice of conditions under which this switch should occur is,
again, somewhat arbitrary. However, as long as the values of (x, y, z)—and hence the values
of (ξ, u, w)—are all finite and nonzero, this switching is valid at any point. In this study,
we chose to switch from integrating (3.7) to (2.4) with n = 0 when xy−(m+1)/2 = 20 (or
equivalently when ξ = 20). However, we verified that our results were robust to changes in
the choice of switching conditions. This switching procedure can be readily automated within
MATLAB using the Events function to autonomously (i) stop the integration of the system
(3.7) when the specified conditions are satisfied; (ii) read off the final values of (x, y, z); (iii)
transform these to corresponding values for (ξ, u, w) using the change of variables (3.6); (iv)
and begin the integration of (2.4) backwards in time from the appropriate initial data.

3. The integration of the system (2.4) is then continued backward in the time variable τ
until either w = 0 or u = 0. Again, we used the Events function to autonomously detect when
either of these events occurred and to stop the integration. It is noteworthy that we found it
helpful to use ode15s to integrate the near-field system—again, the default settings were used
with the exception of AbsTol and RelTol which were both set to 10−10. Although ode15s

is typically slower than ode45, it is considerably more appropriate to deal with integrating
systems of equations that exhibit apparent stiffness. This apparent stiffness, manifested as
rapid changes in the direction of the trajectory in variables (ξ, u, w), arises as an artifact
of the infinite time required to reach the equilibrium point (A−, 0, 0). Thus, if a trajectory
approaches very close to the equilibrium point it appears to be rapidly rejected from that
neighborhood. When the integration is terminated, we record the following pieces of data: (i)
the selected value of x0; (ii) whether the trajectory reached u = 0 or w = 0; (iii) and the value
of either (ξ, u) or (ξ, w) at the termination point. These data define a point on one of the two
piecewise C1 maps defined in (4.16). It is by computing a large number of trajectories, each
emanating from different values of x0, that we are able to trace out the forms of these maps.

The nontrivial solutions for H− that we seek correspond to trajectories emanating from
particular equilibrium points in the far field, say (x∗0, 0, 0), that reach the near-field equilibrium
point, (A−, 0, 0) for some finite A− �= 0. In addition to these nontrivial solutions, we recall
that for all values of m > 1 there exists a trivial solution given by (4.13) with n = 0 that
emanates from x∗0 = xQ =

√
2/(m + 1) and reaches A− = 0, as discussed in Proposition 4.3.

Some representative results for m = 2, 3, 4, and 5 are shown in Figure 2. In these plots, a
suitable nontrivial solution for H− is found by identifying a value of x0 = x∗0 for which the
value of (ξ, u) = (A−, 0)—or (ξ, w) = (A−, 0)—at the termination point.

In Figure 3, we show some representative computations highlighting the differences be-
tween the near-field behavior of trajectories local to a true solution with A− < 0 and A− > 0.
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Figure 2. Panels (a)–(d) show plots of the piecewise C1 maps defined in (4.16) for m = 2, 3, 4, and 5,
respectively. In all cases the blue, red, and black curves show the value of w at u = 0, the value of u at w = 0,
and the value of ξ at the termination point, respectively. The dashed vertical line indicates the value of x0 = xQ

corresponding to the exact solution (1.17). The crosses on panel (a) mark the data points extracted using the
extrapolation procedure discussed in the text.

As is evidenced by Figure 2, close to a trajectory with A− > 0 the piecewise continuous C1

maps defined in (4.16) are smooth, whereas close to a trajectory with A− < 0 the maps exhibit
rapid changes and (vertical) cusp-like features. As a result, determining negative value(s) of
A− is more challenging—despite resolving x0 to machine precision (approximately 10−14 in the
standard IEEE double precision), it is not possible to approximate the value of x∗0 sufficiently
well that an accurate estimate of A−(< 0) can be determined. In these cases, we therefore
found it necessary to implement one additional stage in the numerical scheme as follows.

Once x∗0 had been determined up to machine precision, and two “limiting” trajectories had
been identified (one emanating from x∗0± δ̂ and terminating at u = 0, and the other emanating
from x∗0∓ δ̂ and terminating at w = 0, where δ̂ � 1) the expected near-field linear asymptotic
behavior of u(ξ), according to the expansion (1.14) with n = 0, is clearly visible. This linear
behavior can then be extrapolated, in the direction of decreasing ξ, until it intersects the ξ-
axis. This intersection point is, to a good approximation, the value of A−(< 0) corresponding
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Figure 3. Panel (a) shows some representative trajectories emanating from x∗
0 ≈ 0.338 for m = 2. More

precisely, the red and blue trajectories begin at x∗
0 ± δ̂ for δ̂ = 10−2, 10−4, 10−6, 10−8, 10−11, and 10−14. The

black line shows the artificially extrapolated linear behavior. Panel (b) shows some representative trajectories
emanating from x∗

0 ≈ 1.165 for m = 4. In this case, the trajectories begin at x∗
0 ± δ̂ for δ̂ = 10−1, 10−2, and

10−3. Notably, in the latter case, despite only resolving x∗
0 to 3 significant digits, a good estimate of A− has

already been obtained.

to the trajectory emanating from x∗0. Panel (a) of Figure 3 gives an example of the linear
extrapolation procedure described above.

Using the procedure described above, for all values ofm > 1, we recover the trivial solution
discussed in Proposition 4.3. In addition, we see that in the case m = 3 there is only one
suitable nontrivial solution with the following data:

m = 3: x∗0 ≈ 0.767, A− ≈ 0.129.

For m = 4 and m = 5, similar results are observed with one trivial and only one nontrivial
solution as follows:

m = 4: x∗0 ≈ 1.165, A− ≈ 0.386

and

m = 5: x∗0 ≈ 1.666, A− ≈ 0.501.

In contrast, in the case m = 2 we find that three suitable nontrivial solutions exist with the
data

m = 2:

⎧⎪⎨
⎪⎩

x∗0 ≈ 0.338, A− ≈ −2.804,

x∗0 ≈ 0.137, A− ≈ −0.932,

x∗0 ≈ 0.0592, A− ≈ −0.546.

Notably, all values of A− for m = 2 are negative, whereas for m = 3, 4, and 5 they are positive.
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Figure 4. The variation of x∗
0 versus m. The red, blue, and black curves indicates values of x∗

0 that define
trajectories terminating at the near-field equilibrium point with A− > 0, A− < 0, and A− = 0, respectively.
Panels (b)–(d) show zoomed-in regions from panel (a) near m = 3, m = 5, and m = 7, respectively.

In addition to the detailed results for m = 2, 3, 4, and 5 shown in Figure 2, we also show
in Figure 4 the values of x∗0 determined for all values of m from m = 1 to m = 8. For the
primary red and blue branches, emanating from m = 3 along the black branch, we show
the corresponding values of A− in Figure 5. Intriguingly, the numerical results indicate that
in addition to the exact solution—which is valid for all m > 1—there are a whole host of
additional solutions, some with A− > 0 and others with A− < 0. In particular, there is at
least one additional trajectory corresponding to a suitable solution for H− with A− > 0 for
all values of m � 2.978. Further, for all m < 3 there exists at least one additional solution for
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Figure 5. Panel (a) shows the variation of A− along the red and blue curves emanating from the black
curve near m = 3. Panel (b) shows the same plot zoomed in on positive values of A−.

H−, although, in this case, for a value of A− < 0. Another noteworthy feature of the plots
shown in panels (a)–(d) of Figure 4 is that at each value of m = (2N−1) for N ∈ N additional
branches of solutions depart from the black branch.

5.2. Solutions for H+(t > 0). Having successfully found suitable solutions for H−,
we now proceed to compute suitable solutions for H+. As discussed in section 4.1, we can
numerically construct a unique trajectory from small to infinite values of H+. To do so, we
integrate the system (2.4) from the equilibrium point (A+, 0, 0) in the near field towards the
equilibrium point (x0, 0, 0) of the system (3.7) in the far field. The numerical procedure is
carried out as follows:

1. Select a value of A+ ∈ R\{0}. Since (A+, 0, 0) is an equilibrium point, it is not
possible to escape (A+, 0, 0) in finite time. We therefore begin integration of the system (2.4)
by taking a small step, say ε, away from (A+, 0, 0) using the relevant asymptotic behavior.
Using (2.5) and (2.7) with n = 0 for A+ > 0, we find that a trajectory exiting the equilibrium
point along the center manifold, Wc(A+, 0, 0), has the local asymptotic behavior

(5.2)

⎧⎪⎨
⎪⎩

ξ = A+ + ε,

u =
(
m+1
2 A+

)−1
ε+O(ε2),

w =
(
m+1
2 A+

)−(m+1)
εm +O(εmin{m+1,2m−1})

for A+ > 0,

for a small positive value of ε. By contrast, using (2.11) and (2.12) with n = 0 for A+ < 0,
we find that a trajectory along the unstable manifold Wu(A+, 0, 0) has the local asymptotic
behavior

(5.3)

⎧⎪⎪⎨
⎪⎪⎩

ξ = −|A+|+ ε,

u =
(
m+1
2 |A+|m

) 1
m ε

1
m +O(ε),

w = 1
m

(
m+1
2 |A+|m

)m+1
m ε

1
m +O(ε)

for A+ < 0,
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Figure 6. Panel (a): Plots of the variation of x0 with A+ for various different values of m = 2, 3, and 4.
Panel (b): Plots of the trajectories emanating from A+ = 0.1, 0.2, 0.3, 0.4, and 0.5 for m = 3. The constant
to which these trajectories tend in the far field is selected to be the corresponding value of x0.

for a small positive value of ε. Having selected values for both A+ and ε, either (5.2) or (5.3)
define unique (pseudo)initial conditions to begin integrating the system (2.4) in the direction
of increasing time τ towards the far field.

2. We proved in Corollary 4.2, that the ultimate fate of all such trajectories, in vari-
ables (x, y, z), is approaching the equilibrium state (x0, 0, 0) for some x0 ∈ [0,∞). Thus, by
continuing integration of the system (2.4) with n = 0 to some large value of τ , denoted by
say τ∞, and reading off the value ξu−(m+1)/2 ≈ x0 at τ = τ∞, we can obtain an arbitrarily
accurate approximation of the corresponding value of x0 that is obtained in the far field—a
higher degree of accuracy can be achieved by simply increasing the value of τ∞. For this
purpose we found ode45 with the majority of the default setting to be sufficiently robust. To
ensure high numerical accuracy, at the cost of a relatively small increase in computation time,
both AbsTol and RelTol were decreased to 10−10. In contrast to the case for solutions H−,
we found it unnecessary to switch from integrating the near-field system (2.4) to the far-field
system (3.7). Typically, we found that taking τ∞ ∈ (104, 105) gave an approximation of x0
correct to 8 significant digits.

Carrying out this procedure for a variety of choices of A+ we are able to trace out the form
of the piecewise C1 map between A+ and x0 defined earlier in (4.8). In Figure 6, we show
this map for m = 2, 3, and 4 (see panel (a)), as well as some representative trajectories of the
system (2.4) for m = 3 (see panel (b)). In addition to the results shown, other computations
for different values of m were also carried out and it appears generic that x0 is a monotonically
increasing function of A+. Crucially, it appears that range of the map (4.8) is the entire semi-
axis R+ for x0.

5.3. Summary of numerical results for the self-similar solutions. We have demonstrated
that (i) for each value of m > 1 and n = 0, there exists at least one value of x0 = x∗0
(different from the trivial case x0 = xQ) that defines a trajectory emanating from (x∗0, 0, 0)
and terminating at (A−, 0, 0), and thus a suitable solution for H−, and (ii) for every value of
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A+ ∈ R there exists a unique corresponding value of x0, thereby defining an infinite family
of suitable solutions for H+. The one remaining step is therefore to invoke the matching
condition (1.12). This condition is equivalent to requiring that the far-field behavior of H+

is characterized by x0 = x∗0. Thus, given a solution for H−, the matching condition (1.12)
specifies a unique choice of x0 = x∗0, a unique A+, and thus a unique solution for H+, thereby
closing the problem.

The solutions found here for m = 3 and 4 show a qualitative, although not quantitative,
agreement with those reported in [6]. Here, we found that

(5.4) m = 3: A− ≈ 0.129, A+ ≈ 0.154, and x∗0 ≈ 0.767

and

(5.5) m = 4: A− ≈ 0.386, A+ ≈ 0.794, and x∗0 ≈ 1.165.

In Foster et al. [6], they claimed that for m = 3: A− ≈ 0.144, A+ ≈ 0.0958, and x∗0 ≈ 0.765,
whereas for m = 4: A− ≈ 0.386, A+ ≈ 0.341, and x∗0 ≈ 0.980. Additionally, they claim
another suitable solution for m = 2: A− ≈ 0.00135, A+ ≈ 0.0102, and x∗0 ≈ 0.817. In
contrast, here we found that no such solution with A− > 0 exists. Notably this value of x∗0
reported in [6] for m = 2 is very close to the value of xQ =

√
2/(m+ 1). For m = 2, using our

numerical approach we have been able to identify three other solutions with A− < 0, namely,

(5.6) m = 2:

⎧⎪⎨
⎪⎩

A− ≈ −2.804, A+ ≈ −4.322, x∗0 ≈ 0.338,

A− ≈ −0.932, A+ ≈ −30.625, x∗0 ≈ 0.137,

A− ≈ −0.546, A+ ≈ −166.623, x∗0 ≈ 0.0592.

We believe that the origin of these discrepancies is due to the low accuracy of the numerical
scheme used in [6]. Indeed, in [6], the solutions for H− were computed by identifying the value
of A− which characterizes solutions in the near field that extend into the far field with the
requisite behavior, as in panel (a) of Figure 1. Solutions for H+ were computed by finding
the value of A+ inferred (via shooting from the far field toward the near field) by invoking the
matching condition in the far field as in panel (b) on Figure 6. Both numerical methods used
in [6] are ill posed. Here, we pose the numerical problem as a shooting scheme for uniquely
defined piecewise C1 scalar functions, i.e., the maps defined in (4.8) and (4.16). We therefore
believe that the results obtained here are more reliable than those in [6].

6. Numerical simulations of the time-dependent equation. Here we provide additional
numerical evidence on the relevance of the self-similar solutions constructed in section 5 to the
dynamics of the original time-dependent slow diffusion equation (1.1) with constant absorption
(n = 0). In the interests of simplicity, we focus our interest on solutions to (1.1) that exhibit
symmetry in space. This allows us to consider just a single moving interface located at
x = �(t) ≤ 0 while a Neumann (symmetry) condition will be imposed at x = 0. A complete
definition of the problem we aim to solve is given by (1.1) subject to (1.3), h|x=�(t) = 0,
∂h/∂x|x=0 = 0, and supplemented with the initial condition h|t=0 = h0(x). Since we are
primarily concerned with demonstrating stability of the self-similar solutions, we will focus
on predicting the evolution of solutions as a reversing event is approached. Continuation of
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a simulation past a reversing event can also be achieved using similar ideas to those that we
will present, but a full discussion is beyond the scope of this work.

We shall design a numerical scheme based on finite difference approximations of the spatial
derivatives and an adaptive Runge–Kutta–Fehlberg (RKF45) scheme for temporal evolution.
The two main difficulties that this scheme must overcome are (i) dealing with the free boundary
nature of the problem and (ii) the large gradients in the solution profiles that can develop
close to the moving interface(s). The former issue will be circumvented by using a standard
change of variables to map the problem to a static domain. A remedy for the latter issue will
also be possible, but only after examining the possible behaviors of solutions to (1.1) local to
an interface.

It is well known, and can be readily verified, that the nonlinear diffusion equation with
absorption, (1.1), admits two different traveling wave solutions local to moving interfaces.
Seeking solutions near a left interface x = �(t) that have the form h(x, t) ∼ A(t)(x − �(t))α,
for some function A(t) and constant α, we find that

h ∼ (−m�′(t))1/m(x− �(t))1/m as x↘ �(t) for �′(t) < 0,(6.1)

h ∼
(
�′(t)
1− n

)−1/(1−n)

(x− �(t))1/(1−n) as x↘ �(t) for �′(t) > 0.(6.2)

The former is an advancing wave local to a left interface whose motion is driven by diffu-
sion, whereas the latter is a receding wave driven by absorption. The study of self-similar
solutions has elucidated a process by which the wave (6.1) becomes (6.2), giving rise to a
reversing interface, or vice versa, giving rise to an antireversing interface. Notably, for m > 0
the behavior (6.1) exhibits extremely large gradients close to the interface. The same large
gradients are observed in (6.2) when n < 0. Any finite difference scheme that attempts to
accurately capture these large gradients will be susceptible to roundoff error and therefore
lead to inaccuracy. However, knowledge of these forms of the local behaviors, (6.1) and (6.2),
can be used to motivate a change of variables that “regularizes” the behavior of solutions local
to the interface so that a finite-difference-based approach can yield reliable results.

To remove the issues associated with the free boundary nature of the problem we first
make the change of variables

(6.3) μ =
x

�(t)
,

so that the domain of interest is now μ ∈ [0, 1]. Since our primary aim here is to demonstrate
the stability of the self-similar solutions in the context of the original PDE (1.1) we will
concentrate on evolving some initial data forwards in time towards a reversing event. With
this in mind, we expect that for suitable choices of initial data the local behavior near the left
interface (x = � or equivalently μ = 1) will be given by (6.1). This local behavior motivates
the following change of variables:

(6.4) ν = (1− μ)1/m,

where ν ∈ [0, 1]. Following the transformations (6.3) and (6.4), the original PDF (1.1) with
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n = 0, and its associated boundary conditions become

∂ĥ

∂t̂
=

1

m2�2νm−1

d

dν

(
ĥm

νm−1

∂ĥ

∂ν

)
− d�

dt̂

(1− ν)m

m�νm−1

∂ĥ

∂ν
− 1,(6.5)

∂ĥ

∂ν

∣∣∣
ν=1

= 0, ĥ|ν=0 = 0,(6.6)

d�

dt̂
=

ĥm−1

m�νm−1

∂ĥ

∂ν

∣∣∣
ν=0+

,(6.7)

where ĥ(ν, t̂) = h(x, t). Note that (6.7) arises from (1.3) under the assumption that �′ < 0.
At this stage it is now obvious why the change of variables (6.4) is so crucial to the success
of a finite-difference-type treatment of the problem; the singular behavior (6.1) has been fully
removed, and replaced with a linear behavior (in the ν-coordinate system for ĥ) which can
readily captured by finite differences. The one remaining issue with the problem (6.5)–(6.7)
that must be resolved before we proceed to discretization concerns accurately evaulating the
right-hand side of the evolution equation for �, namely, (6.7). Once again, we exploit our
knowledge of the linear behavior of the solution profile local to the moving interface, near
ν = 0, to write the following generic Taylor expansion ĥ|ν=0 = (∂ĥ/∂ν|ν=0+)ν + O(ν2). On
substitution of this expansion into (6.7) we find that

(6.8)
d�

dt̂
=

1

m�

(
∂ĥ

∂ν

)m ∣∣∣
ν=0+

+O (ν) .

We henceforth truncate the above approximation immediately after the leading order term.

6.1. Finite difference discretization. The spatial domain is treated by introducing a
uniformly spaced discretization consisting of N + 1 grid points located at νi = (i − 1)/N for
i ∈ 1, 2, . . . , N +1. At each of these stations in space we denote the value of the concentration
by ĥi(t̂) = ĥ|ν=νi . A system of N + 1 evolution equations for the values of the independent
variable, ĥ|ν=νi , along with one additional ODE for the position of the interface, �, may now
be formed by using finite differences to discretize (6.5) and (6.8) along with the boundary
conditions (6.6). On doing so, and using concise notation, the resulting problem may be
written as

(6.9)
du

dt̂
= f(u) with u|t̂=0 = u0.

Here, the solution vector u is a vector of length N + 2 comprised of the functions ĥi(t̂) and
�(t̂) while the initial data vector u0 contains the initial values of these same quantities, and
the nonlinear operator f is the operator arising from the finite difference discretization of the
problem. In the interests of brevity we will not explicitly show the operator f . However, it is
pertinent to note that for the purposes of this work we formed f by treating each and every
first derivative in space appearing in (6.5) using a second-order accurate centered difference
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while the first derivatives in space appearing in (6.6) and (6.8) were treated using second-order
accurate backward and forward differences, respectively.

The system of ODEs and initial data (6.9) can then be evolved in time using an appro-
priate time stepping method. For convenience, we used the MATLAB routine ode45 which
implements an RKF45 scheme. The Events function was used to automatically detect when
the solution approached a reversing event by monitoring the value of �′ and stopping the
temporal integration when |�′| < δ̄ for some δ̄ � 1.

For all of the simulations shown here we found that selecting the number of grid points
N = 103, taking δ̄ = 10−10, and setting AbsTol and RelTol, in the ode45 solver, both equal to
10−10 gave accurate results. In addition to the usual convergence tests we verified the validity
of the approach by monitoring the “total mass” of the concentration. On taking the original
PDE, (1.1) with n = 0, integrating over the spatial domain and applying the Neumann and
interface conditions at x = 0 and x = �(t), respectively, one can show that solutions to the
problem should satisfy d/dt(

∫ 0
� h(x, t)dx) = −�. Rewriting this equation under the changes of

variables (6.3) and (6.4) gives rise to

(6.10)
d

dt̂

(
m�

∫ 1

0
νm−1ĥdν

)
+ � = 0.

The numerical scheme was found to reproduce this result up to the expected numerical error.
As either N was increased or AbsTol and RelTol were decreased the discrepancies between
(6.10) and the numerical results decreased at the expected rates—in summary, the method
was found to perform as expected.

6.2. Summary of numerical results for the time-dependent equation. To provide ev-
idence for the stability of the self-similar solutions found in section 5 in the context of the
original PDE problem (1.1) we will examine the evolution of the following one-parameter
family of initial conditions

(6.11) ĥ|t̂=0 = ĥ0 = λ sin
(πν

2

)
and �|t̂=0 = �0,

for a selection of values of λ ∈ R
+. Owing to the linear behavior of (6.11) close to ν = 0 we

expect to, and indeed do, find that �′ < 0 initially. We evolve the system until a reversing
event is approached and then simulation is terminated.

Panel (a) of Figure 7 shows plots of the behavior of �(t) as the reversing event is approached
as predicted by (i) direct numerical simulation, and (ii) the self-similar theory, for the choice
of the exponent m = 4 and n = 0. One can see that independently of the choice of λ in
the initial data (6.11), the agreement betweeen the two approaches is very favorable. Other
similar simulations were carried out for a variety of different choices of 3 ≤ m ≤ 5 and for
different initial data and good agreement was observed in all cases thereby providing strong
evidence that the self-similar reversing solutions are stable in the time-dependent context. In
addition to this comparison of the predictions on the behavior of � we also show, in Figure 7
panel (b), a series of plots of h(x, t) at different times as predicted by the numerical simulation;
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Figure 7. Panel (a) shows a comparison between the predictions on the behavior of �(t) as given by (i)
the self-similar theory (solid line), i.e., according to (1.13) and (5.5), and (ii) direct numerical simulation
for m = 4 and n = 0. The dashed, dash-dotted, and dotted curves show the results from direct numerical
simulation using the initial data (6.11) with λ = 5, 10, 20, respectively, and �0 = 1. The quantities T and L on
the horizontal and vertical axes denote the values of t and � at which the simulation was terminated. Panel (b)
shows representative plots of h(x, t) for the choice λ = 5 at 10 equally spaced values of t. The blue curve show
the solution immediately prior to the reversing event, i.e., when the simulation was terminated.

one can see that the expected large gradients near the moving interface have been manifested
and captured by the scheme.

7. Conclusion. This work has focused on constructing local (in both space and time)
self-similar reversing and antireversing solutions to the nonlinear diffusion equation (1.1) with
m > 0, n < 1, and m + n > 1. We have demonstrated how the dynamical theory combined
with a numerical scheme can be used to furnish suitable solutions to the differential equations
(1.8) for H− and H+. Via the self-similar reductions (1.7), the solutions to these differential
equations can be transformed into physically meaningful solutions for h(x, t) to the nonlinear
diffusion equation (1.1), which is completed with the no flux boundary condition (1.3) and the
condition h|x=�(t) = 0. The stability of these local solutions in the time-dependent context of
the original equation has been validated against direct numerical simulation of (1.1).

Let us now summarize the main technique developed in this paper. In section 5.1 we used
the result of Lemma 4.4 to numerically construct suitable solutions for H−. For n = 0 and
each value of m > 1, we identified at least one suitable solution, defined by a pair of values of
A− and x∗0, in addition to the exact solution (1.17)—in the original time and space variables,
this exact solution corresponds to a steady solution for h(x, t) and thus does not constitute
a reversing or an antireversing solution. In section 5.2, we used Lemma 4.1 to formulate a
numerical scheme for constructing solutions for H+ defined by pairs of values of A+ and x∗0.
We showed that the map (4.8) is one-to-one and its range is the entire semiaxis R

+ for x0.
For each value of m > 1, we found that (i) if A+ < 0 then x0 < xQ, and (ii) if A+ > 0 then
x0 > xQ, where xQ =

√
2/(m+ 1). The final stage in constructing solutions for h(x, t) is

to invoke the matching condition (1.12) that ensures continuity of h(x, t) across t = 0. In
summary we have found that for 1 < m < 3, up to 5 different solutions are available with
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Figure 8. Representative plots of h(x, t) at 10 equally spaced values of t between −1 and 1, and for
t = ±10−3 to demonstrate the continuity of h(x, t) across t = 0. Solid and dashed curves show the solution for
t < 0 and t > 0, respectively. Panel (a) shows the antireversing dynamics for m = 2 and n = 0, A− ≈ −2.804,
A+ ≈ −4.322, and x∗

0 ≈ 0.338. Panel (b) shows the reversing dynamics for m = 4 and n = 0, A− ≈ 0.386,
A+ ≈ 0.794, and x∗

0 ≈ 1.165.

A−, A+ < 0. For m � 2.9 there is at least one solution with A−, A+ > 0. When 5 > m � 4.6
there is at least one solution with A− > 0 and A+ < 0. When m > 5 solutions with A− < 0
and A+ > 0 are available. For 7.75 � m > 7 an additional branch of solutions with A−, A+ < 0
emerges, whereas for m � 6.42, there is another branch of solutions with A−, A+ > 0. For
m > 8 it seems quite possible that yet more branches of solutions will emerge.

There are distinct differences between the interpretation of solutions with (i) A−, A+ > 0,
(ii) A−, A+ < 0, (iii) A− > 0 and A+ < 0, and (iv) A− < 0 and A+ > 0, in terms of the
original time-dependent model (1.1). Solutions of type (i) correspond to a reversing solution
where the left interface advances for t < 0 with the behavior (6.1), and then subsequently
recedes for t > 0 with the behavior (6.2). In contrast, solutions of type (ii) correspond to
an antireversing solution where the interface recedes for t < 0 with the form (6.2), and then
advances according to the form (6.1) for t > 0. One representative local solution for h(x, t)
for behaviors of type (i) and (ii)—one reversing and one antireversing—are shown in Figure 8.
Solutions of type (iii) and (iv) are termed pausing advancing, and pausing receding solutions,
respectively. Type (iii) solutions advance for t < 0, instantaneously stop at t = 0, and then
continue advancing for t > 0 all with the behavior (6.1), whereas solutions of type (iv) recede
for t < 0, pause at t = 0, and continue receding for t > 0 according to the behavior (6.2).

Some natural open questions raised by this study are (i) whether any self-similar solutions
with nonmonotone profiles (in ξ) exist—i.e., solutions that do not satisfy (1.10), and (ii) if
more than one reversing or antireversing solution is stable for a particular value of m, what is
the mechanism for selecting the appropriate self-similar solution at a particular reversing or
antireversing event.
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