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ABSTRACT
The classical system of shallow water (Saint–Venant) equations describes
long surface waves in an inviscid incompressible fluid of a variable depth.
Although shock waves are expected in this quasi-linear hyperbolic system
for a wide class of initial data, we find a sufficient condition on the initial
data that guarantee existence of a global classical solution continued from
a local solution. The sufficient conditions can be easily satisfied for the fluid
flow propagating in one direction with two characteristic velocities of the
same sign and twomonotonically increasing Riemann invariants. We prove
that these properties persist in the time evolution of the classical solutions
to the shallow water equations and provide no shock wave singularities
formed in a finite time over a half-line or an infinite line. On a technical side,
we develop a novel method of an additional argument, which allows to
obtain local and global solutions to the quasi-linear hyperbolic systems in
physical rather than characteristic variables.
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1. Introduction

The shallowwater system arises in the dispersionless limit of Euler equations and describes longwaves
on the surface of an inviscid incompressible fluid (e.g. water). We assume that the surface waves are
two-dimensional in the (x, z)-variables and that the fluid is located between the hard bottom of the
varying depth at z = −h(x) and the free surface at z = η(t, x), where h is given and η is unknown.

In the case of surface waves free of vorticity, the velocity vector of the fluid’s motion is given by
the gradient of the velocity potential, which is found from the Laplace equation in variables (x, z). In
the dispersionless limit, for which the horizontal length of wave motion is much larger compared to
the vertical length, the Euler equations reduce to the shallow water system{

∂tη + ∂x
[
u(h(x) + η)

] = 0,
∂tu + u∂xu + g∂xη = 0, (1.1)

where u(t, x) is the horizontal component of velocity at the free surface z = η(t, x), and g is the
gravitational constant. In what follows, we set g = 1 without loss of generality.

The shallow water system (1.1), which is also known as the Saint–Venant equations, is reviewed
in many texts and monographs (see, e.g. Section 5.1.1 in [1]). Recently, interest in the shallow water
system arises due to modeling of run-up of water waves towards the beach. [2] In particular, when
the bottom topography changes like h(x) ∼ x4/3, the waves propagating towards the beach are free
of reflections. [3]
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Using the standard technique of Riemann invariants, one can diagonalize the quasi-linear system
(1.1) in new coordinates

z±(t, x) := u(t, x) ± 2
√
h(x) + η(t, x), (1.2)

which are real if h(x) + η(t, x) > 0. This constraint corresponds to the hyperbolicity of the shallow
water system (1.1) and, physically, to the nonzero depth of the fluid flow over the variable bottom.
Substitution of (1.2) into (1.1) yields the system of symmetric quasi-linear equations

{
∂tz+ + 1

4 (3z+ + z−)∂xz+ = h′(x),
∂tz− + 1

4 (z+ + 3z−)∂xz− = h′(x). (1.3)

The characteristic speeds of the system (1.3) are given by

c± := 1
4
(3z± + z∓) = u ± √

h(x) + η. (1.4)

System (1.3) in Riemann invariants is well-known, see, e.g. Sections 5.7 and 13.10 in [4]. Some explicit
solutions can be obtained in the case h′(x) = const using the hodograph transformationmethod, see,
e.g. recent works [2,5] and references therein. Review of exact solutions to the shallow water system
can be found in Section 16.2.1 in [6].

The Cauchy problem is posed for the system (1.3) with initial data

z±(0, x) = ϕ±(x). (1.5)

If the initial dataϕ± are defined on the infinite line in Sobolev spacesHs(R), then theCauchy problem
(1.3) and (1.5) is known to be locally well-posed for s > 3

2 . [7] The method of characteristics can be
used in a local neighborhood of any point if the initial data ϕ± are C1 functions near this point and
their first derivatives are Lipschitz continuous. [8] A good survey of the method of characteristics can
be found in [9,10].Usingmodern analytical techniques, local solutionswith only Lipschitz continuous
functions ϕ± can be obtained from a weak formulation of the quasi-linear system (1.3).

It is easy to recover the solution (u, η) to the shallow water system (1.1) from the solution (z+, z−)

to the system (1.3). Indeed, inverting (1.2) yields

u(t, x) = 1
2

[
z+(t, x) + z−(t, x)

]
, η(t, x) = 1

16
[
z+(t, x) − z−(t, x)

]2 − h(x). (1.6)

The initial data for u and η are given by

u0(x) = 1
2

[
ϕ+(x) + ϕ−(x)

]
, η0(x) = 1

16
[
ϕ+(x) − ϕ−(x)

]2 − h(x), (1.7)

where positivity of h(x) + η0(x) > 0 is assumed for every x.
For most quasi-linear systems, local solutions in Sobolev spaces Hs(R) are not continued for all

times t because wave breaking occurs in a finite time, resulting in appearance of the shock waves.
[11] However, depending on the initial values ϕ± and the given profile h, the wave breaking may be
avoided and the local solutions can be continued for all finite times. We term such solutions as global
solutions and warn that these solutions are allowed to diverge in some norm as t → ∞.

The alternative of the global existence is the wave breaking in a finite time, which happens when
the shock waves are formed in the quasi-linear hyperbolic systems. [11] We note that the wave
breaking can also occur in the presence of weak dispersion, if the initial data are sufficiently large in
some norm. [12,13]

This paper is devoted to the solvability of the classical system (1.3) both locally and globally. We
will consider the semi-infinite line [0,∞) for x. Generally speaking, a boundary condition is required
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at the finite boundary x = 0 for all positive times t > 0. However, if we find a condition on the initial
values ϕ± and the given profile hwhich ensure that both characteristic speeds c± in (1.4) are negative
near x = 0 for all t > 0, then we can avoid setting boundary conditions at x = 0. Moreover, with
additional constraints on ϕ± and h, one can also continue classical solutions to the shallow water
system (1.1) globally in time and thus avoid wave breaking in a finite time.

Both local and global solutions to the quasi-linear system (1.3) are obtained using a similar
analytical technique,whichwedevelop in thiswork.The technique relies on anovelmethod, termedas
themethod of an additional argument. Thismethodwas pioneered for scalar conservation laws in [14,
15] and for systems of conservation laws in [16,17]. Thismethod allows us to avoid technical problems
arising in other techniques such as the method of characteristics or the method of generalized
solutions. [10] For instance, the solvability condition in the method of characteristics relies on
invertibility of the characteristic variables, which may be difficult to prove (see discussion in Section
2.2 below). Compared to the method of characteristics, the method of an additional argument allows
us to obtain the local and global solvability of the quasi-linear system directly in physical coordinates.

In what follows, for a given T > 0, we use notation

�T := {(t, x) : t ∈ (0,T), x ∈ R
+},

for the domain of definition of the Cauchy problem associated with the system (1.3). We denote by
C1,1(�T ) the space of bounded functions of two variables in�T , which are continuously differentiable
both in t and x with bounded first derivatives. We also introduce the norm in the space of functions
Cn
b (R

+) with bounded and continuous derivatives up to the nth order:

‖h‖Cn
b

:= sup
x∈R+

|h(x)| +
n∑

j=1

sup
x∈R+

|h(j)(x)|, h ∈ Cn
b (R

+).

The following two theorems present the main results obtained in this paper.
Theorem 1: Assume that u0, η0 ∈ C1

b(R
+) and h ∈ C2

b(R
+) satisfy the conditions

h(x) ≥ 0, h′(x) � 0, x ∈ R
+, (1.8)

and
η0(x) ≥ C, u0(x) � −2

√
h(x) + η0(x), x ∈ R

+, (1.9)

for a fixed positive constant C. Then, for every T > 0 satisfying the constraint

T � min
(
Cϕ

Ch
,

1
15Cϕ

)
, (1.10)

where Ch := ‖h‖C2
b
and Cϕ := max{‖ϕ+‖C1

b
, ‖ϕ−‖C1

b
} with the initial data ϕ± := u0 ± √

h + η,
there exists a unique classical solution u, η ∈ C1,1(�T ) to the shallow water system (1.1) such that
u|t=0 = u0 and η|t=0 = η0.
Theorem 2: In addition to the conditions of Theorem 1, assume that u0, η0 ∈ C1

b(R
+) and h ∈

C2
b(R

+) satisfy the conditions
h′′(x) ≥ 0, x ∈ R

+ (1.11)

and
u′
0(x) ≥ |h′(x) + η′

0(x)|√
h(x) + η0(x)

, x ∈ R
+. (1.12)

Then, for every T > 0, there exists a unique classical solution u, η ∈ C1,1(�T ) to the shallow water
system (1.1) such that u|t=0 = u0 and η|t=0 = η0.



APPLICABLE ANALYSIS 1447

Remark 1: It follows from the definition (1.2) for Riemann invariants that conditions (1.9) are
satisfied if

ϕ+(x) ≤ 0, ϕ−(x) ≤ 0, x ∈ R
+. (1.13)

Similarly, condition (1.12) is satisfied if

ϕ′+(x) ≥ 0, ϕ′−(x) ≥ 0, x ∈ R
+. (1.14)

Remark 2: Since the quasi-linear system (1.3) is written in the symmetric form, the result of
Theorem 1 agrees with the result of Kato [7] on the infinite line, since Sobolev spaceHs(R)with s > 3

2
is continuously embedded into the space C1

b(R). However, the Cauchy problem (1.3) and (1.5) on
the half-line cannot be solved by the method of Kato [7] unless a boundary condition is set at x = 0
in one way or another.
Remark 3: The result of Theorem 1 is stronger than the corresponding result of Courant and Lax
[8], which establishes the existence of classical solutions with Lipschitz continuity for their spatial
derivatives in a local neighborhood of any point x on R

+, provided the initial data are available near
this point. Although the formulations of the method of characteristics in [8] and the method of an
additional argument here are similar, our technique allows us to obtain the solution to the quasi-
linear system (1.3) in physical rather than characteristic coordinates. Also we obtain a stronger result
using the Schauder fixed point theorem (see Lemma 2 below) instead of the Arzelá–Ascoli theorem
on convergence of bounded and equicontinuous sequences for spatial derivatives.
Remark 4: Using the integral reformulation of the quasi-linear system (1.3) as in Section 2.1
below, one can relax conditions on the initial data ϕ±. Lipschitz continuity of ϕ± is sufficient for
local solvability of the integral equations, similar to the technique developed in the method of
characteristics in [9]. However, for equivalence between the system of integral equations and the
quasi-linear system (1.3), we need to work with classical solutions, which are only obtained from
the C1 functions ϕ±. Therefore, the condition of C1 initial data is considered to be optimal in this
context.

The physical relevance of the conditions (1.8), (1.9), (1.11), and (1.12) is to provide the bottom
topography h and the initial values for u and η such that both the Riemann invariants z± and their
characteristic speeds c± given by (1.2) and (1.4) are strictly negative, whereas the Riemann invariants
are monotonically increasing, see (1.13) and (1.14). Under these conditions, the surface waves do not
break in a finite time, because they move convectively to the finite boundary at x = 0, through which
they radiate away. These conditions can be satisfied, for instance, if

h(x) = (1 + x)−p, η0(x) = C, u0(x) = −2
√
C + h(x), (1.15)

where p > 0 and C > 0 are fixed. Thus, the bottom topography becomes deeper near x = 0 and
uniform as x → ∞, whereas the initial horizontal velocity is negative everywhere and the current is
stronger near x = 0 and becomes uniform as x → ∞. Such configurations canmodel river waterfalls,
e.g. Niagara falls in Ontario, Canada.

Theorems 1 and 2 can be extended to the infinite line without any restrictions, as long as the
conditions (1.8), (1.9), (1.11), and (1.12) hold on the infinite line. The main example (1.15) does not
make sense on the infinite line, but the conditions can be satisfied for the shear flow on the flat bottom
with sign-definite, monotonically increasing velocity u0, which may vanish at one infinity but has a
non-vanishing background flow at the other infinity.

In a single-wave reduction of the system (1.3) with h′(x) ≡ 0 and z+(t, x) ≡ 0, the constraint
(1.12) guarantees that

ϕ′−(x) = u′
0(x) − η′

0(x)√
h + η0(x)

≥ 0, x ∈ R
+.



1448 S. N. ALEKSEENKO ET AL.

This condition is well known [11] to exclude shock waves in the Cauchy problem posed for the
inviscid Burgers equation {

∂tz− + 3
4z−∂xz− = 0,

z−|t=0 = ϕ−.
(1.16)

In the same context, the constraint (1.9) ensures thatϕ−(x) ≤ 0 for every x ∈ R
+, the latter constraint

is only required to avoid the boundary condition on z− at x = 0 for the evolution problem (1.16) on
the semi-infinite line R

+.
The rest of this paper is organized as follows. Section 2 is devoted to the reformulation of the quasi-

linear system (1.3) as a system of integral equations using the method of an additional argument. The
equivalence between the quasi-linear system (1.3) and the system of integral equations is established.
In Section 3, we obtain a local solution of Theorem 1. In Section 4, we show that the local solution
in C1,1(�T ) can be extended for every T > 0 as in Theorem 2. The additional constraints (1.11) and
(1.12) allow us to control the rate of change of the spatial derivatives of the solution z± during the
time evolution of the quasi-linear system (1.3).

2. Reformulation with themethod of an additional argument

Here we adopt the method of an additional argument in order to reformulate the Cauchy problem
given by (1.3) and (1.5) as a boundary-value problem along characteristic coordinates. For a given
point (t, x) ∈ �T , we introduce the extended characteristic coordinates η+(s; t, x) and η−(s; t, x)
from solutions to the system of differential equations{

dη+
ds (s; t, x) = 1

4
[
3z+(s, η+(s; t, x)) + z−(s, η+(s; t, x))] ,

dη−
ds (s; t, x) = 1

4
[
z+(s, η−(s; t, x)) + 3z−(s, η−(s; t, x))] , 0 ≤ s ≤ t, (2.1)

starting with the boundary values η±(t; t, x) = x. In the characteristic variables, the system (1.3) can
be rewritten as the system of differential equations{

dz+
ds (s, η+(s; t, x)) = h′(η+(s; t, x)),
dz−
ds (s, η−(s; t, x)) = h′(η−(s; t, x)), 0 ≤ s ≤ t, (2.2)

starting with the initial values z±(0, η±(0; t, x)) = ϕ±(η±(0; t, x)). The domain of definition of the
systems (2.1) and (2.2) is given by

�T := {
(s, t, x) : 0 ≤ s ≤ t ≤ T , x ∈ R

+}
, (2.3)

for a given T > 0. We denote by Ck,k,m(�T ) the space of bounded functions of three variables in
�T , which are differentiable k-times with respect to s and t,m-times with respect to x, with bounded
derivatives. We also denote the supremum norm of a function U ∈ C0,0,0(�T ) by

‖U‖ := sup
(s,t,x)∈�T

|U(s; t, x)|. (2.4)

The variable s is referred to as the additional argument of the system (2.1) and (2.2). The main
difference of the method of an additional argument from the method of characteristics is that the
system (2.1) is integrated backward in s from the current time t to the initial time 0,whereas the system
(2.2) is integrated forward in s from the initial time 0 to the current time t. Although the combined
system (2.1) and (2.2) represents a boundary-value problem instead of the Cauchy problem, we are
still able to rewrite the systems (2.1) and (2.2) as a system of integral equations and to solve it by
the Picard method of successful iterations. Compared to the method of characteristics, the solutions
z±(t, x) ≡ z±(t, η±(t; t, x)) appear in physical rather than characteristic coordinates.
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2.1. Integral equations for classical solutions of system (1.3)

Integrating (2.1) backward in s, we obtain the system of integral equations

{
η+(s; t, x) = x − 1

4
∫ t
s

[
3z+(ν, η+(ν; t, x)) + z−(ν, η+(ν; t, x))] dν,

η−(s; t, x) = x − 1
4
∫ t
s

[
z+(ν, η−(ν; t, x)) + 3z−(ν, η−(ν; t, x))] dν,

0 ≤ s ≤ t. (2.5)

Integrating (2.2) forward in s, we obtain another system of integral equations
{
z+(s, η+(s; t, x)) = ϕ+(η+(0; t, x)) + ∫ s

0 h
′(η+(ν; t, x)))dν,

z−(s, η−(s; t, x)) = ϕ−(η−(0; t, x)) + ∫ s
0 h

′(η−(ν; t, x)))dν, 0 ≤ s ≤ t. (2.6)

From the geometric definition of the characteristic curves in the domain �T on the (t, x) plane, we
have the connection formulas{

z−(s, η+(s; t, x)) = z−(s, η−(s; s, η+(s; t, x))),
z+(s, η−(s; t, x)) = z+(s, η+(s; s, η−(s; t, x))), 0 ≤ s ≤ t. (2.7)

Let us denote

Z±(s; t, x) := z±(s, η±(s; t, x)) and Y±(s; t, x) := z∓(s, η±(s; t, x)). (2.8)

It follows from the boundary conditions η±(t; t, x) = x that Z±(t; t, x) = z±(t, x) and Y±(t; t, x) =
z∓(t, x). Furthermore, the system (2.7) is equivalent to the following relations between variables Z±
and Y±:

Y+(s; t, x) = Z−(s; s, η+(s; t, x)), Y−(s; t, x) = Z+(s; s, η−(s; t, x)). (2.9)

Fromnowon,wewill bewriting systemsusing one equationwith two subscripts.Usingnewnotations,
we rewrite system (2.5) in the following form:

η±(s; t, x) = x − 1
4

∫ t

s

[
3Z±(ν; t, x) + Y±(ν; t, x)] dν, 0 ≤ s ≤ t. (2.10)

Therefore, the characteristic coordinates can be eliminated from the systems (2.6) and (2.9), after
which we obtain the following integral equations for unknown functions Z± and Y± in �T :

Z±(s; t, x) = ϕ±
(
x − 1

4

∫ t

0

[
3Z±(ν; t, x) + Y±(ν; t, x)] dν

)

+
∫ s

0
h′

(
x − 1

4

∫ t

ν

[
3Z±(τ ; t, x) + Y±(τ ; t, x)] dτ

)
dν, (2.11)

and

Y±(s; t, x) = Z∓
(
s; s, x − 1

4

∫ t

s

[
3Z±(ν; t, x) + Y±(ν; t, x)] dν

)
. (2.12)

Our first result states that the system (2.11) and (2.12) is closed in �T for every T > 0 under
conditions (1.8) and (1.13) on h and ϕ±.
Proposition 1: Assume that h ∈ C1

b(R
+) and ϕ± ∈ C0

b(R
+). Under the conditions

h′(x) � 0, ϕ+(x) ≤ 0, ϕ−(x) ≤ 0, x ∈ R
+, (2.13)
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the system (2.11) and (2.12) is closed in �T for every T > 0 in the sense that if a unique solution
(Z±,Y±) exists in C0,0,0(�T ), then⎧⎨

⎩
η±(s; t, x) ≥ 0,
Z±(s; t, x) ≤ 0,
Y±(s; t, x) ≤ 0,

(s, t, x) ∈ �T . (2.14)

Proof: We obtain from (2.10), (2.11), and (2.12) for every (s, t, x) ∈ �T ,

η±(s; t, x) ≥ x, Z±(s; t, x) ≤ ϕ±(η±(0; t, x)) ≤ 0, Y±(s; t, x) = Z∓(s; s, η±(s; t, x)) ≤ 0,

by using conditions (2.13) and the continuation arguments. Then, constraints (2.14) follow. �
Next, we show how the classical solutions to the Cauchy problem (1.3) and (1.5) are obtained from

suitable solutions to the integral system (2.11)–(2.12).
Proposition 2: Assume that h ∈ C2

b(R
+) and ϕ± ∈ C1

b(R
+). If there exists a unique solution

(Z±,Y±) ∈ C1,1,1(�T ) of the system (2.11) and (2.12), then z±(t, x) = Z±(t; t, x) is a classical
solution to system (1.3) in C1,1(�T ) such that z±(0, x) = ϕ±(x) for x ∈ R

+.
Proof: Let us introduce two differential operatorsW± given by

W±f := ∂f
∂t

+ 1
4

(
3Z±(t; t, x) + Z∓(t; t, x)) ∂f

∂x
.

Applying W+ to the corresponding integral equation in the system (2.11) and using Y+(t; t, x) =
Z−(t; t, x) from (2.9), we obtain

(W+Z+)(s; t, x) = −1
4
ϕ′+( · )

∫ t

0

[
3(W+Z+)(s; t, x) + (W+Y+)(s; t, x)] ds

−1
4

∫ s

0
h′′( · )

(∫ t

ν

[
3(W+Z+)(τ ; t, x) + (W+Y+)(τ ; t, x)] dτ

)
dν,

where the arguments of ϕ′+( · ) and h′′( · ) are the same as in (2.11). Since we have the correspondence
between Y+ and Z− from the system (2.12), we obtain similarly

(W+Y+)(s; t, x) = −1
4
∂xZ−( · )

∫ t

s

[
3(W+Z+)(ν; t, x) + (W+Y+)(ν; t, x)] dν,

where the argument of Z−( · ) is the same as in (2.12). Using the norm in �T defined by (2.4), we
obtain the following estimate

3‖W+Z+‖ + ‖W+Y+‖ ≤ 1
4

(
3‖ϕ+‖C1

b
t + 3

2
‖h‖C2

b
t2 + ‖∂xZ−‖t

) (
3‖W+Z+‖ + ‖W+Y+‖) .

Note that ‖∂xZ−‖ < ∞ due to the assumption Z− ∈ C1,1,1(�T ), whereas ‖ϕ+‖C1
b
< ∞ and ‖h‖C2

b
<

∞ due to the assumptions on ϕ+ and h. Let T+ be the smallest positive root of the algebraic equation

1
4

(
3‖ϕ+‖C1

b
t + 3

2
‖h‖C2

b
t2 + ‖∂xZ−‖t

)
= 1.

Then, for every t ∈ [0, t+] with t+ := min (T+,T), we obtain

‖W+Z+‖ + ‖W+Y+‖ = 0,
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which implyW+Z+ = W+Y+ = 0 in �t+ .
ApplyingW− to the corresponding integral equations into the system (2.11) and (2.12), we obtain

similar estimates

3‖W−Z−‖ + ‖W−Y−‖ ≤ 1
4

(
3‖ϕ−‖C1

b
t + 3

2
‖h‖C2

b
t2 + ‖∂xZ+‖t

) (
3‖W−Z−‖ + ‖W−Y−‖) .

Let T− be the smallest positive root of the algebraic equation

1
4

(
3‖ϕ−‖C1

b
t + 3

2
‖h‖C2

b
t2 + ‖∂xZ+‖t

)
= 1.

Then, for every t ∈ [0, t−] with t− := min (T−,T), we obtain

‖W−Z−‖ + ‖W−Y−‖ = 0,

which impliesW−Z− = W−Y− = 0 in �t− .
Let z±(t, x) := Z±(t; t, x) and T0 := min (T+,T−,T). Then, for every t ∈ [0,T0], we use

∂sZ±(t; t, x) = h′(x) that follows from system (2.11) and obtain

∂z+
∂t

+ 1
4
(3z+ + z−)

∂z+
∂x

= ∂Z+
∂s

(t; t, x) + (W+Z+)(t; t, x) = h′(x)

and

∂z−
∂t

+ 1
4
(z+ + 3z−)

∂z−
∂x

= ∂Z−
∂s

(t; t, x) + (W−Z−)(t; t, x) = h′(x),

which is nothing but system (1.3). Therefore, z± ∈ C1,1(�T0) is a solution to system (1.3) for T0 ≤ T .
If T0 < T , then the continuation of the solution to the entire domain �T can be performed in a finite
number of steps. �

2.2. Integral equations for x-derivatives of system (1.3)

Let us denote u±(t, x) := ∂xz±(t, x). If z± ∈ C1,1(�T ) as in Proposition 2, then u± ∈ C0,0(�T ).
Differentiating (2.5) with respect to x, we obtain a system of integral equations for x-derivatives of
the characteristic coordinates:

ξ±(s; t, x) = 1 − 1
4

∫ t

s

[
3u±(ν, η±(ν; t, x)) + u∓(ν, η±(ν; t, x))] ξ±(ν; t, x)dν, 0 ≤ s ≤ t,

(2.15)

where ξ±(s; t, x) := ∂xη±(s; t, x) satisfies the initial conditions ξ±(t; t, x) = 1. There exists a unique
solution of the system (2.15) in the form

ξ±(s; t, x) = e−
1
4

∫ t
s †3u±(ν,η±(ν;t,x))+u∓(ν,η±(ν;t,x))‡dν , 0 ≤ s ≤ t. (2.16)

The main difficulty in the method of characteristics is to control positivity of ξ±(s; t, x) in �T
as T increases. The explicit expression (2.16) shows that positivity of ξ±(s; t, x) in �T follows from
boundness of u±(t, x) in �T , but this property is hard to control. On the other hand, in the method
of an additional argument, we introduce

U±(s; t, x) := ∂xZ±(s; t, x), V±(s; t, x) := ∂xY±(s; t, x) (2.17)
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and define using (2.8) and the chain rule

U±(s; t, x) = u±(s, η±(s; t, x))ξ±(s; t, x), V±(s; t, x) = u∓(s, η±(s; t, x))ξ±(s; t, x). (2.18)

It follows from the boundary conditions η±(t; t, x) = x and ξ±(t; t, x) = 1 that U±(t; t, x) =
u±(t, x) and V±(t; t, x) = u∓(t, x). If (Z±,Y±) ∈ C1,1,1(�T ) as in Proposition 2, then (U±,V±) ∈
C0,0,0(�T ). By differentiating the system (2.11) and (2.12) with respect to x, we obtain the system of
integral equations:

U±(s; t, x) = ϕ′±
(·) (

1 − 1
4

∫ t

0

[
3U±(ν; t, x) + V±(ν; t, x)] dν

)

+
∫ s

0
h′′ (·) (

1 − 1
4

∫ t

ν

[
3U±(τ ; t, x) + V±(τ ; t, x)] dτ

)
dν, (2.19)

and

V±(s; t, x) = U∓
(
s; s, x − 1

4

∫ t

s

[
3Z±(ν; t, x) + Y±(ν; t, x)] dν

)

×
(
1 − 1

4

∫ t

s

[
3U±(ν; t, x) + V±(ν; t, x)] dν

)
, (2.20)

where the arguments of ϕ′±( · ) and h′′( · ) are the same as in the system (2.11). On the other hand,
differentiating (2.10) in x yields the following relation

ξ±(s; t, x) = 1 − 1
4

∫ t

s

[
3U±(ν; t, x) + V±(ν; t, x)] dν, 0 ≤ s ≤ t. (2.21)

This relation is complementary to the expression (2.16).
The following proposition states that the variables U± and V± are sign-definite in �T for every

T > 0, for which a solution (Z±,Y±) ∈ C1,1,1(�) exists, under additional conditions (1.11) and (1.14)
on h and ϕ±.
Proposition 3: Assume that h ∈ C2

b(R
+) and ϕ± ∈ C1

b(R
+) satisfy (2.13), and the additional

conditions
h′′(x) ≥ 0, ϕ′+(x) ≥ 0, ϕ′−(x) ≥ 0, x ∈ R

+. (2.22)

If a solution (Z±,Y±) to the system (2.11) and (2.12) exists in C1,1,1(�T ), then⎧⎨
⎩

ξ±(s; t, x) ≤ 1,
U±(s; t, x) ≥ 0,
V±(s; t, x) ≥ 0,

(s, t, x) ∈ �T . (2.23)

Proof: Assuming existence of solution (Z±,Y±) ∈ C1,1,1(�T ) to the system (2.11) and (2.12), we
have by Proposition 2 and the definition (2.17) that (U±,V±) ∈ C0,0,0(�T ) and u± ∈ C0,0(�T ). By
(2.16), we have ξ±(s; t, x) > 0 for every (s, t, x) ∈ �T . Then, using relations (2.21), conditions (2.22),
and the result of Proposition 1, we obtain from the system (2.19) and (2.20) that U±(s; t, x) ≥ 0 and
V±(s; t, x) ≥ 0 for every (s, t, x) ∈ �T . Using relations (2.21) again, we have ξ±(s; t, x) ≤ 1 for every
(s, t, x) ∈ �T . Thus, constraints (2.23) have been proved. �

Generally speaking, the chain rule (2.18) and the representation (2.21) only show that ifU±(s; t, x)
and V±(s; t, x) remain bounded and positive for (s, t, x) ∈ �T , then ξ±(s; t, x) may still vanish at the
same points (s, t, x) ∈ �T for which either u±(s, η±(s; t, x)) or u∓(s, η±(s; t, x)) become unbounded.
However, divergence of u±(t, x) for (t, x) ∈ �T contradicts to the result of Proposition 2, if the
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solution (Z±,Y±) ∈ C1,1,1(�T ) to the system (2.11) and (2.12) is obtained. Therefore, the essence
of the method of an additional argument is to ensure solvability of the system (2.11) and (2.12) in
C1,1,1(�T ), which would guarantee strict positivity of ξ±(s; t, x) for every (s, t, x) ∈ �T .

For completeness, wemention that if we substitute (2.16), (2.18) and (2.21) to the integral equation
(2.19), then we obtain

u±(s, η±(s; t, x)) = ϕ′±(η±(0; t, x))e− 1
4

∫ s
0†3u±(ν,η±(ν;t,x))+u∓(ν,η±(ν;t,x))‡dν

+
∫ s

0
h′′(η±(ν; t, x))e− 1

4
∫ s
ν†3u±(τ ,η±(τ ;t,x))+u∓(τ ,η±(τ ;t,x))‡dτdν, (2.24)

which can be thought as a weak formulation of the system of differential equations
{

du+
ds (s, η+(s; t, x)) + 3

4u
2+(s, η+(s; t, x)) + 1

4u+(s, η+(s; t, x))u−(s, η+(s; t, x)) = h′′(η+(s; t, x)),
du−
ds (s, η−(s; t, x)) + 3

4u
2−(s, η−(s; t, x)) + 1

4u+(s, η−(s; t, x))u−(s, η−(s; t, x)) = h′′(η−(s; t, x)),
(2.25)

where 0 ≤ s ≤ t, subject to the initial conditions u±(0, η±(0; t, x)) = ϕ′±(η±(0; t, x)) and the
consistency conditions u∓(s, η±(s; t, x)) = u∓(s, η∓(s; s, η±(s; s, x))). The differential system (2.25)
can be derived by differentiating system (1.3) with respect to x for appropriate solutions z± ∈
C2,2(�T ) and using the characteristic equation (2.1). Again, control of boundness of u±(t, x) for
(t, x) ∈ �T is very difficult within the evolution problem (2.25) or the system (2.24). However, all
these difficult steps are avoided in the method of an additional argument.

3. Local solution to system (2.11)–(2.12)

Here, we use the method of Picard’s successive approximations to prove existence of a local solution
to the system (2.11) and (2.12). At first, we are looking for local solutions in the space C0,0,0(�T ).
The fixed existence time T > 0 is supposed to be small to ensure that the contraction method works.
Then, we obtain local solutions in the space C1,1,1(�T ) from the Schauder fixed-point theorem.
Assumptions of both Propositions 1 and 2 are satisfied for the local solutions in C1,1,1(�T ). Thus, by
correspondence between solutions to the system (2.11) and (2.12) and the quasi-linear system (1.3),
the results obtained in this section yield the proof of Theorem 1.

The main difficulty in the proof of existence of a local solution to the system (2.11) and (2.12) in
C0,0,0(�T ) is due to the fact that the integral equation (2.12) is composed of unknown functions. As
a result, the method of successive approximations consists of two levels, similar to what is described
in [17]. In order to close the system (2.11) and (2.12) in �T , we use the conditions (1.8) and (1.9) on
the function h and initial data u0 and η0, the latter conditions are rewritten for ϕ± in the form (1.13).
Lemma 1: Assume h ∈ C2

b(R
+) and ϕ± ∈ C1

b(R
+) satisfying the constraints (1.8) and (1.13). Define

T := min
(
Cϕ

Ch
,

1
15Cϕ

)
, (3.1)

where Cϕ := max{‖ϕ+‖C1
b
, ‖ϕ−‖C1

b
} and Ch := ‖h‖C2

b
. Then, the system (2.11) and (2.12) admits a

unique solution in class (Z±,Y±) ∈ C0,0,0(�T ) such that

‖Z±‖, ‖Y±‖ ≤ 2Cϕ. (3.2)

Proof: By Proposition 1, the system (2.11) and (2.12) is closed in �T in the sense of bounds (2.14).
In order to apply the Picard method, we start with the initial approximations

Z±(0)(s; t, x) = Y±(0)(s; t, x) = ϕ±(x) (3.3)
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and define the successive approximations {Z±(n),Y±(n)}n∈N from the recursive iterations based on
the system (2.11) and (2.12) for n ∈ N:

Z±(n)(s; t, x) = ϕ±
(
x − 1

4

∫ t

0

[
3Z±(n)(ν; t, x) + Y±(n)(ν; t, x)] dν

)

+
∫ s

0
h′

(
x − 1

4

∫ t

ν

[
3Z±(n)(τ ; t, x) + Y±(n)(τ ; t, x)] dτ

)
dν, (3.4)

and

Y±(n)(s; t, x) = Z∓(n−1)

(
s; s, x − 1

4

∫ t

s

[
3Z±(n)(ν; t, x) + Y±(n)(ν; t, x)] dν

)
. (3.5)

The system(3.4)–(3.5) is implicit in (Z±(n),Y±(n)). Therefore, for eachn ∈ N, weobtainZ±(n),Y±(n)
from another sequence of successive approximations {Z(k)

±(n),Y
(k)
±(n)}k∈N starting with the initial

approximations

Z(0)
±(n)(s; t, x) = Z±(n−1)(s; t, x) and Y (0)

±(n)(s; t, x) = Y±(n−1)(s; t, x), n ∈ N, (3.6)

which is defined at least for n = 1. Successive approximations {Z(k)
±(n),Y

(k)
±(n)}k∈N are defined by the

explicit iteration scheme for k ∈ N:

Z(k)
±(n)(s; t, x) = ϕ±

(
x − 1

4

∫ t

0

[
3Z(k−1)

±(n) (ν; t, x) + Y (k−1)
±(n) (ν; t, x)

]
dν

)

+
∫ s

0
h′

(
x − 1

4

∫ t

ν

[
3Z(k−1)

±(n) (τ ; t, x) + Y (k−1)
±(n) (τ ; t, x)

]
dτ

)
dν, (3.7)

and

Y (k)
±(n)(s; t, x) = Z∓(n−1)

(
s; s, x − 1

4

∫ t

s

[
3Z(k−1)

±(n) (ν; t, x) + Y (k−1)
±(n) (ν; t, x)

]
dν

)
. (3.8)

The construction of successive approximations to the two-level system in C0,0,0(�T ) is broken into
three steps.

Step 1. We prove for every n ∈ N that the sequence {Z(k)
±(n),Y

(k)
±(n)}k∈N satisfying (3.6), (3.7), and

(3.8) converges in C0,0,0(�T ) for a fixed T > 0 satisfying (3.1), so that we can define

Z±(n)(s; t, x) := lim
k→∞

Z(k)
±(n)(s; t, x) and Y±(n)(s; t, x) := lim

k→∞
Y (k)

±(n)(s; t, x), n ∈ N. (3.9)

Let us introduce Cϕ := max{‖ϕ+‖C1
b
, ‖ϕ−‖C1

b
} and Ch := ‖h‖C2

b
. It follows from (3.7) and (3.8) that

‖Z(k)
±(n)‖ ≤ Cϕ + ChT ≤ 2Cϕ , ‖Y (k)

±(n)‖ = ‖Z±(n−1)‖, k ∈ N, (3.10)

where we have used ChT ≤ Cϕ according to the constraint (3.1). Since the bounds (3.10) are
independent of k, if convergence to the limits (3.9) can be proved for each n ∈ N, then by the
induction method, we have

‖Z±(n)‖, ‖Y±(n)‖ ≤ 2Cϕ , n ∈ N. (3.11)

Bounds (3.11) are also satisfied for n = 0. Now, we establish convergence to the limits in (3.9).
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Using the fundamental theorem of calculus and the estimates similar to those in the proof of
Proposition 2, we derive the bounds on the distance between two successive approximations:

3‖Z(k+1)
±(n) −Z(k)

±(n)‖+‖Y (k+1)
±(n) −Y (k)

±(n)‖ ≤ K±(T)
(
3‖Z(k)

±(n) − Z(k−1)
±(n) ‖ + ‖Y (k)

±(n) − Y (k−1)
±(n) ‖

)
, (3.12)

where we have denoted

K±(T) := 1
4

(
3CϕT + 3

2
ChT2 + ‖∂xZ∓(n−1)‖T

)
. (3.13)

Let us assume by induction that (Z±(n−1),Y±(n−1)) ∈ C0,0,1(�T ) satisfying

‖∂xZ±(n−1)‖ ≤ 3Cϕ , ‖∂xY±(n−1)‖ ≤ 4Cϕ , n ∈ N, (3.14)

which is satisfied at least for n = 1. It follows from (3.11) and (3.12) that

‖Z(1)
±(n) − Z(0)

±(n)‖, ‖Y (1)
±(n) − Y (0)

±(n)‖ ≤ 8K±(T)Cϕ. (3.15)

Continuing on with (3.12) and (3.15), we obtain

‖Z(k+1)
±(n) − Z(k)

±(n)‖, ‖Y (k+1)
±(n) − Y (k)

±(n)‖ ≤ (4K±(T))k(8K±(T)Cϕ), k ∈ N. (3.16)

Therefore, the sequence {Z(k)
±(n),Y

(k)
±(n)}k∈N is Cauchy in C0,0,0(�T ) for each n ∈ N if 4K±(T) < 1.

From the definition (3.13), bound (3.14), and ChT ≤ Cϕ , we have

4K±(T) ≤ 3CϕT + 3
2
CϕT + 3CϕT = 15

2
CϕT ≤ 1

2
,

if T ≤ 1
15Cϕ

, according to the constraint (3.1). Hence, for each n ∈ N, the sequence {Z(k)
±(n),Y

(k)
±(n)}k∈N

converges as k → ∞ to a limit denoted by (Z±(n),Y±(n)) in C0,0,0(�T ), as in (3.9).
Taking the limit k → ∞ in the recursive system (3.7)–(3.8), we obtain the recursive system

(3.4)–(3.5) for (Z±(n),Y±(n)) in C0,0,0(�T ). Therefore, (Z±(n),Y±(n)) is a local solution to the system
(3.4)–(3.5) for each n ∈ N that satisfies bounds (3.11). Moreover, from the contraction principle, it
follows that the local solution to the system (3.4)–(3.5) is unique in C0,0,0(�T ) for each n ∈ N.

Step 2.We prove that for each n ∈ N, the solution (Z±(n),Y±(n)) ∈ C0,0,0(�T ) to the system (3.4)
and (3.5) constructed in Step 1 belongs actually to C0,0,1(�T ) and satisfies the same bounds (3.14) as
the previous approximation (Z±(n−1),Y±(n−1)). By differentiating the system (3.4)–(3.5) with respect
to x, we obtain a system of linear integral equations

U±(n)(s; t, x) = ϕ′±( · )

(
1 − 1

4

∫ t

0
(3U±(n)(ν; t, x) + V±(n)(ν; t, x))dν

)

+
∫ s

0
h′′( · )

(
1 − 1

4

∫ t

ν

(3U±(n)(τ ; t, x) + V±(n)(τ ; t, x))dτ

)
dν (3.17)

and

V±(n)(s; t, x) = ∂xZ∓(n−1)( · )

(
1 − 1

4

∫ t

0
(3U±(n)(ν; t, x) + V±(n)(ν; t, x))dν

)
, (3.18)

where the arguments of ϕ′±, h′′, and ∂xZ∓(n−1) are the same as in the system (3.4)–(3.5). We recall
that ϕ′±, h′′ are continuous and by the method of induction, ∂xZ∓(n−1) is also taken to be continuous,
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for each n ∈ N. Since (Z±(n),Y±(n)) ∈ C0,0,0(�T ) is substituted in the arguments of ϕ′±, h′′, and
∂xZ∓(n−1), we know that the coefficients of the linear system (3.17) and (3.18) are all continuous
functions in �T .

Wefirst claim that there exists a unique solution of the linear system (3.17) and (3.18) inC0,0,0(�T ).
Indeed, let us rewrite the system in the form

(I + P)

[
U±(n)
V±(n)

]
=

[
ϕ′±( · ) + ∫ s

0 h
′′( · )dν

∂xZ∓(n−1)( · )

]
,

where P is a perturbation to the identity matrix I given by

P
[
U±(n)
V±(n)

]
:= 1

4

⎡
⎣ ϕ′±( · )

∫ t
0 (3U±(n)(ν; t, x) + V±(n)(ν; t, x))dν

+ ∫ s
0 h

′′( · )
∫ t
ν

(3U±(n)(τ ; t, x) + V±(n)(τ ; t, x))dτdν

∂xZ∓(n−1)( · )
∫ t
0 (3U±(n)(ν; t, x) + V±(n)(ν; t, x))dν

⎤
⎦ .

We estimate the norm of each component of the perturbation P in C0,0,0(�T ) as follows

∥∥∥∥P
[
U±(n)
V±(n)

]∥∥∥∥ ≤ 1
4
TCϕ

[
6 2
9 3

] [ ‖U±(n)‖
‖V±(n)‖

]
, (3.19)

where we have usedChT ≤ Cϕ and ‖∂xZ∓(n−1)‖ ≤ 3Cϕ . Eigenvalues of the matrix in (3.19) are 0 and
9. If TCϕ ≤ 1

15 , the norm induced by the perturbation P is strictly smaller than one. Therefore, the
matrix integral operator I + P is invertible and a unique solution (U±(n),V±(n)) to the linear system
(3.17) and (3.18) exists in C0,0,0(�T ).

Next, for every (s, t, x0) ∈ �T , we claim that the quotients

Z±(n)(s; t, x) − Z±(n)(s; t, x0)
x − x0

and
Y±(n)(s; t, x) − Y±(n)(s; t, x0)

x − x0

remain bounded as x → x0 for every x0 ∈ R
+. This is shown by repeating the estimates for the system

(3.4) and (3.5), where we are using the constraint on T in (3.1), and the smoothness properties on
ϕ±, h, and Z∓(n−1). Now, by repeating the estimates for bounded functions

E±(n)(s; t, x, x0) := Z±(n)(s; t, x) − Z±(n)(s; t, x0)
x − x0

− U±(n)(s; t, x0)

and

F±(n)(s; t, x, x0) := Y±(n)(s; t, x) − Y±(n)(s; t, x0)
x − x0

− V±(n)(s; t, x0)

and using uniqueness of solutions to the system (3.4) and (3.5) and their first variations (3.17)–(3.18),
we obtain for every (s, t, x0) ∈ �T that

lim
x→x0

E±(n)(s; t, x, x0) = 0 and lim
x→x0

F±(n)(s; t, x, x0) = 0.

Therefore, (Z±(n),Y±(n)) are continuously differentiable with respect to x at every x0 ∈ R
+ and

∂xZ±(n)(s; t, x) = U±(n)(s; t, x) and ∂xY±(n)(s; t, x) = V±(n)(s; t, x), (s, t, x) ∈ �T . (3.20)
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It remains to verify bounds (3.14) for (Z±(n),Y±(n)). It follows from the second line of (3.19)
substituted to (3.18) that

‖V±(n)‖ ≤ 3Cϕ

1 − 3
4CϕT

(
1 + 3T

4
‖U±(n)‖

)

≤ 60Cϕ

19

(
1 + 3T

4
‖U±(n)‖

)
. (3.21)

where we have used CϕT ≤ 1
15 . Substituting this estimate to the first line of (3.19) and to Equation

(3.17) yields

‖U±(n)‖ ≤ 2Cϕ

1 − 3CϕT
(
1 + CϕT

)
≤ 5

2
Cϕ

(
1 + CϕT

) ≤ 8
3
Cϕ , (3.22)

where we have used again CϕT ≤ 1
15 . Using the correspondence (3.20), we obtain

‖∂xZ±(n)‖ ≤ 3Cϕ , ‖∂xY±(n)‖ ≤ 4Cϕ , n ∈ N. (3.23)

The validity of the bounds (3.14) for every n ∈ N is verified by the induction method.
Step 3.Weprove under the same constraint (3.1) onT that the sequence {Z±(n),Y±(n)}n∈N defined

by the recursive system (3.4)–(3.5) converges in C0,0,0(�T ) to the solution (Z±,Y±) ∈ C0,0,0(�T )

satisfying the system (2.11) and (2.12) and the bound (3.2).
After the convergence to the limits (3.9) is proved, the index n in the system (3.4) and (3.5) can be

incremented by one using the induction method. Convergence of iterations {Z±(n),Y±(n)}n∈N can be
considered in C0,0,0(�T ) with standard methods.

It follows from (3.4) and (3.5) with the fundamental theorem of calculus that

∥∥Z±(n+1) − Z±(n)
∥∥ � 1

4

(
CϕT + 1

2
ChT2

) (
3
∥∥Z±(n+1) − Z±(n)

∥∥ + ∥∥Y±(n+1) − Y±(n)
∥∥)

and

∥∥Y±(n+1) − Y±(n)
∥∥ � 1

4
T

∥∥∂xZ∓(n)
∥∥ (

3
∥∥Z±(n+1) − Z±(n)

∥∥ + ∥∥Y±(n+1) − Y±(n)
∥∥)

+ ∥∥Z∓(n) − Z∓(n−1)
∥∥ ,

where Cϕ and Ch are the same constants as above. Under the conditions (3.1) and (3.23), we obtain

∥∥Z±(n+1) − Z±(n)
∥∥ � 1

40
(
3
∥∥Z±(n+1) − Z±(n)

∥∥ + ∥∥Y±(n+1) − Y±(n)
∥∥)

and

∥∥Y±(n+1) − Y±(n)
∥∥ � 1

20
(
3
∥∥Z±(n+1) − Z±(n)

∥∥ + ∥∥Y±(n+1) − Y±(n)
∥∥) + ∥∥Z∓(n) − Z∓(n−1)

∥∥ .

From the inequalities above, we obtain

∥∥Z±(n+1) − Z±(n)
∥∥ � 1

35
∥∥Z∓(n) − Z∓(n−1)

∥∥ ,
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and hence

∥∥Z+(n+1) − Z+(n)
∥∥ + ∥∥Z−(n+1) − Z−(n)

∥∥ � 1
35

(∥∥Z+(n) − Z+(n−1)
∥∥ + ∥∥Z−(n) − Z−(n−1)

∥∥)
.

Therefore, the iteration map defined by the system (3.4)–(3.5) is a contraction in C0,0,0(�T ). Hence,
the sequence {Z±(n),Y±(n)}n∈N is Cauchy in C0,0,0(�T ) and it converges as n → ∞ to a limit,
denoted as (Z±,Y±), defined in the same function space. Moreover, taking the limit n → ∞ in the
iterative system (3.4)–(3.5), we obtain the system (2.11) and (2.12) for the limiting functions (Z±,Y±).
Therefore, the limiting functions (Z±,Y±) are solutions of the system (2.11)–(2.12) in C0,0,0(�T ).
Since the sequence {Z±(n),Y±(n)}n∈N in C0,0,0(�T ) satisfies the bounds (3.11) that are independent
of n, the limiting functions (Z±,Y±) satisfy the same bounds, which become bounds (3.2). Finally, it
follows from the contraction method that the local solution (Z±,Y±) is unique in C0,0,0(�T ). �
Lemma 2: Under conditions of Lemma 1, the unique local solution to the system (2.11) and (2.12)
belongs to the class (Z±,Y±) ∈ C0,0,1(�T ) and satisfies

‖∂xZ+‖ + ‖∂xZ−‖ ≤ 15Cϕ , ‖∂xY+‖ + ‖∂xY−‖ ≤ 45Cϕ. (3.24)

Proof: First, we prove existence of a unique solution (U±,V±) ∈ C0,0,0(�T ) to the system (2.19)
and (2.20) under the conditions of Lemma 1. Since solutions for (Z±,Y±) ∈ C0,0,0(�T ) are already
obtained in Lemma 1, the coefficients of the integral equation (2.19) and the arguments of the
unknown functions U∓ in (2.20) are all continuous functions in �T .

Equation (2.19) represents a linear relation between U± and V±. Equation (2.20) is linear with
respect to (V+,V−) and quadratic with respect to (U+,U−). Therefore, first we solve (2.20) to obtain
a unique map from (U+,U−) to (V+,V−), then we substitute the map to (2.19) and solve the system
uniquely in (U+,U−) by using the Schauder fixed-point theorem.

Let us define a ball in C0,0,0(�T ) of a finite radius given by

‖U+‖ + ‖U−‖ ≤ 15Cϕ =: δ. (3.25)

The integral equation (2.20) is rewritten in the explicit form

V±(s; t, x) + 1
4
U∓( · )

∫ t

s
V±(ν; t, x)dν = F± := U∓( · )

(
1 − 3

4

∫ t

s
U±(ν; t, x)dν

)
(3.26)

where U∓( · ) refers to

U∓
(
s; s, x − 1

4

∫ t

s

[
3Z±(ν; t, x) + Y±(ν; t, x)] dν

)
. (3.27)

For every (U+,U−) in the ball given by (3.25), we have
∥∥∥∥14U∓( · )

∫ t

s
V±(ν; t, x)dν

∥∥∥∥ ≤ 1
4
T‖U∓‖‖V±‖ ≤ 1

4
‖V±‖, (3.28)

where we have used the constraint CϕT ≤ 1
15 . Therefore, the second term in (3.26) is strictly smaller

than the first term in (3.26). Inverting the linear operator on V± in C0,0,0(�T ) implies that for every
U± in the ball given by (3.25), there exists a unique solutionV± ∈ C0,0,0(�T ) of Equation (3.26) such
that

‖V±‖ ≤ 4
3
‖F±‖ ≤ 4

3

(
1 + 3

4
T‖U±‖

)
‖U∓‖ ≤ 7

3
‖U∓‖ ≤ 3‖U∓‖. (3.29)
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This unique solution defines a map from (U+,U−) ∈ C0,0,0(�T ) to (V+,V−) ∈ C0,0,0(�T ). Since the
integral equation (3.26) is a quadratic polynomial on (U+,U−) ∈ C0,0,0(�T ), the map C0,0,0(�T ) �
(U+,U−) 
→ (V+,V−) ∈ C0,0,0(�T ) is C∞ in the ball (3.25).

Let us estimate the Lipschitz constant for the map C0,0,0(�T ) � (U+,U−) 
→ (V+,V−) ∈
C0,0,0(�T ). Denote the values (V ′+,V ′−) that correspond to the values (U ′+,U ′−). Note that the
arguments of (U ′+,U ′−) are the same as those of (U+,U−) given by (3.27). Subtracting (3.26) for
(U+,U−) and (U ′+,U ′−), we obtain

V± − V ′± + 1
4 (U∓ − U ′∓)

∫ t
s V±dν + + 1

4U
′∓

∫ t
s (V± − V ′±)dν

= (U∓ − U ′±)
(
1 − 3

4
∫ t
s U±dν

)
− 3

4U
′±

∫ t
s (U± − U ′±)dν.

Using estimates similar to (3.28) and (3.29), we obtain

‖V± − V ′±‖ ≤ 4
3

(
1 + 3

4
T‖U±‖ + 1

4
T‖V±‖

)
‖U∓ − U ′∓‖ + T‖U ′∓‖‖U± − U ′±‖

≤ 7
3
‖U∓ − U ′∓‖ + ‖U± − U ′±‖ ≤ 3‖U∓ − U ′∓‖ + ‖U± − U ′±‖. (3.30)

Next, we substitute the map C0,0,0(�T ) � (U+,U−) 
→ (V+,V−) ∈ C0,0,0(�T ) to the integral
equation (2.19) and rewrite it in the explicit form:

U±(s; t, x) + 1
4
ϕ′±( · )

∫ t

0
(3U±(ν; t, x) + V±(ν; t, x))dν

+ 1
4

∫ s

0
h′′ (·) ∫ t

ν

[
3U±(τ ; t, x) + V±(τ ; t, x)] dτdν = G± := ϕ′±( · ) +

∫ s

0
h′′ (·) dν, (3.31)

where the arguments for ϕ′± and h′′ are uniquely defined continuous functions in �T . Since the
mapping C0,0,0(�T ) � (U+,U−) 
→ (V+,V−) ∈ C0,0,0(�T ) is nonlinear, we solve the system (3.31)
by using the Schauder fixed-point theorem in the ball (3.25). Using bounds (3.29) and the constraint
ChT ≤ Cϕ , we estimate the integral terms in the left-hand side of system (3.31) as follows:

∥∥∥∥14ϕ′±( · )

∫ t

0
(3U±(ν; t, x) + V±(ν; t, x))dν

∥∥∥∥ ≤ 1
4
TCϕ(3‖U±‖ + ‖V±‖) ≤ 1

20
(‖U+‖ + ‖U−‖)

and ∥∥∥∥14
∫ s

0
h′′ (·) ∫ t

ν

[
3U±(τ ; t, x) + V±(τ ; t, x)] dτ dν

∥∥∥∥ ≤ 1
4
T2Ch(3‖U±‖ + ‖V±‖)

≤ 1
20

(‖U+‖ + ‖U−‖) ,
where we have used the constraint TCϕ ≤ 1

15 . The integral terms in system (3.31) are strictly smaller
than the identity terms in the ball (3.25). Therefore, writing the fixed-point problem in the form

[
U+
U−

]
=

[
G+
G−

]
+ T

[
U+
U−

]
(3.32)

shows that the nonlinear integral operator T maps the ball (3.25) to its smaller subset. The inho-
mogeneous terms G± given by (3.31) are bounded by ‖G±‖ ≤ 2Cϕ . By the Schauder fixed-point
theorem, there exists a solution (U+,U−) ∈ C0,0,0(�T ) to the fixed-point problem (3.32) in the ball
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(3.25). The solution to the system of integral Equation (3.31) satisfies the bound

‖U+‖ + ‖U−‖ ≤ 4Cϕ

1 − 3TCϕ/2
≤ 40

9
Cϕ < δ

and hence belongs to the ball (3.25). The solution is unique if the operator T is a contraction in
the ball (3.25).[18] This is proved directly using the Lipschitz continuity of the map C0,0,0(�T ) �
(U+,U−) 
→ (V+,V−) ∈ C0,0,0(�T ) with the Lipschitz constant given by (3.30). Indeed, we have

∥∥∥∥14ϕ′±
∫ t

0
[3(U± − U ′±) + (V± − V ′±)]dν

∥∥∥∥ ≤ 1
4
TCϕ(3‖U± − U ′±‖ + ‖V± − V ′±‖)

≤ 1
15

‖U± − U ′±‖ + 1
20

‖U∓ − U ′∓‖

and a similar estimate for the second term in T . Therefore, the operator T is a contraction in the ball
(3.25) so that the solution (U+,U−) ∈ C0,0,0(�T ) is unique.

For every (s, t, x0) ∈ �T , we repeat the estimates for the quotients

Z±(s; t, x) − Z±(s; t, x0)
x − x0

and
Y±(s; t, x) − Y±(s; t, x0)

x − x0

and prove that they remain bounded as x → x0 for every x0 ∈ R
+. Furthermore, by repeating the

estimates for bounded functions

E±(s; t, x, x0) := Z±(s; t, x) − Z±(s; t, x0)
x − x0

− U±(s; t, x0)

and
F±(s; t, x, x0) := Y±(s; t, x) − Y±(s; t, x0)

x − x0
− V±(s; t, x0)

and using uniqueness of solutions to the system (2.11) and (2.12) and their first variations (2.19)–
(2.20), we obtain for every (s, t, x0) ∈ �T that

lim
x→x0

E±(s; t, x, x0) = 0 and lim
x→x0

F±(s; t, x, x0) = 0.

Therefore, (Z±,Y±) are continuously differentiable with respect to x at every x0 ∈ R
+ and the

correspondence (2.17) is established. Bounds (3.24) follow from bounds (3.25) and (3.29). �
Remark 5: Bounds (3.24) are bigger than then-independent bounds (3.23). Nevertheless, the bigger
bounds (3.24) are still sufficient for invertibility of the characteristic coordinates ξ±(s; t, x) with
respect to x for every (s, t, x) ∈ �T . Indeed, bounds (3.24) imply that

∥∥∥∥14
∫ t

s

[
3U±(ν; t, x) + V±(ν; t, x)] dν

∥∥∥∥ ≤ 1
4
T(3‖U±‖ + ‖V±‖) ≤ 3

4
T(‖U+‖ + ‖U−‖) ≤ 3

4
,

where the constraint CϕT ≤ 1
15 has been used. Therefore, it follows from (2.21) that if (U±,V±)

are x-derivatives of the local solution (Z±,Y±) in Lemmas 1 and 2, then ξ±(s; t, x) > 0 for every
(s, t, x) ∈ �T .
Lemma 3: Under conditions of Lemma 1, the unique local solution to the system of integral Equations
(2.11) and (2.12) belongs to the class (Z±,Y±) ∈ C1,1,1(�T ).
Proof: By Lemmas 1 and 2, there exists a unique solution (Z±,Y±) ∈ C0,0,1(�T ) to the system (2.11)
and (2.12). We show that the solution actually belongs to C1,1,1(�T ).
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Let us compute the derivatives of the system (2.11) and (2.12) in t:

∂tZ±(s; t, x) = −1
4
ϕ′±( · )

(
3Z±(t; t, x) + Y±(t; t, x)) − 1

4

∫ s

0
h′′( · )dν

(
3Z±(t; t, x) + Y±(t; t, x))

−1
4
ϕ′±( · )

∫ t

0
(3∂tZ±(ν; t, x) + ∂tY±(ν; t, x))dν

−1
4

∫ s

0
h′′( · )

(∫ t

ν

(3∂tZ±(τ ; t, x) + ∂tY±(τ ; t, x))dτ

)
dν (3.33)

and

∂tY±(s; t, x) = −1
4
∂xZ∓( · )

∫ t

0
(3∂tZ±(ν; t, x) + ∂tY±(ν; t, x))dν, (3.34)

where the arguments of ϕ′±, h′′, and ∂xZ± are the same as in the system (2.11)–(2.12). They are given
continuous functions of their arguments.

Using similar estimates as in Step 2 in the proof of Lemma 1, we can use invertibility of the linear
integral operators and prove existence and uniqueness of solutions to the system (3.33)–(3.34) for
(∂tZ±, ∂tY±) in C0,0,0(�T ). Moreover, the t-derivatives of (Z±,Y±) satisfy the following bounds:

‖∂tZ±‖ ≤ 1
4

(
CϕT + 1

2
ChT2

) (
3‖∂tZ±‖ + ‖∂tY±‖) + 1

4
(Cϕ + ChT)

(
3‖Z±‖ + ‖Y±‖)

and

‖∂tY±‖ ≤ 1
4
‖∂xZ∓‖T (

3‖∂tZ±‖ + ‖∂tY±‖) .

Using bounds (3.1), (3.2), and (3.24), we confirm that ‖∂tZ±‖ and ‖∂tY±‖ are bounded in �T .
Therefore, the solution (Z±,Y±) to the system (2.11) and (2.12) belongs to C0,1,1(�T ).

Finally, we compute the derivatives of the system (2.11) and (2.12) in s:

∂sZ±(s; t, x) = h′
(
x − 1

4

∫ t

s
(3Z±(ν; t, x) + Y±(ν; t, x))dν

)
(3.35)

and

∂sY±(s; t, x) = ∂sZ∓( · ) + ∂tZ∓( · ) + 1
4
∂xZ∓( · )(3Z±(s; t, x) + Y±(s; t, x)). (3.36)

From (3.35), we confirm that ‖∂sZ±‖ is bounded in �T . Then, from (3.36) and the bounds on
Z± ∈ C1,1,1(�T ), we confirm that ‖∂sY±‖ is also bounded in �T . Therefore, the solution (Z±,Y±) to
the system (2.11) and (2.12) belongs to C1,1,1(�T ). �

The proof of Theorem 1 follows from the results of Lemmas 1–3, as well as the correspondence
result of Proposition 2. Solutions to the shallow water system (1.1) are related to the solutions to the
system (1.3) using the transformation (1.6).

4. Global solution to system (2.11)–(2.12)

It follows from the correspondence z±(t, x) = Z±(t; t, x) for (t, x) ∈ �T and the bounds (3.2) and
(3.24) that the local solution to the system (1.3) at time t = T satisfies the estimates

‖z±(T , ·)‖C1
b

≤ 15Cϕ. (4.1)
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If we attempt to continue this local solution beyond the time t = T by a recurrent use of Lemmas
1–3, then we will run into the following obstacle.

Let us denote the solution to the system (2.11) and (2.12) given by Lemmas 1–3 extended from
time Tm−1 to Tm by (Z(m)

± ,Y (m)
± ) for m ∈ N, where T0 = 0. Then, iterating bound (4.1) with the

bounds (3.2) and (3.24), we obtain

‖z(m)
± (Tm, ·)‖C1

b
≤ 15mCϕ , m ∈ N. (4.2)

Furthermore, using the constraint (3.1) on the continuation time, we have

Tm − Tm−1 ≤ 1
15m+1Cϕ

, m ∈ N. (4.3)

Since the series
∑

m∈N
15−m converges, we have T∞ := limm→∞ Tm < ∞, so that the continuation

technique results in a local solution to the system (1.3) over a finite time span [0,T∞).
In order to be able to extend the local solution to the system (2.11) and (2.12) without restriction

on time T , we shall find sharper bounds on the growth of the x-derivatives of the solution (Z±,Y±).
This is only possible under additional conditions (1.11) and (1.12) on the function h and initial data,
the latter conditions are rewritten in the form (1.14). The key result is the following lemma.
Lemma 4: In addition to the conditions of Lemma 1, assume that conditions (1.11) and (1.14) are
satisfied. Then, the unique solution (Z±,Y±) ∈ C0,0,1(�T ) to the system (2.11) and (2.12) constructed
in Lemmas 1 and 2 satisfy the improved bounds

‖∂xZ±‖, ‖∂xY±‖ ≤ 2Cϕ. (4.4)

Proof: The components (U±,V±) satisfy the system (2.19) and (2.20) with the correspondence
(2.17). By Proposition 3 and Remark 5, we have 0 < ξ±(s; t, x) ≤ 1,U±(s; t, x) ≥ 0, andV±(s; t, x) ≥
0 for every (s, t, x) ∈ �T , where ξ± are related to U± and V± by (2.21). Therefore, the system (2.19)
and (2.20) implies the bounds

‖U±‖ ≤ Cϕ + ChT ≤ 2Cϕ , ‖V±‖ ≤ ‖U∓‖ ≤ 2Cϕ ,

where we have used ChT ≤ Cϕ as in Lemma 1. Due to the correspondence (2.17), we have obtained
the bounds (4.4). �

The sharper bounds (4.4) can be used to continue the local solution z±(t, x) = Z±(t; t, x) to the
system (1.3) globally in time. The next lemma establish piecewise continuation of solutions to the
system (2.11) and (2.12) in C1,1,1(�T ) for larger values of T .
Lemma 5: Let (Z(m)

± ,Y (m)
± ) form ∈ N denote the sequence of solutions to the system (2.11) and (2.12)

on the interval [Tm−1,Tm] starting with initial data

z±(Tm−1, x) = Z(m−1)
± (Tm−1;Tm−1, x),

where T0 = 0 and Z(0)
± (0; 0, x) = ϕ±(x). Assume h ∈ C2

b(R
+) and ϕ± ∈ C1

b(R
+) satisfy the bounds

(1.8), (1.11), (1.13), and (1.14). Define Cϕ := max{‖ϕ+‖C1
b
, ‖ϕ−‖C1

b
} and Ch := ‖h‖C2

b
. Assume that

(Z(m)
± ,Y (m)

± ) ∈ C1,1,1(�Tm−Tm−1) for an m ∈ N satisfies the bounds

‖Z(m)
± ‖, ‖Y (m)

± ‖, ‖∂xZ(m)
± ‖, ‖∂xY (m)

± ‖ ≤ (m + 1)Cϕ. (4.5)
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Then, the system (2.11) and (2.12) admits a unique solution in class

(Z(m+1)
± ,Y (m+1)

± ) ∈ C1,1,1(�Tm+1−Tm)

satisfying the bounds

‖Z(m+1)
± ‖, ‖Y (m+1)

± ‖, ‖∂xZ(m+1)
± ‖, ‖∂xY (m+1)

± ‖ ≤ (m + 2)Cϕ , (4.6)

while the time span [Tm,Tm+1] is defined by

Tm+1 − Tm := min
(
Cϕ

Ch
,

1
15(m + 1)Cϕ

)
. (4.7)

Proof: The first step of the induction method with bound (4.5) and the time constraint (4.7) is
justified by Lemmas 1–4.

By Proposition 1, the system (2.11) and (2.12) remains closed in �Tm−Tm−1 , so that z±(Tm, x) ≤ 0
and ∂xz±(Tm, x) ≥ 0 remain true for every x ∈ R

+. Then, the system (2.11) and (2.12) remains
closed in �Tm+1−Tm as long as the solution exists. Let us denote T := Tm+1 − Tm.

We review bounds used in the proof of Lemma 1. Since the superscript now refer to the (m+ 1)th
local solution defined on the interval [Tm,Tm+1], we only look at the convergence of iterations defined
by the implicit system (3.4) and (3.5). It follows from these integral equations that bounds (3.11) for
the successive approximations {Z(m+1)

±(n) ,Y (m+1)
±(n) }n∈N become

{
‖Z(m+1)

±(n) ‖ ≤ (m + 1)Cϕ + ChT ≤ (m + 2)Cϕ ,
‖Y (m+1)

±(n) ‖ = ‖Z(m+1)
±(n−1)‖ ≤ (m + 2)Cϕ ,

n ∈ N, (4.8)

where we have used ChT ≤ Cϕ according to the constraint (4.7). If convergence of successive
approximations {Z(m+1)

±(n) ,Y (m+1)
±(n) }n∈N as n → ∞ is proved, then bounds (4.8) yield the first bounds

in (4.6). To prove the convergence, we first assume as in Step 1 that

‖∂xZ(m+1)
±(n−1)‖ ≤ (2m + 3)Cϕ , ‖∂xY (m+1)

±(n−1)‖ ≤ (3m + 4)Cϕ , n ∈ N, (4.9)

which is true for n = 1. From the definition (3.13), bounds (4.5), (4.9), and ChT ≤ Cϕ , convergence
of successive approximations at the second level of Picard iterations in C0,0,0(�Tm+1−Tm) (Step 1) is
guaranteed if

4K±(T) ≤ 3(m + 1)CϕT + 3
2
ChT2 + (2m + 3)CϕT ≤ 5(2m + 3)

2
CϕT ≤ 2m + 3

6(m + 1)
< 1, (4.10)

where we have used CϕT ≤ 1
15(m+1) as in the constraint (4.7). Thus, successive approximations at

the second level of Picard iterations converge in C0,0,0(�T ) to the solution {Z(m+1)
±(n) ,Y (m+1)

±(n) }n∈N for
every n ∈ N.

We hence check that {Z(m+1)
±(n) ,Y (m+1)

±(n) }n∈N belongs to C0,0,1(�T ) (Step 2). Let us now rewrite
bounds (3.19) in order to check consistency with the bounds (4.9). We obtain∥∥∥∥P

[
U±(n)
V±(n)

]∥∥∥∥ ≤ 1
4
TCϕ

[
3(m + 2) (m + 2)
3(2m + 3) (2m + 3)

] [ ‖U±(n)‖
‖V±(n)‖

]
, (4.11)

where we have used ChT ≤ Cϕ and ‖∂xZ(m+1)
±(n−1)‖ ≤ (2m+ 3)Cϕ . Since the upper bound in (4.11) has

the norm being strictly smaller than one, under the constraint (4.7) on the time step T , we establish
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existence and uniqueness of partial derivatives of (Z(m+1)
±(n) ,Y (m+1)

±(n) ) in x for each n ∈ N. Moreover,
we can estimate them by obtaining bounds similar to (3.21) and (3.22). Using (4.11), we obtain

‖∂xY (m+1)
±(n) ‖ ≤ (2m + 3)Cϕ

1 − 2m+3
4 CϕT

(
1 + 3T

4
‖∂xZ(m+1)

±(n) ‖
)

≤ 20(2m + 3)Cϕ

19

(
1 + 3T

4
‖∂xZ(m+1)

±(n) ‖
)
, (4.12)

wherewehave used (4.7) aswell as 2m+3 ≤ 3(m+1). By using (4.7), (4.11), (4.12), 2m+3 ≤ 3(m+1),
andm + 2 ≤ 2(m + 1), we obtain

‖∂xZ(m+1)
±(n) ‖ ≤ (m + 2)Cϕ

1 − 15(m+2)
19 CϕT

(
1 + 5(2m + 3)

19
CϕT

)

≤ 20
17

(m + 2)Cϕ ≤ (2m + 3)Cϕ. (4.13)

Substituting (4.13) to (4.12), we obtain

‖∂xY (m+1)
±(n) ‖ ≤ 20(2m + 3)Cϕ

19

(
1 + 3(2m + 3)

4
CϕT

)

≤ 23(2m + 3)
19

Cϕ ≤ (3m + 4)Cϕ. (4.14)

By the induction method, we obtain that bounds (4.9) are valid for every n ∈ N.
Convergence of the successive approximations {Z(m+1)

±(n) ,Y (m+1)
±(n) }n∈N at the first level of Picard

iterations is proved in C0,0,0(�T ) similarly to the proof of Lemma 1 (Step 3). Since the sequence
{Z(m+1)

±(n) ,Y (m+1)
±(n) }n∈N satisfies the bounds (4.8) that are independent of n, the limiting functions

(Z(m+1)
± ,Y (m+1)

± ) ∈ C0,0,0(�T ) satisfy the first two bounds in (4.6).
Although the bounds (4.9) are independent ofn, we still need toprove that (Z(m+1)

± ,Y (m+1)
± )belong

to C0,0,1(�T ). We hence follow the proof of Lemma 2 and obtain (Z(m+1)
± ,Y (m+1)

± ) ∈ C0,0,1(�T )

together with the bounds

‖∂xZ(m+1)
+ ‖ + ‖∂xZ(m+1)

− ‖ ≤ 15(m + 1)Cϕ , ‖∂xY (m+1)
+ ‖ + ‖∂xY (m+1)

− ‖ ≤ 45(m + 1)Cϕ. (4.15)

Although the bounds (4.15) are bigger than bounds (4.9), which are independent of n, they are
sufficient to control the local solution (Z(m+1)

± ,Y (m+1)
± ) on �T . In particular, the characteristic

coordinates are still invertible in x, because the integral part of (2.21) is estimated as follows:

1
4
T

(
3‖∂xZ(m+1)

± ‖ + ‖∂xY (m+1)
± ‖

)
≤ 3

4
15(m + 1)CϕT ≤ 3

4
.

As a result, for the local solution in (Z(m+1)
± ,Y (m+1)

± ) ∈ C0,0,1(�T ), we still have ξ±(s; t, x) > 0 for
every (s, t, x) ∈ �T .

The proof of Lemma 3 applies verbatim, so that we actually have (Z(m+1)
± ,Y (m+1)

± ) ∈ C1,1,1(�T ).
Finally, we improve the bounds (4.15) by using the technique in Lemma 4. In particular, we have

∂xZ
(m+1)
± (s; t, x) ≥ 0 and ∂xY

(m+1)
± (s; t, x) ≥ 0, and ξ±(s; t, x) ≤ 1 for every (s, t, x) ∈ �T . As a

result, the system (2.19) and (2.20) imply the bounds

‖∂xZ(m+1)
± ‖ ≤ (m + 1)Cϕ + ChT ≤ (m + 2)Cϕ , ‖∂xY (m+1)

± ‖ ≤ ‖∂xZ(m+1)
∓ ‖ ≤ (m + 2)Cϕ ,

which yields the last two bounds in (4.6). �
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With Lemma 5, we finally extend the local solution to every T > 0 and thus prove Theorem 2. By
Lemma 5 and the induction method, we construct a sequence of local solutions {(Z(m)

± ,Y (m)
± )}m∈N ∈

C1,1,1(�Tm−Tm−1) to the system (2.11) and (2.12). The sequence is extended to the time Tm, which is
obtained from (4.7) as

Tm =
m∑
k=1

Tk − Tk−1 =
m∑
k=1

1
15kCϕ

, (4.16)

wherewe assumedCh ≤ 15C2
ϕ for simplicity. Since theharmonic series

∑∞
k=1

1
k diverges, the sequence

of local solutions is extended to arbitrary time T > 0 by incrementing the values ofm.
By Proposition 2, we obtain the classical solution to system (1.3) by z±(t, x) = Z±(t; t, x) for

every (t, x) ∈ �T and every T > 0. Using the transformation formulas (1.6), we obtain the classical
solution (u, η) to the shallow water system (1.1). Thus, the proof of Theorem 2 is complete.
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