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Abstract
We consider the nonlinear Schrödinger (NLS) equation with the subcritical 
power nonlinearity on a star graph consisting of N edges and a single vertex 
under generalized Kirchhoff boundary conditions. The stationary NLS 
equation may admit a family of solitary waves parameterized by a translational 
parameter, which we call the shifted states. The two main examples include (i) 
the star graph with even N under the classical Kirchhoff boundary conditions 
and (ii) the star graph with one incoming edge and N  −  1 outgoing edges 
under a single constraint on coefficients of the generalized Kirchhoff boundary 
conditions. We obtain the general counting results on the Morse index of 
the shifted states and apply them to the two examples. In the case of (i), we 
prove that the shifted states with even N � 4 are saddle points of the action 
functional which are spectrally unstable under the NLS flow. In the case of (ii), 
we prove that the shifted states with the monotone profiles in the N  −  1 edges 
are spectrally stable, whereas the shifted states with non-monotone profiles 
in the N  −  1 edges are spectrally unstable, the two families intersect at the 
half-soliton states which are spectrally stable but nonlinearly unstable under 
the NLS flow. Since the NLS equation on a star graph with shifted states can 
be reduced to the homogeneous NLS equation on an infinite line, the spectral 
instability of shifted states is due to the perturbations breaking this reduction. 
We give a simple argument suggesting that the spectrally stable shifted states 
in the case of (ii) are nonlinearly unstable under the NLS flow due to the 
perturbations breaking the reduction to the homogeneous NLS equation.
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1. Introduction

It is well-known that multi-dimensional models can be reduced approximately to the PDEs on 
metric graphs in many realistic physical experiments involving wave propagation in narrow 
waveguides [4, 15, 16, 19]. When a multi-dimensional narrow waveguide is replaced by a 
graph consisting of edges and vertices, a metric space is introduced for the wave functions on 
edges and is equipped with appropriate boundary conditions at vertices. Kirchhoff boundary 
conditions appear naturally in many applications and require the wave functions to be continu-
ous across the vertex points and the sum of the first derivatives of the wave functions to be 
zero, see, e.g. books [5, 10].

It is relatively less known that the Kirchhoff boundary conditions are not the only possible 
boundary conditions arising when the narrow waveguides shrinks to a metric graph. By work-
ing with different values of the thickness parameters vanishing at the same rate, it was shown 
in [23] (see also [9, 11, 12, 18, 20]) that generalized Kirchhoff boundary conditions can also 
arise in the asymptotic limit. In the generalized Kirchhoff boundary conditions, the wave func-
tions have finite jumps across the vertex points and these jumps are compensated reciprocally 
in the sum of the first derivatives of the wave function. The Laplacian operator on the metric 
graphs with the generalized Kirchhoff boundary conditions is still extended to a self-adjoint 
operator similarly to the case with the classical Kirchhoff boundary conditions. Numerical 
confirmations of validity of the classical and generalized Kirchhoff boundary conditions are 
reported in a number of recent publications in physics literature [6, 25, 29].

In a series of papers [24, 26, 27], it was shown that if the parameters of the generalized 
Kirchhoff boundary conditions on a star graph are related to the parameters of the nonlinear 
evolution equations and satisfy a single constraint, then the nonlinear evolution equation on 
the star graph can be reduced to the homogeneous equation on the infinite line. In other words, 
singularities of the star graph are unfolded in the transformation and the vertex points become 
regular points on the line. In this case, a transmission of a solitary wave through the vertex 
points will be reflectionless.

The novelty of this paper is to explore the star graphs with the generalized Kirchhoff bound-
ary conditions satisfying the constraint enabling reflectionless transmission of the solitary 
wave. We focus our study on the case example of the nonlinear Schrödinger (NLS) equation, 
which is the simplest nonlinear evolution equation considered on metric graphs [21]. In the 
simplest configuration of a star graph with a single vertex, we study existence and stability of 
stationary states of the NLS equation, which have a continuous parameter of their translations 
along the graph. We call such stationary states as the shifted states.

The shifted states of the NLS equation on a star graph appear naturally in the case of clas-
sical Kirchhoff boundary conditions when the number of edges is even. These states can be 
considered to be translations of the half-soliton states, which exist for any number of edges 
and the nonlinear instability of which was considered in our previous work [17] (see [1] for 
the very first prediction of nonlinear instability of the half-soliton states). In the variational 
characterization of the NLS stationary states on a star graph, such shifted states were men-
tioned in remarks 5.3 and 5.4 in [2], where it was conjectured that all shifted states are saddle 
points of the action functional and are thus unstable for all star graphs with even number of 
edges exceeding two.

The purpose of this paper is to prove this conjecture with an explicit count of the Morse 
index for the shifted states. By extending the Sturm theory to Schrödinger operators on the 
star graph, we can give a very precise characterization of the negative and zero eigenvalues of 
the linearized Schrödinger operators, avoiding the less explicit theory of deficiency index for 
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star graphs with point interactions [22]. As a result of our analysis, we prove that these shifted 
states are saddle points of energy subject to fixed mass, which are spectrally unstable under 
the NLS flow. In comparison, the half-soliton states are degenerate saddle points of energy and 
they are spectrally stable but nonlinearly unstable under the NLS flow [17].

We treat the star graph with an even number of edges as a particular example of the star 
graph with the generalized Kirchhoff boundary conditions satisfying the constraint enabling 
reflectionless transmission of the solitary wave [27]. In this more general context, we show 
that the shifted states satisfy the reduction of the NLS equation on the star graph to the homo-
geneous NLS equation on the infinite line. Nevertheless, we show that with one exception, 
the shifted states are spectrally unstable under the NLS flow due to perturbations that break 
this reduction. Since numerical simulations have been performed in [24, 26, 27] with initial 
conditions satisfying this reduction, no instability of the shifted states have been reported in 
the previous publications, to the best of our knowledge.

The only exception when the shifted states may be spectrally stable is the star graph with 
one incoming edge and N  −  1 outgoing edges. In this case, we prove that the shifted states 
with the monotone profiles in the N  −  1 edges are spectrally stable, whereas the shifted states 
with non-monotone profiles in the N  −  1 edges are spectrally unstable, the two families inter-
sect at the nonlinearly unstable half-soliton state. In spite of the spectral stability of the shifted 
states with the monotone profiles, we give a simple argument that the shifted states are nonlin-
early unstable due to perturbations that break homogenization of the NLS equation.

Our conjecture is that the central peak of the shifted state moves due to symmetry-breaking 
perturbations from the only incoming edge towards the vertex, breaks into N  −  1 peaks in 
the N  −  1 outgoing edges, the latter peaks become unstable due to spectral instability of the 
shifted states with the nonmonotone profiles. This conjecture is based on the comparison of 
the energy of the central peak in the incoming and outgoing edges at fixed mass. Due to this 
variational interpretation, the nonlinear instability of the shifted states are likely to lead to a 
formation of one or more solitary waves escaping to infinity along the N  −  1 outgoing edges. 
This dynamical picture appears to be in agreement with the nonexistence results obtained in 
[3] for the ground state of energy at fixed mass in the context of the star graphs with the clas-
sical Kirchhoff boundary conditions.

The paper is organized as follows. Section 2 gives a mathematical setup of the NLS equa-
tion on the star graph under the generalized Kirchhoff boundary conditions. Section 3 intro-
duces the family of shifted states and discusses their properties. Main results on spectral 
stability of the shifted states are formulated in section 4. The main results are proven in sec-
tion 5 with the count of the Morse index for the shifted states. Section 6 discusses homogeni-
zation of the star graph with the NLS equation on the infinite line. Variational interpretation of 
our results and our conjectures are described in section 7. Section 8 summarizes the outcomes 
of this work.

2. The NLS equation on the star graph

Let Γ be a star graph, which consists of N half-lines connected at a common vertex. The vertex 
is chosen as the origin and each edge of the star graph is parameterized by R+. The Hilbert 
space of squared integrable functions on the graph Γ is given by

L2(Γ) = ⊕N
j=1L2(R+).
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Elements in L2(Γ) are represented as vectors Ψ = (ψ1,ψ2, . . . ,ψN)
T with each component 

defined on one edge in L2(R+). The inner product and the squared norm of such L2(Γ)-func-
tions are given by

〈Ψ,Φ〉L2(Γ) :=
N∑

j=1

∫

R+

ψj(x)φj(x)dx, ‖Ψ‖2
L2(Γ) :=

N∑
j=1

‖ψj‖2
L2(R+).

Similarly, we define the L2-based Sobolev spaces on the graph Γ 

Hk(Γ) = ⊕N
j=1Hk(R+), k ∈ N

and equip them with suitable boundary conditions at the vertex.
For k  =  1, we set generalized continuity boundary conditions as follows:

H1
Γ := {Ψ ∈ H1(Γ) : α

1/p
1 ψ1(0) = α

1/p
2 ψ2(0) = · · · = α

1/p
N ψN(0)}, (2.1)

where α1, α2, …, αN  are positive coefficients. These coefficients arise naturally when the 
one-dimensional star graph is obtained as a limit of a narrow two-dimensional waveguide 
with different values of the thickness parameters that go to zero at the same rate [11, 12, 23].

For k  =  2, we set generalized Kirchhoff boundary conditions as follows:

H2
Γ :=


Ψ ∈ H2(Γ) ∩ H1

Γ :
N∑

j=1

1

α
1/p
j

ψ′
j (0) = 0


 , (2.2)

where the prime stands for one-sided derivatives in x. The reason why the derivatives depend 
reciprocally on the positive coefficients α1, α2, …, αN  is due to the requirement that the 
Laplacian operator is extended to a self-adjoint operator in L2(Γ), as in the following lemma.

Lemma 2.1. There exists a self-adjoint extension of the Laplacian operator

∆ : H2
Γ ⊂ L2(Γ) → L2(Γ).

Proof. If Ψ ∈ H2(Γ), then Ψ(x),Ψ′(x) → 0 as x → ∞ by Sobolev embedding theorem. 
Therefore, for any Ψ,Φ ∈ H2(Γ), integration by parts and boundary conditions in (2.1) and 
(2.2) yield

〈∆Ψ,Φ〉L2(Γ) = 〈Ψ,∆Φ〉L2(Γ) +
N∑

j=1

ψj(0)φ
′
j(0)−

N∑
j=1

ψ′
j (0)φj(0)

= 〈Ψ,∆Φ〉L2(Γ) + α
1/p
1 ψ1(0)

N∑
j=1

α
−1/p
j φ

′
j(0)− α

1/p
1 φ1(0)

N∑
j=1

α
−1/p
j ψ′

j (0)

= 〈Ψ,∆Φ〉L2(Γ).

By theorem 1.4.4 in [5], the Laplacian operator ∆ : L2(Γ) → L2(Γ) with the domain 
H2

Γ ⊂ L2(Γ) is extended to a self-adjoint operator. □ 

The nonlinear Schrödinger (NLS) equation is posed on the star graph Γ with the power 
nonlinearity:

i
∂Ψ

∂t
= −∆Ψ− ( p + 1)α2|Ψ|2pΨ, x ∈ Γ, t ∈ R, (2.3)
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where Ψ = Ψ(t, x) = (ψ1,ψ2, . . . ,ψN)
T ∈ CN, ∆ : H2

Γ ⊂ L2(Γ) → L2(Γ) is the Laplacian 
operator in lemma 2.1, α ∈ L∞(Γ) is a piecewise constant function with the coefficients 
(α1,α2, . . . ,αN) ∈ RN

+ defined on the edges of Γ, and the nonlinear term α2|Ψ|2pΨ is inter-
preted as a symbol for

(α2
1|ψ1|2pψ1,α2

2|ψ2|2pψ2, . . . ,α2
N |ψN |2pψN)

T .

The constant coefficients (α1,α2, . . . ,αN) are the same as in the boundary conditions (2.1) 
and (2.2).

The NLS equation (2.3) is invariant under the phase rotation Ψ �→ eiθΨ and under the time 
translation Ψ(t, x) �→ Ψ(t + t0, x) with θ ∈ R and t0 ∈ R. The following lemma summarizes 
relevant results on the local-wellposedness of the Cauchy problem and on the conservation of 
the mass and energy functionals.

Lemma 2.2. For every p  >  0 and every Ψ(0) ∈ H1
Γ, there exists t0  >  0 and a local solution

Ψ(t) ∈ C((−t0, t0), H1
Γ) ∩ C1((−t0, t0), H−1(Γ)) (2.4)

to the Cauchy problem associated with the NLS equation (2.3) such that the mass

Q(Ψ) := ‖Ψ‖2
L2(Γ), (2.5)

and the energy

E(Ψ) := ‖Ψ′‖2
L2(Γ) − ‖α

1
p+1 Ψ‖2p+2

L2p+2(Γ) (2.6)

are constant in t ∈ (−t0, t0).

Proof. Local well-posedness of the NLS equation (2.3) in H1
Γ is proved by using a standard 

contraction method thanks to the isometry of the semi-group eit∆ in H1
Γ and the Sobolev em-

bedding of H1
Γ into L∞(Γ).

Let us prove the mass and energy conservation under simplifying assumptions p  >  1/2 and 
p � 1 respectively. If p  >  1/2 and Ψ(0) ∈ H2

Γ, it follows from the contraction method that 
there exists t0  >  0 and a local strong solution

Ψ(t) ∈ C((−t0, t0), H2
Γ) ∩ C1((−t0, t0), L2(Γ)) (2.7)

to the NLS equation (2.3). Applying time derivative to Q(Ψ) and using the NLS equation (2.3) 
yield the mass balance equation:

d
dt

Q(Ψ) = −i〈−∆Ψ− ( p + 1)α2|Ψ|2pΨ,Ψ〉L2(Γ) + i〈Ψ,−∆Ψ− ( p + 1)α2|Ψ|2pΨ〉L2(Γ)

= i〈∆Ψ,Ψ〉L2(Γ) − i〈Ψ,∆Ψ〉L2(Γ) = 0,

where the last equality is obtained by lemma 2.1. Thus, the mass conservation of (2.5) is 
proven for Ψ(0) ∈ H2

Γ.
If p  >  1/2 and Ψ(0) ∈ H1

Γ but Ψ(0) /∈ H2
Γ, then in order to prove the mass conservation of 

(2.5), we define an approximating sequence {Ψ(n)(0)}n∈N in H2
Γ such that Ψ(n)(0) → Ψ(0) 

in H1
Γ as n → ∞. For each Ψ(n)(0) ∈ H2

Γ, there exists a local strong solution Ψ(n)(t) given by 
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(2.7) for t ∈ (−t(n)
0 , t(n)

0 ). By Gronwall’s inequality, there exists a positive constant K which 
only depends on the H1(Γ) norm of the local solution Ψ(n)(t) such that

‖Ψ(n)′′(t)‖L2(Γ) � K‖Ψ(n)′′(0)‖L2(Γ), t ∈ (−t(n)
0 , t(n)

0 ),

hence, the local existence time t(n)
0  is determined by the H1(Γ) norm of the initial data 

Ψ(n)(0). The convergence Ψ(n)(0) → Ψ(0) in H1
Γ, implies that there is t0  >  0 that depends on 

the H1(Γ) norm of Ψ(0) such that t(n)
0 � t0 for every n ∈ N. Moreover, Ψ(n)(t) → Ψ(t) in H1

Γ 
as n → ∞ for every t ∈ (−t0, t0). Since Q(Ψ(n)(t)) = Q(Ψ(n)(0)) for every t ∈ (−t0, t0), the 
limit n → ∞ yields Q(Ψ(t)) = Q(Ψ(0)) for every t ∈ (−t0, t0).

In order to prove the energy conservation, let us define the space H3
Γ compatible with the 

NLS flow:

H3
Γ :=

{
Ψ ∈ H3(Γ) ∩ H2

Γ : α
1/p
1 ψ′′

1 (0) = α
1/p
2 ψ′′

2 (0) = · · · = α
1/p
N ψ′′

N(0)
}

.
 

(2.8)

If p � 1 and Ψ(0) ∈ H3
Γ, it follows from the contraction method that there exists t0  >  0 and a 

local strong solution if Ψ(0) ∈ H3
Γ

Ψ(t) ∈ C((−t0, t0), H3
Γ) ∩ C1((−t0, t0), H1

Γ) (2.9)

to the NLS equation (2.3). Applying time derivative to E(Ψ) and using the NLS equation (2.3) 
yield the energy balance equation:

d
dt

E(Ψ) = i〈Ψ′′′,Ψ′〉L2(Γ) − i〈Ψ′,Ψ′′′〉L2(Γ)

+ i( p + 1)〈α2(|Ψ|2p)′Ψ,Ψ′〉L2(Γ) − i( p + 1)〈Ψ′,α2(|Ψ|2p)′Ψ〉L2(Γ)

+ i( p + 1)〈Ψ p+1,α2Ψ p∆Ψ〉L2(Γ) − i( p + 1)〈α2Ψ p∆Ψ,Ψ p+1〉L2(Γ)

= i
N∑

j=1

ψ′
j (0)

[
ψ
′′
j (0) + ( p + 1)α2

j |ψj(0)|2pψj(0)
]

− i
N∑

j=1

ψ
′
j(0)

[
ψ′′

j (0) + ( p + 1)α2
j |ψj(0)|2pψj(0)

]
,

where the decay of Ψ(x), Ψ′(x), and Ψ′′(x) to zero at infinity has been used for the solution in 
H3

Γ. Due to the boundary conditions in (2.1), (2.2) and (2.8), we obtain d
dt E(Ψ) = 0, that is, the 

energy conservation of (2.6) is proven for Ψ(0) ∈ H3
Γ. The proof for p � 1 and Ψ(0) ∈ H1

Γ but 
Ψ(0) /∈ H3

Γ is achieved by using an approximating sequence similarly to the argument above.
Finally, the proof can be extended to the local solution (2.4) for all values of p  >  0 by using 

other approximation techniques, see, e.g. theorems 3.3.1, 3.3.5, and 3.39 in [7] or the proof of 
proposition 2.2 in [2] for NLS on Γ with α = 1. □ 

Global existence in the NLS flow only holds in the subcritical case p ∈ (0, 2). In what fol-
lows, the scope of this work will be mainly developed in the subcritical case.

Lemma 2.3. For every p ∈ (0, 2), the local solution (2.4) in lemma 2.2 is extended globally 
with t0 → ∞.
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Proof. This follows by the energy conservation and the Gagliardo-Nirenberg inequality

‖α
1

p+1 Ψ‖2p+2
L2p+2(Γ)

� Cp,α‖Ψ′‖ p
L2(Γ)

‖Ψ‖ p+2
L2(Γ)

,

for every α ∈ L∞(Γ), Ψ ∈ H1
Γ, p  >  0, where the constant Cp,α > 0 depends on p and α but 

does not depend on Ψ. □ 

In this work, we assume that the N edges of the star graph Γ can be partitioned into two 
sets of {K,N  −  K} edges such that the coefficients (α1,α2, . . . ,αN) satisfy the following 
constraint:

K∑
j=1

1

α
2/p
j

=

N∑
j=K+1

1

α
2/p
j

. (2.10)

Clearly K �= 0 and K �= N . In the transmission problems [21], it is natural to think that K 
edges represent incoming bonds for the solitary wave propagation whereas the remaining 
N  −  K edges represent outgoing bonds for the solitary wave propagation. In particular, we 
consider two examples of the general star graph Γ:

 (i) αj = 1 for all j and N is even. The boundary conditions in H1
Γ give the continuity at 

the vertex and the boundary conditions in H2
Γ are referred to as the classical Kirchhoff 

conditions. Constraint (2.10) is satisfied if K  =  N/2, for which the N edges are equally 
partitioned into two sets of {N/2,N/2} edges.

 (ii) K  =  1 and N � 3. The graph Γ consists of one incoming edge that splits into N  −  1 
outgoing edges, which represents the standard transmission problem [24, 26, 27]. The 
constraint (2.10) gives the reflectionless boundary conditions for the transmission of a 
solitary wave across the single vertex, as in [24, 26, 27].

Remark 2.4. If N  =  2 and K  =  1, then the constraint (2.10) is only satisfied if α1 = α2. In 
this case, the NLS equation (6.5) on the graph Γ is completely equivalent to the homogeneous 
NLS equation on the infinite line R .

The stationary states of the NLS equation on the star graph Γ under the constraint (2.10) 
include families parameterized by the translational parameter, as in the following section.

3. Stationary states on the star graph

Stationary states of the NLS are given by the solutions of the form

Ψ(t, x) = eiωtΦω(x),

where (ω,Φω) ∈ R× H2
Γ is a real-valued solution of the stationary NLS equation,

−∆Φω − ( p + 1)α2|Φω|2pΦω = −ωΦω . (3.1)

No solution Φω ∈ H2
Γ to the stationary NLS equation  (3.1) exist for ω � 0 because 

σ(−∆) � 0 in L2(Γ) and Φω(x),Φ′
ω(x) → 0 as x → ∞ if Φω ∈ H2

Γ by Sobolev’s embedding 

theorem. For ω > 0, the scaling transformation Φω(x) = ω
1

2p Φ(z) with z = ω
1
2 x is employed 

to scale ω to unity. The normalized profile Φ ∈ H2
Γ is now a solution of the stationary NLS 

equation

−∆Φ+Φ− ( p + 1)α2|Φ|2pΦ = 0. (3.2)

A Kairzhan and D E Pelinovsky J. Phys. A: Math. Theor. 51 (2018) 095203
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For every N and α, the stationary NLS equation (3.2) has a particular solution

Φ(x) =




α
−1/p
1

α
−1/p
2
...

α
−1/p
N



φ(x), with φ(x) = sech

1
p ( px). (3.3)

This solution is labeled in the previous paper [17] as the half-soliton state. In the present work, 
we are interested in the families of solitary waves parameterized by a translational parameter, 
which are labeled as the shifted states. Such families exist if (α1,α2, . . . ,αN) satisfy the con-
straint (2.10) for the partition {K, N  −  K} of edges of the star graph Γ.

The following lemma gives the existence of a family of shifted states under the constraint 
(2.10).

Lemma 3.1. For every p  >  0 and every (α1,α2, . . . ,αN) satisfying the constraint (2.10), 
there exists a one-parameter family of solutions to the stationary NLS equation (3.2) with any 
p  >  0 given by Φ = (φ1, . . . ,φN)

T  with components

φj(x) =

{
α
−1/p
j φ(x + a), j = 1, . . . , K

α
−1/p
j φ(x − a), j = K + 1, . . . , N,

 (3.4)

where φ(x) = sech
1
p ( px) and a ∈ R is arbitrary.

Proof. A general solution to the stationary NLS equation (3.2) decaying to zero at infinity 
is given by Φ = (φ1, . . . ,φN)

T  with components

φj(x) = α
−1/p
j φ(x + aj), 1 � j � N,

where (a1, . . . , aN) ∈ RN  are arbitrary parameters. The continuity condition in H2
Γ im-

ply that |a1| = · · · = |aN |. Hence for every j = 1, . . . , N, there exists mj ∈ {0, 1}, such that 
aj = (−1)mj |a| for some a ∈ R. The Kirchhoff condition in H2

Γ is equivalent to

φ′(|a|)
N∑

j=1

(−1)mj

α
2/p
j

= 0. (3.5)

If a  =  0, the equation (3.5) holds since φ′(0) = 0 and this yields the half-soliton state in the 
form (3.3). If a �= 0, then the equation (3.5) holds due to the constraint (2.10) if

either mj =

{
1 for 1 � j � K
0 for K + 1 � j � N

or mj =

{
0 for 1 � j � K
1 for K + 1 � j � N

.

 

(3.6)

In both cases, the shifted state appears in the form (3.4) with either a  <  0 or a  >  0. □ 

Remark 3.2. The half-soliton state (3.3) corresponds to the shifted state of lemma 3.1 with 
a  =  0.
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Remark 3.3. Besides the two choices specified in the proof of lemma 3.1, there might be 
other N-tuples (m1, m2, . . . , mN) ∈ {0, 1}N such that the bracket in (3.5) becomes zero. Such 
N-tuples generate new one-parameter family different from the one given by lemma 3.1 under 
the same constraint (2.10). For instance, if αj = 1 for all j and K  =  N/2, there exist CN differ-
ent shifted states given by lemma 3.4 below with CN computed in (3.7).

The following lemma gives a full classification of families of shifted states in case (i) (see 
also theorem 5 in [2]).

Lemma 3.4. For α = 1 and for even N, there exists CN one-parameter families of solutions 
to the stationary NLS equation (3.2) with any p  >  0, where

CN =
N!

2[(N/2)!]2
. (3.7)

Each family is generated from the simplest state Φ = (φ1, . . . ,φN)
T  with components

φj(x) =
{
φ(x + a), j = 1, . . . , N

2
φ(x − a), j = N

2 + 1, . . . , N (3.8)

where φ(x) = sech
1
p ( px) and a ∈ R is arbitrary, after rearrangements between N/2 edges 

with  +a shifts and N/2 edges with  −a shifts.

Proof. A general solution to the stationary NLS equation (3.2) decaying to zero at infinity 
is given by

Φ = (φ(x + a1), . . . ,φ(x + aN))
T ,

where φ(x) = sech
1
p ( px), and (a1, . . . , aN) ∈ RN  are arbitrary parameters. The continuity 

condition in H2
Γ imply that |a1| = · · · = |aN |. The Kirchhoff condition in H2

Γ is equivalent 

to φ(a)
∑N

j=1 tanh(aj) = 0, which together with the continuity condition implies that the set 
(a1, . . . , aN) has exactly N2  positive elements and exactly N2  negative elements. □ 

Remark 3.5. If N  =  2, then C2  =  1. The only branch of shifted states in lemma 3.4 corre-
sponds to the NLS solitary wave translated along an infinite line R , see remark 2.4.

Remark 3.6. If N  =  4, then C4  =  3. The three branches of shifted states in lemma 3.4 
correspond to the three NLS solitary waves translated along an infinite line R  defined by the 
union of either (1, 2) or (1, 3), or (1, 4) edges of the star graph Γ, with mirror-symmetric NLS 
solitary waves translated along another line R  defined by the two complementary edges of the 
star graph Γ.

For graphical illustrations, we present some of the shifted states on figures 1 and 2. Figure 1 
shows shifted states in the case (i) with N  =  4 (left) and N  =  6 (right) when the shifted states 
are given by lemma 3.4. If a �= 0, the profile of Φ contains N/2 monotonic and N/2 non-
monotonic tails in different edges of the star graph Γ. Figure 2 shows shifted states in the case 
(ii) with N  =  3 when the shifted states are given by lemma 3.1 with K  =  1. If a  >  0 (left), 
the profile of Φ contains 1 monotonic and 2 non-monotonic tails whereas if a  <  0 (right), the 
profile of Φ contains 2 monotonic and 1 non-monotonic tails.
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4. Main results on stability of the shifted states

Every stationary state Φ satisfying the stationary NLS equation (3.2) is a critical point of the 
action functional

Λ(Ψ) := E(Ψ) + Q(Ψ), Ψ ∈ H1
Γ, (4.1)

where Q and E are conserved mass and energy in (2.5) and (2.6) under the NLS flow, see 
lemma 2.2. Substituting Ψ = Φ+ U + iW  with real-valued U, W ∈ H1

Γ into Λ(Ψ) and 
expanding in U,W yield

Λ(Φ + U + iW) = Λ(Φ) + 〈L+U, U〉L2(Γ) + 〈L−W, W〉L2(Γ) + N(U, W),
 

(4.2)

where

〈L+U, U〉L2(Γ) :=
∫

Γ

[
(∇U)2 + U2 − (2p + 1)( p + 1)α2Φ2pU2] dx,

〈L−W, W〉L2(Γ) :=
∫

Γ

[
(∇W)2 + W2 − ( p + 1)α2Φ2pW2] dx,

and N(U, W) = o(‖U‖2
H1(Γ) + ‖W‖2

H1(Γ)) for every p  >  0. The quadratic forms are defined by 
the two Hessian operators

Figure 1. Schematic representation of the shifted states (3.8) with a �= 0 for N  =  4 
(left) and N  =  6 (right).

Figure 2. Schematic representation of the shifted states (3.4) with K  =  1, N  =  3, and 
either a  >  0 (left) or a  <  0 (right).
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L+ = −∆+ 1 − (2p + 1)( p + 1)α2Φ2p : H2
Γ ⊂ L2(Γ) → L2(Γ), (4.3)

L− = −∆+ 1 − ( p + 1)α2Φ2p : H2
Γ ⊂ L2(Γ) → L2(Γ). (4.4)

The number of negative eigenvalues of L+ and L− is referred to as the Morse index of the 
shifted state Φ. The following theorem represents the main result of this paper.

Theorem 4.1. Let Φ be a shifted state given by lemma 3.1 with a �= 0. Then σp(L−) � 0 
and 0 is a simple eigenvalue of L−, whereas the non-positive part of σp(L+) consists of a 
simple eigenvalue λ0 < 0, another eigenvalue λ1 ∈ (λ0, 0) of multiplicity K  −  1 for a  <  0 and 
N  −  K  −  1 for a  >  0, and a simple zero eigenvalue. The rest of σp(L−) and σp(L+) is strictly 
positive and is bounded away from zero.

Remark 4.2. If a  =  0, it was established in our previous work [17] that the non-positive 
part of σp(L+) for the half-solitons (3.3) consists of a simple eigenvalue λ0 < 0 and a zero 
eigenvalue of multiplicity N  −  1.

By using the well-known results for the NLS equation [13] (see also [8]), we can deduce 
spectral instability of the shifted states from theorem 4.1.

Corollary 4.3. With the exception of case (i) with N  =  2 or case (ii) with a  <  0, the shifted 
states with a �= 0 are spectrally unstable in the time evolution of the NLS equation (2.3), in 
particular, there exists real positive eigenvalues λ in the spectral stability problem

λ

[
U
W

]
=

[
0 L−

−L+ 0

] [
U
W

]
. (4.5)

To be precise, for p ∈ (0, 2), there exist K  −  1 real positive eigenvalues λ of the spectral sta-
bility problem (4.5) for a  <  0 and N  −  K  −  1 real positive eigenvalues λ for a  >  0.

Remark 4.4. The result of theorem 4.1 and corollary 4.3 in case (i) agrees with the qualita-
tive picture described in remark 5.3 in [2] and proves the conjecture formulated in remark 5.4 
in [2] that all shifted states (3.8) given by lemma 3.4 are unstable for all even N � 4. If N is 
even, the graph can be considered as a set of K  =  N/2 copies of the real line and the shifted 
state can be interpreted as K  =  N/2 identical solitary waves on each real line translated by the 
shift parameter a ∈ R. Since L− is positive at each solitary wave with a simple zero eigenvalue 
and L+ has a simple negative and a simple zero eigenvalue at each solitary wave, we can count 
N/2 negative eigenvalues (with the account of their multiplicity), in agreement with the state-
ment of theorem 4.1. However, the multiplicity of the zero eigenvalue is not explained in this 
qualitative picture, and the count is incorrect for the half-soliton state (3.3), which corresponds 
to the case a  =  0, see remark 3.2.

Remark 4.5. Nonlinear instability of the half-soliton state (3.3) in case (i) with even N � 4 
is proved in the previous paper [17] based on the characterization of the half-soliton state (3.3) 
as a degenerate saddle point of the action functional (4.1) under the constraint of fixed mass 
Q. The latter variational characterization was also given in [1]. The same argument holds for 
the half-soliton state (3.3) for any N � 3.

Remark 4.6. The normal form equations derived in [17] are different for odd and even 
N because of the presence of shifted states in case (i). The zero equilibrium state of the nor-
mal form equations is isolated for odd N, whereas it occurs at the intersection of CN lines of  
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equilibria for even N, where CN is given by (3.7). In the latter case, for N � 4, transverse di-
rections to the CN lines of equilibria imply the saddle point geometry of the half-soliton state 
(3.3) as is proven in [17] for every N � 3.

Remark 4.7. For the two spectrally stable shifted states in corollary 4.3, the case (i) with 
N  =  2 is orbitally stable [14] since the NLS equation on the star graph with N  =  2 is com-
pletely equivalent to the NLS equation on the infinite line R . The case (ii) with a  <  0 is more 
challenging since the orbit of the shifted state has to be two-parametric due to phase rotation 
and translation in space, whereas the star graph Γ is not equivalent to the real line R  if N � 3. 
The translation in space can not be realized because of the vertex point of the star graph. In 
section 7, we give a simple argument why the shifted states (3.4) with a  <  0 are expected to 
be nonlinearly unstable under the NLS flow.

5. Count of the Morse index for the shifted states

In order to prove theorem 4.1, we observe that the operators L+ and L− defined in (4.3) and 
(4.4) are self-adjoint in L2(Γ). Since the bounded and exponentially decaying potential α2Φ2p 
is a relatively compact perturbation to the unbounded operator L0 := −∆+ 1, the abso-
lutely continuous spectra of L±, by Weyl’s theorem, is given by σc(L±) = σ(L0) = [1,∞). 
Therefore, we are only concerned about the eigenvalues of σp(L±) in (−∞, 1).

Since Φ(x) > 0 for all x ∈ Γ, the same arguments as in lemma 3.1 in [17] imply that 
σp(L−) is nonnegative, 0 ∈ σp(L−) is a simple eigenvalue with the eigenvector Φ, and all other 
eigenvalues in σp(L−) are bounded away from zero. Hence we only need to consider σp(L+) 
in (−∞, 1).

Spectral analysis involving various extensions of the operator L+ , Neumann formula, and 
the count of the deficiency index is used in [22] in a similar context. Instead of developing 
a functional-analytic technique, we will prove the assertion of theorem 4.1 about σp(L+) by 
using Sturm’s nodal count for the scalar Schrödinger equation.

Sturm theory is well-known in the context of the Sturm–Liouville boundary-value problem 
on the finite interval (see, e.g. section 5.1 in [28]). This theory was generalized for bounded 
graphs in a number of recent publications (see review in section 5.2 in [5]). Extension of this 
theory to the unbounded graphs, e.g. to the star graph Γ, is not known to the best of author’s 
knowledge. As an outcome of our work, we will show that the Sturm’s nodal count is valid for 
the shifted states of lemma 3.1 with a �= 0 on the star graph Γ in the same way as it is valid to 
the case of finite intervals or bounded graphs.

By using the representation (3.4), let us consider the exponentially decaying solutions of 
the second-order differential equation

−u′′(x) + u(x)− (2p + 1)( p + 1)sech2( p(x + a))u(x) = λu(x), x ∈ (0,∞),
 

(5.1)

where a ∈ R is a parameter. By means of the substitution u(x) = v(x + a) for x ∈ (0,∞), 
exponentially decaying solutions u to the equation (5.1) are equivalent to exponentially decay-
ing solutions v of the second-order differential equation

−v′′(x) + v(x)− (2p + 1)( p + 1)sech2( px)v(x) = λv(x), x ∈ (a,∞).
 

(5.2)

The following lemmas extend some well-known results on the scalar Schrödinger 
equation (5.2).
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Lemma 5.1. For every λ < 1, there exists a unique solution v ∈ C1(R) to equation (5.2) 
such that

lim
x→+∞

v(x)e
√

1−λx = 1. (5.3)

Moreover, for any fixed x0 ∈ R, v(x0) is a C1 function of λ for λ < 1. The other linearly inde-
pendent solution to equation (5.2) diverges as x → +∞.

Proof. The proof is based on the reformulation of the boundary–value problem (5.2) and 
(5.3) as Volterra’s integral equation. By means of Green’s function, the solution to (5.2) and 
(5.3) can be found from the inhomogeneous integral equation

v(x) = e−
√

1−λx − (2p + 1)( p + 1)√
1 − λ

∫ ∞

x
sinh(

√
1 − λ(x − y))sech2( py)v(y)dy.

 

(5.4)

Setting w(x;λ) = v(x)e
√

1−λx yields the following Volterra’s integral equation with a bounded 
kernel:

w(x;λ) = 1 +
(2p + 1)( p + 1)

2
√

1 − λ

∫ ∞

x
(1 − e−2

√
1−λ(y−x))sech2( py)w(y;λ)dy.

 

(5.5)

By standard Neumann series, there exists a unique solution w(·;λ) ∈ C1(x0,∞) satisfying 
limx→∞ w(x;λ) = 1 for every λ < 1 and sufficiently large x0 � 1. By the ODE theory, this 
solution is extended globally as a solution w(·;λ) ∈ C1(R) of the integral equation (5.5). This 
construction yields a solution v ∈ C1(R) to the differential equation (5.2) with the exponential 
decay as x → +∞ given by (5.3). Since the Volterra’s integral equation (5.4) depends analyti-
cally on λ for λ < 1, then v(x0) is (at least) C1 function of λ < 1 for any fixed x0 ∈ R. Thanks 
to the x-independent and nonzero Wronskian determinant between two linearly independent 
solutions to the second-order equation (5.2), the other linearly independent solution diverges 
exponentially as x → +∞. □ 

Lemma 5.2. Let v be the solution defined in lemma 5.1. If v(0) = 0 (resp. v′(0) = 0) for 
some λ0 < 1, then the corresponding eigenfunction v to the Schrödinger equation (5.2) is an 
odd (resp. even) function on R , whereas λ0 is an eigenvalue of the associated Schrödinger 
operator defined in L2(R). There exists exactly one λ0 < 0 corresponding to v′(0) = 0 and a 
simple eigenvalue λ0 = 0 corresponding to v(0) = 0, all other possible points λ0 are located 
in (0, 1) bounded away from zero.

Proof. Extension of v to an eigenfunction of the associated Schrödinger operator defined 
in L2(R) follows by the reversibility of the Schrödinger equation  (5.2) with respect to the 
transformation x �→ −x . The count of eigenvalues follows by Sturm’s theorem since the odd 
eigenfunction for the eigenvalue λ0 = 0,

φ′(x) = −sech
1
p ( px) tanh( px) (5.6)

has one zero on the infinite line. By Sturm’s theorem, λ0 = 0 is the second eigenvalue of the 
Schrödinger equation  (5.2) with exactly one simple negative eigenvalue λ0 < 0 that corre-
sponds to an even eigenfunction. □ 
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Lemma 5.3. Let v = v(x;λ) be the solution defined by lemma 5.1. Assume that v(x;λ1) has 
a simple zero at x = x1 ∈ R for some λ1 ∈ (−∞, 1). Then, there exists a unique C1 function 
λ �→ x∗(λ) for λ near λ1 such that v(x;λ) has a simple zero at x = x∗(λ) with x∗(λ1) = x1 
and x′∗(λ1) > 0.

Proof. By lemma 5.1, v is a C1 function of x and λ for every x ∈ R and λ ∈ (−∞, 1). Since 
x1 is a simple zero of v(x;λ1), we have ∂xv(x1;λ1) �= 0. By the implicit function theorem, 
there exists a unique C1 function λ �→ x∗(λ) for λ near λ1 such that v(x;λ) has a simple zero 
at x = x∗(λ) with x∗(λ1) = x1. It remains to show that x′∗(λ1) > 0.

Differentiating v(x∗(λ);λ) = 0 in λ at λ = λ1, we obtain

∂xv(x1;λ1)x′∗(λ1) + ∂λv(x1;λ1) = 0. (5.7)

Let us denote ̃v(x) = ∂λv(x;λ1). Differentiating equation (5.2) in λ yields the inhomogeneous 
differential equation for ṽ:

−ṽ′′(x) + ṽ(x)− (2p + 1)( p + 1)sech2( px)ṽ(x) = λ1ṽ(x) + v(x;λ1), x ∈ (a,∞).
 

(5.8)

By the same method based on the Volterra’s integral equation as in lemma 5.1, the function ṽ 
is C1 in x and decays to zero as x → ∞. Therefore, by multiplying equation (5.8) by v(x;λ1), 
integrating by parts on [x1,∞), and using equation (5.2), we obtain

−∂xv(x1;λ1)ṽ(x1) =

∫ ∞

x1

v(x;λ1)
2dx, (5.9)

where we have used v(x1;λ1) = 0 as well as the decay of v(x;λ1), ∂xv(x;λ1), ṽ(x), and ṽ′(x) 
to zero as x → ∞. Combining (5.7) and (5.9) yields

(∂xv(x1;λ1))
2x′∗(λ1) =

∫ ∞

x1

v(x;λ1)
2dx > 0, (5.10)

so that x′∗(λ1) > 0 follows from the fact that ∂xv(x1;λ1) �= 0. □ 

The results of lemmas 5.1–5.3 are illustrated on figure 3 which shows profile of the solution 
v satisfying the limit (5.3) for four cases of λ in (−∞, 0]. The even eigenfunction for λ0 < 0 
and the odd eigenfunction for λ = 0 correspond to the solutions of the Schrödinger equa-
tion defined in L2(R). The only zero x∗(λ) of v appears from negative infinity at λ = λ0 and 
it is a monotonically increasing function of λ in (λ0, 0) such that x*(0)  =  0.

By using the results of lemmas 5.1–5.3, we can address eigenvalues of σp(L+) in (−∞, 1), 
where the differential expression for L+ is given by (4.3).

Lemma 5.4. Let v be the solution defined by lemma 5.1. For every a ∈ R, λ∗ ∈ (−∞, 1) is 
an eigenvalue of σp(L+) if and only if one of the following equations holds:

 (a) v(a) = 0,
 (b) v(−a) = 0,
 (c) v(−a)v′(a) + v(a)v′(−a) = 0.

Moreover, λ∗ ∈ σp(L+) has multiplicity K  −  1 in the case (a), N  −  K  −  1 in the case (b), and 
is simple in the case (c). If λ∗ satisfies several cases, then its multiplicity is the sum of the 
multiplicities in each case.
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Proof. Let U ∈ H2
Γ be the eigenvector of the operator L+ for the eigenvalue 

λ∗ ∈ σp(L+). By Sobolev embedding of H2(R+) into C1(R+), both U(x) and U′(x) decay to 
zero as x → +∞. By using the representation (3.4) and the transformation of (5.1) to (5.2), 
we can write U = (u1, . . . , uN)

T  in the form

uj(x) =
{

cjv(x + a), j = 1, . . . , K,
cjv(x − a), j = K + 1, . . . , N,

where (c1, c2, . . . , cN) are coefficients and v is the solution defined in lemma 5.1. The bound-
ary conditions for U ∈ H2

Γ in (2.1) and (2.2) imply the homogeneous linear system on the 
coefficients on (c1, c2, . . . , cN):

c1α
1/p
1 v(a) = · · · = cKα

1/p
K v(a) = cK+1α

1/p
K+1v(−a) = · · · = cNα

1/p
N v(−a)

 
(5.11)

and
K∑

j=1

cjα
−1/p
j v′(a) +

N∑
j=K+1

cjα
−1/p
j v′(−a) = 0. (5.12)

The associated matrix is



α
1/p
1 v(a) −α

1/p
2 v(a) 0 . . . 0 0 . . . 0 0

α
1/p
1 v(a) 0 −α

1/p
3 v(a) . . . 0 0 . . . 0 0

...
...

...
. . .

...
...

. . .
...

...
α

1/p
1 v(a) 0 0 . . . −α

1/p
K v(a) 0 . . . 0 0

α
1/p
1 v(a) 0 0 . . . 0 −α

1/p
K+1v(−a) . . . 0 0

...
...

...
. . .

...
...

. . .
...

...
α

1/p
1 v(a) 0 0 . . . 0 0 . . . 0 −α

1/p
N v(−a)

b1 b2 b3 . . . bK bK+1 . . . bN−1 bN




Figure 3. Profiles of the solution v in lemma 5.1 for different values of λ.
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where

bj =

{
α
−1/p
j v′(a), 1 � j � K

α
−1/p
j v′(−a), K + 1 � j � N.

In order to calculate the determinant of the associate matrix, we perform elementary col-
umn operations and obtain a lower triangular matrix. Let the associate matrix be of the form 
[A0

1A0
2 . . .A0

N ], where A0
j  represents the jth column of the matrix in the beginning of the algo-

rithm. We perform the following elementary column operation:

[A0
1 A0

2 A0
3 . . . A0

N ] −→ [A1
1 A1

2 A1
3 . . . A1

N ] := [A0
1 A0

2 + α
−1/p
1 α

1/p
2 A0

1 A0
3 . . . A0

N ],

then

[A1
1 A1

2 A1
3 . . . A1

N ] −→ [A2
1 A2

2 A2
3 . . . A2

N ] := [A1
1 A1

2 A1
3 + α

−1/p
2 α

1/p
3 A1

2 . . . A1
N ],

and so on, until the Kth step. At the Kth step, we need to take into account the change of v(a) 
to v(−a) in the (K + 1)th column, hence the Kth step involves

AK−1
K+1 −→ AK

K+1 := AK−1
K+1 +

α
1/p
K+1v(−a)

α
1/p
K v(a)

AK−1
K .

At the (K + 1)th and subsequent steps, no further changes of v(−a) occurs, so that we apply 
the same rule as the one before the Kth step in all subsequent transformations. Finally, after 
(N − 1) transformations, we obtain a lower triangular matrix in the form:



α
1/p
1 v(a) 0 0 . . . 0 0 . . . 0 0

α
1/p
1 v(a) α

1/p
2 v(a) 0 . . . 0 0 . . . 0 0

α
1/p
1 v(a) α

1/p
2 v(a) α

1/p
3 v(a) . . . 0 0 . . . 0 0

...
...

...
. . .

...
...

. . .
...

...

α
1/p
1 v(a) α

1/p
2 v(a) α

1/p
3 v(a) . . . α

1/p
K v(a) 0 . . . 0 0

α
1/p
1 v(a) α

1/p
2 v(a) α

1/p
3 v(a) . . . α

1/p
K v(a) α

1/p
K+1v(−a) . . . 0 0

...
...

...
. . .

...
...

. . .
...

...

α
1/p
1 v(a) α

1/p
2 v(a) α

1/p
3 v(a) . . . α

1/p
K v(a) α

1/p
K+1v(−a) . . . α

1/p
N−1v(−a) 0

B1 B2 B3 . . . BK BK+1 . . . BN−1 BN




where {Bj}N
j=1 are some numerical coefficients, in particular, B1 = α

−1/p
1 v′(a) and

BN =
α

1/p
N

v(a)




K∑
j=1

α
−2/p
j v′(a)v(−a) +

N∑
j=K+1

α
−2/p
j v′(−a)v(a)


 .

Under the constraint (2.10), the determinant of the lower triangular matrix is evaluated in the 
form:
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∆ =




N∏
j=1

α
1/p
j







K∑
j=1

α
−2/p
j


 v(a)K−1v(−a)N−K−1 [v(−a)v′(a) + v(a)v′(−a)] .

Therefore, U �= 0 is the eigenvector of L+ for the eigenvalue λ∗ ∈ (−∞, 1) if and only if 
∆ = 0, or equivalently, if either v(a) = 0 or v(−a) = 0 or v(−a)v′(a) + v(a)v′(−a) = 0.

In the case of v(a) = 0 and v(−a) �= 0, it follows from the linear system (5.11) that cj  =  0 
for all K + 1 � j � N and cj ∈ R are arbitrary for all 1 � j � K . The linear equation (5.12) 

implies that 
∑K

j=1 cjα
−1/p
j = 0, since v′(a) �= 0 when v(a) = 0. Therefore, the eigenvalue λ∗ 

has a multiplicity K  −  1.
Similarly, the eigenvalue λ∗ has a multiplicity N  −  K  −  1 if v(a) �= 0 and v(−a) = 0.
In the case v(−a)v′(a) + v(a)v′(−a) = 0 but v(a) �= 0 and v(−a) �= 0, the linear system 

(5.11) implies that all coefficients are related to one coefficient. The linear equation (5.12) is 
then satisfied due to the constraint (2.10), hence λ∗ is a simple eigenvalue.

If several cases are satisfied simultaneously, then it follows from the linear system (5.11) 
and (5.12) that multiplicity of λ∗ is equal to the sum of the multiplicities for each of the cases.
 □ 

Proof of theorem 4.1. The result on σp(L−) is proved from lemma 3.1 in [17]. The con-
struction of σp(L+) follows from lemmas 5.1–5.4, as well as the continuation arguments.

The condition (c) in lemma 5.4 is satisfied if the solution v in lemma 5.1 is either odd or 
even function of a. For the simple eigenvalue λ0 < 0 in lemma 5.2, the eigenfunction is even 
and positive. Hence, v(a) �= 0 and v(−a) �= 0, so that λ0 is a simple eigenvalue in σ+(L+) by 
the case (c) in lemma 5.4. The corresponding eigenvector U ∈ H2

Γ is strictly positive definite 
on Γ.

For the simple zero eigenvalue in lemma 5.2, the eigenfunction (5.6) is odd and positive 
on (−∞, 0). Since v(a) �= 0 and v(−a) �= 0 if a �= 0. then 0 is a simple eigenvalue in σ+(L+) 
by the case (c) in lemma 5.4. The corresponding eigenvector U ∈ H2

Γ can be represented in 
the form:

U(x) =

{
α
−1/p
j φ′(x + a), j = 1, . . . , K

−α
−1/p
j φ′(x − a), j = K + 1, . . . , N

 (5.13)

which represent the translation of the shifted state (3.4) with respect to parameter a.
No other values of λ exists in (−∞,λ2) such that the condition (c) in lemma 5.4 is satisfied, 

where λ2 > 0 is either the positive eigenvalue of the scalar Schrödinger equation (5.2) or the 
bottom of σc(L+) at λ2 = 1.

If a  >  0, then we claim that v(a) > 0 for every λ ∈ (−∞, 0]. Indeed, by lemma 5.3, simple 
zeros of v are monotonically increasing functions of λ, whereas no multiple zeros of v may 
exist for a nonzero solution of the second-order differential equation. Since the only zero of v 
bifurcates from x = −∞ at λ = λ0 < 0 and reaches x  =  0 at λ = 0, v(x) remains positive for 
every x  >  0 for λ ∈ (−∞, 0]. Hence the condition (a) in lemma 5.4 is not satisfied for every 
λ ∈ (−∞, 0].

We now consider vanishing of v(−a) for a  >  0 for the condition (b) in lemma 5.4. By the 
same continuation argument from lemma 5.3, there exists exactly one λ1 ∈ (λ0, 0) such that 
v(−a) = 0 for any given a  >  0. Since v′(−a) �= 0 and v(a) �= 0, λ1 is an eigenvalue of σp(L+) 
of multiplicity N  −  K  −  1.
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For a  <  0, the roles of cases (a) and (b) are swapped. The condition (b) is never satisfied, 
while the condition (a) is satisfied for exactly one λ1 ∈ (λ0, 0), which becomes an eigenvalue 
of σp(L+) of multiplicity K  −  1. The assertion of theorem 4.1 is proved. ■ 

Remark 5.5. For p  =  1, the solution v in lemma 5.1 is available in the closed analytic form:

v(x) = e−
√

1−λx 3 − λ+ 3
√

1 − λ tanh x − 3sech2x
3 − λ+ 3

√
1 − λ

.

In this case, λ0 = −3 is a simple eigenvalue corresponding to v(x) = 1
4 sech2x and 0 is a 

simple eigenvalue corresponding to v(x) = 1
2 tanh xsechx. If a �= 0, the negative eigenvalue 

λ1 ∈ (λ0, 0) in the proof of theorem 4.1 is given by the root of the following transcendental 
equation

3 − λ− 3
√

1 − λ tanh |a| − 3sech2(a) = 0,

or explicitly, by

λ1 = −3
2
tanh |a|

[
tanh |a|+

√
1 + 3sech2(a)

]
.

We note that λ1 → 0 when a → 0 and λ1 → λ0 = −3 when |a| → ∞.

Remark 5.6. By the count of theorem 4.1, the Morse index of L+ is K if a  <  0 and N  −  K 
if a  >  0. On the other hand, the Sturm index (defined as the number of nodes for the eigen-
function U in (5.13) corresponding to the eigenvalue λ = 0) is K if a  <  0 and N  −  K if a  >  0. 
Hence, the two indices are equal to each other, similarly to the Sturm’s nodal count for finite 
intervals or bounded graphs.

6. Homogenization of the star graph

The translational symmetry of the infinite line R  is broken in the star graph Γ due to the vertex 
at x  =  0. As a result, a momentum functional is not generally conserved under the NLS flow. 
However, we will show here that if the coefficients (α1,α2, . . . ,αN) satisfy the constraint 
(2.10), then there exist solutions to the NLS equation (2.3), for which the following momen-
tum functional is conserved:

P(Ψ) :=
N∑

j=1

(−1)mj

∫

R+

Im
(
ψ′

jψj

)
dx, (6.1)

where the N-tuple (m1, m2, . . . , mN) is given by (3.6). The following lemma yields the momen-
tum balance equation.

Lemma 6.1. For every p  >  0 and every (α1,α2, . . . ,αN) satisfying the constraint (2.10), 
the local solution (2.4) in lemma 2.2 satisfies the following momentum balance equation:

d
dt

P(Ψ) =
N∑

j=1

(−1)mj |ψ′
j (0)|2 (6.2)

for all t ∈ (−t0, t0), where P is given by (6.1).
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Proof. If p � 1, we can consider the smooth solutions (2.9) to the NLS equation (2.3) and 
compute the following momentum balance equation for P in (6.1):

d
dt

P(Ψ) =
N∑

j=1

(−1)mj

∫

R+

Im
(
ψ′

j∂tψj + ψj∂tψ
′
j

)
dx. (6.3)

By substituting the NLS equations (2.3) into (6.3), we integrate by parts and obtain:

d
dt

P(Ψ) =
N∑

j=1

(−1)mj

∫

R+

Re
(
ψjψ

′′′
j − ψ′

jψ
′′
j + pα2

j (|ψj|2p+2)′
)

dx

=
N∑

j=1

(−1)mj
(
−Re[ψj(0)ψ

′′
j (0)] + |ψ′

j (0)|2 − pα2
j |ψj(0)|2p+2) ,

where the decay of Ψ(x), Ψ′(x), and Ψ′′(x) to zero at infinity has been used for the solution in 
H3

Γ. Applying the boundary conditions in (2.1) and (2.8), the constraint (2.10), and the choice 
of values of mj in (3.6) yields the momentum balance equation in the form (6.2).

Although our derivation was restricted to the case p � 1 and to solutions in H3
Γ, the proof 

can be extended to the local solution (2.4) for all values of p  >  0 by using standard approx-
imation techniques [7]. □ 

The momentum P(Ψ) is conserved in t if the boundary conditions for derivatives satisfy 
the additional constraints:

(−1)m1α
1/p
1 ψ′

1(0) = (−1)m2α
1/p
2 ψ′

2(0) = · · · = (−1)mNα
1/p
N ψ′

N(0), (6.4)

which are compatible with the boundary conditions in (2.2) under the constraint (2.10). 
Indeed, equation (6.2) with the constraint (6.4) yields:

d
dt

P(Ψ) = (−1)m1α
2/p
1 |ψ′

1(0)|2



K∑
j=1

1

α
2/p
j

−
N∑

j=K+1

1

α
2/p
j


 = 0,

hence P(Ψ) is conserved in t.
In order to make sure that the constraint (6.4) is satisfied for every t, we observe the fol-

lowing reduction of the NLS equation  (2.3) on the star graph Γ to the homogeneous NLS 
equation on the infinite line R .

Lemma 6.2. Under the constraint (2.10), there exist solutions of the NLS equation (2.3) on 
the graph Γ which satisfy the the following homogeneous NLS equation on the infinite line:

iUt + Uxx + ( p + 1) |U|2p U = 0, x ∈ R, t ∈ R, (6.5)

where U = U(t, x) ∈ C.

Proof. The class of suitable solutions Ψ to the NLS equation (2.3) on the star graph Γ must 
satisfy the following reduction:

{
α

1/p
1 ψ1(t, x) = · · · = α

1/p
K ψK(t, x),

α
1/p
K+1ψK+1(t, x) = · · · = α

1/p
N ψN(t, x),

x ∈ R+, t ∈ R, (6.6)
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subject to the boundary conditions at the vertex point x  =  0:

α
1/p
K ψK(t, 0) = α

1/p
K+1ψK+1(t, 0), α

1/p
K ∂xψK(t, 0) = −α

1/p
K+1∂xψK+1(t, 0).

 
(6.7)

Note that the boundary conditions (6.6) and (6.7) are compatible with the generalized Kirch-
hoff boundary conditions in (2.2) under the constraint (2.10). Thanks to the reduction (6.6), 
the following function can be defined on the infinite line:

U(t, x) :=

{
α

1/p
j ψj(t,−x), 1 � j � K, x ∈ R−,

α
1/p
j ψj(t, x), K + 1 � j � N, x ∈ R+.

 (6.8)

Thanks to the boundary conditions (6.7), U is a C1 function across x  =  0. Substitution (6.8) 
into the NLS equation  (2.3) on the graph Γ yields the homogeneous NLS equation  (6.5), 
where the point x  =  0 is a regular point on the infinite line R . □ 

Remark 6.3. The shifted state (3.4) corresponds to the NLS soliton in the homogeneous 
NLS equation (6.5), which is translational invariant along the line R . The eigenvalue count 
of theorem 4.1 and the instability result of corollary 4.3 are related to the symmetry-breaking 
perturbations, which do not satisfy the reduction (6.6). These perturbations satisfy the NLS 
equation (2.3) on the graph Γ but do not satisfy the homogeneous NLS equation (6.5) on the 
line R . Such symmetry-breaking perturbations were not considered in [24, 26, 27].

7. Variational characterization of the shifted states

Here we give a simple argument suggesting that the spectrally stable shifted states in the 
case (ii) with K  =  1 and a  <  0 are nonlinearly unstable under the NLS flow. This involves 
the variational characterization of the shifted states in the graph Γ as critical points of energy 
under the fixed mass, where the mass and energy are defined by (2.5) and (2.6) respectively.

The mass and energy are computed at the shifted states (3.4) as follows:

Q(Φ) =




K∑
j=1

α
−2/p
j


 ‖φ‖2

L2(R) (7.1)

and

E(Φ) =




K∑
j=1

α
−2/p
j


(

‖φ′‖2
L2(R) − ‖φ‖2p+2

L2p+2(R)

)
, (7.2)

where the constraint (2.10) has been used. In the case (ii) with K  =  1, the mass and energy at 
the shifted states is the same as the mass and energy of a free solitary wave escaping to infin-
ity along the only incoming edge. This property signals out that the infimum of energy is not 
achieved, as is discussed in [3].

Furthermore, the constraint (2.10) implies that α2, . . . ,αN > α1 (if N � 3). Pick the j-th 
outgoing edge for 2 � j � N  and fix the mass at the level µ > 0. Then, it is well-known [3] 
that the energy of a free solitary wave escaping to infinity along the j-th outgoing edge is given 
by
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Ej = −Cpα
4

2−p
j µ

p+2
2−p < −Cpα

4
2−p
1 µ

p+2
2−p = E(Φ), (7.3)

where p ∈ (0, 2) and Cp is a universal constant that only depends on p. Thus, a free solitary 
wave escaping the graph Γ along any outgoing edge has a lower energy level at fixed mass 
compared to the shifted state. This suggests that any shifted state is energetically unstable.

Let us now give a simple argument suggesting nonlinear instability of the shifted states 
(3.4) with K  =  1 and a  <  0 under the NLS flow. If K  =  1, it follows from the momentum bal-
ance equation (6.2) in lemma 6.1 that the momentum P(Ψ) defined by (6.1) is an increasing 
function of time if m1  =  1 and a decreasing function of time if m1  =  0, for the two choices in 
(3.6). Indeed, we obtain the following chain of transformations by using the boundary condi-
tions in (2.2) and the constraint (2.10):

d
dt

P(Ψ) = (−1)m1+1




N∑
j=2

|ψ′
j (0)|2 −

N∑
j=2

N∑
i=2

α
2/p
1

α
1/p
j α

1/p
i

ψ′
j (0)ψi

′
(0)




= (−1)m1+1




N∑
j=2

N∑
i=2
i�=j

α
2/p
1

α
2/p
i

|ψ′
j (0)|2 −

N∑
j=2

N∑
i=2
i�=j

α
2/p
1

α
1/p
j α

1/p
i

ψ′
j (0)ψi

′
(0)




=
1
2
(−1)m1+1

N∑
j=2

N∑
i=2
i�=j

α
2/p
1

α
2/p
j α

2/p
i

∣∣∣α1/p
j ψ′

j (0)− α
1/p
i ψ′

i (0)
∣∣∣
2

.

 

(7.4)

Hence d
dt P(Ψ) � 0 if m1  =  1 and d

dt P(Ψ) � 0 if m1  =  0.
Since the shifted states (3.4) satisfies P(Φ) = 0, monotonicity of the momentum P(Ψ) in 

time t immediately implies nonlinear instability of the shifted states (3.4) with a  <  0 under 
the NLS flow, despite that these shifted states are spectrally stable by corollary 4.3. Indeed, if 
a  <  0 (or m1  =  1), the value of the momentum P(Ψ) is monotonically increasing in time as 
soon as the right-hand side of (7.4) is nonzero. Therefore, if P(Ψ) is initially near zero, which 
is the value of P(Φ) for every shifted state (3.4) with a ∈ R, then P(Ψ) grows far away from 
the zero value. This simple argument leads us to the following conjecture.

Conjecture 7.1. In the case K  =  1, the branch of shifted states (3.4) with a  <  0 is nonlin-
early unstable under the NLS flow.

We also add more details on the travelling waves of the homogeneous NLS equation on 
the line R  given by (6.5). Every stationary solution Ustat(x)eit  to the NLS equation (6.5) is 
translated into a family of the travelling solutions with speed c by the Lorentz transformation

Utrav(t, x) = Ustat(x − ct)eit+icx/2−ic2t/4, x ∈ R, t ∈ R. (7.5)

Computing the momentum P(Ψ) given by (6.1) at the solution Ψ, which is defined by (6.8) 
with (7.5), yields

P(Ψ) =
c
2
α

2/p
1 (−1)m1+1‖Ustat‖2

L2(R). (7.6)

If a  <  0 (or m1  =  1), then d
dt P(Ψ) � 0 and the increase of the momentum can be compensated 

by a travelling wave (7.5) moving with the speed c  >  0 as follows from (7.6). The maximum 
of the shifted state (3.4) with a  <  0 is located in the only incoming edge but it may move 
towards the vertex point at x  =  0 along the travelling wave (7.5).
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On the other hand, if a  >  0 (or m1  =  0), then d
dt P(Ψ) � 0 and the decrease of the momen-

tum can be compensated by the same travelling wave (7.5) still moving with the speed c  >  0, 
as follows from (7.6). Therefore, we may anticipate that the maximum of the shifted state (3.4) 
first moves towards the vertex point at x  =  0 along the only incoming edge, then splits into 
N  −  1 maxima in the N  −  1 outgoing edges and these N  −  1 maxima keep moving outward 
the vertex point subject to additional spectral instability due to symmetry-breaking perturba-
tions between N  −  1 outgoing edges, according to corollary 4.3. This dynamical picture is in 
agreement with the variational consideration above, but the proof of validity of this dynamical 
picture is beyond the scope of this work and will be considered elsewhere. Therefore, we sum-
marize this dynamical picture as another conjecture.

Conjecture 7.2. In the case K  =  1, the shifted state (3.4) with a  <  0 leads to a solitary 
wave that moves towards the vertex point at x  =  0 along the only incoming edge, splits into 
N  −  1 solitary waves in the N  −  1 outgoing edges, which are subject to their spectral instabil-
ity while moving outward the vertex point at x  =  0.

8. Conclusion

We computed the Morse index for the shifted states of the NLS equation on the star graph. The 
shifted states are parameterized by a translational parameter and arise when the NLS equa-
tion on the star graph can be reduced to the homogeneous NLS equation on an infinite line. 
When the Morse index exceeds one (which occurs for all shifted states with two exceptions), 
the shifted states are spectrally unstable under the NLS flow. The two exceptions include the 
star graph with two edges that is equivalent to the line and the shifted states with monotone 
profiles in all but one edge. The orbital stability of the former one is well-known, while we 
argue from the variational interpretation that the latter one is spectrally stable but nonlinearly 
unstable under the NLS flow.
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