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GlobalWell-Posedness of the Short-Pulse
and Sine–Gordon Equations in Energy Space
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We prove global well-posedness of the short-pulse equation with small initial data
in Sobolev space H2. Our analysis relies on local well-posedness results of Schäfer
and Wayne [15], the correspondence of the short-pulse equation to the sine–Gordon
equation in characteristic coordinates, and a number of conserved quantities of the
short-pulse equation. We also prove local and global well-posedness of the sine–
Gordon equation in an appropriate function space.
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1. Introduction

Short-pulse approximations of nonlinear wave packets in dispersive media were
considered recently with various analytical techniques (see, e.g., [5] for a review of
results). The previously known model for small-amplitude quasi-harmonic pulses,
the nonlinear Schrödinger equation, is replaced in the short-pulse approximation by
a new set of nonlinear evolution equations. Among these models, we consider the
model derived by Schäfer and Wayne [15] for short pulses in nonlinear Maxwell’s
equations. Chung et al. [4] justified derivation of this model in the linear case
and presented numerical approximations of modulated pulse solutions. This model
dubbed as the short-pulse equation can be conveniently expressed in the normalized
form by

uxt = u+ 1
6
�u3�xx� (1.1)

where u�x� t� � �×�+ �→ � and the subscript denotes partial derivatives. In
addition to the derivation of the short-pulse equation, the pioneer paper [15]
contains two mathematical results. First, non-existence of a smooth traveling wave
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614 Pelinovsky and Sakovich

solution was proved in the entire range of the speed parameter. Second, local well-
posedness was proven in space Hs for an integer s ≥ 2, where Hs denotes the
standard Sobolev space with the norm

�f�Hs =
( ∫

�
�1+ �k�2�s�f̂ �k��2dk

)1/2

and f̂ �k� �= 1√
2�

∫
� f�x�e−ikxdx is the Fourier transform of f�x� on a real axis.

The first result was recently extended by Costanzino et al. [6], who proved
existence of smooth traveling solutions in the regularized short-pulse equation,

uxt = u+ 1
6
�u3�xx + �uxxxx� (1.2)

for a small positive � > 0. They have also derived the regularized short-pulse
equation (1.2) in the context of the nonlinear Maxwell equation with a high-
frequency dispersion. To construct homoclinic solutions with slow and fast motions,
the authors of [6] applied the Fenichel theory for singularly perturbed differential
equations.

In this paper, we are extending the second result of [15], namely we prove global
well-posedness of the short-pulse equation (1.1) in H2. The problem of global well-
posedness has been studied in a number of recent publications [8, 10, 16] in the
context of a similar Ostrovsky equation

uxt = u+ �u2�xx + �uxxxx� (1.3)

which models small-amplitude long waves in a rotating fluid. Clearly, the regularized
short-pulse equation (1.2) can be considered as the Ostrovsky equation with a cubic
nonlinearity, so that many of the well-posedness results can be equally applied to
both (1.2) and (1.3). Varlamov and Liu [16] proved local well-posedness of (1.3) in
space Hs ∩ Ḣ−1 for s > 3

2 , where Ḣ−1 is defined by the norm

�f�Ḣ−1 =
( ∫

�

�f̂ �k��2
k2

dk

)1/2

�

If f ∈ Ḣ−1, then the constraint f̂ �0� = 0 holds, which is written in physical space as∫
� f�x�dx = 0. Under the constraint above, we can define an operator �−1

x f in any
of the equivalent forms

�−1
x f �=

∫ x

−	
f�x′�dx′ = −

∫ 	

x
f�x′�dx′ = 1

2

( ∫ x

−	
−
∫ 	

x

)
f�x′�dx′�

so that �f�Ḣ−1 = ��−1
x f�L2 . The space H1 ∩ Ḣ−1 is the energy space of the Ostrovsky

equation (1.3), where the power V�u� = �u�2
L2 and the energy

E�u� =
∫
�

(
���xu�

2 + 1
2
��−1

x u�2 − 1
3
u3

)
dx

conserve in time t. Using conserved quantities and local existence in H1 ∩ Ḣ−1,
Linares and Milanes [10] and Gui and Liu [8] proved global well-posedness of the
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Sine–Gordon Equations 615

Ostrovsky equation (1.3) in the energy space. However, their proof is only valid for
� > 0 and it is not applicable to the short-pulse equation (1.1).

Using local well-posedness results of [15] and conserved quantities of the short-
pulse equation (1.1) found by Brunelli [2], we shall prove our main theorem on
global well-posedness of the short-pulse equation.

Theorem 1. Assume that u0 ∈ H2 and

�u′
0�2L2 + �u′′

0�2L2 < 1�

Then the short-pulse equation (1.1) admits a unique solution u�t� ∈ C��+� H2�
satisfying u�0� = u0.

Our main motivation of interest in global well-posedness of the short-pulse
equation (1.1) begins in the recent discovery of exact modulated pulse solutions,
which were modeled numerically in [4]. The exact solutions were found by Sakovich
and Sakovich [13], who also showed in [12, 14] integrability of the short-pulse
equation (1.1) and its equivalence to the sine–Gordon equation in characteristic
coordinates

wyt = sin�w�� (1.4)

where w�y� t� � �×�+ �→ � is a new function in a new independent variable y.
According to the results in [14], there exists a local transformation from solutions of
the sine–Gordon equation (1.4) to solutions of the short-pulse equation (1.1) given
by u�x� t� = wt�y�x� t�� t�, where y = y�x� t� is found by inverting the function x =
x�y� t� from solutions of the system of partial differential equations

�x

�y
= cos�w��

�x

�t
= −1

2
�wt�

2� (1.5)

The compatibility of system (1.5) results in the sine–Gordon equation (1.4). The
function x = x�y� t� is invertible with the inverse y = y�x� t� for a fixed t ∈ � if
w�·� t� belongs to the space

Hs
c =

{
w ∈ Hs � �w�L	 ≤ wc <

�

2

}
� s >

1
2
� (1.6)

To understand the long-term dynamics of perturbations near the exact
modulated pulse solutions (which are dubbed as breathers in the context of the
sine–Gordon equation), we need to prove local and global existence of solutions
of the sine–Gordon equation (1.4) in Hs

c for s ≥ 1. If the constraint in Hs
c can be

kept globally in time, these results would imply that a solution of the short-pulse
equation (1.1) starting with small data u0 ∈ H2 will remain bounded in H2 for all
t ∈ �+. Together with integrability of the short-pulse equation (1.1), these results
may suggest orbital or asymptotic stability of the modulated pulse solutions. The
latter problem is, however, beyond the scope of the present paper.

The sine-Gordon equation in characteristic coordinates was considered long ago
by Kaup and Newell [9] using formal applications of the stationary phase method.
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616 Pelinovsky and Sakovich

Local well-posedness of this equation is a non-trivial problem due to the presence
of the constraint ∫

�
sin�w�y� t��dy = 0� ∀t ∈ �+� (1.7)

which gives a necessary but not sufficient condition that the solution w�·� t� stays in
Hs

c for all t ∈ �+. Our treatment of this equation is rigorous and we shall prove that
the sine–Gordon equation (1.4) is locally well-posed in space Hs ∩ Ḣ−1 for an integer
s ≥ 1 in the new variable q = sin�w�. Global well-posedness is proved in H1 ∩ Ḣ−1

with the help of three conserved quantities of the sine–Gordon equation (1.4). The
result can be extended in Hs ∩ Ḣ−1 for an integer s ≥ 2 if more conserved quantities
are incorporated into analysis.

The sine–Gordon equation in the laboratory coordinates

w		 − w

 = sin�w�

is known to be locally well-posed in a weaker space Lp for p ≥ 2, see Appendix B
of Buckingham and Miller [3]. Similarly to this work, our analysis is also based on
the method of Picard iterations to prove local well-posedness of the sine–Gordon
equation in characteristic coordinates (1.4). These results provide an alternative
proof of the local well-posedness theorem for the short-pulse equation (1.1), thanks
to the transformation (1.5). Our treatment of the problem is, however, simpler than
the original method of [15], where modified Picard iterations were constructed using
solutions of quasi-linear hyperbolic equations along the characteristics. Moreover,
additional properties of local solutions to the two equations are identified via
the transformation (1.5) and these properties are found to be useful in rigorous
treatment of conserved quantities for the two equations.

The paper is organized as follows. Section 2 deals with local well-posedness of
the sine–Gordon equation (1.4). Correspondence of local solutions is established in
Section 3. Section 4 gives the proof of Theorem 1 on global well-posedness of the
short-pulse equation (1.1). Global well-posedness of the sine–Gordon equation (1.4)
is proven in Section 5.

2. Local Well-Posedness of the Sine–Gordon Equation (1.4)

We shall consider solutions w�y� t� of the sine–Gordon equation (1.4) vanishing
at infinity �y� → 	 for t ≥ 0. Therefore, we eliminate kink solutions of the sine–
Gordon equation, which connect different equilibrium states between multiplies of
2� at different infinities. Our reasoning is that the kink solutions lead to non-
invertible functions x = x�y� t� with respect to y in the transformation (1.5) and give
multi-valued loop solutions of the short-pulse equation (1.1) (see [13] for details).
Not only we are considering localized solutions w�·� t� in space Hs for s > 1

2 , we
need to control

�w�·� t��L	 ≤ wc <
�

2
�

to ensure that the transformation (1.5) is invertible at least for t ∈ �0� T� ⊂ �+ for
some T > 0. Thus, we need to prove that the sine–Gordon equation (1.4) admits a
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Sine–Gordon Equations 617

local solution w�·� t� in space C��0� T��Hs
c� for some T > 0, where Hs

c is defined by
(1.6).

To incorporate the constraint (1.7) for solutions of the sine–Gordon equation
(1.4), we introduce a new variable q �= sin�w�, so that the constraint (1.7) becomes
a linear constraint ∫

�
q�y� t�dy = 0� (2.1)

The sine–Gordon equation (1.4) transforms to the evolution equation

qt =
√
1− q2�−1

y q� (2.2)

where the operator �−1
y acts on an element of Hs under the constraint (2.1), so that

�−1
y q �=

∫ y

−	
q�y′� t�dy′ = −

∫ 	

y
q�y′� t�dy′ = 1

2

( ∫ y

−	
−
∫ 	

y

)
q�y′� t�dy′�

Let us introduce the nonlinear function

f�q� �= 1−
√
1− q2 = q2

1+√
1− q2

(2.3)

and write the Cauchy problem for equation (2.2) in the equivalent form{
qt = �1− f�q���−1

y q�

q�t=0 = q0�
(2.4)

The nonlinear function f�q� is squeezed by the quadratic functions

∀�q� ≤ 1 �
q2

2
≤ f�q� ≤ q2�

which allows us to interpret the term f�q��−1
y q as a nonlinear perturbation to the

linear evolution induced by �−1
y q.

To analyze the Cauchy problem for the nonlinear time evolution (2.4), we
obtain information on the fundamental solution of the underlying linear problem{

Qt = �−1
y Q�

Q�t=0 = Q0�
(2.5)

Let us denote L = �−1
y and Q�t� = etLQ0. The solution operator etL is a norm-

preserving map from Hs to Hs for any s ≥ 0 in the sense of

�Q�t��Hs = �etLQ0�Hs = �Q0�Hs � ∀t ∈ �� (2.6)

which follows from the Fourier transform

� �etL� = e−
it
k � k ∈ ��
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618 Pelinovsky and Sakovich

involving a bounded oscillatory integral with a singular behavior as k → 0. The
solution operator etL can be represented by the convolution integrals involving
Bessel’s function J0 of the first kind.

Lemma 1. Let Kt�y� and Jt�y� be defined by

Kt�y� �=
√

t

y
J ′
0�2

√
ty�� Jt�y� �= J0�2

√
ty�� ∀t� y ∈ �+�

There exists C > 0 such that for all t ∈ �+

�Kt�L	 ≤ Ct� �Kt�L2 ≤ Ct1/2� �Jt�L	 ≤ 1�

whereas Kt � L1, Jt � L1, and Jt � L2.

Proof. These properties follow from properties of Bessel function J0�z�, see, e.g., [7].
�

It follows by direct substitution that the linear Cauchy problem (2.5) has a
solution in the form

Q�y� t� = Q0�y�+
∫ 	

y
Kt�y

′ − y�Q0�y
′�dy′� �y� t� ∈ �×�+� (2.7)

which is bounded if Q0 ∈ L	 ∩ L1. In addition to Q�y� t�, we shall also consider an
integral of Q�y� t� in y, given by

P�y� t� �= −
∫ 	

y
Q�y′� t�dy′ = −

∫ 	

y
Jt�y

′ − y�Q0�y
′�dy′� (2.8)

The local well-posedness analysis is based on the integral equation

q�t� = Q�t�−
∫ t

0
e�t−t′�Lf�q�t′��p�t′�dt′� (2.9)

which follows from Duhamel’s principle for the nonlinear Cauchy problem (2.4).
Here

q�t� �= q�y� t�� p�t� �= p�y� t� = −
∫ 	

y
q�y′� t�dy′�

Q�t� = etLq0 is the solution of the linear problem (2.5) with Q0 = q0, and f�q� is
defined by (2.3). We shall work in the space Xs

c given by

Xs
c =

{
q ∈ Hs ∩ Ḣ−1 � �q�L	 ≤ qc < 1

}
� s >

1
2
� (2.10)

Since py = q, it is clear that p ∈ Hs+1 if p ∈ L2 and q ∈ Hs. We need to show that
the vector field of the integral equation (2.9) is a Lipschitz map in the vector space
Xs �= Hs ∩ Ḣ−1 equipped with the norm

�q�Xs �= �q�Hs + �p�L2
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Sine–Gordon Equations 619

for any t ∈ �0� T� and it is a contraction operator for a sufficiently small T > 0. This
construction gives local well-posedness of the sine–Gordon equation (1.4).

Theorem 2. Assume that q0 ∈ Xs
c, s >

1
2 . There exist a T > 0 such that the Cauchy

problem (2.4) admits a unique local solution q�t� ∈ C��0� T�� Xs
c� satisfying q�0� = q0.

Moreover, the solution q�t� depends continuously on initial data q0.

Proof. Fix s > 1
2 , qc ∈ �0� 1�, and  ∈ �0� C−1

s �, where constant Cs > 0 gives the
upper bound of the Banach algebra property

∀f� g ∈ Hs � �fg�Hs ≤ Cs�f�Hs�g�Hs � (2.11)

We assume that �q0�Xs ≤ � and �q0�L	 ≤ �qc for a fixed � ∈ �0� 1� and prove
that there exists a T > 0 such that q�t� ∈ C��0� T�� Xs

c� is a solution of the Cauchy
problem (2.4) such that q�0� = q0, �q�t��Xs ≤ , and �q�t��L	 ≤ qc for all t ∈ �0� T�.
To do so, we find bounds on the supremum of �q�t��Hs , �q�t��Ḣ−1 , and �q�t��L	 on
�0� T� from the solution of the integral equation (2.9).

By the triangle inequality, the norm-preserving property (2.6), and the Banach
algebra property of Hs, we obtain

�q�t��Hs ≤ �Q�t��Hs +
∫ t

0
�e�t−t′�Lf�q�t′��p�t′��Hsdt′

≤ �q0�Hs + Cs

∫ t

0
�f�q�t′���Hs�p�t′��Hsdt′�

To deal with nonlinear function f�q�, we expand it in the Taylor series

∀�q� < 1 � f�q� = 1−
√
1− q2 =

	∑
n=1

�2n− 3�!!
n!2n q2n�

which involves only positive coefficients. By invoking again the Banach algebra
property, we obtain

∀Cs�q�Hs < 1 � �f�q��Hs ≤
	∑
n=1

�2n− 3�!!
n!2n C2n−1

s �q�2nHs

= 1−√
1− C2

s �q�2Hs

Cs

≤ Cs�q�2Hs �

thanks to the representation (2.3). As a result, we have

�q�t��Hs ≤ �q0�Hs + C2
s

∫ t

0
�q�t′��3Xsdt

′� (2.12)

To estimate the L2 norm of p�t�, we use the integral representation

p�t� = P�t�−
∫ t

0
Le�t−t′�Lf�q�t′��p�t′�dt′�
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620 Pelinovsky and Sakovich

where P�t� = LQ�t� is defined by solution of the same linear problem (2.5)
with initial data P�0� = p0. By the triangle inequality and the norm-preservation
property, we obtain

�p�t��L2 ≤ �P�t��L2 +
∫ t

0
�Le�t−t′�Lf�q�t′��p�t′��L2dt′�

≤ �p0�L2 +
∫ t

0
�Le�t−t′�Lf�q�t′��p�t′��L2dt′�

The norm preservation (2.6) is not useful for the second term since Lf�q�t��p�t� may
not be in L2. On the other hand, using formula (2.8), we write

Le�t−t′�Lf�q�t′��p�t′� = −
∫ 	

y
Jt−t′�y

′ − y�f�q�y′� t′��p�y′� t′�dy′� (2.13)

We shall use the Hausdorf-Young’s inequality

�f � g�Lp ≤ �f�Lq�g�Lr � (2.14)

where p� q� r are related by the constraint q−1 + r−1 = 1+ p−1 and the star
denotes convolution operator f � g = ∫

� f�y′�g�y − y′�dy′. Using inequality (2.14)
and Lemma 1, we obtain

�Le�t−t′�Lf�q�t′��p�t′��L2 ≤ �Jt−t′ �L	�f�q�t′��p�t′��L2/3 ≤ �f�q�t′��p�t′��L2/3 �

Using the Hölder inequality, we obtain

�f�q�t��p�t��L1 ≤ �f�q�t���L��p�t��Lr �

with �−1 + r−1 = 1, so that

�Le�t−t′�Lf�q�t′��p�t′��L2 ≤ �f�q�t′���L2�/3�p�t′��L2r/3 �

If we choose r = 3, then we have � = 3
2 and �f�q��L1 ≤ �q�2

L2 . As a result, we
conclude that

�p�t��L2 ≤ �p0�L2 +
∫ t

0
�q�t′��3Xsdt

′� (2.15)

Finally, we estimate the L	 norm of q�t� from the integral equation (2.9). We
obtain

�q�t��L	 ≤ �Q�t��L	 +
∫ t

0
�e�t−t′�Lf�q�t′��p�t′��L	dt′�

By Lemma 1, the convolution formula (2.7), and the Hausdorf–Young’s inequality
(2.14), the free term is estimated by

�Q�t��L	 ≤ �q0�L	 + �Kt�L2�q0�L2 ≤ �q0�L	 + C1t
1/2�q0�Xs �
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Sine–Gordon Equations 621

for some C1 > 0. The nonlinear term is estimated by

�e�t−t′�Lf�q�t′��p�t′��L	 ≤ �f�q�t′��p�t′��L	 + �Kt−t′ �L	�f�q�t′��p�t′��L1

≤ �q�t′��2L	�p�t′��L	 + �Kt−t′ �L	�q�t′��L	�q�t′��L2�p�t′��L2

≤ C2�1+ �t − t′���q�t′��3Xs �

for some C2 > 0. As a result, we conclude that

�q�t��L	 ≤ �q0�L	 + C1t
1/2�q0�Xs + C2

∫ t

0
�1+ �t − t′���q�t′��3Xsdt

′� (2.16)

Using (2.12), (2.15), and (2.16), we can see that there exists T = T�s� qc� � �� > 0
such that the vector field of the integral equation (2.9) is a closed map of a finite-
radius ball in Xs

c to itself. The value of T > 0 satisfies the bounds

�+ T�1+ C2
s �

2 ≤ 1�

�qc + C1T
1/2�+ 1

2
C2T�T + 2�3 ≤ qc�

Moreover, since f�q� behaves like a quadratic function, a similar analysis shows that
the map is Lipschitz with respect to q and it is a contraction if T > 0 is sufficiently
small. Existence of a unique fixed point of the integral equation (2.9) in a complete
space C��0� T�� Xs

c� follows by the contraction mapping principle (see, e.g., [17]). �

Corollary 1. Under the conditions of Theorem 2, we actually have q�t� ∈
C��0� T�� Xs

c� ∩ C1��0� T��Hs�.

Proof. The proof is based on the identity qt =
√
1− q2p and the fact that p�t� ∈

C��0� T��Hs+1�. �

Remark 1. Existence of a unique solution can be proved more easily in a weaker
space

X̃s
c = �q ∈ Hs� p ∈ L	 � �q�L	 ≤ qc < 1�� s >

1
2
�

provided that q0 ∈ Xs
c. Since p ∈ H1 if q� p ∈ L2, Xs

c is continuously embedded to X̃s
c.

The space Xs
c turns out to be more suitable if we are to use conserved quantities of

the sine–Gordon equation.

3. Correspondence Between Short-Pulse and Sine–Gordon Equations

We start by stating the local well-posedness theorem for the short-pulse equation
(1.1) from [15].

Theorem 3 ([15]). Assume that u0 ∈ H2. There exists a T > 0 such that the short-pulse
equation (1.1) admits a unique solution

u�t� ∈ C��0� T��H2� ∩ C1��0� T��H1�

satisfying u�0� = u0. Furthermore, the solution u�t� depends continuously on u0.
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622 Pelinovsky and Sakovich

We can now compare the results following from Theorem 2 with Theorem 3.
Using the transformation (1.5) and setting q = sin�w� and py = q, we have

u = wt =
qt√

1− q2
= p�

ux =
wty

cos�w�
= tan�w� = py√

1− q2
� (3.1)

uxx =
wy

cos3 w
= pyy

�1− q2�2
�

If q�t� ∈ X1
c for all t ∈ �0� T�, there exists a uniform bound qc ∈ �0� 1� such that

�q�t��L	 ≤ qc for all t ∈ �0� T�. As a result, the H2 norm on u in x is equivalent to
the H2 norm on p in y and the H1 norm on q in y, since py = q. The following
lemma summarizes on the correspondence.

Lemma 2. Assume that �q�L	 ≤ qc < 1 and consider transformations (1.5) and (3.1).
There exist C± > 0 such that

∀u� p ∈ H2��� � C−�p�t��H2 ≤ �u�t��H2 ≤ C+�p�t��H2 �

Proof. The proof is given by direct computations, e.g.√
1− q2

c�p�2L2 ≤ �u�2L2 ≤ �p�2L2�

��yp�2L2 ≤ ��xu�2L2 ≤ 1√
1− q2

c

��yp�2L2�

��2yp�2L2 ≤ ��2xu�2L2 ≤ 1√
�1− q2

c �
7
��2yp�2H2�

where qc < 1 by the assumption of the lemma. �

Combining Theorems 2 and 3, we obtain a more precise result on local well-
posedness of the short-pulse and sine–Gordon equations.

Theorem 4. Let q�t� ∈ C��0� T1�� X
1
c � ∩ C1��0� T��H1� be a solution of the sine–

Gordon equation in Theorem 2 and Corollary 1 and T1 > 0. Let u�t� ∈ C��0� T2�� H
2� ∩

C1��0� T2�� H
1� be a solution of the short-pulse equation in Theorem 3 for some T2 > 0.

Let q0, p0 and u0 be related by the transformations (1.5) and (3.1). Then, in fact, p�t� ∈
C1��0� T��H2� and u�t� ∈ C1��0� T��H2� for T = min�T1� T2�, where py = q.

Proof. If q�t� ∈ X1
c on �0� T1�, then the bound �q�t��L	 ≤ qc holds on �0� T1�

for some qc ∈ �0� 1�. By Lemma 2 and Corollary 1, if p�t� ∈ C��0� T1�� H
2� then

u�t� ∈ C��0� T1�� H
2� and if q�t� ∈ C1��0� T1�� H

1� then ux ∈ C1��0� T1�� H
1�. The first

assertion recovers the result of Theorem 3, while if T = min�T1� T2�, the second
assertion combing with u�t� ∈ C1��0� T��H1� from Theorem 3 implies that u�t� ∈
C1��0� T��H2�.

In the opposite direction, by Lemma 2, if u�t� ∈ C��0� T2�� H
2� ∩ C1��0� T2�� H

1�,
then p�t� ∈ C��0� T��H2� ∩ C1��0� T��H1� for T = min�T1� T2�. Combining with
q�t� ∈ C1��0� T��H1� from Corollary 1, we obtain that p�t� ∈ C1��0� T��H2�. �
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Sine–Gordon Equations 623

Remark 2. Theorem 4 shows that the results on the sine–Gordon equation (1.4) allow
us to control the C1 property of ��2xu�L2 in the short-pulse equation (1.1), while the
results on the short-pulse equation (1.1) allow us to control the C1 property of �p�L2

in the sine–Gordon equation (1.4). This duality turns out to be useful for rigorous
treatment of the conserved quantities for each of the two equations.

Remark 3. If u�t� is a solution of the short-pulse equation in Theorem 3, then for
all t ∈ �0� T�, we have the zero-mass constraint∫

�
udx =

∫
�
wt cos�w�dy = d

dt

∫
�
sin�w�dy = d

dt

∫
�
qdy

= d

dt

[
lim
y→	p�y� t�− lim

y→−	p�y� t�

]
= 0�

thanks to the fact that p ∈ C1��0� T��H2� from Theorem 4. We note that the initial
data u0 ∈ H2 does not have to satisfy the zero-mass constraint

∫
� u0dx = 0, in which

case
∫
� u�x� t�dx jumps from a nonzero value to zero instantaneously for any t > 0.

See Ablowitz and Villaroel [1] for analysis of a similar problem in the context of the
Kadomtsev–Petviashvili equation.

4. Global Well-Posedness of the Short-Pulse Equation (1.1)

It follows from the method of Picard iterations that the existence time T > 0 in
Theorems 3 and 4 is inverse proportional to the norm �u0�Hs of the initial data.
To prove Theorem 1, we need to control the norm �u�T��H2 by a T -independent
constant. This constant will be found from the values of conserved quantities of
the short-pulse equation. Formal computations of an infinite hierarchy of conserved
quantities were reported by Brunelli [2]. Using Theorem 4, we shall make a rigorous
use of the conserved quantities.

Lemma 3. Let u�t� ∈ C1��0� T��H2� be a solution of the short-pulse equation (1.1).
The following integral quantities are constant on �0� T�:

H−1 =
∫
�
u2dx�

H0 =
∫
�

(√
1+ u2

x − 1
)
dx =

∫
�

u2
x

1+√
1+ u2

x

dx�

H1 =
∫
�

√
1+ u2

x

[
�x

(
ux√
1+ u2

x

)]2
dx =

∫
�

u2
xx

�1+ u2
x�

5/2
dx�

Proof. We shall write the balance equations for the densities of H−1, H0, and H1:

�t�u
2� = �x

(
v2 + 1

4
u4

)
�

�t

(√
1+ u2

x − 1
)
= 1

2
�x

(
u2
√
1+ u2

x

)
�

�t

(
u2
xx√

�1+ u2
x�

5

)
= �x

(
2u2

x√
1+ u2

x

− u2u2
xx

2
√
�1+ u2

x�
5

)
�
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624 Pelinovsky and Sakovich

where v = �−1
x u = ut − 1

2u
2ux thanks to the short-pulse equation (1.1). If u�t� ∈

C1��0� T��H2�, then v�t� ∈ C��0� T��H1�. By Sobolev’s embedding, we have
v�t�� u�t�� ux�t� ∈ L	 and v�t�� u�t�� ux�t� → 0 as �x� → 	 for any t ∈ �0� T�.
Integrating the first two balance equations on �, we confirm conservation of H−1

and H0. To prove conservation of H1, we need to show that uuxx → 0 as �x� → 	
for any t ∈ �0� T�. Using (1.1) and (1.5), we obtain

1
2
uuxx − u2

x =
uxt

u
− 1 = tan2�w� = q2

1− q2
�

where ux → 0 as �x� → 	 and q = q�y� t�. By Theorem 4, q�t� ∈ C1��0� T��H1� and
�q�t��L	 ≤ qc < 1 for any t ∈ �0� T�. Therefore,

�x

�y
= cos�w� =

√
1− q2 ≥

√
1− q2

c > 0�

for any t ∈ �0� T�, so that the limits y → ±	 correspond to the limits x → ±	.
Furthermore, since q → 0 as �y� → 	, we have uuxx → 0 as �x� → 	. �

We can now prove Theorem 1.

Proof of Theorem 1. The values of H−1, H0 and H1 computed at initial data u0 ∈ H2

are bounded by

H−1 =
∫
�
u2dx ≤ �u0�2H2�

H0 =
∫
�

u2
x

1+√
1+ u2

x

dx ≤ 1
2
�u0�2H2�

H1 =
∫
�

u2
xx

�1+ u2
x�

5/2
dx ≤ �u0�2H2 �

Note that if �u′
0�2L2 + �u′′

0�2L2 < 1, then 2H0 +H1 < 1. By Lemma 3, these quantities
remain constant on �0� T�. We will show that the quantities H0 and H1 give an upper
bound for H1 norm of the variable

q̃ = ux√
1+ u2

x

� (4.1)

Note that q̃�x� t� = q�y� t� = sin�w�y� t��, where x = x�y� t� is defined by the
transformation (1.5). To control �q̃�H1 , we obtain

∫
�
q̃2dx =

∫
�

u2
x

1+ u2
x

dx =
∫
�

u2
x

1+√
1+ u2

x

1+√
1+ u2

x

1+ u2
x

dx

≤ 2
∫
�

u2
x

1+√
1+ u2

x

dx = 2H0
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Sine–Gordon Equations 625

and ∫
�
q̃2
xdx =

∫
�

[
�x

(
ux√
1+ u2

x

)]2
dx

≤
∫
�

√
1+ u2

x

[
�x

(
ux√
1+ u2

x

)]2
dx = H1�

If u�t� ∈ C��0� T��H2�, then q�t� ∈ C��0� T��H1� and q̃�t� satisfies the T -independent
bound

�q̃�t��H1 ≤
√
H1 + 2H0 < 1� ∀t ∈ �0� T��

Thanks to Sobolev’s embedding �q̃�L	 ≤ 1√
2
�q̃�H1 , we have �q̃�t��L	 ≤ qc �=

1√
2

√
H1 + 2H0 < 1, ∀t ∈ �0� T�. Inverting the map (4.1), we obtain

ux =
q̃√

1− q̃2
�

Since H1 is a Banach algebra with C1 = 1 in the bound (2.11) (see, e.g., [11]), we
expand the map into Taylor series with positive coefficients to obtain

�ux�H1 ≤ �q̃�H1√
1− �q̃�2

H1

�

which results in the T -independent bound

�u�T��H2 ≤
(
H−1 +

H1 + 2H0

1− �H1 + 2H0�

)1/2

�

This bound allows us to choose a constant time step T0 such that the solution u�T0�
can be continued on the interval �T0� 2T0� in space C��T0� 2T0�� H

2� using the same
Theorems 3 and 4. Continuing the solution with a uniform time step T0 > 0, we
obtain global existence of solutions in space u�t� ∈ C��+� H2�, which completes the
proof of Theorem 1. �

The sufficient condition for global well-posedness of Theorem 1 can be
sharpened thanks to the scaling invariance of the short-pulse equation (1.1). Let � ∈
�+ be an arbitrary parameter. If u�x� t� is a solution of (1.1), then U�X� T� is also a
solution of (1.1) with

X = �x� T = �−1t� U�X� T� = �u�x� t�� (4.2)

The scaling invariance yields the following transformation for conserved quantities

H̃0 =
∫
�

(√
1+ U 2

X − 1
)
dX = �

∫
�

(√
1+ u2

x − 1
)
dx = �H0�

H̃1 =
∫
�

U 2
XX

�1+ U 2
X�

5/2
dX = �−1

∫
�

u2
xx

�1+ u2
x�

5/2
dx = �−1H1�
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626 Pelinovsky and Sakovich

Therefore, for a given u0 ∈ H2, we obtain a family of initial data U0 ∈ H2 satisfying

���� = 2H̃0 + H̃1 = 2�H0 + �−1H1�

Function ���� achieves its minimum of 2
√
2H0H1 at � =

√
H2
2H1

, so that

∀� ∈ �+ � ���� ≥ 2
√
2H0H1�

Using the scaling invariance property, we obtain the following corollary to
Theorem 1.

Corollary 2. Assume that u0 ∈ H2 and 2
√
2H0H1 < 1. Then the short-pulse equation

(1.1) admits a unique solution u�t� ∈ C��+� H2� satisfying u�0� = u0.

Proof. If u0 ∈ H2 satisfies 2
√
2H0H1 < 1, there exists � ∈ �+ such that

the corresponding U0 ∈ H2 satisfies 2H̃0 + H̃1 < 1. By Theorem 1, the
corresponding solution U�T� ∈ C��+� H2�, so that u�t� ∈ C��+� H2� by the scaling
transformation (4.2). �

5. Global Well-Posedness of the Sine–Gordon Equation (1.4)

The sine–Gordon equation (1.4) has an infinite set of conserved quantities similarly
to the short-pulse equation (1.1). These conserved quantities can be enumerated by
the order j ≥ 0 in the term ��jyw�

2 involving the highest spatial derivative. We will
use only the first two conserved quantities,

E0 =
∫
�
�1− cos�w��dy� E1 =

∫
�
w2

ydy�

the existence of which follows formally from the balance equations

�t �1− cos�w�� = �y

(
1
2
w2

t

)
� �t

(
1
2
w2

y

)
= �y�1− cos�w���

Additionally, the sine–Gordon equation (1.4) has another infinite set of conserved
quantities involving trigonometric functions of w and their integrals enumerated by
j ≤ 0 in the term ��jyw�

2. Besides E0, we need only one conserved quantity of this
set,

E−1 =
∫
�
cos�w�w2

t dy�

existence of which follows formally from the balance equation

�t
(
cos�w�w2

t

) = �y

(
w2

tt −
1
4
w4

t

)
�
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Sine–Gordon Equations 627

Using the transformation q = sin�w�, we rewrite the conserved quantities in the
equivalent form

E−1 =
∫
�

√
1− q2p2dy� E0 =

∫
�
f�q�dy� E1 =

∫
�

q2
y

1− q2
dy� (5.1)

where p = �−1
y q and f�q� is defined by (2.3). The balance equations are rewritten in

the corresponding forms

�tf�q� = �y

(
1
2
p2

)
� �t

(
q2
y

1− q2

)
= �yf�q�

and

�t

(√
1− q2p2

)
= �y

(
p2
t −

1
4
p4

)
�

We shall check if E1, E0, and E−1 are time conserved quantities for the Cauchy
problem (2.4). Global well-posedness in H2 follows from analysis of the three
conserved quantities.

Lemma 4. Let p�t� ∈ C1��0� T��H2� be the solution of the Cauchy problem (2.4) and
q�t� = �yp�t�. Then, E1, E0, and E−1 are constant on �0� T�.

Proof. By Sobolev’s embedding for p�t� ∈ C1��0� T��H2�, we have q�t�, p�t�,
pt�t� → 0 as �y� → 	. Therefore, conservation of E1, E0, and E−1 follows by
integrating the balance equations on y ∈ � for the local solutions. �

Theorem 5. Assume that q0 ∈ X1
c and 2E0 + E1 < 1. Then there exist a unique global

solution q�t� ∈ C��+� X1
c � of the Cauchy problem (2.4) satisfying q�0� = q0.

Proof. The values of E−1� E0� E1 computed at initial data q0 ∈ X1
c are bounded by

E−1 ≤ �p0�2L2� �E0� ≤ �q0�2L2� E1 ≤
1

1− �q0�2L	
�q′

0�2L2�

where the constraint �q0�L	 ≤ qc < 1 is used. By Lemma 4, if q�t� ∈ C1��0� T�� X1
c �

is a solution constructed in Theorems 2 and 4 for a fixed T > 0, the values of
quantities E−1� E0� E1 are constant on �0� T�. Therefore, we only need to bound the
norm �q�t��X1 = �q�t��H1 + �p�t��L2 by a combination of E−1� E0� E1. This bound is
obtained from the following estimates

E−1 ≥ �p�t��2L2

√
1− �q�t��2L	� E0 ≥

1
2
�q�t��2L2� E1 ≥ ��yq�t��2L2� ∀t ∈ �0� T��

By Sobolev’s embedding and the bounds above, we have

�q�t��L	 ≤ 1√
2
�q�t��H1 ≤ qc �=

1√
2

√
E1 + 2E0 < 1�
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628 Pelinovsky and Sakovich

since E1 + 2E0 < 1 thanks to the assumption of the theorem. As a result, we obtain
the bound

�q�t��X1 ≤
√
E1 + 2E0 +

√
E−1√
1− q2

c

� ∀t ∈ �0� T��

The time step T > 0 depends on �q0�X1 . Since the above norm is bounded by the
T -independent constant on �0� T�, one can choose a non-zero time step T0 > 0 such
that the solution q�t� can be continued on the interval �T0� 2T0� using the same
Theorems 2 and 4. Continuing the solution with a uniform time step T0, we obtain
global existence of solutions q�t� ∈ C��+� X1

c �. �

Remark 4. Theorem 5 is very similar to Theorem 1 thanks to correspondence
between the two equations in Lemma 2. In particular, it follows directly that H1 =
E1, H0 = E0 and H−1 = E−1.
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