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Wave breaking in the short-pulse equation
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Abstract. Sufficient conditions for wave breaking are found for the short-

pulse equation describing wave packets of few cycles on the ultra-short pulse

scale. The analysis relies on the method of characteristics and conserved quan-

tities of the short-pulse equation and holds both on an infinite line and in a

periodic domain. Numerical illustrations of the finite-time wave breaking are

given in a periodic domain.
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1. Introduction

The short-pulse equation,

(1.1) utx = u+
1

6
(u3)xx, t > 0, x ∈ R,

is a useful and simple approximation of nonlinear wave packets in dispersive media
in the limit of few cycles on the ultra-short pulse scale [1, 11]. This equation is a
dispersive generalization of the following advection equation

(1.2) ut =
1

2
u2ux, t > 0, x ∈ R.

According to the method of characteristics, the advection equation (1.2) ex-
hibits wave breaking in a finite time for any initial data u(x, 0) = u0(x) on an
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infinite line if u0(x) is continuously differentiable and there is a point x0 ∈ R such
that u0(x0)u

′
0(x0) > 0. This follows from the implicit solution

u(ξ, t) = u0(ξ), x(ξ, t) = ξ − 1

2
u2

0(ξ)t, t > 0, ξ ∈ R,

for any given u0(x) ∈ C1(R). We say that the finite-time wave breaking occurs if
there exists a finite time T ∈ (0,∞) such that

(1.3) lim
t↑T

sup
x∈R

u(x, t)ux(x, t) = ∞, while lim
t↑T

sup
x∈R

|u(x, t)| <∞.

For the simple advection equation (1.2),

T = inf
ξ∈R

{

1

u0(ξ)u′0(ξ)
: u0(ξ)u

′
0(ξ) > 0

}

.

In view of this result, we address the question if the dispersion term ∂−1
x u in the

short-pulse equation (1.1) can stabilize global dynamics of the advection equation
(1.2) at least for small initial data. Local well-posedness of the short-pulse equation
on an infinite line was proven in [11].

Theorem 1 (Schäfer & Wayne, 2004). Let u0 ∈ H2(R). There exists a T > 0
such that the short-pulse equation (1.1) admits a unique solution

u(t) ∈ C([0, T ), H2(R)) ∩ C1([0, T ), H1(R))

satisfying u(0) = u0. Furthermore, the solution u(t) depends continuously on u0.

To extend local solutions into a global solution, Pelinovsky & Sakovich [9] used
the following conserved quantities of the short-pulse equation:

E0 :=

∫

R

u2dx,(1.4)

E1 :=

∫

R

(

√

1 + u2
x − 1

)

dx =

∫

R

u2
x

1 +
√

1 + u2
x

dx,(1.5)

E2 :=

∫

R

√

1 + u2
x

[

∂x

(

ux
√

1 + u2
x

)]2

dx =

∫

R

u2
xx

(1 + u2
x)5/2

dx.(1.6)

If u(t) is a local solution in Theorem 1, then E0, E1, and E2 are bounded and
constant in time for all t ∈ [0, T ). Global well-posedness of the short-pulse equation
on an infinite line was proven in [9] for small initial data in H2 satisfying

(1.7) 2E1 + E2 ≤ ‖u′0‖2
L2 + ‖u′′0‖2

L2 < 1.

The condition (1.7) can be sharpen using the scaling transformation for the short-
pulse equation (1.1). Let α ∈ R+ be an arbitrary parameter. If u(x, t) is a solution
of (1.1), then ũ(x̃, t̃) is also a solution of (1.1) with

(1.8) x̃ = αx, t̃ = α−1t, ũ(x̃, t̃) = αu(x, t).

The conserved quantities transform as follows:

Ẽ1 =

∫

R

(

√

1 + ũ2
x̃ − 1

)

dx̃ = α

∫

R

(

√

1 + u2
x − 1

)

dx = αE1,

Ẽ2 =

∫

R

ũ2
x̃x̃

(1 + ũ2
x̃)5/2

dx̃ = α−1

∫

R

u2
xx

(1 + u2
x)5/2

dx = α−1E2.
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Finding the minimum of 2Ẽ1 + Ẽ2 = 2αE1 + α−1E2 in α gives a sharper sufficient
condition on global well-posedness [9].

Theorem 2 (Pelinovsky & Sakovich, 2008). Let u0 ∈ H2(R) and 2
√

2E1E2 <
1. Then the short-pulse equation (1.1) admits a unique global solution u(t) ∈
C(R+, H

2(R)) satisfying u(0) = u0.

Theorem 2 does not exclude wave breaking in a finite time for large initial
data and this paper gives a proof that the wave breaking may occur in the short-
pulse equation (1.1). Negating the sufficient condition for global well-posedness in
Theorem 2, a necessary condition for the wave breaking follows: the wave breaking
may occur in the short-pulse equation (1.1) with the initial data u0 ∈ H2 only if
2
√

2E1E2 ≥ 1. We shall find a sufficient condition for the wave breaking in the
short-pulse equation (1.1).

Unlike the previous work in [9], we will not be using conserved quantity E2 but
will rely on the conservation of E0, E1, and the energy

E−1 :=

∫

R

[

(

∂−1
x u

)2 − 1

12
u4

]

dx.(1.9)

Here ∂−1
x u is defined from a local solution u by

∂−1
x u :=

∫ x

−∞
u(x′, t)dx′ = −

∫ ∞

x

u(x′, t)dx′ =
1

2

(
∫ x

−∞
−
∫ ∞

x

)

u(x′, t)dx′,

thanks to the zero-mass constraint
∫

R
u(x, t)dx = 0 for all t ∈ (0, T ). (Note that

the initial data u0 does not have generally to satisfy the zero-mass constraint
∫

R
u0(x)dx = 0.)
Thanks to the Sobolev inequality, ‖u‖L4 ≤ C‖u‖H1 for some C > 0, the quan-

tity E−1 is bounded if u ∈ H2(R) ∩ Ḣ−1(R), where Ḣ−1 is defined by its norm

‖u‖Ḣ−1 := ‖∂−1
x u‖L2.

(Note that if u ∈ H2(R) ∩ Ḣ−1(R), then
∫

R
u(x)dx = 0 is satisfied.) Our main

result on the wave breaking on an infinite line is formulated as follows.

Theorem 3. Let u0 ∈ H2(R) ∩ Ḣ−1(R) and T be the maximal existence time
of Theorem 1. Let

F1 :=
1√
2

(

E2
1 +

(

8E0E1 + E4
1

)1/2
)1/2

,

F0 :=
1√
2

(

E0 + E−1 +
1

12
E0F

2
1

)1/2

,

and assume that there exists x0 ∈ R such that u0(x0)u
′
0(x0) > 0 and

either |u′0(x0)| >
(

F 2
1

4F0

)1/3

,

|u0(x0)||u′0(x0)|2 > F1 +

(

2F0|u′0(x0)|3 −
1

2
F 2

1

)1/2

,

or |u′0(x0)| ≤
(

F 2
1

4F0

)1/3

, |u0(x0)||u′0(x0)|2 > F1.
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Then T < ∞, so that the solution u(t) ∈ C([0, T ), H2(R) ∩ Ḣ−1(R)) of the short-
pulse equation (1.1) blows up in the sense of

lim
t↑T

sup
x∈R

u(x, t)ux(x, t) = ∞, while lim
t↑T

‖u(·, t)‖L∞ ≤ F1.

Remark 1. The quantities F0 and F1 in Theorem 3 can be defined by

F1 := sup
t∈[0,T )

‖u(·, t)‖L∞ , F0 := sup
t∈[0,T )

‖∂−1
x u(·, t)‖L∞.

Note that the scaling transformation (1.8) gives

‖ũ(·, t̃)‖L∞ = α‖u(·, t)‖L∞ , ‖∂−1
x̃ ũ(·, t̃)‖L∞ = α2‖∂−1

x u(·, t)‖L∞ ,

so that the sufficient condition of Theorem 3 with new definitions of F1 and F0 is
invariant in α. We note, however, that, while the bound on F1 in Theorem 3 scales
correctly as F̃1 = αF1, the bound on F0 is not correctly scaled in α because

Ẽ0 = α3E0, Ẽ−1 = α5E−1.

This is an artefact of using Sobolev embedding in Lemma 3 below.

To prove Theorem 3, we shall adopt the method of characteristics and proceed
with apriori differential estimates. Our results remain valid in a periodic domain,
where Theorem 3 is replaced by Theorem 4 below. The technique of characteristics
and apriori differential estimates has been applied for wave breaking in other non-
linear wave equations, see [2, 3, 4, 5, 6, 7, 12] for an incomplete list of references.

We emphasize that, unlike the previous work in [9], we avoid using a trans-
formation between the short-pulse equation (1.1) and the integrable sine–Gordon
equation in characteristic coordinates. Our proof of the wave breaking for the short-
pulse equation (1.1) does not suggest that there exists a similar wave breaking for
the sine–Gordon equation, it is rather the breaking of the coordinate transforma-
tion between the two equations. On a similar note, we do not use the integrability
properties of the short-pulse equation (1.1) such as the Lax pair, the inverse scatter-
ing transform method, the bi-Hamiltonian formulation, and the existence of exact
soliton solutions.

The article is constructed as follows. The proof of Theorem 3 is given in Section
2. Section 3 reports extension of Theorem 3 to a periodic domain. Section 4 contains
numerical evidences of the finite-time wave breaking in a periodic domain.

Acknowledgement. The work of Y. Liu is partially supported by the NSF
grant DMS-0906099. The work of D. Pelinovsky is supported by the NSERC grant
RGPIN238931-06. The work of A. Sakovich is supported by the McMaster graduate
scholarship.

2. Wave breaking on an infinite line

Let us rewrite the Cauchy problem for the short-pulse equation on an infinite
line in the form

(2.1)

{

ut = 1
2u

2ux + ∂−1
x u, x ∈ R, t > 0

u(x, 0) = u0(x), x ∈ R,

where ∂−1
x u :=

∫ x

−∞ u(x′, t)dx′. In what follows, we use both notations u(t) and

u(x, t) for the same solution of the Cauchy problem (2.1). Local existence of solu-
tions with the conservation of E−1 and E0 is described by the following result.
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Lemma 1. Let u0 ∈ Hs(R) ∩ Ḣ−1(R), s ≥ 2. There exist a maximal time
T = T (u0) > 0 and a unique solution u(x, t) to the Cauchy problem (2.1) such that

u(t) ∈ C([0, T ), Hs(R) ∩ Ḣ−1(R)) ∩ C1([0, T ), Hs−1(R))

satisfying u(0) = u0. Moreover, the solution u(t) depends continuously on the initial
data u0 and the values of E−1, E0, and E1 in (1.4), (1.5), and (1.9) are constant
on [0, T ).

Proof. If u0 ∈ Hs(R) ∩ Ḣ−1(R), s ≥ 2, then ∂−1
x u0 ∈ Hs+1(R), so that

∫

R
u0(x)dx = 0. By the theorem of Schäfer & Wayne [11], there exists a solution

u(t) ∈ C([0, T ), Hs(R)) ∩ C1([0, T ), Hs−1(R))

of the short-pulse equation (1.1), so that

∂−1
x u(t) := ut −

1

2
u2ux ∈ C((0, T ), Hs−1(R)).

Therefore, u(t) ∈ C([0, T ), Hs(R) ∩ Ḣ−1(R)) in view of boundness of ‖u0‖Ḣ−1 .
Because f ∈ Hs(R), s ≥ 1 implies lim|x|→∞ f(x) = 0, the zero-mass constraint
holds in the form

(2.2)

∫

R

u(x, t)dx = 0, t ∈ [0, T ).

Let us define

∂−2
x u(t) :=

(

∂−1
x u

)

t
− 1

6
u3.

By the zero-mass constraint (2.2) and uniqueness of the solution u(t) for any t ∈
[0, T ), we obtain

lim
|x|→∞

∂−2
x u(x, t) = 0, t ∈ [0, T ).

Using balance equations for the densities of E−1, E0, and E1, we write
[

(∂−1
x u)2 − 1

12
u4

]

t

=

[

(∂−2
x u)2 − 1

36
u6

]

x

,

(

u2
)

t
=

(

(∂−1
x u)2 +

1

4
u4

)

x

,

(

√

1 + u2
x − 1

)

t
=

1

2

(

u2
√

1 + u2
x

)

x
.

Integrating the balance equation in x ∈ R for any t ∈ [0, T ), we complete the proof
that E−1, E0, and E1 are bounded and constant on [0, T ). �

Remark 2. The maximal existence time T > 0 in Lemma 1 is independent of
s ≥ 2 in the following sense. If u0 ∈ Hs(R) ∩Hs′

(R) ∩ Ḣ−1(R) for s, s′ ≥ 2 and
s 6= s′, then

u(t) ∈ C([0, T ), Hs(R) ∩ Ḣ−1(R)) ∩ C1([0, T ), Hs−1(R))

and

u(t) ∈ C([0, T ′), Hs′

(R) ∩ Ḣ−1(R)) ∩ C1([0, T ′), Hs′−1(R))

with the same T ′ = T . See Yin [12] for standard arguments.

By using the local well-posedness result in Lemma 1 and energy estimates, we
obtain a precise blow-up scenario of the solutions to the Cauchy problem (2.1).
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Lemma 2. Let u0 ∈ H2(R) ∩ Ḣ−1(R) and u(t) be a solution of the Cauchy
problem (2.1) in Lemma 1. The solution blows up in a finite time T ∈ (0,∞) in
the sense of limt↑T ‖u(·, t)‖H2 = ∞ if and only if

lim
t↑T

sup
x∈R

u(x, t)ux(x, t) = +∞.

Proof. We only need to prove the necessary condition, since the singularity
in u(x, t)ux(x, t) as t ↑ T implies the singularity in ‖u(·, t)‖H2 as t ↑ T . Assume a
finite maximal existence time T ∈ (0,∞) and suppose, by the contradiction, that
there is M > 0 such that

(2.3) sup
x∈R

u(x, t)ux(x, t) ≤M <∞, ∀t ∈ [0, T ).

Applying density arguments, we approximate the initial value u0 ∈ H2(R) by func-
tions un

0 ∈ H3(R), n ≥ 1, so that limn→∞ un
0 = u0. Furthermore, write un(t) for

the solution of the Cauchy problem (2.1) with initial data un
0 . Using the regularity

result proved in Lemma 1 for s = 3, it follows from Sobolev’s embedding that, if
un(t) ∈ C([0, T ), H3(R) ∩ Ḣ−1(R)), then un(x, t) is a twice continuously differen-
tiable function of x on R for any t ∈ [0, T ). It is then deduced from the short-pulse
equation (1.1) that

d

dt

∫

R

(un
x)2dx =

∫

R

un(un
x)3dx ≤M

∫

R

(un
x)2dx

and
d

dt

∫

R

(un
xx)2dx = 5

∫

R

unun
x(un

xx)2dx ≤ 5M

∫

R

(un
xx)2dx.

The Gronwall inequality yields for all t ∈ [0, T ),

‖un
x(·, t)‖L2 ≤ ‖(un

0 )′‖L2e
M
2

t, ‖un
xx(·, t)‖L2 ≤ ‖(un

0 )′′‖L2e
5
2
Mt.

Since ‖un
0‖H2 converges to ‖u0‖H2 as n→ ∞, we infer from the continuous depen-

dence of the local solution u(t) on initial data u0 that ‖u(·, t)‖H2 remains bounded
on [0, T ) for the solution u(t) in Lemma 1. Therefore, the contradiction is obtained
and either T is not a maximal existence time or the bound (2.3) is not valid on
[0, T ). �

We also show that the blow-up of Lemma 2 is the wave breaking in the sense of
condition (1.3). In other words, both ‖u(·, t)‖L∞ and ‖∂−1

x u(·, t)‖L∞ are uniformly
bounded for all t ∈ [0, T ).

Lemma 3. Let u0 ∈ H2(R)∩ Ḣ−1(R) and T > 0 be the maximal existence time
of the solution u(x, t) in Lemma 1. Then,

(2.4) ‖u(·, t)‖L∞ ≤ F1, ‖∂−1
x u(·, t)‖L∞ ≤ F0, t ∈ [0, T ),

where

F1 :=
1√
2

(

E2
1 +

(

8E0E1 + E4
1

)1/2
)1/2

,(2.5)

F0 :=
1√
2

(

E0 + E−1 +
1

12
E0F

2
1

)1/2

.(2.6)
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Proof. For all t ∈ [0, T ) and the solution u(x, t), we have

u2(x, t) =

∣

∣

∣

∣

∫ x

−∞
uuxdx−

∫ ∞

x

uuxdx

∣

∣

∣

∣

≤
∫

R

|u||ux|
√

1 +
√

1 + u2
x

√

1 +
√

1 + u2
xdx

≤ E
1/2
1

(
∫

R

u2(2 +
√

1 + u2
x − 1)dx

)1/2

≤ E
1/2
1

(

2E0 + E1‖u(·, t)‖2
L∞

)1/2
.

As a result, we obtain

‖u(·, t)‖4
L∞ ≤ 2E0E1 + E2

1‖u(·, t)‖2
L∞ ,

so that bound (2.5) is found from the quadratic equation on ‖u(·, t)‖2
L∞. On the

other hand, we have

‖∂−1
x u(·, t)‖2

H1 = ‖u(·, t)‖2
L2 + ‖∂−1

x u(·, t)‖2
L2

= E0 + E−1 +
1

12
‖u(·, t)‖4

L4

≤ E0 + E−1 +
1

12
E0‖u(·, t)‖2

L∞.

Using the Sobolev inequality ‖∂−1
x u‖L∞ ≤ 1√

2
‖∂−1

x u‖H1 and bound (2.5), we obtain

bound (2.6). �

Let us introduce a continuous family of characteristics for solutions of the
Cauchy problem (2.1). Let ξ ∈ R, t ∈ [0, T ), where T is the maximal existence
time in Lemma 1, and denote

(2.7) x = X(ξ, t), u(x, t) = U(ξ, t), ∂−1
x u(x, t) = G(ξ, t),

so that

(2.8)

{

Ẋ(t) = − 1
2U

2,
X(0) = ξ,

{

U̇(t) = G,
U(0) = u0(ξ),

where dots denote derivatives with respect to time t on a particular characteristics
x = X(ξ, t) for a fixed ξ ∈ R. Applying classical results in the theory of ordinary
differential equations, we obtain the following useful result about the solutions of
the initial-value problem (2.8). Conserved quantities E−1 and E0 of the Cauchy
problem (2.1) are used to control values of U and G on the family of characteristics.

Lemma 4. Let u0 ∈ H2(R) ∩ Ḣ−1(R) and T > 0 be the maximal existence
time of the solution u(t) in Lemma 1. Then there exists a unique solution X(ξ, t) ∈
C1(R×[0, T )) to the initial-value problem (2.8). Moreover, the map X(·, t) : R 7→ R

is an increasing diffeomorphism for any t ∈ [0, T ) with

∂ξX(ξ, t) = exp

(

−
∫ t

0

u(X(ξ, s), s)ux(X(ξ, s), s)ds

)

> 0, t ∈ [0, T ), ξ ∈ R.
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Proof. Existence and uniqueness of X(ξ, t) ∈ C1(R, [0, T )) follows from the
integral equation

X(ξ, t) = ξ − 1

2

∫ t

0

U2(ξ, s)ds, t ∈ [0, T ), ξ ∈ R,

since U(ξ, t) ∈ C(R, [0, T )) for the solution u(t) in Lemma 1. Using the chain rule,
we obtain

∂ξẊ(ξ, t) = −W (ξ, t)∂ξX(ξ, t) ⇒ ∂ξX(ξ, t) = exp

(

−
∫ t

0

W (ξ, s)ds

)

,

where W (ξ, t) = u(X(ξ, t), t)ux(X(ξ, t), t) ∈ C(R, [0, T )). Therefore, ∂ξX(ξ, t) > 0
for all t ∈ [0, T ) and ξ ∈ R. �

Let

V (ξ, t) = ux(X(ξ, t), t), W (ξ, t) = u(X(ξ, t), t)ux(X(ξ, t), t) ≡ U(ξ, t)V (ξ, t)

and compute their rate of changes along the family of characteristics
{

V̇ = VW + U,

Ẇ = W 2 + V G+ U2.
(2.9)

Let F0, F1 > 0 be fixed in terms of conserved quantities E−1, E0, and E1 as in
Lemma 3 and assume that there exists ξ0 ∈ R such that W (ξ0, 0) > 0 and

either |V (ξ0, 0)| >
(

F 2
1

4F0

)1/3

,

|V (ξ0, 0)|W (ξ0, 0) > F1 +

(

2F0|V (ξ0, 0)|3 − 1

2
F 2

1

)1/2

,

or |V (ξ0, 0)| ≤
(

F 2
1

4F0

)1/3

, |V (ξ0, 0)|W (ξ0, 0) > F1.

Because of the invariance of system (2.9) with respect to

G→ −G, U → −U, V → −V, W →W,

it is sufficient to consider the case with V (ξ0, 0) > 0. We will prove that, under
the conditions above, V (ξ0, t) and W (ξ0, t) remain positive and monotonically in-
creasing functions for all t > 0, for which they are bounded, so that V (ξ0, t) and
W (ξ0, t) satisfy the apriori differential estimates

{

V̇ ≥ VW − F1,

Ẇ ≥ W 2 − V F0.
(2.10)

In what follows, we use V (t) and W (t) instead of V (ξ0, t) and W (ξ0, t) for a par-
ticular ξ0 ∈ R. The following lemma establishes sufficient conditions on the initial
point (V (0),W (0)) that ensure that a lower solution satisfying

{

V̇ = VW − F1,

Ẇ = W 2 − V F0,
(2.11)

goes to infinity in a finite time.
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Lemma 5. Assume that the initial data for system (2.11) satisfy

either V (0) >

(

F 2
1

4F0

)1/3

,

V (0)W (0) > F1 +

(

2F0V
3(0) − 1

2
F 2

1

)1/2

,(2.12)

or 0 < V (0) ≤
(

F 2
1

4F0

)1/3

, V (0)W (0) > F1.(2.13)

Then the trajectory of system (2.11) blows up in a finite time t∗ ∈ (0,∞) such that
V (t) and W (t) are positive and monotonically increasing for all t ∈ [0, t∗) and there
is C > 0 such that

(2.14) lim
t↑t∗

V (t) = ∞, lim
t↑t∗

W (t) = ∞, and lim
t↑t∗

(t∗ − t)V (t) = C.

Moreover, t∗ is bounded by

(2.15) t∗ ≤ V (0)

min

{

V̇ (0),
(

V̇ 2(0) − 2F0V 3(0) + 1
2F

2
1

)1/2
} .

Proof. Let us first consider the homogeneous version of system (2.11) for
F1 = 0, that is

(2.16)

{

V̇ = VW,

Ẇ = W 2 − V F0.

Of course, F1 is never zero, otherwise E1 = 0. This case is used merely for illus-
tration, since explicit solutions can be obtained for F1 = 0, whereas qualitative
analysis has to be developed for F1 6= 0. System (2.16) is integrable since

W =
V̇

V
⇒ d

dt

(

V̇

V 2

)

= −F0 ⇒ V̇ = V 2(C − F0t),

where C = W (0)/V (0). Integrating the last equation for V (t), we obtain the
explicit solution of the truncated system,

V (t) =
V (0)

1 − CV (0)t+ 1
2F0V (0)t2

, W (t) = (C − F0t)V (t).

The solution reaches infinity in a finite time t∗ ∈ (0,∞) if V (0) > 0 and C2V (0) >
2F0. Note that these conditions coincide with condition (2.12) for F1 = 0. Also
note that t∗ is the first positive root of 1 − CV (0)t + 1

2F0V (0)t2 = 0 so that
U(t∗) = C − F0t∗ > 0 and

t∗ =
W (0) −

√

W 2(0) − 2F0V (0)

F0V (0)
=

2V (0)

V̇ (0) +
√

V̇ 2(0) − 2F0V 3(0)
≤ V (0)
√

V̇ 2(0) − 2F0V 3(0)
.

Consider now the full system (2.11). Let

V =
1

x
, W =

y

x
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and rewrite the system in the form

(2.17)

{

ẋ = F1x
2 − y,

ẏ = F1xy − F0.

Expressing y from the system, we can rewrite it in the scalar form

(2.18) y = F1x
2 − ẋ ⇒ ẍ = f(x) + 3F1xẋ,

where f(x) = F0−F 2
1 x

3. The only critical point of equation (2.18) is (x, ẋ) = (x0, 0)
where x0 = (F0/F

2
1 )1/3 is the root of f(x).

We need to show that there is a domain D ⊂ R
2 in the phase plane (x, ẋ), so

that all initial data in D generate trajectories in D that cross the vertical line x = 0
in a finite time. To do so, we construct a Lyapunov function for equation (2.18) in
the form

E(x, ẋ) =
1

2
ẋ2 − F0x+

1

4
F 2

1 x
4.

The function E(x, ẋ) has a global minimum at (x0, 0). For any solution x(t), we
have

d

dt
E(x, ẋ) = 3F1xẋ

2 > 0 for x > 0.

The zero level of the Lyapunov function E(x, ẋ) = 0 passes through the points (0, 0)
and (x∗, 0), where x∗ = 41/3x0 > x0 (see Figure 1). It is clear that E(x, ẋ) > 0 in
the domain

D = {(x, ẋ) : x > 0, ẋ < σ(x)} ,
where

σ(x) =

{

−
(

2F0x− 1
2F

2
1 x

4
)1/2

, x ∈ (0, x∗),
0, x ∈ [x∗,∞).

We note that the condition (x, ẋ) ∈ D is equivalent to the condition
{

0 < x < x∗, y > F1x
2 +

(

2F0x− 1
2F

2
1 x

4
)1/2

,
x > x∗, y > F1x

2,

which is nothing but the set of conditions (2.12) and (2.13) at t = 0. By continuity,
if (x, ẋ) ∈ D at t = 0, then (x, ẋ) remains in D for some time t > 0.

No critical points of system (2.18) are located in D and x(t) is decreasing
function for any t > 0 as long as the trajectory stays in D. Recall that E(x, ẋ) > 0
and d

dtE(x, ẋ) > 0 for any (x, ẋ) ∈ D. A trajectory in D can not cross ẋ = σ(x)
because E(x, σ(x)) = 0 for x ∈ (0, x∗) and ẍ = f(x) + 3F1xẋ < 0 for x > x∗ and
ẋ < 0. Therefore, the trajectory either reaches x = 0 in a finite time t∗ ∈ (0,∞) or
escapes to ẋ = −∞ for x > 0. To eliminate the last possibility, we note that

d

dt

(

ẋ− 3F1

2
x2

)

= f(x),

so that

ẋ(t) ≥ ẋ(0) − 3F1

2
x2(0) + tf(x(0)) > −∞

for any finite time interval. Moreover, ẋ is bounded from zero in D by the level
curve E(x, ẋ) = E(x(0), ẋ(0)), which is a convex curve in D. Therefore,

ẋ(t) ≤ max{ẋ(0), ρ}, t > 0, as long as x > 0,
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x
ẋ

σ(x)

D

0 x0 x∗

E(x, ẋ) = 0

Figure 1. Domain D in the phase plane (x, ẋ) of equation (2.18).

where ρ < 0 is uniquely found from E(0, ρ) = E(x(0), ẋ(0)), that is from the point
of intersection of the level curve of E(x, ẋ) = E(x(0), ẋ(0)) with the negative ẋ-axis.
Therefore,

x(t) ≤ x(0) + tmax{ẋ(0), ρ},
so that x(t) reaches x = 0 in a finite time t∗ ∈ (0,∞) for any trajectory in D.
Moreover, finding ρ explicitly gives the bound on the blow-up time











0 < x < x∗, t∗ ≤ x(0)

(ẋ2(0)−2F0x(0)+ 1
2

F 2
1

x4(0))1/2 ,

x > x∗, t∗ ≤ x(0)
|ẋ(0)| ,

which becomes bound (2.15) after the return back to variable V (t).
Since V = x−1, W = yx−1, and y = F1x

2 − ẋ > 0, we have limt↑t∗ V (t) = ∞
and limt↑t∗ W (t) = ∞ for any trajectories in D. Since ẋ < 0 for the trajectory in
D, we also have x(t) ∼ (t∗ − t) as t → t∗ so that there exists C > 0 such that
limt↑t∗(t∗ − t)V (t) = C. It remains to show that V (t) and W (t) are monotonically
increasing functions on [0, t∗). To do so, we write

V̇ = VW − F1 = − ẋ

x2
,

Ẇ = W 2 − F0V =
g(x, ẋ)

x2
,

where
g(x, ẋ) = ẋ2 − 2F1x

2ẋ− xf(x).

For any trajectory in D, ẋ(t) < 0 so that V̇ (t) > 0. Furthermore, since g(x, ẋ) is
zero at a curve outside the domain D, because

g(x, σ(x)) = F0x+
1

2
F 2

1 x
4 + 2F1x

2|σ(x)| > 0, x ∈ (0, x∗],

then Ẇ (t) > 0 for any trajectory in D. �

Recalling that W = UV in system (2.9) and using the bound (2.4), we obtain
the upper bound for any solution at the family of characteristics

(2.19) V̇ = UV 2 + U ≤ F1V
2 + F1.

We can now show that any upper solution with V (0) > 0 goes to infinity in a finite
time.
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Lemma 6. Consider

(2.20) V̇ (t) = F1V
2 + F1

with V (0) > 0. There exists t∗ ∈ (0,∞) such that V (t) is positive, monotonically
increasing for all t ∈ [0, t∗) and there exists C > 0 such that

lim
t↑t∗

(t∗ − t)V (t) = C.

Moreover, t∗ ≤ 1/W (0).

Proof. Since V̇ > 0 for any V ∈ R, V (t) is monotonically increasing function.
To show that V (t) reaches ∞ in a finite time, one can integrate the separable
equation (2.20) explicitly and obtain

V (t) = tan(arctanV (0) + F1t),

so that

t∗ =
π/2 − arctanV (0)

F1
≤ 1

F1V (0)
≤ 1

W (0)
,

since supx∈R+
x cot−1(x) ≤ 1. �

Applying results of Lemmas 5 and 6, we conclude the proof of Theorem 3.
Proof of Theorem 3. Let (V,W ) satisfy system (2.9) corresponding to the charac-
teristics with ξ0. Let (V ,W ) be the lower solution of system (2.11) in Lemma 5
with V (0) = V (0) and W (0) = W (0). Let V be the upper solution of equation
(2.20) in Lemma 6 with V (0) = V (0). Let t∗ be the blow-up time of the lower
solution and t∗ be the blow-up time of the upper solution.

The upper bound for the solution of system (2.9) follows from the comparison
principle for the differential equations since

|VW + U | = (V 2 + 1)|U | ≤ (V 2 + 1)F1

which implies that V (t) ≤ V (t) for all t ∈ [0, t∗), for which V (t) remains bounded.
To obtain the lower bound, we note that

V ≥ V , W ≥W ⇒
{

V̇ ≥ VW − F1 ≥ VW − F1 = V̇ ,

Ẇ + F0V ≥W 2 ≥W 2 = Ẇ + F0V .

Let V = [V,W ]T , V = [V ,W ]T , and

L =

[

0 0
F0 0

]

be a nilpotent matrix of order one, so that etL = I + tL. Thus, we write

V ≥ V , W ≥W ⇒ d

dt

(

etLV
)

≥ d

dt

(

etLV
)

.

Integrating this equation in t > 0, we infer that

etLV(t) ≥ etLV(t),

and since etL is invertible for any t ∈ R, we conclude that

V (t) ≥ V (t), W (t) ≥W (t),

for all t ∈ [0, T ) ⊂ [0, t∗), for which (V,W ) remain finite. Therefore, (V,W ) become
infinite as t ↑ T and T ∈ [t∗, t∗]. �
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Remark 3. The bounds on t∗ and t∗ in Lemmas 5 and 6 are inconclusive to
compare T with the exact time of blow-up T0 := 1

W (0) along a particular character-

istic of the dispersionless advection equation (1.2).

3. Wave breaking in a periodic domain

Consider now the Cauchy problem for the short-pulse equation (1.1) in a peri-
odic domain

(3.1)

{

ut = 1
2u

2ux + ∂−1
x u, x ∈ S, t > 0,

u(x, 0) = u0(x), x ∈ S,

where S is a unit circle equipped with periodic boundary conditions and ∂−1
x is the

mean-zero anti-derivative in the form

∂−1
x u :=

∫ x

0

u(x′, t)dx′ −
∫

S

∫ x

0

u(x′, t)dx′dx.

Local well-posedness and useful conserved quantities for the Cauchy problem
(3.1) in a periodic domain are obtained in the following lemma.

Lemma 7. Assume that u0 ∈ Hs(S), s ≥ 2 and
∫

S
u0(x) dx = 0. Then there

exist a maximal time T > 0 such that the Cauchy problem (3.1) admits a unique
solution

u(t) ∈ C([0, T ), Hs(S)) ∩ C1([0, T ), Hs−1(S))

satisfying u(x, 0) = u0(x) and
∫

S
u(x, t)dx = 0 for all t ∈ [0, T ). Moreover, the

solution u(t) depends continuously on the initial data u0 and the quantities

E0 =

∫

S

u2dx, E1 =

∫

S

√

1 + u2
xdx

are constant for all t ∈ [0, T ).

Proof. Existence of the solution u(x, t) and continuous dependence on u0 is
proved on S similarly to what is done in Lemma 1 on R. To prove the zero-mass
constraint, we note

ut(t) ∈ C((0, T ), Hs−1(S)), u2ux(t) ∈ C([0, T ), Hs−1(S)),

so that for all t ∈ (0, T ), we have
∫

S

u(x, t) dx =

∫

S

utx dx+
1

2

∫

S

(u2ux)x dx = 0.

Initial values of E0 and E1 are bounded if u0 ∈ Hs(S), s ≥ 2. Conservation of E0

and E1 on [0, T ) follows from the balance equations

(

u2
)

t
=

(

(∂−1
x u)2 +

1

4
u4

)

x

,

(

√

1 + u2
x

)

t
=

(

1

2
u2
√

1 + u2
x

)

x

,

thanks to the continuity and the periodic boundary conditions for ∂−1
x u(t) ∈

C((0, T ), Hs+1(S)), u(t) ∈ C((0, T ), Hs(S)), and ux(t) ∈ C((0, T ), Hs−1(S)) in x
on S if s ≥ 2. �
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Remark 4. The assumption
∫

S
u0(x) dx = 0 on the initial data u0 in the

periodic domain S is necessary as it follows from the following apriori estimate
∣

∣

∣

∣

∫

S

u(x, t) dx −
∫

S

u0(x) dx

∣

∣

∣

∣

≤ ‖u(t) − u0‖L2(S), ∀t ∈ (0, T ).

Note that
∫

S
u(x, t) dx = 0, for all t ∈ (0, T ) and u(t) ∈ C([0, T ), Hs(S)), s ≥ 2.

Hence the above estimate implies that
∫

S
u0(x) dx = 0. Note that no zero-mass

constraint is necessary on an infinite line in Theorem 1.

The blow-up scenario for the solutions to the Cauchy problem (3.1) coincides
with the one in Lemma 2 after the change of R by S. The main result of this section
is the proof of the finite-time wave breaking in a periodic domain, according to the
following theorem.

Theorem 4. Let u0 ∈ H2(S) and
∫

S
u0(x) dx = 0. Assume that there exists

x0 ∈ R such that u0(x0)u
′
0(x0) > 0 and

either |u′0(x0)| >
(

E2
1

4E
1/2
0

)1/3

,

|u0(x0)||u′0(x0)|2 > E1 +

(

2E
1/2
0 |u′0(x0)|3 −

1

2
E2

1

)1/2

,

or |u′0(x0)| ≤
(

E2
1

4E
1/2
0

)1/3

, |u0(x0)||u′0(x0)|2 > E1.

Then there exists a finite time T ∈ (0,∞) such that the solution u(t) ∈ C([0, T ), H2(S))
of the Cauchy problem (3.1) blows up with the property

lim
t↑T

sup
x∈S

u(x, t)ux(x, t) = +∞, while lim
t↑T

‖u(·, t)‖L∞ ≤ E1.

Proof. Let T > 0 be the maximal time of existence of the solution u(t) ∈
C([0, T ), H2(S)) to the Cauchy problem (3.1) constructed in Lemma 7. Since
∫

S
u(x, t)dx = 0, for each t ∈ [0, T ) there is a ξt ∈ [0, 1] such that u(ξt, t) = 0.

Then for x ∈ S and t ∈ [0, T ), we have

|u(x, t)| =

∣

∣

∣

∣

∫ x

ξt

ux(x, t) dx

∣

∣

∣

∣

≤
∫

S

|ux(x, t)|dx ≤ E1.

Since ∂−1
x u(t) ∈ C([0, T ), H3(S)) is the mean-zero periodic function of x for each

t ∈ [0, T ), there exists another ξ̃t ∈ [0, 1] such that ∂−1
x u(ξ̃t, t) = 0. Then for x ∈ S

and t ∈ [0, T ), we have

|∂−1
x u(x, t)| =

∣

∣

∣

∣

∫ x

ξ̃t

u(x, t) dx

∣

∣

∣

∣

≤
∫

S

|u(x, t)|dx ≤
√

E0.

Therefore, bounds (2.4) are rewritten with

F0 :=
√

E0, F1 := E1

The rest of the proof follows the proof of Theorem 3. �



WAVE BREAKING 305

4. Numerical evidence of wave breaking

The goal of this section is to complement the analytic results by several exam-
ples and numerical computations. More specifically, we first show that the sufficient
condition for wave breaking in Theorem 3 is not satisfied for the exact modu-
lated pulse solution to the short-pulse equation which is known to remain globally
bounded in space and time. Then we consider the interplay between global well-
posedness and wave breaking of Theorems 2 and 3 for a class of decaying data on
an infinite line. Finally, we perform numerical simulations in a periodic domain for
a simple harmonic initial data and thus give illustrations to the sufficient condition
for wave breaking in Theorem 4.

Theorem 3 gives a sufficient condition for formation of shocks in the short-pulse
equation (1.1) on the infinite line. Let us show that this condition is not satisfied
for exact modulated pulse solutions obtained in [8, 10]. The simplest one-pulse
solution is given in the parametric form

u(x, t) = U(y, t), x = X(y, t),

where

(4.1)























U(y, t) = 4mn
m sinψ sinhφ+ n cosψ coshφ

m2 sin2 ψ + n2 cosh2 φ
,

X(y, t) = y + 2mn
m sin 2ψ − n sinh 2φ

m2 sin2 ψ + n2 cosh2 φ
,

(y, t) ∈ R
2,

m ∈ (0, 1) is an arbitrary parameter, n =
√

1 −m2, and

φ = m(y + t), ψ = n(y − t).

The pulse solution enjoys the periodicity property
{

U(y, t) = U
(

y − π
m , t+

π
m

)

,

X(y, t) = X
(

y − π
m , t+

π
m

)

+ π
m

(y, t) ∈ R
2.

and an exponential decay in any direction transverse to the anti-diagonal on the
(y, t)-plane.

Since

∂X

∂y
= 1 − 8m2n2 sin2 ψ cosh2 φ

(m2 sin2 ψ + n2 cosh2 φ)2
= cos

(

4 arctan
m sinψ

n coshφ

)

,

the function x = X(y, t) is invertible in y for all t ∈ R if
∣

∣

∣

∣

m sinψ

n coshφ

∣

∣

∣

∣

< tan
π

8
⇒ m

n
≤ tan

π

8
,

that is for all m ∈ (0,mcr), where mcr = sin π
8 ≈ 0.383. For these values of m,

the pulse solution u(x, t) is analytic in variables (x, t) ∈ R, has the space-time
periodicity

u(x, t) = u
(

x− π

m
, t+

π

m

)

, (x, t) ∈ R,

and the exponential decay in the transverse direction to the anti-diagonal in the
(x, t)-plane. The graph of a nonsingular pulse solution for m = 0.32 is shown on
Figure 2 (left).
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Remark 5. Coordinate y in the exact solution (4.1) is different from coordinate
ξ in the method of characteristics because X(y, 0) 6= y. Nevertheless, X(y, t) and
U(y, t) satisfy the same set of equations

∂X

∂t
= −1

2
U2(y, t),

∂U

∂t
= ∂−1

x u|x=X(y,t),

so that ξ and y are uniquely related by the representation ξ = X(y, 0). If y is
found as a function of ξ, the initial data of the Cauchy problem (2.1) is found from
u0(ξ) = U(y, 0).

Since u(x, t) is analytic in x ∈ R for any fixed t ∈ R and decays to zero
exponentially fast at infinity, it is clear that u(·, t) ∈ H2(R). Furthermore, since

∂−1
x u = ut − 1

2u
2ux, it also follows that u(·, t) ∈ Ḣ−1(R). We compute numerically

bounds F0 and F1 using the exact solution (4.1) and new definitions

F1 := sup
t∈R

‖u(·, t)‖L∞ , F0 := sup
t∈R

‖∂−1
x u(·, t)‖L∞ .

It follows from Remark 1 that bounds F1 and F0 defined above preserve the sufficient
condition of Theorem 3 with respect to the scaling transformation (1.8).

Let us define

f1 := sup
x∈I1

[

|u0(x)||u′0(x)|2 − F1

]

,

f2 := sup
x∈I2

[

|u0(x)||u′0(x)|2 − F1 −
(

2F0|u′0(x)|3 −
1

2
F 2

1

)1/2
]

,
(4.2)

where

I1 =

{

x ∈ R : |u′0(x)| ≤
(

F 2
1

4F0

)1/3

, u0(x)u
′
0(x) > 0,

}

,

I2 =

{

x ∈ R : |u′0(x)| >
(

F 2
1

4F0

)1/3

, u0(x)u
′
0(x) > 0,

}

.

According to Theorem 3, wave breaking occurs if either f1 or f2 is positive. For the
exact modulated pulse solution (4.1) at t = 0, the numerical calculations show that
the set I2 is empty and the quantity f1 is strictly negative for any m ∈ (0,mcr),
see Figure 2 (right). Therefore, the sufficient condition for the wave breaking in
Theorem 3 is not satisfied, which corresponds to our understanding that the exact
modulated pulse solutions (4.1) remain bounded for all (x, t) ∈ R

2. We note,
however, that the sufficient condition for the global well-posedness in Theorem 2 is
satisfied only for pulses withm ∈

(

0, 1
32

)

, since 2
√

2E1E2 = 32m. This computation
shows that the sufficient condition of Theorem 2 is not sharp.

Next we compare the sufficient conditions for the global well-posedness and
wave breaking in Theorems 2 and 3 for a class of initial data

(4.3) u0(x) = a(1 − 2bx2)e−bx2

, a > 0, b > 0,

where parameters a and b determine the amplitude and steepness of u0. Note that
the zero-mass constraint (2.2) is satisfied by u0 and it is clear that u0 ∈ H2(R) ∩
Ḣ−1(R). The conserved quantities E−1 and E0 can be computed analytically,

E−1 =
a2
√
π
(

256
√

2 − 51a2b
)

2048
√
b3

, E0 =
3a2

√
2π

8
√
b

,
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Figure 2. The exact modulated pulse solution (4.1) of the short-
pulse equation (1.1) form = 0.32 (left). The quantity f1 is negative
for any m ∈ (0,mcr) (right).

Figure 3. Boundaries of the global well-posedness and the wave
breaking in the Cauchy problem (2.1) with initial data (4.3): the
global well-posedness occurs below the lower curve and the wave
breaking occurs above the upper curve.

whereas the conserved quantities E1 and E2 are not expressed in a closed form.
Using numerical approximations of the integrals, we determine the boundary of the
well-posedness region in the (a, b)-plane by finding the parameters a and b from
the condition 2

√
2E1E2 = 1. We also compute the boundary of the wave breaking

region in the (a, b)-plane by computing f1 and f2 in (4.2). Unlike the case of
modulated pulses, we find that the set I1 is empty and f2 may change the sign
along the curve on the (a, b)-plane. The two boundaries are shown on Figure 3,
where we can see that the two regions of global well-posedness and wave breaking
are disjoint.

Finally, we perform numerical simulations of the periodic Cauchy problem (3.1)
with the 1-periodic initial data

(4.4) u0(x) = a cos 2πx, a > 0.
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Figure 4. Solution surface u(x, t) (left) and the supremum norm
W (t) (right) for a = 0.2 (top) and a = 0.5 (bottom). The dashed
curve on the bottom right picture shows the linear regression with
C = 1.072, T = 1.356.
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Figure 5. Time of wave breaking T versus a (left). Constant C
of the linear regression versus a (right).

The two conserved quantities E0 and E1 in Lemma 7 are computed analytically as

E0 =
1

2
a2, E1 =

2

π
E(2πai),

where E stands for a complete elliptic integral. Using the above conserved quantities
we find out that the sufficient condition for the wave breaking in Theorem 4 is
satisfied for a > 1.053.
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To illustrate the behaviour of a solution u(x, t) to the Cauchy problem (3.1),
we perform numerical simulations using a pseudospectral method. When the pa-
rameter a is sufficiently small, the value of

W (t) := sup
x∈S

u(x, t)ux(x, t)

remains bounded as shown on the top panel of Figure 4 for a = 0.2. On the other
hand, when a becomes larger, the wave breaking occurs, as on the bottom panel
of Figure 4 for a = 0.5. On the bottom right panel of Figure 4 we show using the
linear regression that the curve W−1(t) is fitted well with the straight line A+Bt
for some coefficients (A,B). Thus, we make a conclusion that

W (t) ≃ C

T − t
for 0 < T − t≪ 1,

where C = −B−1 and T = −AB−1. Using the linear regression, we also obtain
pairs (T,C) for different values of a. The results are shown on Figure 5. Note that
the constant C approach 1 as a gets larger. This observation is consistent with the
exact blow-up law W (t) = 1

T−t obtained for the advection equation (1.2) using the
method of characteristics.
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