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a b s t r a c t

We derive the precise stability criterion for smooth solitary waves in the b-family of Camassa–Holm
equations. The smooth solitary waves exist on the constant background. In the integrable cases b = 2
and b = 3, we show analytically that the stability criterion is satisfied and smooth solitary waves
are orbitally stable with respect to perturbations in H3(R). In the non-integrable cases, we show
numerically and asymptotically that the stability criterion is satisfied for every b > 1. The orbital
stability theory relies on a Hamiltonian formulation of the b-family which is different from the
Hamiltonian formulations available for b = 2 and b = 3.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

The b-family of Camassa–Holm equations (which we simply
call b-CH) is written for the scalar velocity variable u = u(t, x) in
the form

ut − utxx + (b + 1)uux = buxuxx + uuxxx, (1)

where b is arbitrary parameter. The b-CH model was introduced
in [1,2] by using transformations of the integrable hierarchy of
KdV equations. The b-CH model is not integrable in general but
it has the same asymptotic accuracy as the integrable cases of
b = 2 called the Camassa–Holm equation [3] and b = 3 called the
Degasperis–Procesi equation [4]. The b-CH model describes the
horizontal velocity u = u(t, x) for the unidirectional propagation
of waves along the surface of a shallow water flowing over a flat
bed at a certain depth [5]. The hydrodynamical relevance of the
Camassa–Holm and Degasperis–Procesi equations for modeling of
shallow water waves was discussed in [6–8].

Peaked and smooth solitary waves exist in the b-CH Eq. (1),
depending on the values of the parameter b and the parameter k
for the constant background. Traveling waves in the b-CH equa-
tion were studied by using dynamical system methods [9] and
hodograph transformations [10].

Early numerical simulations on the zero background (k = 0)
n [11,12] showed that the initial data resolves into a sequence of
eaked solitary waves called peakons for b > 1 and a sequence

∗ Corresponding author.
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of smooth solitary waves called leftons for b < −1. In the
intermediate case of b ∈ (−1, 1), the initial data generates a rar-
factive wave with exponentially decaying tails. Recent numerical
xperiments in [13] added more examples of dynamics of peaked
olitary waves which appear to be unstable for b < 1 and stable
or b > 1.

Stability of both peaked and smooth solitary waves on the
ero background (k = 0) has been now well understood. Orbital
stability of leftons for b < −1 was shown in [14] by using the
Hamiltonian structure and conservation laws from [15–17] and
analyzing perturbations in some exponentially weighted spaces.
Orbital stability of peakons was shown for b = 2 in [18,19]
and for b = 3 in [20] by using conservation of two energy
integrals in the energy space H1(R) for b = 2 and L2(R) ∩ L3(R)
or b = 3. However, the initial-value problem for the b-CH
quation with b > 1 is ill-posed in Hs(R) for s < 3

2 [21] due
o the lack of continuous dependence and norm inflation, hence
he orbital stability in the energy space is only conditional with
espect to the existence of local solutions. It was shown in [22]
hat H1(R)∩W 1,∞(R) is the largest space where the initial-value
roblem near the peaked solitary waves is defined. However, the
1,∞(R) norm of perturbations grows generally and induces the

onlinear instability of peakons in H1(R)∩W 1,∞(R). This was first
hown with the method of characteristics for b = 2 in [23] (and
in the periodic setting, in [24]) and for the cubic Novikov equation
in [25]. In our previous work [26], we have proven spectral and
linear instability of peakons in the b-CH equation for every b.

Solitary waves on the constant background k ̸= 0 are smooth.
The smooth solitary waves can be found from the transformation
u(t, x) = k + v(t, x − kt), where v(t, x) satisfies the equivalent
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ersion of the b-CH equation:

vt − vtxx + (b + 1)vvx = kvx + bvxvxx + vvxxx. (2)

If v(t, x) → 0 as |x| → ∞, then u(t, x) → k as |x| → ∞.
Orbital stability of smooth solitary waves was obtained for

b = 2 in [27] and for b = 3 in [28] by working with the conserved
energy integrals in the energy space. Since the Hamiltonian struc-
ture used in [27,28] is a special feature due to integrability of the
b-CH equations for b = 2 and b = 3, these results cannot be
extended to other values of b.

The purpose of this work is to study orbital stability of the
smooth solitary waves in the b-CH equation for any b > 1. We
explore the Hamiltonian formulation of the b-CH equation [15–
17] and the characterization of smooth traveling waves [29]. As a
result of relevant computations, we obtain the precise criterion
for orbital stability of the smooth solitary waves with respect
to perturbations in H3(R). We show analytically for b = 2 and
b = 3 and numerically for other values of b > 1 that the stability
criterion is satisfied. This yields orbital stability of the smooth
solitary waves with respect to perturbations in H3(R).

The Hamiltonian formulation of Eq. (1) is developed by using
the momentum density m := u − uxx, for which Eq. (1) can be
rewritten in the form:

mt + umx + bmux = 0. (3)

If b ̸= 1, this equation can be cast in the Hamiltonian form

dm
dt

= Jm
δE
δm
, (4)

where

Jm = −
1

b − 1
(bm∂x + mx)(1 − ∂2x )

−1∂−1
x (b∂xm − mx) (5)

is the skew-adjoint operator in L2(R) such that J∗m = −Jm and

E(m) =

∫
R
mdx (6)

is the conserved mass integral. When solutions of Eq. (3) are con-
sidered on the zero background, there exist two other conserved
quantities [15] given by

F1(m) =

∫
R
m

1
b dx (7)

and

F2(m) =

∫
R

(
m2

x

b2m2 + 1
)
m−

1
b dx. (8)

s is explained in Appendix, the two conserved quantities F1 and
2 are the Casimir functionals for the Hamiltonian operator Jm
atisfying

m
δF1
δm

= 0, Jm
δF2
δm

= 0.

The conserved quantities E and F2 were used in the study of or-
bital stability of leftons for b < −1 in the exponentially decaying
spaces, for which these two functionals are well-defined [14].

In the integrable cases b = 2, 3, the nonlocal Hamiltonian
operator (5) defines just one set of compatible Hamiltonian struc-
tures. When b = 2, the first two Hamiltonian operators and their
corresponding energy functionals are given by [3,6]

J1 = −∂x(1 − ∂2x ), E1(m) =
1
2

∫
R
(u3

+ uu2
x )dx (9)

and

J2 = − (∂xm + m∂x) , E2(m) =
1

∫
(u2

+ u2
x )dx, (10)
2 R
i

2

where δE1,2
δm are computed with u = (1 − ∂2x )

−1m. The nonlocal
perator Jm in (5) defines the third Hamiltonian structure, and

is given by J2J−1
1 J2 up to scaling [15–17]. For b = 3, Jm in (5)

efines the second Hamiltonian structure, in addition to the first
amiltonian structure [2] given by

1 = ∂x(1 − ∂2x )(4 − ∂2x ), E1(m) =
1
3

∫
R
u3dx. (11)

When solutions of Eq. (3) are considered on the nonzero
onstant background with m(t, x) → k decaying fast as |x| → ∞,
e have to redefine the conserved quantities F1(m) and F2(m)

n order to eliminate divergence of the constant background. For
> 0, we consider the class of functions in the set

k =
{
m − k ∈ H1(R) : m(x) > 0, x ∈ R

}
(12)

nd redefine the conserved quantities for m ∈ Xk as

ˆ (m) =

∫
R
(m − k)dx, (13)

ˆ1(m) =

∫
R

[
m

1
b − k

1
b

]
dx (14)

nd

ˆ2(m) =

∫
R

[(
m2

x

b2m2 + 1
)
m−

1
b − k−

1
b

]
dx. (15)

Since m(x) → k as |x| → ∞, k > 0, and m(x) > 0, there exists
m0 > 0 such that m(x) ≥ m0 for every x ∈ R. Therefore, F̂1(m) and
F̂2(m) are well-defined in Xk due to the Banach algebra property
f H1(R) and the conservation of Ê(m). The functionals Ê, F̂1,
nd F̂2 are conserved on Xk because the time derivative of the

integrands is still a total derivative and the asymptotic values of
the functions m and u at x → ±∞ are the same.

Local well-posedness of Eq. (2) with k > 0 can be easily shown
for the initial data v(0, ·) = v0 ∈ Hs(R) with s > 3

2 [30–33].
This well-posedness theory for the function v ∈ Hs(R) translates
o the function m ∈ Xk if s = 3. Moreover, it is well-known
hat the local solutions exist for all times and do not break if the
omentum density m(t, x) is strictly positive [31–33]. Positivity

of m is preserved in the time evolution so that Xk is invariant
under the flow of Eq. (3). Assuming that the local and global
well-posedness of Eq. (3) is well-known, we adopt the following
definition of orbital stability of traveling waves in the set Xk.

Definition 1. Let m(t, x) = µ(x − ct) be the traveling wave
solution of Eq. (3) with µ ∈ Xk. We say that the traveling wave
is orbitally stable in Xk if for every ε > 0 there exists δ > 0 such
that for every m0 ∈ Xk satisfying ∥m0 − µ∥H1 < δ, there exists
a unique solution m ∈ C0(R, Xk) of Eq. (3) with the initial datum
m(0, ·) = m0 satisfying

inf
x0∈R

∥m(t, ·) − µ(· − x0)∥H1 < ε, t ∈ R.

The following theorem presents the main result of this work.

Theorem 1. For fixed b > 1, c > 0, and k ∈ (0, (b+ 1)−1c), there
exists a unique solitary wave m(t, x) = µ(x − ct) of Eq. (3) with
profile µ ∈ C∞(R) satisfying µ(x) > 0 for x ∈ R, µ′(0) = 0, and
µ(x) → k as |x| → ∞ exponentially fast. The solitary wave satisfies
the condition 0 < φ(x) < c for x ∈ R, φ′(0) = 0, and φ(x) → k as
|x| → ∞ exponentially fast, where φ := k + (1 − ∂2x )

−1(µ − k) is
uniquely defined, and it is orbitally stable in Xk if the mapping

k ↦→ Q (φ) :=

∫
R

[
b
(

c − k
c − φ

)
−

(
c − k
c − φ

)b

− b + 1

]
dx (16)

s strictly increasing.
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emark 1. The existence and uniqueness of the solitary wave in
Theorem 1 is established in Lemma 1 and the relation between µ
and φ can be written in the form

µ = k
(

c − k
c − φ

)b

.

emark 2. Theorem 1 implies that if u(t, x) = φ(x − ct) is the
traveling wave solution of Eq. (1) with φ ∈ Yk given by

Yk =
{
u − k ∈ H3(R) : u(x) − u′′(x) > 0, x ∈ R

}
, (17)

then it is orbitally stable in Yk in the H3(R) norm. Indeed, inte-
gration by parts yields

∥m∥
2
H1 =

∫
R
(m2

+ m2
x )dx =

∫
R
(u2

+ 3u2
x + 3u2

xx + u2
xxx)dx,

which is equivalent to the squared H3(R) norm on u.

Remark 3. The stability criterion of Theorem 1 is verified for
b = 2 and b = 3 based on analytical computations. This gives
an alternative proof of the orbital stability of smooth solitary
waves in the Camassa–Holm and Degasperis–Procesi equations
compared to [27] and [28], respectively.

Remark 4. The stability criterion of Theorem 1 is only verified
numerically for other values of b > 1 and asymptotically in the
limit k → 0 and k → (b+1)−1c . It is an open question on proving
the stability criterion analytically in the general case.

Remark 5. Orbital stability of smooth multi-soliton solutions of
the Camassa–Holm equation with b = 2 was recently proven
in [34]. The proof relies on the bi-Hamiltonian structure of the
Camassa–Holm equation and may not be generalized for a general
case b > 1, for which the only Hamiltonian structure is given by
(4).

The article is organized as follows. Traveling waves including
the smooth solitary waves on the nonzero constant background
are described in Section 2. Variational characterization of the
traveling solitary waves in terms of the mass and energy integrals
is developed in Section 3. Derivation and proof of the stability
criterion in Theorem 1 are given in Section 4. Verification of the
stability criterion is reported in Section 5. We give the summary
and discuss open directions in Section 6.

2. Traveling waves

Let us consider traveling waves of Eq. (1) in the form u(t, x) =

(x − ct) with speed c and profile φ found from the third-order
differential equation

− (c − φ)(φ′′′
− φ′) + bφ′(φ′′

− φ) = 0. (18)

The following lemma describes the family of solitary waves on
the nonzero constant background parameterized by the arbitrary
parameter k > 0.

Lemma 1. For fixed b > 1 and c > 0, there exists a one-parameter
family of smooth solitary waves with profile φ ∈ C∞(R) satisfying
φ′(0) = 0 and φ(x) → k as |x| → ∞ if and only if the arbitrary
parameter k belongs to the interval (0, (b + 1)−1c). Moreover,

0 < φ(x) < c, µ(x) = φ(x) − φ′′(x) > 0, x ∈ R, (19)

and the family is smooth with respect to parameter k.
3

Proof. Multiplying (18) by (c − φ)b−1 and integrating in x yield
the second-order equation:

− (c − φ)b(φ′′
− φ) = a, (20)

where a is the integration constant. The second-order equation
(20) is conservative and admits the first-order invariant:

1
2
(b − 1)(φ′2

− φ2) +
a

(c − φ)b−1 = g, (21)

here g is another integration constant.
Smooth solitary wave solutions with profile φ ∈ C∞(R)

satisfying φ(x) → k as |x| → ∞ correspond to the homoclinic
orbit from the equilibrium point (φ, φ′) = (k, 0). Taking the limit
as |x| → ∞ in (20) and (21) yields the relations:

a = k(c − k)b, g = kc −
1
2
(b + 1)k2. (22)

For fixed b > 1 and c > 0, the first-order invariant (21)
epresents the energy conservation for a Newtonian particle with
he mass (b−1) > 0 and energy g under a force with the potential
nergy

(φ) := −
1
2
(b − 1)φ2

+
a

(c − φ)b−1 . (23)

For smooth solutions φ ∈ C∞(R), we consider the restriction φ ∈

(−∞, c) since no smooth bounded solutions exist for φ ∈ (c,∞)
if b > 1.

Critical points of U in (−∞, c) are given by roots of the
algebraic equation φ(c − φ)b = a for φ ∈ (−∞, c). The mapping
M(φ) : (−∞, c) ↦→ R defined by M(φ) := φ(c − φ)b has one
critical point given by a global maximum that occurs at φ0 :=
c

b+1 < c. Furthermore, M(φ) → −∞ as φ → −∞ and M(c) = 0.
Therefore, there exists only one critical point of U for a ∈ (−∞, 0]
and a = a, two critical points of U for a ∈ (0, a), and no critical
points of U for a ∈ (a,∞), where

a := M(φ0) =
bbcb+1

(b + 1)b+1 . (24)

omoclinic orbits with φ ∈ (−∞, c) exist only if at least two
oots of the algebraic equation φ(c − φ)b = a exist in (−∞, c),
which happens if and only if a ∈ (0, a). The two roots can be
ordered as follows:

0 < φ1 <
c

b + 1
< φ2 < c. (25)

We will now show that the homoclinic orbit does exist if a ∈

(0, a).
For fixed b > 1 and c > 0, the local maximum and minimum

points of U give respectively the saddle point (φ1, 0) and the
center point (φ2, 0) of the second-order equation (20). There
exists a punctured neighborhood of the center (φ2, 0) enclosed
by the homoclinic orbit connecting the saddle (φ1, 0). Thus, φ1 ≡

k ∈ (0, (b + 1)−1c) is taken as the arbitrary parameter of the
homoclinic orbit, which specifies a and g = U(k) by the relation
(22). Since U(φ) → +∞ as φ → c from the left, the homoclinic
orbit belongs to the vertical stripe {(φ, φ′) : 0 < φ < c} and
represents the smooth solitary wave with the profile φ ∈ C∞(R)
satisfying φ(x) → k as |x| → ∞. By the translational invariance,
the solitary wave profile satisfying φ′(0) = 0 is uniquely defined.

Finally, smoothness of the family in k is due to the fact that
the differential equations depend smoothly on φ, g , a, and c if
φ < c , whereas parameters a and g depend smoothly on k in

−1
(22) if k ∈ (0, (b + 1) c).
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As for the sign of the momentum density for the solitary wave
ith profile φ given by µ := φ − φ′′, Eq. (20) gives the relation:

=
a

(c − φ)b
. (26)

t then follows from the inequalities 0 < φ(x) < c and a > 0 that
µ(x) > 0. □

For illustration of the proof of Lemma 1, Fig. 1 (left) shows the
graph of U versus φ for b = 3, c = 1, and a = 0.05 ∈ (0, a),
where a ≈ 0.11. The corresponding phase portrait on the phase
plane (φ, φ′) is shown on the right panel.

Remark 6. The standard integration of Eq. (18) in x gives a
different second-order equation

− (c − φ)(φ′′
− φ) +

1
2
(b − 1)(φ′2

− φ2) = g, (27)

hich can be integrated to the same first-order invariant (21).
onsequently, Eq. (27) is redundant in view of the two Eqs. (20)
nd (21).

emark 7. The one-parameter family of smooth solitary waves
xists for fixed b > 1 and c < 0. It is obtained from the family of
olutions to (18) presented in Lemma 1 by using the symmetry
ransformation:

↦→ −c, φ ↦→ −φ, (28)

hich leaves Eq. (18) invariant. For b > 1 and c < 0, the arbitrary
parameter k belongs to the interval ((b + 1)−1c, 0). This family
satisfies µ(x) < 0 for all x ∈ R so it does not belong to Xk in (12).

Remark 8. In the limiting case k → 0, the profile φ is no
longer smooth since a → 0 for which φ1 = 0 and φ2 = c .
This limit recovers the peaked solitary waves with the profile
φ(x) = ce−|x| considered in our previous work [26]. In the limiting
case k → (b + 1)−1c , the profile φ is constant in x since a → a

for which φ1 = φ2 = (b + 1)−1c .

emark 9. The relation (26) can be recovered with the traveling
wave reduction m(t, x) = µ(x − ct) of Eq. (3), from which µ
satisfies the differential equation

µ′(φ − c) + bµφ′
= 0. (29)

fter multiplying (29) by (c−φ)b−1 and integration in x, we obtain
(26).
 w

4

Remark 10. Inequalities (19) for the smooth solitary waves of
Lemma 1 are strict in the sense that for every fixed b > 1, c > 0,
and k ∈ (0, (b + 1)−1c), there exist positive constants C±(b, c, k)
uch that

−(b, c, k) ≤ c − φ(x) ≤ C+(b, c, k), x ∈ R. (30)

onsequently, there exist positive constants Ĉ±(b, c, k) such that

ˆ
−(b, c, k) ≤ µ(x) ≤ Ĉ+(b, c, k), x ∈ R. (31)

n view of Remark 8, C−(b, c, k) → 0 and Ĉ+(b, c, k) → ∞

s k → 0 when the smooth solitary wave becomes the peaked
olitary wave for every b > 1 and c > 0.

emark 11. By a similar phase plane analysis as in the proof of
emma 1, we can identify additional families of smooth solitary
aves in Xk for b < 1. The analysis is different when b < 1 due
o the fact that the potential in (23) must be multiplied by −1.
ndeed, in that case, what plays the role of the mass in (21) must
e taken to be (1 − b) > 0. In the case 0 < b < 1, we identified
family of smooth solitary waves in Xk with 0 < φ < c . We also

dentified a family of solitary waves for φ > c when −1 < b < 0.
aking c − φ negative changes the way (18) is integrated. The
tability analysis of those additional solutions can be developed
imilarly to the proof of Theorem 1 in the case b > 1. In the case
= 1, one would obtain a different expression than (21) due to

he fact that different Jm and E(m) must be used in (4) [15].

. Variational characterization

The solitary waves of Lemma 1 can be characterized variation-
lly if the system of Eqs. (20) and (21) can be shown to arise as
he Euler–Lagrange equation of the action functional

ω1,ω2 (m) := ω1F̂1(m) + ω2F̂2(m) − Ê(m), (32)

here the normalized mass Ê(m) and the two Casimir functionals
ˆ1(m) and F̂2(m) are given by (13), (14), and (15). The following
emma states that the variational characterization is possible if
nd only if the Lagrange multipliers ω1 and ω2 are uniquely
elated to parameters of Eqs. (20) and (21).

emma 2. For fixed b > 1 and c > 0, a critical point µ ∈ Xk of
he action functional Λω1,ω2 in (32) coincides with the solitary wave
olution µ = φ − φ′′

∈ C∞(R) of Lemma 1 satisfying (20) and (21)
f and only if

1 =
1
2
[(b − 1)c + (b + 1)k] k−

1
b , ω2 =

1
2
(b − 1)(c − k)k

1
b , (33)

here k ∈ (0, (b + 1)−1c) is an arbitrary parameter.
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roof. Let µ ∈ Xk be a critical point of Λω1,ω2 . After straight-
orward simplifications, the equation Λ′

ω1,ω2
(µ) = 0 gives the

following differential equation,

ω1

b
µ

1
b −1

−
ω2

bµ
1
b +1

[
2µ′′

bµ
−

(2b + 1)(µ′)2

b2µ2 + 1
]

− 1 = 0. (34)

f µ ∈ Xk is a weak solution of Eq. (34), then µ ∈ C∞(R)
y bootstrapping arguments, so that the set of solitary wave
olutions is given by Lemma 1 if we can establish equivalence
etween the differential equations.
Assuming the relation (26), we introduce φ from µ(c−φ)b = a

nd obtain

′
=

bφ′

c − φ
µ, µ′′

=
bφ′′

c − φ
µ+

b(b + 1)(φ′)2

(c − φ)2
µ.

ubstituting these relations into (34) gives after straightforward
implifications:

1a
1
b −ω2a−

1
b
[
2(c − φ)φ′′

− (φ′)2 + (c − φ)2
]
−ab(c−φ)1−b

= 0.

(35)

ubstituting (27) into (35) yields

1a
1
b −ω2a−

1
b
[
b(φ′)2 − bφ2

+ c2 − 2 g
]
−ab(c−φ)1−b

= 0. (36)

ubstituting (21) into (36) gives the unique choice for Lagrange
ultipliers,

1 =
1

2a
1
b

[
2 g + (b − 1)c2

]
, ω2 =

1
2
a

1
b (b − 1). (37)

Finally, substituting (22) into (37) gives (33). □

Remark 12. Only one parameter k ∈ (0, (b + 1)−1c) is arbitrary
for fixed b > 1 and c > 0. Although the action functional (32) has
two Lagrange multipliers, first variations of Ê(m), F̂1(m), and F̂2(m)
are not defined independently of each other for m ∈ Xk. Indeed,
due to nonzero boundary conditions at infinity, those functionals
are not Fréchet differentiable on Xk, but the Lagrange multipliers
in (32) are such that Λω1,ω2 is differentiable with

Λ′

ω1,ω2
(µ) =

b + 1
2b

k1−
1
b F̂ ′(µ) +

b − 1
2b

Ĝ′(µ) = 0,

here

F̂ (m) = bF̂1(m) − k
1
b −1Ê(m),

Ĝ(m) = b(c − k)k
1
b F̂2(m) + bck−

1
b F̂1(m) − Ê(m),

where F̂ and Ĝ are Fréchet differentiable on Xk.

The variational characterization of Lemma 2 implies two im-
portant properties when we add a perturbation m̃ := m − µ to
he solitary wave with the profile µ ∈ C∞(R). Since µ(x) is strictly
ositive and bounded by Remark 10, we havem ∈ Xk if m̃ ∈ H1(R)
nd the H1(R) norm of m̃ is sufficiently small.
The following two results describe the second-order variation

f the action functional Λω1,ω2 and the first-order constraint on
he perturbation m̃ ∈ H1(R). In what follows, ⟨·, ·⟩ denotes the
tandard inner product in L2(R), µ := φ − φ′′

∈ C∞(R) is defined
y Lemma 1, and (ω1, ω2) are defined by Lemma 2.

orollary 1. There exists a sufficiently small positive ϵ0 such that
or every m̃ ∈ H1(R) satisfying ∥m̃∥H1 ≤ ε0, we have

ω ,ω (µ+ m̃) −Λω ,ω (µ) =
(b − 1)

⟨Lm̃, m̃⟩ + R(m̃), (38)
1 2 1 2 2b2
5

where

L = −
d
dx

c − φ

µ2

d
dx

+
(b + 1)(c − φ)

2µ2 +
(2b + 1)(c − φ)µ′′

bµ3

−
(2b + 1)(3b + 1)(c − φ)(µ′)2

2b2µ4 −
(c − k)[(b − 1)c + (b + 1)k]

2(c − φ)µ2

(39)

nd R(m̃) is the remainder term satisfying ∥R(m̃)∥H1 ≤ C0∥m̃∥
3
H1 for

ome m̃-independent positive constant C0.

roof. The expression for L is obtained by straightforward com-
utations with the use of relations (26) and (33). Coefficients of
he Sturm–Liouville operator L are smooth and bounded since
c − φ), µ are strictly positive, bounded, and smooth on R by
Lemma 1 and Remark 10.

Similarly, R(m̃) is computed by using the Taylor expansion of
he energy densities in F̂1(m) and F̂2(m) at m = µ. The leading-
rder term in R(m̃) is cubic and the Sobolev space H1(R) forms a
anach algebra with respect to multiplication so that the estimate
R(m̃)∥H1 ≤ C0∥m̃∥

3
H1 follows from the Taylor expansion of F̂1(m),

ˆ2(m) and the smallness of ∥m̃∥H1 . □

orollary 2. Let m̃ ∈ H1(R) be a small perturbation to µ such
hat m = µ + m̃ ∈ Xk does not change the conserved quantity
ˆ (m) := bF̂1(m) − k

1
b −1Ê(m) up to the first order. Then, m̃ ∈ H1(R)

satisfies the constraint

⟨µ
1
b −1

− k
1
b −1, m̃⟩ = 0. (40)

Proof. Since F̂ ′

1(µ) = b−1µ
1
b −1 and Ê ′(µ) = 1, the linear combi-

nation in F̂ (m) is chosen in such way that F̂ ′(µ) = µ
1
b −1

− k
1
b −1

ecays to zero at infinity exponentially fast. Then, the constraint
40) is well-defined for every m̃ ∈ H1(R) and expresses fixed
onstraint of F̂ (m) up to the first order. □

emark 13. It follows from (22) and (26) that

= k
(

c − k
c − φ

)b

. (41)

s a result, the constraint (40) can be equivalently written as

(c − φ)b−1
− (c − k)b−1, m̃⟩ = 0, (42)

where (c −φ)b−1
− (c − k)b−1 decays to zero at infinity exponen-

tially fast.

4. Stability criterion

The results of Lemma 2 suggest that the smooth solitary wave
of Lemma 1 with the profile µ = φ − φ′′ is a critical point of
the action functional Λω1,ω2 with uniquely selected parameters
(ω1, ω2). In order to prove Theorem 1, we need to derive the
criterion for the critical point to be a local non-degenerate min-
imizer of Λω1,ω2 subject to the fixed value of another conserved
quantity F̂ . This is done by using the second derivative test, which
relies on Corollaries 1 and 2. We will show that the Hessian
operator L of the action functional Λω1,ω2 defined by (38) and
(39) has exactly one simple negative eigenvalue and a simple zero
eigenvalue isolated from the rest of the spectrum. Then, we add
the constraint (40) in order to derive a precise condition when the
Hessian operator is positive under the constraint with the only
degeneracy due to the translational symmetry.

The following lemma gives the spectral properties of the linear
operator L.
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emma 3. The linear operator L defined by (39) is extended as a
self-adjoint operator in L2(R) with the dense domain H2(R) ⊂ L2(R).
There exists δ > 0 such that the spectrum of L in (−∞, δ) consists
of a simple zero eigenvalue and a simple negative eigenvalue.

Proof. The linear operator L defined by (39) belongs to the
class of self-adjoint Sturm–Liouville operators in L2(R) with the
dense domain H2(R). Since coefficients of L are smooth and
bounded, see the proof of Corollary 1, standard properties of the
Sturm–Liouville operators hold.

Since µ(x) → k as |x| → ∞ exponentially fast, Weyl’s Lemma
states that the essential spectrum of L is given by the essential
spectrum of the linear operator with constant coefficients L∞

given by

L∞ = −
c − k
k2

d2

dx2
+

c − (b + 1)k
k2

. (43)

ince c > (b + 1)k, the spectrum of L∞ coincides with

∞ := [k−2(c − (b + 1)k),∞),

hich is strictly positive. Hence, the spectrum of the self-adjoint
perator L in R\Σ∞ consists of isolated semi-simple eigenval-

ues of finite multiplicity. Moreover, each eigenvalue is simple
because the Wronskian W (v1, v2) of two solutions v1, v2 of the
econd-order differential equation Lv = λv satisfies the Liouville
ormula,

(v1, v2) =
W0µ

2

c − φ
,

here W0 ̸= 0 is constant so that if v1 ∈ H2(R) decays to zero as
x| → ∞, then v2 /∈ H2(R) diverges to infinity as |x| → ∞.

It remains to characterize the zero and negative eigenvalues of
. Due to the translation symmetry of Eq. (3), µ′

∈ H2(R) belongs
o the kernel of L so that 0 is in the spectrum of L. Sturm’s
scillation Theorem states that the nth simple eigenvalue corre-
ponds to the eigenfunction with (n−1) simple zeros on R. Since
′
=

bµ
c−φφ

′ has only one zero on R, 0 is the second eigenvalue of
and there exists only one simple negative eigenvalue. □

In order to prove the next lemma, we first derive formal
elations on the family of solutions in Eqs. (20) and (21). Solutions
epend on three parameters g , a, and c , which are considered
ndependently for the moment. Formal differentiating of (c −

)bµ = a in g , a, and c yields

gµ =
bµ∂gφ
c − φ

, ∂aµ =
bµ∂aφ
c − φ

+
µ

a
, ∂cµ =

bµ∂cφ
c − φ

−
bµ

c − φ
.

(44)

e note the following result due to the scaling transformation.

roposition 1. Let µ be defined by (26) and assume that µ is
mooth with respect to parameters g, a, and c. Then, it satisfies

∂cµ+ (b + 1)a∂aµ+ 2 g∂gµ = µ. (45)

roof. Solutions φ(x; g, a, c) of the system of Eqs. (20) and (21)
njoy the scaling transformation:

(x; g, a, c) = cϕ(x; γ , α), g = c2γ , a = cb+1α, (46)

where ϕ, γ , and α are independent of c. It follows from (46) for
a smooth φ(x; g, a, c) that

c∂cφ + (b + 1)a∂aφ + 2 g∂gφ = φ. (47)

The relation (45) follows from (47) by using (44). □
6

Long but straightforward computations based on the explicit
expression (39) with

(c − k)[(b − 1)c + (b + 1)k] = 2 g + (b − 1)c2

ield

∂gµ =
b

a(1 − b)
(c − φ)b−1, (48)

∂aµ =
2 g + (b − 1)c2

a2(b − 1)
(c − φ)b−1

−
b

a(b − 1)
, (49)

nd

∂cµ = −
bc
a
(c − φ)b−1, (50)

here b ̸= 1 and a ̸= 0 are assumed. It follows from (45) with
he help of (48), (49), and (50) that

µ =
2 g + (b − 1)c2

a(b − 1)
(c − φ)b−1

−
b(b + 1)
b − 1

. (51)

We also acknowledge the obvious translation symmetry of
Eq. (3).

Proposition 2. Let µ(t, x) be a solution of Eq. (3). Then µ(t+t0, x+
x0) is also a solution of Eq. (3) for every t0 ∈ R and x0 ∈ R.

Proof. The proof is immediate since Eq. (3) has constant coeffi-
cients in (t, x). □

We are now ready to prove the following lemma which gives
the precise condition for the smooth solitary wave with the pro-
file µ to become a constrained minimizer of the action functional
Λω1,ω2 given by (32) and (33).

Lemma 4. The solitary wave with profile µ is a local constrained
minimizer of Λω1,ω2 given by (32) and (33) under the constraint
(42) if and only if the mapping

k ↦→ Q (φ) :=

∫
R

[
b
(

c − k
c − φ

)
−

(
c − k
c − φ

)b

− b + 1

]
dx (52)

s increasing. The minimizer is only degenerate due to the transla-
ional symmetry if and only if the mapping (52) is strictly increasing.

roof. Under the spectral properties of Lemma 3, it is well-
nown since the pioneering work [35] that the operator L is
ositive definite on a subspace of L2(R) defined by the scalar
onstraint (42) if and only if

L−1v0, v0⟩ ≤ 0, where v0 := (c − φ)b−1
− (c − k)b−1. (53)

oreover, also as a consequence of [35], the operator L is strictly
ositive definite in
2
c := {m̃ ∈ L2(R) : ⟨v0, m̃⟩ = 0, ⟨µ′, m̃⟩ = 0} (54)

f and only if ⟨L−1v0, v0⟩ < 0. It remains to show that the sign
f ⟨L−1v0, v0⟩ is opposite to the sign of the derivative of the

mapping (52).
Let us recall that parameters g and a are expressed in terms

of k for fixed b > 1 and c > 0 from (22) and that the
family of solitary waves is smooth with respect to parameter k.
ifferentiating µ with respect to k yields with the chain rule that

∂kµ = (c − (b + 1)k)
[
∂gµ+ (c − k)b−1∂aµ

]
. (55)

rom (55), we use (48) and (49) to obtain

∂kµ =
c − k(b + 1) [

(k + c(b − 1))(c − φ)b−1
− bk(c − k)b−1] . (56)
ak(b − 1)
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e also rewrite (51) as

µ =
c − k

a(b − 1)
[(k(b + 1) + c(b − 1))(c − φ)b−1

− bk(b + 1)(c − k)b−1
]. (57)

Since µ(x) → k as |x| → ∞ exponentially fast, then ∂kµ(x) → 1
as |x| → ∞, so that ∂kµ(x) does not decay to 0 at infinity.
However, ∂kµ(x) − k−1µ(x) does decay to 0 at infinity, so we use
(56) and (57) to compute

L
(
∂kµ− k−1µ

)
= −

cb2

a(b − 1)

[
(c − φ)b−1

− (c − k)b−1] .
herefore,

−1v0 = −
a(b − 1)

cb2
(∂kµ− k−1µ), (58)

nd we can compute

L−1v0, v0⟩ = −
a(b − 1)

cb2

×

∫
R

[
(c − φ)b−1

− (c − k)b−1] [
∂kµ−

µ

k

]
dx,

which becomes in view of relation (41),

⟨L−1v0, v0⟩ = −
ak(b − 1)

cb
(c − k)b−1

×

∫
R

[
1 −

(
c − k
c − φ

)b−1
]
∂

∂k

(
c − k
c − φ

)
dx

= −
ak(b − 1)

cb2
(c − k)b−1 ∂

∂k

×

∫
R

[
b
(

c − k
c − φ

)
−

(
c − k
c − φ

)b

− b + 1

]
dx,

here the integrands converge to zero at infinity. Since a > 0,
> 1, and c > 0, the sign of ⟨L−1v0, v0⟩ is opposite to the sign
f the derivative of the mapping (52). □

emark 14. The result of Theorem 1 follows from the second
erivative test in Lemma 4, the local well-posedness theory for
he b-CH equation (3) in Xk, and the orbital stability theory
ioneered in [36]. One of the assumptions made in [36] is that
he operator Jm in (4) be onto. However, in the proof of stability
n [36, Section 3], that condition is never used. The condition on
he operator Jm is used only to prove the instability. Since we only
rove the stability, we do not need to use any conditions on Jm.

. Verification of the stability criterion

Here we verify the stability criterion of Theorem 1. To do so,
e rewrite Eq. (27) with g = kc −

1
2 (b + 1)k2 as

c − φ)(φ − φ′′) +
1
2
(b − 1)(φ′2

− φ2) = ck −
1
2
(b + 1)k2. (59)

y using the transformation (which generalizes the one used
n [27,29] for b = 2),

=

∫ x

0

dx

[c − φ(x)]
b−1
2
, φ(x) = ψ(z), (60)

e obtain from (59) the equivalent second-order equation,

− ψ ′′(z) + (ψ − k)(c − ψ)b−2
[
c −

1
2
(b + 1)(ψ + k)

]
= 0. (61)

Using the following transformation

ζ =

√
c − k(b + 1)(c − k)

b−2
2 z, ψ(z) = k + (c − k)ϕ(ζ ), (62)
7

we rewrite Eq. (61) in the normalized form

− ϕ′′(ζ ) + ϕ(1 − ϕ)b−2 [
1 − (2γ )−1(b + 1)ϕ

]
= 0, (63)

here

:=
c − k(b + 1)

c − k
. (64)

t follows that γ ∈ (0, 1) if k ∈ (0, (b + 1)−1c). Substituting (60)
nd (62) into Q (φ) given by (16) yields

(φ) =

∫
R

[
b
φ − k
c − φ

+ 1 −

(
c − k
c − φ

)b
]
dx

=

∫
R

[
b(ψ − k)(c − ψ)

b−3
2 + (c − ψ)

b−1
2

− (c − k)b(c − ψ)−
b+1
2

]
dz

= γ−1/2
∫
R

[
bϕ(1 − ϕ)

b−3
2 + (1 − ϕ)

b−1
2 − (1 − ϕ)−

b+1
2

]
dζ .

(65)

Although we do not write it explicitly, the wave profile ϕ depends
on γ since Eq. (63) for ϕ depends on γ . If b > 1 and c > 0
are fixed, monotonicity of the mapping k ↦→ Q (φ) given by
(16) is determined with the chain rule from monotonicity of the
mappings k ↦→ γ and γ ↦→ Q (φ) given by (64) and (65). Since

dγ
dk

=
−bc

(c − k)2
< 0,

he mapping (16) is strictly increasing if and only if
d
dγ

Q (φ) < 0. (66)

The following two lemmas report explicit computations of
(φ) for the integrable cases b = 2 and b = 3, from which the
tability criterion (66) can be proven analytically.

emma 5. The mapping (16) is strictly increasing for b = 2, c > 0,
and k ∈

(
0, 1

3 c
)
.

roof. Eq. (63) with b = 2 admits the exact solution for the
olitary wave centered at ζ = 0:

ϕ(ζ ) = γ sech2(1
2
ζ
)
. (67)

Substituting (67) to Q (φ) in (65) for b = 2 yields

Q (φ) = −γ−1/2
∫
R
(1 − ϕ)−3/2ϕ2dζ

= −γ 3/2
∫
R

sech4( 12ζ )

(1 − γ sech2( 12ζ ))
3/2

dζ ,

from which we compute

d
dγ

Q (φ) = −
3
2
γ 1/2

∫
R

[
sech4( 12ζ )

(1 − γ sech2( 12ζ ))
3/2

+
γ sech6( 12ζ )

(1 − γ sech2( 12ζ ))
5/2

]
dζ

= −
3
2
γ 1/2

∫
R

sech4( 12ζ )

(1 − γ sech2( 12ζ ))
5/2

dζ < 0,

hence the stability criterion (66) is satisfied. □

Lemma 6. The mapping (16) is strictly increasing for b = 3, c > 0,
and k ∈

(
0, 1 c

)
.
4
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roof. Eq. (63) with b = 3 admits the exact solution for the
solitary wave centered at ζ = 0:

ϕ(ζ ) =
3γ

2 + γ +
√
(1 − γ )(4 − γ ) cosh(ζ )

. (68)

ubstituting (68) to Q (φ) in (65) for b = 3 yields

(φ) = −γ−1/2
∫
R

ϕ2(3 − 2ϕ)
(1 − ϕ)2

dζ .

riting ∂γϕ = γ−1ϕ + ϕ̂ with

ˆ (ζ ) =
3γ [(5 − 2γ ) cosh(ζ ) − 2

√
(1 − γ )(4 − γ )]

2
√
(1 − γ )(4 − γ )(2 + γ +

√
(1 − γ )(4 − γ ) sech(ζ ))2

,

e obtain explicitly

d
dγ

Q (φ) = −
1

2γ 3/2

∫
R

ϕ2(9 − 7ϕ + 2ϕ2)
(1 − ϕ)3

dζ

−
2
γ 1/2

∫
R

ϕ(3 − 3ϕ + ϕ2)
(1 − ϕ)3

ϕ̂dζ .

Both terms are strictly negative. Indeed, the first term is negative
because

min
ϕ∈[0,1]

(9 − 7ϕ + 2ϕ2) = 4 > 0.

The second term is negative if ϕ̂(ζ ) > 0 for every ζ ∈ R, which
is true for every γ ∈ (0, 1) because

(5 − 2γ ) cosh(ζ ) − 2
√
(1 − γ )(4 − γ )

≥ (5 − 2γ ) − 2
√
(1 − γ )(4 − γ ) > 0.

ence the stability criterion (66) is satisfied. □

The next lemma shows that the stability criterion (66) is
atisfied in the asymptotic limits γ → 0 and γ → 1 for every
b > 1. In view of the transformation (64), they correspond to the
asymptotic limits k → 0 and k → (b + 1)−1c for fixed b > 1 and
c > 0.

Lemma 7. The mapping (16) is strictly increasing for b > 1 and
c > 0 in the asymptotic limits k → 0 and k → (b + 1)−1c.

Proof. It follows from (63) that ϕ depends on γ analytically with
ϕ → 0 as γ → 0. Therefore, it satisfies the Taylor expansion

ϕ(ζ ) = γ ϕ1(ζ ) + γ 2ϕ2(ζ ) + O(γ 3) as γ → 0,

where ϕ1 is computed similarly to (67) in the form

ϕ1(ζ ) =
3

b + 1
sech2(

1
2
ζ ).

Similarly to the proof of Lemma 6, we write ∂γϕ = γ−1ϕ + ϕ̂,
here ϕ̂ = γ ϕ2 + O(γ 2), and obtain from Q (φ) in (65) that

d
dγ

Q (φ) = −
1

2γ 3/2

∫
R

[
((b + 2)ϕ − 1)(1 − ϕ)−

b+3
2

+ (1 − 3ϕ + (b − 1)(b − 2)ϕ2)(1 − ϕ)
b−5
2

]
dζ

−
1

2γ 1/2

∫
R

[
(b + 1)(1 − ϕ)−

b+3
2

+ ((b − 1)2ϕ − (b + 1))(1 − ϕ)
b−5
2

]
ϕ̂dζ .

e note that

(ϕ) := ((b + 2)ϕ − 1) + (1 − 3ϕ + (b − 1)(b − 2)ϕ2)(1 − ϕ)b−1

=
3
2
b(b − 1)ϕ2

+ O(ϕ3) as ϕ → 0
8

Fig. 2. Q (φ) versus γ for three values of b.

and

g(ϕ) := (b + 1) + ((b − 1)2ϕ − (b + 1))(1 − ϕ)b−1

= 2b(b − 1)ϕ + O(ϕ2) as ϕ → 0.

y substituting the asymptotic expansions with ϕ = O(γ ) and
ˆ = O(γ ), we obtain

d
dγ

Q (φ) = −
3
4
b(b − 1)γ 1/2

∫
R
ϕ2
1dζ + O(γ 3/2) as γ → 0,

o that the stability criterion (66) is satisfied as γ → 0 for every
> 1.
In the opposite asymptotic limit γ → 1, we integrate Eq. (63)

ith the boundary conditions ϕ(ζ ) → 0 as |ζ | → ∞ and obtain
he first-order invariant:

− (ϕ′)2 +
(1 − ϕ)b−1

γ b(b − 1)

[
2(1 − γ ) + 2(1 − γ )(b − 1)ϕ + b(b − 1)ϕ2]

=
2(1 − γ )
γ b(b − 1)

. (69)

If the center of the solitary wave is translated to the origin, so
that ϕ′(0) = 0, we can parameterize the integral for Q (φ) in (65)
and obtain the equivalent representation

Q (φ) =

∫ ϕ0

0

2
√
b(b − 1)(1 − ϕ)−

b+1
2

[
(1 − ϕ)b−1

[(b − 1)ϕ + 1] − 1
]
dϕ√

(1 − ϕ)b−1
[
2(1 − γ ) + 2(1 − γ )(b − 1)ϕ + b(b − 1)ϕ2

]
− 2(1 − γ )

(70)

here ϕ0 is the turning point, for which the integral is weakly
ingular due to vanishing denominator. It follows from (70) that
0 → 1 as γ → 1 for b > 1 and

lim
γ→1

Q (φ) = 2
∫ 1

0

(1 − ϕ)b−1
[(b − 1)ϕ + 1] − 1
ϕ(1 − ϕ)b

dϕ = −∞,

o that the stability criterion (66) is satisfied as γ → 1 for every
> 1. □

In the general case b > 1, we verify the stability criterion (66)
umerically. Fig. 2 shows dependence of Q (φ) computed from the

numerical quadrature of the integral (70) versus γ in [0, 1] for
different integer values of b. The turning point ϕ0 was obtained by
using the Newton–Raphson iterative method. The integral in the
expression (70) was computed by using the composite midpoint
rule. It follows from the behavior of Q (φ) versus γ that the
stability criterion (66) is satisfied for every b > 1.

6. Conclusion

We have derived the precise criterion for orbital stability of
smooth solitary waves on the nonzero constant background in
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he b-CH equation with b > 1. Perturbations to the horizontal
elocity u(t, x) are controlled in H3(R). Verification of this stabil-
ty criterion analytically for integrable cases b = 2 and b = 3 give
lternative proofs of orbital stability of smooth solitary waves in
he Camassa–Holm and Degasperis–Procesi equations compared
o the work in [27] and [28] respectively. We also verified the
tability criterion analytically for every b > 1 and c > 0
in the asymptotic limits, where the family of smooth solitary
waves terminates. The stability criterion is verified numerically
in the general case. It is still open to verify the stability criterion
analytically for every b > 1, c > 0, and k ∈ (0, (b + 1)−1c).

This work opens roads to further studies of traveling waves
in the b-CH model. Stability of smooth periodic waves for the
integrable case b = 2 was considered in [29] by using two
alternative Hamiltonian structures (9) and (10). This approach
also leads to the precise stability criterion which can only be
verified numerically in the general case. It would be natural to
explore the Hamiltonian structure (4) for stability of smooth
periodic waves both for b = 2 and generally for b > 1.

Stability of smooth traveling waves in the b-CH model with
b ≤ 1 is also of interest from the points of physical applications.
Some smooth traveling solitary waves with positive φ and µ exist
for b ≤ 1 and their orbital stability can be clarified by using the
same analysis as in the proof of Theorem 1. Orbital stability of
periodic waves for b ≤ 1 is also an open problem.
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Appendix. Casimirs for the operator Jm

While it is known that F1 and F2 in (7) and (8) are Casimirs for
the operator Jm in (5) [10,14], the proof of that fact has not been
formally presented before. We reproduce an argument graciously
provided by Andrew Hone to us.

Suppose that Jmf = 0. Then we have

Jmf = (1 − b)−1b2m1−1/b∂x(m1/b∂−1
x (1 − ∂2x )

−1(m1/b∂x(m1−1/bf )))
= 0,

where we have used the alternate expression for Jm given in [16,
Equation (1.10)]. Multiplying by (1−b)b−2m1/b−1 and performing
one integration gives

∂−1(1 − ∂2)−1(m1/b∂ (m1−1/bf )) = k m−1/b,
x x x 1

9

where k1 is an arbitrary constant. This implies

∂x(m1−1/bf ) = k1m−1/b∂x(1 − ∂2x )m
−1/b

= k1∂x(b−1m−2/b−1mxx

− (2b)−1(b−1
+ 2)m−2/b−2m2

x + 2−1m−2/b).

Integrating once more gives

f = k1(b−1m−1/b−2mxx − (2b)−1(b−1
+ 2)m−1/b−3m2

x + 2−1m−1/b−1)

+ k2m1/b−1,

for another arbitrary constant k2. This expression is a linear
combination of δF1

δm and δF2
δm .
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