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Abstract
We obtain new results on the stability of discrete dark solitons bifurcating
from the anti-continuum limit of the discrete nonlinear Schrödinger equation,
following the analysis of our previous paper (2005 Physica D 212 1–19). We
derive a criterion for the stability or instability of discrete dark solitons from the
limiting configuration and confirm this criterion numerically. We also develop
asymptotic calculations of the relevant eigenvalues for a number of prototypical
configurations and illustrate their good agreement with the numerical data.
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(Some figures in this article are in colour only in the electronic version)

In this paper, we address the dynamical lattice model governed by the discrete nonlinear
Schrödinger (DNLS) equation [7]. We consider the defocusing version of this equation in the
form

iu̇n + ε(un+1 − 2un + un−1) − |un|2un = 0, (1)

where n ∈ Z, un(t) : R → C and ε > 0. The stationary solutions un(t) = φn e−it are found
from the second-order difference equation(

φ2
n − 1

)
φn = ε(φn+1 − 2φn + φn−1) (2)

for a real-valued sequence {φn}n∈Z, denoted in vector notation by φ. Our aim here is to study
discrete dark solitons which are defined by the non-vanishing boundary conditions at infinity,
e.g. limn→±∞ φn = ±1. The limiting configuration of dark solitons at ε = 0, denoted as
φ(0), is defined by the decomposition Z = U+ ∪ U− ∪ U0 such that φ(0)

n = ±1 for n ∈ U±
and φ(0)

n = 0 for n ∈ U0. Our previous work [12] addressed the stability of discrete bright
solitons when dim(U+ ∪ U−) < ∞. In this paper, we shall study the stability of discrete dark
solitons, when dim(U0) < ∞ and there exists N � 1 such that n ∈ U± for all ±n � N . These
solutions were considered recently in [4, 15], as well as earlier in [5, 8] using predominantly
numerical computations.
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The topic of dark solitons and their stability is not only of theoretical and mathematical
interest, but is also a subject of relevance to currently available experimental settings. In
particular, discrete dark solitons have been observed in the context of AlGaAs waveguide
arrays in the anomalous diffraction regime [10]. Furthermore, as was illustrated in [4], similar
phenomenology can be observed in the discrete dark solitons that arise in defocusing lithium
niobate waveguide arrays which exhibit a saturable nonlinearity due to the photovoltaic effect;
in the latter case, experimental results were presented in the work of [14]. Although these
nonlinear optics experiments are the most promising realizations of discrete dark solitons, such
waveforms may also be relevant to atomic physics. In particular, dark solitons were considered
for Bose–Einstein condensates in the presence of a periodic, so-called optical lattice, potential
[1, 11] (although in the latter setting, discrete dark solitons have not yet been experimentally
realized).

It should be noted that dark solitons are also of relevance to magnetic systems; in particular,
they can be observed as microwave envelopes in magnetic fields [2, 6]. These waveforms have
also been analyzed in the context of nonlinear Schrödinger equations; see, e.g., [13], although
we are not aware of discrete realizations of the relevant systems.

To determine the persistence and stability of discrete dark solitons, we study spectra of
the linear operators L+ and L− defined by

(L+ψ)n = (
3φ2

n − 1
)
ψn − ε(ψn+1 − 2ψn + ψn−1),

(L−ψ)n = (
φ2

n − 1
)
ψn − ε(ψn+1 − 2ψn + ψn−1).

If φ ∈ l∞(Z) for any ε � 0, then the operators L± map l2(Z) to itself. Their spectrum
at ε = 0 is computed explicitly. The operator L+ has an eigenvalue 2 of multiplicity
dim(U+) + dim(U−) = ∞ and an eigenvalue −1 of multiplicity dim(U0) < ∞. The operator
L− has an eigenvalue 0 of multiplicity dim(U+) + dim(U−) = ∞ and an eigenvalue −1 of
multiplicity dim(U0) < ∞.

Since l2(Z) is a Banach algebra with respect to the pointwise multiplication and the
operator L+ is continuously invertible in l2(Z) for sufficiently small ε � 0, the persistence of
solutions of the difference equation (2) in the form φ = φ(0) + ϕ, where φ(0) ∈ l∞(Z) and
ϕ ∈ l2(Z), is proved using the implicit function theorem. Moreover, the dependence of φ on
ε is analytic near ε = 0. Analysis of the stability problem

(L+u)n = −λwn, (L−w)n = λun (3)

for small ε � 0 is, however, more complicated because of the splitting of the zero eigenvalue
of infinite multiplicity into a spectral band located at

�s = {λ ∈ C : −2
√

2ε(1 + 2ε) � Im λ � 2
√

2ε(1 + 2ε)}

and a number of isolated eigenvalues around the origin. We shall count these eigenvalues by
using the recent results of [3, 12].

Since (L−φ)n = 0 and the non-decaying sequence {φn}n∈Z does not oscillate as
n → ±∞, 0 is at the bottom of the continuous spectrum of L−, which is located for λ ∈ [0, 4ε].
By the discrete Sturm theory [9], the number of negative eigenvalues of L− equals the number
of times the sequence {φn}n∈Z changes sign on Z. To compute this number, we subdivide U0

into segments U0 = ∪N
j=1

[
n−

j , n+
j

]
for some N < ∞ and denote the number of sign changes

between adjacent nodes in U+ ∪ U− by σ0.
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Lemma 1. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), the number of sign changes of
the sequence {φn}n∈Z equals dim(U0)+σ0 +

∑N
j=1 σj , where σj is associated with the segment

Uj = [n−
j , n+

j ] ⊂ U0, such that

σj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if dim(Uj ) is odd and sign
(
φn−

j −1φn+
j +1

) = 1

0 if dim(Uj ) is odd and sign
(
φn−

j −1φn+
j +1

) = −1

1 if dim(Uj ) is even and sign
(
φn−

j −1φn+
j +1

) = −1

0 if dim(Uj ) is even and sign
(
φn−

j −1φn+
j +1

) = 1.

(4)

Proof. By the persistence of solutions in l∞(Z)-norm for sufficiently small ε, any sign change
between the adjacent nodes in U+ ∪ U− persists in ε. Therefore, the statement of the lemma
is proved if we can prove for a particular segment Uj = [

n−
j , n+

j

]
of length nj = n+

j − n−
j + 1

that the number of sign changes equals nj + σj , where σj is given by (4). To do this with an
application of lemma 2.3 from [12], we use the staggering transformation φn = (−1)nϕn and
rewrite the difference equation (2) in the form(

1 − ϕ2
n

)
ϕn = ε(ϕn+1 + 2ϕn + ϕn−1).

By lemma 2.3 of [12], there is only one sign difference in the sequence {ϕn}n
+
j +1

n−
j −1

if

sign
(
ϕn−

j −1ϕn+
j +1

) = −1 and none if sign
(
ϕn−

j −1ϕn+
j +1

) = 1. If nj is odd, the staggering

transformation gives (nj +1) sign differences in the sequence {φn}n
+
j +1

n−
j −1

if sign
(
φn−

j −1φn+
j +1

) = 1

and nj sign differences if sign
(
φn−

j −1φn+
j +1

) = −1. If nj is even, however, the sequence

{φn}n
+
j +1

n−
j −1

has nj sign differences if sign
(
φn−

j −1φn+
j +1

) = 1 and (nj + 1) sign differences if

sign
(
φn−

j −1φn+
j +1

) = −1. Thus, formula (4) is proved. �

Corollary 2. The number N0 = σ0 +
∑N

j=1 σj equals the number of small negative eigenvalues
of L− for ε > 0 bifurcating from the zero eigenvalue of infinite multiplicity for ε = 0.

Proof. This follows from the fact that L− has dim(U0) negative eigenvalues at ε = 0. �

Definition 3. The stability problem (3) is said to have a purely imaginary eigenvalue of
negative Krein signature if (L−u, u) = (

L−1
+ w, w

)
� 0 for the corresponding eigenvector

(u, w).

Theorem 4. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), the stability problem (3) has
exactly dim(U0) pairs of purely imaginary isolated eigenvalues of negative Krein signature
bounded away from the continuous spectrum and exactly N0 pairs of small real eigenvalues.

Proof. Since L+ is invertible for sufficiently small ε, we rewrite the stability problem (3) in
the form

L−w = γL−1
+ w, γ = −λ2. (5)

Since L− is not invertible for any ε � 0, we shift the eigenvalue problem to the form(
L− + δL−1

+

)
w = (γ + δ)L−1

+ w,

for sufficiently small δ > 0. Since Null(L−) lies in the positive subspace of L−1
+ at ε = 0 and

the number of negative eigenvalues of L− is unchanged in (0, ε0), for a fixed ε ∈ (0, ε0), there
is a small δ = δ(ε), such that the number of negative eigenvalues of L− + δL−1

+ is the same

3
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as that of L−. Conditions of theorem 1 of [3] are now satisfied and we count the negative
eigenvalues of L− + δL−1

+ (same as for L−) and L−1
+ (same as for L+) as follows:

n(L−) = N−
p + N+

n + Nc+ , n(L+) = N−
n + N+

n + Nc+ ,

where n(L±) denotes the number of negative eigenvalues of L±, Nc+ denotes the number of
complex eigenvalues γ in the upper half-plane, N±

n denote the number of positive/negative
eigenvalues γ with

(
w, L−1

+ w
)

� 0 for corresponding eigenvectors w and N−
p denotes the

number of negative eigenvalues γ with
(
w, L−1

+ w
)

� 0 for corresponding eigenvectors w.
By lemma 1 and corollary 2, we have n(L−) = dim(U0) + N0 and n(L+) = dim(U0) for
sufficiently small ε ∈ (0, ε0).

At ε = 0, there exists dim(U0) eigenvalues γ = 1 with
(
w, L−1

+ w
)

< 0, where the
sequence {wn}n∈Z for the eigenvector w is compactly supported in U0. By proposition 5.1 in
[3], the eigenvalue γ = 1 is hence semi-simple (that is algebraic and geometric multiplicities
coincide). Therefore, all dim(U0) eigenvalues persist for positive values of γ for sufficiently
small ε. By continuity of the eigenvectors w in ε, the inequality

(
w, L−1

+ w
)

< 0 holds for
sufficiently small ε > 0, and therefore, n(L+) = dim(U0) = N+

n , such that Nc+ = N−
n = 0 and

N−
p = N0. Therefore, all N0 bifurcations of small negative eigenvalues of L− for ε ∈ (0, ε0)

from the zero eigenvalue of L− for ε = 0 result in pairs of small real eigenvalues λ = ±√−γ

of the stability problem (3). �

Remark 5. Small eigenvalues of the operator L− can be found from the difference eigenvalue
problem

Vnψn − ε (ψn+1 + ψn−1 − 2ψn) = µψn, Vn = V (0)
n +

∞∑
k=1

εkV (k)
n , (6)

where V (0)
n = (

φ(0)
n

)2 − 1, V (1)
n = 2φ(0)

n φ(1)
n , V (2)

n = 2φ(0)
n φ(2)

n +
(
φ(1)

n

)2
and so on, due to

analytic dependence of the solution φ of the difference equation (2) on ε. If w is supported in
U+ ∪ U− and ε = 0, then L+w = 2w. Since l2 eigenvectors of the difference equation (6) for
small negative eigenvalues µ are supported in U+∪U− as ε → 0, a small negative eigenvalue µ

for L− is related to a small negative eigenvalue γ for L+L− (that is the eigenvalue of the stability
problem (5) with the l2 eigenvector) by the asymptotic approximation limε→0 γ /µ = 2.

As the simplest application of our results, we consider two basic configurations of discrete
dark solitons from [4, 5, 8].

• If U± = Z± and U0 = {0} (a so-called on-site dark soliton), then N0 = 0 and, according to
theorem 4, the dark soliton is stable for small ε > 0 with a single pair of purely imaginary
eigenvalues of negative Krein signature near λ = ±i.

• If U+ = Z+, U− = Z− ∪ {0} and U0 = ∅ (a so-called inter-site dark soliton), then
N0 = σ0 = 1 and the dark soliton is unstable with a single pair of real eigenvalues. The
asymptotic approximation of the unstable eigenvalue can be obtained with the following
argument. The solution of the difference equation (2) is expanded in the power series
φ = φ(0)+εφ(1)+O(ε2), where φ(1) is compactly supported with φ

(1)
0 = 1, φ

(1)
1 = −1 and

φ(1)
n = 0 for all n ∈ Z\{0, 1}. Since V (0)

n = 0 and V (1)
n = −2(δn,0 +δn,1), where δn,m is the

Kronecker symbol, the potential V of the discrete Schrödinger equation (6) is negative at
the leading order. By the discrete Sturm theory [9], it traps a unique negative eigenvalue
with the symmetric eigenfunction ψn = ψ−n+1, n ∈ N. Using the parametrization

µ = ε(2 − eκ − e−κ) (7)

and solving the eigenvalue problem for the eigenvector ψ1 = 1, ψn = C e−κ(n−2) for
n � 2, we obtain C = e−κ and eκ = 3 at the leading order of O(ε), which gives

4
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Figure 1. Numerical approximations of the unstable eigenvalue for the inter-site dark soliton (solid

line) together with the asymptotic prediction λ =
√

8ε
3 (dashed curve) and the approximation

λ = √
2ε of [4] (thick dashed curve).

µ = − 4
3ε + O(ε2). Using remark 5, we conclude that the pair of real eigenvalues of the

stability problem (3) is given by λ = ±√−γ = ±
√

8ε
3 (1 + O(ε)). This approximation is

shown in figure 1 with thin dashed line, while the solid line shows the results of numerical
approximations of eigenvalues of the truncated linear stability system (3). It should be
noted that the earlier work of [4] approximated the real eigenvalue pair of the inter-site
dark soliton as λ = ±√

2ε. As can be readily observed from a solid dashed line in
figure 1, this asymptotic prediction is not accurate.

To illustrate more complicated applications of theorem 4, we consider several composite
discrete dark solitons, some of which were studied in [15].

• If U+ = {0} ∪ Z+\{1}, U0 = ∅ and U− = Z− ∪ {1}, then N0 = σ0 = 3, such that
three pairs of real (unstable) eigenvalues occur in the linearized problem (3). To find
asymptotic approximations of these eigenvalues, we again consider eigenvalues of L− in
the difference equation (6) with the potentials V (0)

n = 0 and

φ(1)
n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, n = −1
−2, n = 0
2, n = 1
−1, n = 2
0, otherwise,

V (1)
n = 2φ(0)

n φ(1)
n =

⎧⎨
⎩

−4, n = {0, 1}
−2, n = {−1, 2}
0, otherwise.

We construct two symmetric eigenvectors and one anti-symmetric eigenvector for three
negative eigenvalues µ. For symmetric eigenvectors, ψn = ψ−n+1, n ∈ Z with
ψ1 = 1, ψ2 = B,ψn = C e−κ(n−3), n � 3, we use the parametrization (7) and obtain at
the leading order of O(ε):

C = B e−κ , (eκ − 2)B = 1, B = eκ + e−κ − 5.

Eliminating B, we obtain a cubic equation for z = eκ :

z3 − 7z2 + 10z − 2 = 0. (8)

There exist two solutions of the cubic equation in the interval z > 1, namely z1 ≈ 1.637
and z2 ≈ 5.125. For the anti-symmetric eigenvector, ψn = −ψ−n+1, n ∈ Z with ψ1 = 1,

ψ2 = B,ψn = C e−κ(n−3), n � 3, we obtain at the leading order of O(ε):

C = B e−κ , (eκ − 2)B = 1, B = eκ + e−κ − 3.

5
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Figure 2. The left panel compares the asymptotic predictions (dashed lines) with the results of
numerical linear stability analysis (solid lines) for the three positive real eigenvalues of the discrete
dark soliton with U+ = {0} ∪ Z+\{1}, U0 = ∅ and U− = Z− ∪ {1}. The right panel shows a
typical example of the solution profile (top) and the corresponding spectral plane λ = λr + iλi of
its linearization spectrum for ε = 0.05.

Eliminating B, we obtain a cubic equation for z = eκ :

z3 − 5z2 + 6z − 2 = 0. (9)

Since one root is z = 1, we can find a unique root of the cubic equation in the interval
z > 1, namely z3 = 2+

√
2. Each of the three roots above generates a negative eigenvalue

for µ = ε(2 − z − z−1) + O(ε2). Each negative eigenvalue µ of L− generates a negative
eigenvalue γ of L+L− with the correspondence γ = 2µ+O(ε2). Summarizing, the three
pairs of real eigenvalues are given asymptotically by λ ≈ ±0.704

√
ε, λ ≈ ±1.848

√
ε

and λ ≈ ±2.577
√

ε. These theoretical predictions are compared with the results of full
numerical linear stability analysis in the left panel of figure 2, yielding a good agreement
for small values of ε. A typical example of the discrete dark soliton and its linearization
spectrum for ε = 0.05 is shown in the right panel of figure 2.

• If U+ = Z+\{1}, U0 = {0} and U− = Z− ∪ {1}, then σ0 = 1, σ1 = 1, such that N0 = 2
and two pairs of real (unstable) eigenvalues occur in the linearized problem (3), while
one pair of imaginary eigenvalues of negative Krein signature persists on the imaginary
axis near λ = ±i. To compute the small negative eigenvalues of L−, we compute the
leading-order potential V (0)

n = −δn,0 and then proceed with the first-order potential:

φ(1)
n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 , n = −1
2, n = 0
3
2 , n = 1
−1, n = 2
0, otherwise,

V (1)
n = 2φ(0)

n φ(1)
n =

⎧⎪⎪⎨
⎪⎪⎩

−1, n = −1
−3, n = 1
−2, n = 2
0, otherwise.

Since the potential has no symmetry, we have to find the eigenvector of the eigenvalue
problem (6) in the most general form ψn = A eκ(n+2), n � −2, ψ−1 = B,ψ0 = C,ψ1 =
D,ψ2 = E and ψ3 = F e−κ(n−3), n � 3. Using the parametrization (7), we obtain at the
leading order of O(ε):

F = E e−κ , (eκ − 2)E = D, C + E = (eκ + e−κ − 3)D,

A = B e−κ , eκB = B + C.

6
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Since the equation at n = 0 implies that C = −ε(B + D) + O(ε2), the chain of equations
is uncoupled at the variables (D,E, F ) and (A,B) at the leading order. Working with the
chain for (D,E, F ), we obtain the same cubic equation (9) with the same root eκ = 2+

√
2,

which gives the approximation µ = −ε
(
1 + 1√

2

)
+ O(ε2). Working with the chain for

(A,B), we obtain the equation eκ = 1, which hides a small root κ = O(ε). To unveil
this hidden eigenvalue, we have to extend the potential to the second order by

φ(2)
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4 , n = {−2, 2}
7
8 , n = −1

2, n = 0
19
8 , n = 1

− 1
2 , n = 3

0, otherwise,

V (2)
n = 2φ(0)

n φ(2)
n +

(
φ(1)

n

)2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
2 , n = −2

− 3
2 , n = −1

4, n = 0

− 5
2 , n = 1

3
2 , n = 2

−1, n = 3

0, otherwise.

Using the parametrization (7) and the representation of the eigenvector in the form
ψn = A eκ(n+3), n � −3, ψ−2 = B,ψ−1 = C,ψ0 = D,ψ1 = E,ψ2 = F,ψ3 = G

and ψ4 = H e−κ(n−4), n � 4, we obtain at the leading order of O(ε) + O(ε2)

H = G e−κ , (eκ − ε)G = F, E + G =
(

eκ + e−κ − 2 +
3ε

2

)
F,

D + F =
(

eκ + e−κ − 3 − 5ε

2

)
E

and

A = B e−κ ,
(

eκ − ε

2

)
B = C, B + D =

(
eκ + e−κ − 1 − 3ε

2

)
C,

where the approximation D = −ε(C+E)+O(ε2) is sufficient for the purpose. Eliminating
B,D,F and G, we obtain two equations at the leading order O(ε):

−εE = (eκ − 1 − ε)C, −εC = (2 eκ + e−κ − 3 − ε)E.

Using the asymptotic expansion κ = εκ1 + O(ε2), we reduce the problem to a quadratic
equation for κ1 with two roots κ1 = 2 and κ1 = 0. The nonzero root leads to the
approximation µ = −4ε3 + O(ε4). Each of the two roots above generates a negative
eigenvalue γ of L+L− with the correspondence γ = 2µ(1+O(ε)). Summarizing, the two
pairs of real eigenvalues are given asymptotically by λ ≈ ±1.848

√
ε and λ ≈ ±

√
8ε3,

which are again found in figure 3 to be in very good agreement with the full numerical
results.

• If U+ = Z+\{1}, U0 = {0, 1} and U− = Z−, then N0 = σ1 = 1 and one pair of real
(unstable) eigenvalues occurs in the linearized problem (3), while two pairs of imaginary
eigenvalues of negative Krein signature persist on the imaginary axis near λ = ±i. To
compute the small negative eigenvalue of L−, we use Wolfram’s MATHEMATICA and
compute the potentials of the eigenvalue problem (6) up to the fourth order:

V (0)
n =

{
−1, n = {0, 1}
0, otherwise,

V (1)
n =

{
−1, n = {−1, 2}
0, otherwise,

V (2)
n =

⎧⎪⎨
⎪⎩

− 1
2 , n = {−2,−1, 2, 3}

1, n = {0, 1}
0, otherwise

7
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Figure 3. The same as figure 2, but for the discrete dark soliton with U+ = Z+\{1}, U0 = {0} and
U− = Z− ∪ {1}.

and

V (3)
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− 1
4 , n = {−3, 4}

1
8 , n = {−2, 3}
− 21

8 , n = {−1, 2}
5, n = {0, 1}
0, otherwise,

V (4)
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
8 , n = {−4, 5}

5
16 , n = {−3, 4}
− 15

8 , n = {−2, 3}
− 129

16 , n = {−1, 2}
45
2 , n = {0, 1}

0, otherwise.

Using the parametrization (7) and the symmetry of the eigenvector ψn = ψ−n+1, n ∈ Z

with

ψ1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A, n = 1
B, n = 2
C, n = 3
D, n = 4
E, n = 5
F e−κ(n−6), n � 6,

we obtain algebraic equations for coefficients A to F, which are solvable up to the
fourth order, subject to the characteristic equation eκ = 1 + 2ε2 + O(ε3). Therefore,
κ = 2ε2 + O(ε3), such that µ = −4ε5 + O(ε6). The small negative eigenvalue of L+L−
is thus approximated by γ = −8ε5 + O(ε6), while the pair of real eigenvalues of the
stability problem (3) is given by λ = ±

√
8ε5(1 + O(ε)). The prediction for this small

real eigenvalue, leading to a very weak instability in this case, is compared to numerical
results in figure 4. Once again, we report very good agreement between the two.

• If U+ = Z+\{1, 2}, U0 = {0, 1, 2} and U− = Z−, then N0 = 0 and three pairs of imaginary
eigenvalues of negative Krein signature persist on the imaginary axis near λ = ±i. This
is confirmed in figure 5, showing a typical example of the discrete dark soliton and its
linearization spectrum for ε = 0.05.

In summary, we have offered a systematic way to assess the stability of discrete dark
solitons in the prototypical dynamical lattice model of the DNLS equation. We have illustrated
how the number of sign changes in the limiting configuration at the anti-continuum limit can
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Figure 4. The same as figure 2, but for the discrete dark soliton with U+ = Z+\{1}, U0 = {0, 1}
and U− = Z−.

Figure 5. A typical example of the solution profile (top) and the spectral plane of its linearization
spectrum (bottom) for the discrete dark soliton with U+ = Z+\{1, 2}, U0 = {0, 1, 2} and U− = Z−
for ε = 0.05. As predicted, the configuration is linearly stable for small ε, bearing three pairs of
imaginary eigenvalues (with negative Krein signature), but no real eigenvalue pairs.

be used to count the number N0 of small real eigenvalues of its linearization spectrum,
when deviating from the anti-continuum limit. We have also associated the number of
zeros in the limiting sequence with the number of isolated imaginary eigenvalues of negative
Krein signature (which accounts for potential oscillatory instabilities for larger values of the
coupling). In addition to this full characterization of the real and imaginary eigenvalues,
we have offered a systematic approach toward computing asymptotic approximations of the
relevant eigenvalues. In particular, we have connected small eigenvalues of operator L+L−
to the small eigenvalues of operator L− and have developed perturbation series expansions
in terms of the inter-site coupling constant. Within this method, relevant computations result
in a finite-dimensional matrix problem. We have demonstrated this approach in a variety of
configurations including the on-site and inter-site dark soliton structures of [4, 5, 8], but also
in multiple-hole configurations of [15], finding very good agreement between the analytical
considerations and the full numerical results. It would be of particular interest to extend
relevant computations to higher dimensional settings, examining, for instance, the stability
of discrete defocusing vortices in the two- or three-dimensional DNLS equations. Such
considerations are deferred to future studies.
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[8] Kivshar Yu S, Królikowski W and Chubykalo O A 1994 Dark solitons in discrete lattices Phys. Rev. E 50 5020
[9] Levy H and Lessman F 1992 Finite Difference Equations (New York: Dover)

[10] Morandotti R, Eisenberg H S, Silberberg Y, Sorel M and Aitchison J S 2001 Self-focusing and defocusing in
waveguide arrays Phys. Rev. Lett. 86 3296

[11] Morsch O and Oberthaler M 2006 Dynamics of Bose–Einstein condensates in optical lattices Rev. Mod.
Phys. 78 179

[12] Pelinovsky D E, Kevrekidis P G and Frantzeskakis D J 2005 Stability of discrete solitons in nonlinear Schrödinger
lattices Physica D 212 1–19

[13] Slavin A N, Kivshar Yu S, Ostrovskaya E A and Benner H 1999 Generation of spin-wave envelope dark solitons
Phys. Rev. Lett. 82 2583–6
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