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Abstract

We study the spectrum of the linear operator L = −∂θ −ε∂θ (sin θ∂θ ) subject to the periodic boundary conditions on θ ∈ [−π,π ].
We prove that the operator is closed in L2

per([−π,π ]) with the domain in H 1
per([−π,π ]) for |ε| < 2, its spectrum consists of an infi-

nite sequence of isolated eigenvalues and the set of corresponding eigenfunctions is complete. By using numerical approximations
of eigenvalues and eigenfunctions, we show that all eigenvalues are simple, located on the imaginary axis and the angle between two
subsequent eigenfunctions tends to zero for larger eigenvalues. As a result, the complete set of linearly independent eigenfunctions
does not form a basis in L2

per([−π,π ]).
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We address the Cauchy problem for the periodic heat equation{
ḣ = −hθ − ε(sin θhθ )θ , t > 0,

h(0) = h0,
(1.1)

subject to the periodic boundary conditions on θ ∈ [−π,π]. This model was derived in the context of the dynamics
of a thin viscous fluid film on the inside surface of a cylinder rotating around its axis in [3]. Extension of the model to
the three-dimensional motion of the film was reported in [4].

The parameter ε is small for applications in fluid dynamics [3] and our main results correspond to the interval
|ε| < 2 in accordance to these applications. For any ε > 0, the Cauchy problem for the heat equation (1.1) on the half-
interval θ ∈ [0,π] is generally ill-posed [13] and it is naturally to expect that the Cauchy problem remains ill-posed
on the entire interval θ ∈ [−π,π]. The authors of the pioneer work [3] used a heuristic asymptotic solution to suggest
that the growth of “explosive instabilities” might occur in the time evolution of the Cauchy problem (1.1).
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Nevertheless, in a contradiction with the picture of explosive instabilities, only purely imaginary eigenvalues were
discovered in the discrete spectrum of the associated linear operator

L = −ε
∂

∂θ

(
sin θ

∂

∂θ

)
− ∂

∂θ
, (1.2)

acting on sufficiently smooth periodic functions f (θ) on θ ∈ [−π,π]. Various approximations of eigenvalues were
obtained in [3] by two asymptotic methods (expansions in powers of ε and the WKB method) and by three numerical
methods (the Fourier series approximations, the pseudospectral method, and the Newton–Raphson iterations). The
results of the pseudospectral method were checked independently in [17] (see pp. 124–125 and 406–408). It is seen
both in [3] and [17] that the level sets of the resolvent (λ−L)−1 form divergent curves to the left and right half-planes
and, while true eigenvalues lie on the imaginary axis, eigenvalues of the truncated Fourier series may occur in the left
and right half-planes of the spectral plane. This distinctive feature was interpreted in [3] towards the picture of growth
of disturbances and the phenomenon of explosive instability.

One more question raised in [3] was about the validity of the series of eigenfunctions associated to the purely
imaginary eigenvalues of the operator L for ε �= 0. Although various initial conditions h0 were decomposed into a
finite sum of eigenfunctions and the error decreased with a larger number of terms in the finite sum, the authors of [3]
conjectured that the convergence of the series depended on the time variable and “even though the series converges at
t = 0, it may diverge later.” This conjecture would imply that the eigenfunctions of L for ε �= 0 do not form a basis of
functions in the space L2

per([−π,π]) unlike the harmonics of the complex Fourier series associated with the operator L

for ε = 0.
In this paper, we prove that the operator L is closed in L2

per([−π,π]) with a domain in H 1
per([−π,π]) for |ε| < 2,

such that the spectrum of the eigenvalue problem

−ε
d

dθ

(
sin θ

df

dθ

)
− df

dθ
= λf, f ∈ H 1

per

([−π,π]), (1.3)

is well-defined. Here and henceforth, we denote

H 1
per

([−π,π])= {
f ∈ H 1([−π,π]): f (π) = f (−π)

}
. (1.4)

Furthermore, we prove that the residual and continuous spectra of the spectral problem (1.3) are empty and the
eigenvalues of the discrete spectrum accumulate at infinity along the imaginary axis. We further prove completeness
of the series of eigenfunctions associated to all eigenvalues of the purely discrete spectrum of L in L2

per([−π,π]).
Using the numerical approximations of eigenvalues and eigenfunctions of the spectral problem (1.3), we show that
all eigenvalues of L are simple, located at the imaginary axis, and the angle between two subsequent eigenfunctions
tends to zero for larger eigenvalues. As a result, the complete set of linearly independent eigenfunctions does not
form a basis in L2

per([−π,π]) and hence it cannot be used to solve the Cauchy problem associated with the heat
equation (1.1).

The paper is structured as follows. Sections 2–5 present main results of our studies. Properties of the operator L

are analyzed in Section 2. Eigenvalues of the operator L are characterized in Section 3. Section 4 presents numerical
approximations of eigenvalues and eigenfunctions of the spectral problem (1.3). Section 5 discusses the Cauchy
problem for the heat equation (1.1). Appendices A and B give supplementary material to the main text. An extension of
the spectral problem (1.3) into a self-adjoint problem in a weighted L2-space is reported in Appendix A. Eigenvalues
of the operator L are shown to be resonance poles of a linear Schrödinger operator on an infinite line in Appendix B.

2. General properties of the linear operator L

It is obvious that the operator L is densely defined in L2
per([−π,π]) on the space of smooth functions with periodic

boundary conditions. However, the operator L is not closed in L2
per([−π,π]) if the functions are infinitely smooth. We

therefore prove in Lemma 1 that the operator L admits a closure in L2
per([−π,π]) with a domain in H 1

per([−π,π]).
Eigenfunctions and eigenvalues of the spectral problem (1.3) are studied in Lemmas 2 and 3. The absence of the
residual and continuous spectra of operator L is proved in Lemmas 4 and 5.

Lemma 1. The operator L admits a closure in L2
per([−π,π]) for |ε| < 2 with Dom(L) ⊂ H 1

per([−π,π]).
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Proof. According to Lemma 1.1.2 in [5], if an operator has a non-empty spectrum in a proper subset of a complex
plane, then it must be closed. The operator L has a non-empty spectrum in L2

per([−π,π]) since λ = 0 is an eigenvalue

with the eigenfunction f0(θ) = 1 ∈ L2
per([−π,π]). We should show that there exists at least one regular point λ0 ∈ C,

such that

∀f ∈ H 1
per

([−π,π]): ∥∥(L − λ0I )f
∥∥

L2
per([−π,π]) � k0‖f ‖L2

per([−π,π]) (2.1)

for some k0 > 0. By using straightforward computations, we obtain

(f ′,Lf ) = −
π∫

−π

(1 + ε cos θ)|f ′|2 dθ − ε

π∫
−π

sin θf̄ ′f ′′ dθ, (2.2)

where (g, f ) = ∫ π

−π
ḡ(θ)f (θ) dθ is a standard inner product in L2. If f ∈ H 1

per([−π,π]), then

Re(f ′, f ) = 0, Re(f ′,Lf ) = −
π∫

−π

(
1 + ε

2
cos θ

)
|f ′|2 dθ, (2.3)

such that for any λ0 ∈ R it is true that∣∣Re
(
f ′, (L − λ0I )f

)∣∣� (
1 − |ε|

2

)
‖f ′‖2

L2
per([−π,π]).

Any periodic function f ∈ H 1
per([−π,π]) is represented by f0 + f̃ (θ), where f0 = 1

2π

∫ π

−π
f (θ) dθ and f̃ (θ) belongs

to the space

H0 =
{

f̃ ∈ H 1
per

([−π,π]): π∫
−π

f̃ (θ) dθ = 0

}
. (2.4)

By using the Cauchy–Schwarz inequality, we obtain∣∣Re
(
f̃ ′, (L − λ0I )f̃

)∣∣� ∣∣(f̃ ′, (L − λ0I )f̃
)∣∣� ‖f̃ ′‖L2

per([−π,π])
∥∥(L − λ0I )f̃

∥∥
L2

per([−π,π]),

such that, for any |ε| < 2,∥∥(L − λ0I )f̃
∥∥2

L2
per([−π,π]) �

(
1 − |ε|

2

)2

‖f ′‖2
L2

per([−π,π]).

According to the Neumann–Poincare inequality on [−π,π], we have

‖f ‖2
L2

per([−π,π]) � 4π2‖f ′‖2
L2

per([−π,π]) + 1

2π

( π∫
−π

f (θ) dθ

)2

, (2.5)

such that∥∥(L − λ0I )f
∥∥2

L2
per([−π,π]) = 2πλ2

0f
2
0 + ∥∥(L − λ0I )f̃

∥∥2
L2

per([−π,π])

� 2πλ2
0f

2
0 +

(
1 − |ε|

2

)2

‖f ′‖2
L2

per([−π,π]) � λ2
0‖f ‖2

L2
per([−π,π]),

if λ0 = 1
2π

(1 − |ε|
2 ). Thus, the estimate (2.1) holds for |ε| < 2 with k0 = λ0. �

Remark 1. The formal adjoint of L in L2
per([−π,π]) is L∗ = −ε∂θ (sin θ∂θ ) + ∂θ . According to Lemma 1.2.1 in [5],

the operator L∗, similarly to operator L, also admits a closure in L2
per([−π,π]) with Dom(L∗) ⊂ H 1

per([−π,π]) for
|ε| < 2.
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Lemma 2. Let λ be an eigenvalue of the spectral problem Lf = λf with an eigenfunction f ∈ H 1
per([−π,π]). Then,

(i) −λ, λ̄ and −λ̄ are also eigenvalues of the spectral problem Lf = λf with the eigenfunctions f (−θ), f̄ (θ) and
f̄ (−θ) in H 1

per([−π,π]).
(ii) λ is also an eigenvalue of the adjoint spectral problem L∗f ∗ = λf ∗ with the eigenfunction f ∗ = f (π − θ) in

H 1
per([−π,π]).

(iii) λ is a simple isolated eigenvalue of Lf = λf if and only if (f ∗, f ) �= 0.

Proof. (i) Due to inversion θ → −θ , the spectral problem (1.3) transforms to itself with the transformation λ → −λ.
Due to the complex conjugation, it transforms to itself with λ → λ̄.

(ii) Due to the transformation θ → π − θ , the spectral problem (1.3) transforms to the adjoint problem L∗f = λf

with the same eigenvalue.
(iii) The assertion follows by the Fredholm Alternative Theorem for isolated eigenvalues. �

Lemma 3. Let λ be an eigenvalue of the spectral problem (1.3) with the eigenfunction f ∈ H 1
per([−π,π]). Then,

Re(λ) = ε
(f ′, sin θf ′)

(f,f )
, i Im(λ) = (f ′, f )

(f,f )
, (2.6)

and Im(λ) �= 0 except for a simple zero eigenvalue λ = 0.

Proof. By constructing the quadratic form for f ∈ H 1
per([−π,π]), we obtain

(f,Lf ) = ε

π∫
−π

sin θ |f ′|2 dθ −
π∫

−π

f̄ f ′ dθ, (2.7)

where the second term is purely imaginary since

f ∈ H 1
per

([−π,π]): π∫
−π

f̄ ′f dθ = ∣∣f (θ)
∣∣2∣∣θ=π

θ=−π
−

π∫
−π

f̄ f ′ dθ = −
π∫

−π

f̄ ′f dθ. (2.8)

Moreover, the equality (2.3) can be rewritten in the form

i Im(λ)(f ′, f ) = Re(f ′,Lf ) = −
π∫

−π

(
1 + ε

2
cos θ

)∣∣f ′(θ)
∣∣2 dθ � −

(
1 − |ε|

2

)
‖f ′‖2

L2 , (2.9)

where the right-hand side is negative if |ε| < 2 and f (θ) is not constant on θ ∈ [−π,π]. Therefore, (f ′, f ) �= 0
and Im(λ) �= 0. Finally, the constant eigenfunction f (θ) = 1 corresponds to the eigenvalue λ = 0 and it is a simple
eigenvalue since (f ∗, f ) �= 0, where f ∗(θ) = f (π − θ) = 1 is an eigenfunction of the adjoint operator L∗ for the
same eigenvalue λ = 0. �
Lemma 4. The residual spectrum of the operator L is empty.

Proof. By a contradiction, assume that λ belongs to the residual part of the spectrum of L such that Ker(L − λI) = ∅
but Range(L − λI) is not dense in L2

per([−π,π]). Let g ∈ L2
per([−π,π]) be orthogonal to Range(L − λI), such that

∀f ∈ L2([−π,π]): 0 = (
g, (L − λI)f

)= ((
L∗ − λ̄I

)
g,f

)
.

Therefore, (L∗ − λ̄I )g = 0, that is λ̄ is an eigenvalue of L∗. By Lemma 2(ii), λ̄ is an eigenvalue of L and by
Lemma 2(i), λ is also an eigenvalue of L. Hence λ cannot be in the residual part of the spectrum of L. �
Lemma 5. The continuous spectrum of the operator L is empty.
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Proof. According to Theorem 4 in [8, p. 1438], if L is a differential operator defined on the interval (−π,π) =
(−π,0) ∪ (0,π) and L± are restrictions of L on (−π,0) and (0,π), then σc(L) = σc(L+) ∪ σc(L−), where σc(L)

denotes the continuous spectrum of L. By the symmetry of the two intervals, it is sufficient to prove that the opera-
tor L+ has no continuous spectrum on (0,π) (independently of the boundary conditions at θ = 0 and θ = π ). It is
also sufficient to carry out the proof for ε > 0. Let f+(t) = f (θ) on θ ∈ [0,π] and

cos θ = tanh t, sin θ = sech t, t ∈ R,

such that the interval [0,π] for θ is mapped to the infinite line R for t . The function f+(t) satisfies the spectral
problem

−εf ′′+(t) + f ′+(t) = λ sech tf+(t). (2.10)

With a transformation f+(t) = et/2εg+(t), the spectral problem (2.10) is written in the symmetric form

−εg′′+(t) + 1

4ε
g+(t) = λ sech tg+(t). (2.11)

Thus, our operator is extended to a symmetric operator with an exponentially decaying weight ρ(t) = sech(t). Ac-
cording to Corollary 3 in [8, p. 1437], if L is a symmetric operator on an open interval (a, b) and L0 is a self-adjoint
extension of L with respect to some boundary conditions at x = a and x = b, then σc(L) = σc(L0). Here a = −∞,
b = ∞, and we need to show that the continuous spectrum of the symmetric problem (2.11) is empty in L2(R). This
follows by Theorem 7 in [10, p. 93]: since the weight function ρ(t) of the problem −y′′(t) − λρ(t)y(t) = 0 on t ∈ R

decays faster than 1/t2 as |t | → ∞, the spectrum of −y′′(t) − λρ(t)y(t) = 0 is purely discrete.1 �
3. Eigenvalues of the linear operator L

By results of Lemmas 2–5, the spectral problem (1.3) for |ε| < 2 may have only two types of eigenvalues in
addition to the simple zero eigenvalue: either pairs of purely imaginary eigenvalues or quartets of symmetric complex
eigenvalues. We prove in Lemmas 6 and 7 that there exists an infinite sequence of eigenvalues λ which accumulate
to infinity along the imaginary axis. Furthermore, we prove in Theorem 1 that the eigenfunctions associated to all
eigenvalues of the spectral problem (1.3) form a complete dense set in L2

per([−π,π]). In the end of this section,

Theorem 2 gives a necessary and sufficient condition that the set of eigenfunctions forms a basis in L2
per([−π,π]).

Lemma 6. Let 0 < ε < 2 and ε �= 1
n

, n ∈ N. For λ ∈ C, the spectral problem (1.3) admits three sets of two linearly
independent solutions in the form of the Frobenius series

−π < θ < π : f1 = 1 +
∑
n∈N

cnθ
n, f2 = θ−1/ε

(
1 +

∑
n∈N

dnθ
n

)
, (3.1)

and

0 < ±θ < π : f ±
1 = 1 +

∑
n∈N

a±
n (π ∓ θ)n, f ±

2 = (π ∓ θ)1/ε

(
1 +

∑
n∈N

b±
n (π ∓ θ)n

)
, (3.2)

where all coefficients are uniquely defined. The solution f1(θ) is an analytic function of λ ∈ C uniformly on θ ∈
[−π,π].

Proof. Existence of two linearly independent solutions on −π < θ < π in the form (3.1) and on 0 < ±θ < π in the
form (3.2) follows by the Frobenius method2 [15]. Since the spectral problem (1.3) depends analytically on λ and the
Frobenius series converges absolutely and uniformly in between two singular points, the solution f1(θ) is analytic in

1 Although the spectral problem (2.11) has an additional term Cy(t) with C > 0, this term only makes better the inequality (30) in the proof of
Theorem 7 of [10, p. 93].

2 The difference between the two indices of the indicial equation at θ = 0 or θ = ±π is 1
ε and it is non-integer for ε �= 1

n , n ∈ N. An additional

logarithmic term log(π − θ) may be present in the Frobeneus series if ε = 1
n , n ∈ Z.
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λ ∈ C for any fixed θ ∈ (−π,π). Due to uniqueness of the Frobenius series, the solution f1(θ) can be equivalently
represented by the other solutions

f1(θ) = A±f ±
1 (θ) + B±f ±

2 (θ), 0 < ±θ < π, (3.3)

where A± and B± are some constants, while the functions f ±
1 (θ) and f ±

2 (θ) are analytic in λ ∈ C for any fixed
±θ ∈ (0,π]. By matching analytic solutions for any ±θ ∈ (0,π), we find that A± and B± are analytic functions
of λ ∈ C, the Frobenius series for f1(θ) converges absolutely and uniformly on [−π,π], and the solution f1(θ) is an
analytic function in λ ∈ C. �
Corollary 1. There exists an analytic function Fε(λ) on Imλ > 0, roots of which give isolated eigenvalues of the
spectral problem (1.3) with the account of their multiplicity. The only accumulation point of isolated eigenvalues in
the λ-plane may occur at infinity.

Proof. The function f ∈ H 1([−π,π]) satisfies the spectral problem (1.3) if and only if f (θ) = C0f1(θ) on
θ ∈ [−π,π], where C0 = 1 thanks to the scaling invariance of homogeneous equations. By using the representa-
tion (3.3), we can find that A± = limθ→±π f1(θ) are uniquely defined analytic functions in λ ∈ C. The function
Fε(λ) = A+ − A− is analytic function of λ ∈ C by construction and zeros of Fε(λ) on Imλ > 0 coincide with
the eigenvalues λ of the spectral problem (1.3) with the account of their multiplicity. If Fε(λ0) = 0 for some
λ0 ∈ C, the corresponding eigenfunction f (θ) lies in H 1

per([−π,π]), i.e. it satisfies the periodic boundary condi-
tions f (π) = f (−π). By analytic function theory, the sequence of roots of Fε(λ) cannot accumulate at a finite point
on λ ∈ C. �
Remark 2. We will use the method involving the analytic function Fε(λ) on λ ∈ C for a numerical shooting method
which enables us to approximate eigenvalues of the spectral problem (1.3). This method involves less computations
than the shooting method described in Appendix C of [3].

Lemma 7. Fix 0 < ε < 2 and let {λn}n∈N be a set of eigenvalues of the spectral problem (1.3) with Imλn > 0, ordered
in the ascending order of |λn|. There exists a finite number N � 1, such that for all n � N , λn = iωn ∈ iR+ and

ωn = Cn2 + o
(
n2) as n → ∞, (3.4)

for some C > 0.

Proof. We reduce the spectral problem (1.3) to two uncoupled Schrödinger equations on an infinite line. Let f (θ) be
represented on two intervals ±θ ∈ [0,π] by using the transformations

cos θ = tanh t, sin θ = ± sech t, (3.5)

where t ∈ R. Then, the functions f±(t) = f (θ) on ±θ ∈ [0,π] satisfy the uncoupled spectral problems

−εf ′′±(t) + f ′±(t) = ±λ sech tf±(t), t ∈ R. (3.6)

The normalization condition f (0) = 1 is equivalent to the condition limt→∞ f±(t) = 1. The periodic boundary con-
dition f (π) = f (−π) is equivalent to the condition limt→−∞ f−(t) = limt→−∞ f+(t). The linear problems (3.6) are
reformulated as the quadratic Ricatti equations by using the new variables

f±(t) = e
∫ t
∞ S±(t ′) dt ′ : S± − ε

(
S′± + S2±

)= ±λ sech t. (3.7)

We choose a negative root of the quadratic equation in the form

S±(t) = 1 −√
1 ∓ 4ελ sech t − 4ε2R±

2ε
, R± = S′±(t). (3.8)

The representation (3.8) becomes the chain fraction if the derivative of S±(t) is defined recursively from the same
expression (3.8). By using the theory of chain fractions, we claim that R± = O(

√|λ| ) as |λ| → ∞ uniformly on
t ∈ R. The function Fε(λ) of Corollary 1 is now expressed by
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Fε(λ) = lim
t→−∞

[
f+(t) − f−(t)

]= e
∫∞
−∞ S+(t) dt − e

∫∞
−∞ S−(t) dt . (3.9)

Zeros of Fε(λ) are equivalent to zeros of the infinite set of functions

Gn(λ) = 1

4πiε

∞∫
−∞

[√
1 + 4ελ sech t − 4ε2R−(t) −

√
1 − 4ελ sech t − 4ε2R+(t)

]
dt − n, (3.10)

where n ∈ N. If R±(t) ≡ 0, the function G̃n(ω) = Gn(iω), n ∈ N is real-valued and strictly increasing on ω ∈ R+
with G̃n(0) = −n. By performing asymptotic analysis, we compute that

1

4πiε

∞∫
−∞

[√
1 + 4iεω sech t − 4ε2R−(t) −

√
1 − 4iεω sech t − 4ε2R+(t)

]
dt

= 1

πi

∞∫
−∞

2iω sech t + ε(R+ − R−)√
1 + 4iεω sech t − 4ε2R−(t) +√

1 − 4iεω sech t − 4ε2R+(t)
dt

=
√

ω√
2επ

∞∫
−∞

dt√
cosh t

+ o(
√

ω ), (3.11)

such that limω→∞ G̃n(ω) = ∞. Therefore, there exists exactly one root ω = ωn of G̃n(ω) for each n. Since R− = R+
for λ = iω ∈ iR, each simple root of G̃n(ω) persists for non-zero values of R±(t) = O(

√
ω ) uniformly on t ∈ R as

ω → ∞. According to the asymptotic result (3.11), the roots ωn of G̃n(ω) satisfy the asymptotic distribution (3.4)

with C = 2επ2

(
∫∞
−∞

dt√
cosh t

)2 . �
Remark 3. Analysis of Lemma 7 extends the formal WKB approach proposed in Section 3 of [3]. In particular,
Eq. (3.10) with R± = 0 has been obtained in Eq. (3.11) of [3].

Definition 1. A Schauder basis for a Banach space X is a sequence {fn}n∈N in X with the property that every f in X

has a unique representation of the form f =∑∞
n=1 cnfn with some coefficients {cn}n∈N, in which the N th partial sum

is convergent in the X-norm.

Definition 2. The set of functions {fn}n∈N is said to be complete in a Banach space X if any function f in X can be
approximated by a finite linear combination fN =∑N

n=1 cnfn in the following sense: for any fixed ε > 0, there exists
N � 1 and a certain set of coefficients {c1, c2, . . . , cN }, such that the inequality ‖f − fN‖X < ε holds. The complete
set of functions {fn}n∈N is said to be minimal if it is linear independent in the sense of finite linear combinations.

Theorem 1. Let {fn}n∈N be the set of eigenfunctions corresponding to the set of eigenvalues {λn}n∈N in Lemma 7 with
Imλn > 0. The set of eigenfunctions is complete in the Banach space

X0 =
{

f ∈ L2
per

([−π,π],C
)
:

π∫
−π

f (θ) dθ = 0

}
.

Proof. By Corollary 1, eigenvalues of L with Imλ > 0 accumulate to infinity, such that the operator M = L−1 acting
on elements in X0 is compact. By Lemma 7, there are infinitely many eigenvalues of L and large eigenvalues are
all purely imaginary, such that |λn| = O(n2) as n → ∞. These two facts can be used to show that two sufficient
conditions of the Lidskii’s Completeness Theorem are satisfied. According to Theorem 6.1 in [11, p. 302], the set of
eigenvectors and generalized eigenvectors of a compact operator M in a Hilbert space X0 is complete if there exists
p > 0 such that

sn(M) = o
(
n

−1
p
)

as n → ∞, (3.12)
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where sn is a singular number of the operator M , and the set

WM = {
(Mf,f ): f ∈ X0, ‖f ‖X0 = 1

}
(3.13)

lies in a closed angle θM with vertex at 0 and opening π
p

. Since the singular numbers sn are eigenvalues of the positive

self-adjoint operator (MM∗)1/2 and the eigenvalues of L grow like O(n2) as n → ∞, we have sn(M) = O(n−2) as
n → ∞, such that the first condition (3.12) is verified with p = 1. Since all Imλn > 0 for the set of eigenvalues
{λn}n∈N of Lemma 7, the spectrum of M lies in the lower half plane, such that the second condition (3.13) is also
verified with p = 1 (θM = π ). �
Corollary 2. The set of eigenfunctions {fn}n∈Z with f0 = 1 and f−n = f̄n, ∀n ∈ N is complete in L2

per([−π,π]).

Remark 4. Due to linear independence of eigenfunctions for distinct eigenvalues, the complete set of eigenfunctions
{fn}n∈Z is also minimal if all eigenvalues are simple.3

Theorem 2. Let {fn}n∈Z be a complete and minimal set of eigenfunctions of the spectral problem (1.3) for the set of
eigenvalues {λn}n∈Z in Theorem 1. The set of eigenfunctions forms a basis in Hilbert space L2

per([−π,π]) if and only

if limn→∞ cos( ̂fn,fn+1) < 1.

Proof. According to Theorem 2 in [14, p. 31], the complete and minimal set of eigenfunctions {fn}n∈Z forms a basis
in Hilbert space X = L2

per([−π,π]) if and only if supN ‖PN‖ < ∞, where PN is a projector from X to a subspace
spanned by {fn}−N�n�N parallel to the subspace spanned by {fn}|n|>N+1. Since the Hilbert space X is a direct sum
of the two subspaces above, the norm of the parallel projector PN has the geometrical representation ‖PN‖ = 1

sinαN
,

where αN is the angle between the two subspaces [1]. This implies that the set {fn}n∈Z is a basis in the Hilbert space X

if and only if

cos( ̂fn,fn+1) = |(fn, fn+1)|
‖fn‖‖fn+1‖ < 1, (3.14)

for sufficiently large n ∈ Z [12]. �
4. Numerical approximations

We approximate isolated eigenvalues of the spectral problem (1.3) for 0 < ε < 2 numerically. In agreement with
numerical results in [3], we show that all eigenvalues in the set {λn}n∈Z are simple and purely imaginary. Therefore,
the set {λn}n∈Z can be ordered in the ascending order, such that λ0 = 0, λn = −λ−n, ∀n ∈ N, Imλn < Imλn+1 and
limn→∞ |λn| = ∞. We also show that the angle between two subsequent eigenfunctions fn(θ) and fn+1(θ) in the
set {fn(θ)}n∈Z tends to zero as n → ∞. All computations of this section are performed in MATLAB 6 under the
Windows platform.

4.1. Shooting method

The numerical shooting method is based on the ODE formulation of the spectral problem (1.3). By Lemma 6 and
Corollary 1, complex eigenvalues λ ∈ C are determined by roots of the analytic function Fε(λ) in the λ-plane. The
number of complex eigenvalues can be computed with the winding number theory. The number and location of purely
imaginary eigenvalues can be found from real-valued roots of a scalar real-valued function.

Proposition 1. Let the eigenfunction f (θ) of the spectral problem (1.3) for 0 < ε < 2 be normalized by the condition
f (0) = 1. The eigenvalue λ is purely imaginary if and only if f (θ) = f̄ (−θ) on θ ∈ [−π,π].

3 By Lemma 7, all eigenvalues are simple starting with some n � N .
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Proof. If λ ∈ iR and f (θ) satisfies the second-order ODE (1.3) on θ ∈ [−π,π], then f̄ (−θ) satisfies the same ODE
(1.3) on θ ∈ [−π,π]. By Corollary 1, if f ∈ H 1

per([−π,π]), f (0) = 1 and 0 < ε < 2, the solution f (θ) is uniquely

defined. By uniqueness of solutions, f (θ) = f̄ (−θ) on θ ∈ [−π,π].
If f (θ) = f̄ (−θ) on θ ∈ [−π,π], then

π∫
−π

sin θ
∣∣f ′(θ)

∣∣2 dθ =
π∫

0

sin θ
∣∣f ′(θ)

∣∣2 dθ −
π∫

0

sin θ
∣∣f ′(−θ)

∣∣2 dθ = 0,

such that Reλ = 0 according to the equality (2.6) in Lemma 3. �
Corollary 3. Let f (θ) be an eigenfunction of the spectral problem (1.3) for λ ∈ iR, such that f ∈ H 1

per([−π,π]) and
f (0) = 1. Then, f (π) = f (−π) is equivalent to f (π) ∈ R. The eigenvalue λ ∈ iR is simple if and only if

(
f ∗, f

)= 2 Re

π∫
0

f (θ)f̄ (π − θ) dθ �= 0, (4.1)

where f ∗ = f (π − θ) is an eigenfunction of the adjoint operator L∗ for the same eigenvalue.

Proof. The first assertion follows by the symmetry relation f (θ) = f̄ (−θ) evaluated at θ = π . The second assertion
follows by Lemma 2 with the use of the symmetry f ∗(θ) = f (π − θ). �

By Lemma 6, the function f (θ) with f (0) = 1 is represented uniquely by the Frobenius series

f (θ) = f1(θ) = 1 +
∑
n∈N

cnθ
n, (4.2)

where the coefficients {cn}n∈N are uniquely defined by the recursion relation

cn = − 1

n(1 + εn)

(
λcn−1 + εn

∑
m∈[1,n−2]′

(−1)
n−m

2 m

(n − m + 1)!cm

)
, n ∈ N, (4.3)

where c0 = 1 and [1, n − 2]′ is a set of integers in the interval [1, n − 2] such that n − m is even. For instance,

c1 = − λ

1 + ε
, c2 = λ2

2(1 + ε)(1 + 2ε)
, c3 = − λ(λ2 + ε(1 + 2ε))

3!(1 + ε)(1 + 2ε)(1 + 3ε)

and so on. We truncate the power series expansion on N = 100 terms and approximate the initial value [f (θ0), f
′(θ0)]

at θ0 = 10−8. By using the fourth-order Runge–Kutta ODE solver with time step h = 10−4, we obtain a numerical
approximation of f ≡ f+(θ) on θ ∈ [θ0,π − θ0] for λ and f ≡ f−(θ) on the same interval for −λ. By Lemma 2(i),
the numerical approximation of the function Fε(λ) of Corollary 1 is

F̂ε(λ) = f+(π − θ0) − f−(π − θ0). (4.4)

If λ ∈ iR, the function F̂ε(λ) is simplified by using Corollary 3 as F̂ε(λ) = 2i Imf+(π − θ0). Table 1 represents the
numerical approximations of the first four non-zero eigenvalues λ ∈ iR for ε = 0.5,1.0,1.54 with the error computed
from the residual

R =
∣∣∣∣ (f,Lf )

(f,f )
− λ

∣∣∣∣.
We can see from Table 1 that the accuracy drops with larger values of ε and for larger eigenvalues, but the eigenvalues
persist inside the interval |ε| < 2.

4 We note that the Frobenius series (4.2) is not affected by the logarithmic terms for ε = 0.5 and ε = 1.0, since 0 is the largest index of the indicial
equation at θ = 0.
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Table 1
Numerical approximations of the first four eigenvalues λ = iωn of the spectral problem (1.3) and the residuals R = Rn for three values of ε

ε ω1 R1 ω2 R2 ω3 R3 ω4 R4

0.5 1.167342 0.000051 2.968852 0.000405 5.483680 0.001436 8.715534 0.003653
1.0 1.449323 0.000837 4.319645 0.007069 8.631474 0.024964 14.382886 0.061881
1.5 1.757278 0.002691 5.719671 0.018412 11.846709 0.054271 20.138824 0.113834

Fig. 1. The real part (dark) and imaginary part (bright) of the eigenfunction f (θ) on θ ∈ [0,π ] for the first (solid) and second (dashed) eigenvalues
λ = iω1,2 ∈ iR+ for ε = 0.5 (left) and ε = 1.5 (right).

Fig. 2. The image of the curve w = F̂ε (λ), when λ traverses along the contours Λ1, Λ2 and Λ3 for ε = 0.5: the image curve on the w-plane (left)
and the argument of w (right).

Fig. 1 shows the profiles of eigenfunctions f (θ) on θ ∈ [0,π] for the first two eigenvalues λ = iω1,2 ∈ iR+ for
ε = 0.5 (left) and ε = 1.5 (right). We can see from Fig. 1 that the derivative of f (θ) becomes singular as θ → π− for
ε � 1. We can also see that the real part of the eigenfunction f (θ) has one zero on θ ∈ (0,π) for the first eigenvalue and
two zeros for the second eigenvalue, while the imaginary part of the eigenfunction f (θ) has one less number of zeros.
The numerical approximations of the eigenvalue and eigenfunctions of the spectral problem (1.3) are structurally
stable with respect to variations in θ0, N and h.

Fig. 2 shows the complex plane of w = F̂ε(λ) (left) and the argument of w (right) when λ traverses along the first
quadrant of the complex plane λ ∈ Λ1 ∪ Λ2 ∪ Λ3 for ε = 0.5. Here Λ1 = x + ir with x ∈ [r,R], Λ2 = Reiϕ with
ϕ ∈ [ϕ0,

π − ϕ0] and λ3 = r + iy with y ∈ [r,R], where r = 0.1, R = 10, and ϕ0 = arctan(r/R). It is obvious that the
2
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winding number of F̂ε(λ) across the closed contour is zero. Therefore, no zeros of F̂ε(λ) occurs in the first quadrant
of the complex plane λ ∈ C. The numerical result is structurally stable with respect to variations in r , R and ε.

4.2. Spectral method

The numerical spectral method is based on the reformulation of the second-order ODE (1.3) as the second-order
difference equation and the subsequent truncation of the difference eigenvalue problem. It is found in [17] that the
truncation procedure lead to spurious complex eigenvalues which bifurcate off the imaginary axis.

Let f ∈ H 1
per([−π,π]) be an eigenfunction of the spectral problem (1.3). This eigenfunction is equivalently repre-

sented by the Fourier series

f (θ) =
∑
n∈Z

fne
−inθ , fn = 1

2π

π∫
−π

f (θ)einθ dθ, (4.5)

where the infinite-dimensional vector f = (. . . , f−2, f−1, f0, f1, f2, . . .) is defined in f ∈ l2
1(Z) equipped with the norm

‖f‖2
l21

= ∑
n∈Z

(1 + n2)|fn|2 < ∞. The spectral problem (1.3) for |ε| < 2 is equivalent to the difference eigenvalue

problem

nfn + ε

2
n
[
(n + 1)fn+1 − (n − 1)fn−1

]= −iλfn, n ∈ Z. (4.6)

The difference eigenvalue problem (4.6) splits into three parts

Af+ = −iλf+, Af− = iλf−, λf0 = 0, (4.7)

where f± = (f±1, f±2, . . .) and A is an infinite-dimensional matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎣

1 ε 0 0 · · ·
−ε 2 3ε 0 · · ·
0 −3ε 3 6ε · · ·
0 0 −6ε 4 · · ·
...

...
...

...
. . .

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.8)

Since A = D − iS, where D is a diagonal matrix and S is a self-adjoint tri-diagonal matrix, one can define the discrete
counterpart of Lemma 3

Imλ = (f+,Df+)

(f+, f+)
=

∑
n∈N

n|fn|2∑
n∈N

|fn|2 , Reλ = (f+, Sf+)

(f+, f+)
,

where Imλ > 0. The adjoint eigenfunction f ∗(θ) = f (π − θ) is recovered from the eigenvector f by f∗ = J f, where

J =
⎡⎣ 0 0 J0

0 1 0

J0 0 0

⎤⎦
and J0 is a diagonal operator with entries (−1,1,−1,1, . . .).

According to Theorem 1, rewritten from the set of eigenfunctions {fn}n∈Z to the set of eigenvectors {fn}n∈Z, the
inverse matrix operator A−1 is of the Hilbert–Schmidt type, and hence compact. Let A−1

N = PNA−1PN denote the
truncation of the matrix operator A−1 at the first N rows and columns, where PN is an orthogonal projector from an
infinite-dimensional vector to the N -dimensional vector of the first N components.

Proposition 2. Operator sequence A−1
N converges uniformly to the compact operator A−1 as N → ∞. Eigenvalues

of the matrices A−1 converge to the eigenvalues of the compact operator A−1 as N → ∞.
N
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Proof. It follows from the Finite Rank Approximation Theorem that PNA−1 converges uniformly to the compact
operator A−1. Therefore, for any ε > 0, there exists a number N1 � 1 such that

∀N > N1:
∥∥PNA−1 − A−1

∥∥<
ε

2
.

Because the adjoint operator is also compact and the orthogonal projector PN is a self-adjoint operator, the sequence
P ∗

NA−1∗ uniformly converges to A−1∗. Therefore, for any ε > 0, there exists a number N2 � 1 such that

∀N > N2:
∥∥P ∗

NA−1∗ − A−1∗∥∥<
ε

2
.

Let N0 = max(N1,N2). For any N > N0, we have∥∥A−1 − PNA−1PN

∥∥= ∥∥(A−1 − PNA−1)+ PN

(
A−1∗ − P ∗

NA−1∗)∗∥∥
�
∥∥A−1 − PNA−1

∥∥+ ‖PN‖∥∥(A−1∗ − P ∗
NA−1∗)∗∥∥

�
∥∥A−1 − PNA−1

∥∥+ ∥∥A−1∗ − P ∗
NA−1∗∥∥� ε.

Therefore, limN→∞ A−1
N = A−1.

Let λ0 �= 0 belongs to the spectrum of the operator A−1. Because all eigenvalues are isolated, there exists an open
ball D0 ∈ Dom(A−1) with the boundary ∂D0 passing though regular points of operator A such that λ0 is the only
point of D0 in the spectrum set of A−1. It follows from the compactness of ∂D0 that the set {(A−1

N −λI)−1: λ ∈ ∂D0}
is uniformly bounded by N and by λ. Therefore, the sequence of the Riesz projectors

RN = − 1

2πi

∮
ΓD0

(
A−1

N − λI
)−1

dλ

strongly converges to the limiting projector

R = − 1

2πi

∮
ΓD0

(
A−1 − λI

)−1
dλ.

If all RN = 0, then the limiting projector R = 0. �
Remark 5. The distance between eigenvalues of A−1

N and A−1 may not be small for fixed N , but for every fixed
eigenvalue it becomes small for large N . The convergence of eigenvalues is not uniform in N .

The smallest eigenvalues of the truncated matrix A−1
N are found with the parallel Krylov subspace iteration al-

gorithm [9]. Fig. 3 shows the distance between eigenvalues of the shooting method and eigenvalues of the Krylov
spectral method for ε = 0.1. The difference between two eigenvalues is small of the order O(10−3) but the advantage
of the parallel algorithm is that the calculating time of 20 largest eigenvalues of A−1

N for N = 106 takes less than one
minute on a network of 16 processors while finding the same set of eigenvalues by the shooting method with the time
step h = 10−5 takes about one hour.

Fig. 4 shows symmetric pairs of eigenvalues of the matrix AN for ε = 0.3 at N = 128 (left) and N = 1024 (right).
We confirm the numerical result of [17] that the truncation of the matrix operator A always produces splitting of large
eigenvalues off the imaginary axis.5 However, the larger is N , the more eigenvalues remain on the purely imaginary
axis. Therefore, the corresponding eigenvectors can be used to compute the angle in Theorem 2.

Fig. 5 (left) show the values of the cosine of the angle (3.14) for the first 20 purely imaginary eigenvalues for
ε = 0.1. As we can see from the figure, the angle between two eigenvectors tends to zero for larger eigenvalues up to
the numerical accuracy. Fig. 5 (right) and Table 2 show that the angle between the first two eigenvectors drops to zero
faster with larger values of the parameter ε.

5 A similar phenomenon called the spectral pollution has been investigated in [7]. If the variational minimum–maximum principle is not applicable
to a non-self-adjoint problem, as in our case, eigenvalues of the spectral method may differ drastically from eigenvalues of the continuous problem.
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Fig. 3. The distance between eigenvalues computed by the shooting and spectral methods for ε = 0.1.

Fig. 4. Spectrum of the truncated difference eigenvalue problem (4.6) for ε = 0.3: N = 128 (left) and N = 1024 (right).

Fig. 5. Left: the values of cos( ̂fn,fn+1) for the first 20 purely imaginary eigenvalues for ε = 0.1. Right: the values of cos(f̂1, f2) versus ε.
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Table 2
Numerical values of cos( ̂fn,fn+1) for the first 16 purely imaginary eigenvalues for three values of ε

Eigenvectors ε = 0.1 ε = 0.3 ε = 0.5

1–2 0.120166 0.325116 0.431987
2–3 0.461330 0.716192 0.780641
3–4 0.680709 0.838889 0.878055
4–5 0.799235 0.890440 0.914622
5–6 0.858944 0.921498 0.940306
6–7 0.892869 0.940395 0.955239
7–8 0.914745 0.953124 0.965235
8–9 0.930023 0.962120 0.972204
9–10 0.941262 0.968732 0.977265

10–11 0.949843 0.973741 0.981057
11–12 0.956580 0.977629 0.983988
12–13 0.961987 0.980702 0.986072
13–14 0.966407 0.983297 0.989617
14–15 0.970073 0.983459 0.990547
15–16 0.973153 0.995335 0.999101
16–17 0.975764 0.998749 0.999601

Fig. 6. The condition number for the first 40 purely imaginary eigenvalues for ε = 0.001 (bright) and ε = 0.002 (dark).

The angle between two subsequent eigenvectors is closely related to the condition number [16]

cond(λn) = ‖fn‖‖f ∗
n ‖

|(fn, f ∗
n )| . (4.9)

By Lemma 2(iii), the condition number is infinite for multiple eigenvalues since (fn, f
∗
n ) = 0. From the point of

numerical accuracy, the larger is the condition number, the poorer is the structural stability of the numerically obtained
eigenvalues to the truncation and round-off errors.

Fig. 6 shows the condition number (4.9) computed for the first 40 purely imaginary eigenvalues for ε = 0.001
and ε = 0.002. We can see that the condition number grows for larger eigenvalues which indicate their structural
instability. Indeed, starting with some number n, all eigenvalues are no longer purely imaginary, according to the
numerical approximations in Fig. 4. The condition number becomes extremely large with larger values of ε.

We finally illustrate that all true eigenvalues of the spectral problem (1.3) are purely imaginary and simple. To do so,
we construct numerically the sign-definite imaginary type function and obtain the interlacing property of eigenvalues
of the spectral problem (1.3) for two values ε = ε0 and ε = ε1, where |ε1 − ε0| is small. We say that the eigenvalues
exhibit the interlacing property if there exists an eigenvalue for ε = ε1 between each pair of eigenvalues for ε = ε0
and vice verse.
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Table 3
The interlacing property of the first 15 purely imaginary eigenvalues for ε = 0.48 and ε = 0.5

Imλε0 Rε0 Imλε1 Rε1

1.063112 2.3244e–10 1.068314 2.4073e–10
2.970880 2.1967e–10 3.024428 2.2531e–10
5.414789 2.2024e–10 5.542829 2.2683e–10
8.471510 2.0904e–10 8.693066 2.1572e–10

12.312548 2.0079e–10 12.665485 2.0601e–10
16.816692 1.9765e–10 17.327038 2.0288e–10
22.014084 1.9617e–10 22.711070 2.0197e–10
27.899896 1.9527e–10 28.812177 2.0157e–10
34.474785 1.9501e–10 35.631088 2.0190e–10
41.738699 1.9558e–10 43.167733 2.0313e–10
49.691673 1.9671e–10 51.422281 2.0476e–10
58.333258 1.9796e–10 60.391382 2.0623e–10
67.665387 1.9904e–10 70.140636 2.0725e–10
77.957871 1.9989e–10 79.828287 2.0782e–10
89.484519 2.6566e–10 91.544035 2.0821e–10

A meromorphic function G(λ) is called a sign-definite imaginary type function if ImG(λ) � 0 (ImG(λ) � 0) on

Im(λ) � 0 (Im(λ) � 0) [2]. We construct the meromorphic function G(ω) in the form G(λ) = Fε0 (λ)

Fε1 (λ)
, where Fε(λ) is

an analytical function of Corollary 1. The numerical approximation of the meromorphic function G(λ) is given by

Ĝ(λ) = F̂ε0 (λ)

F̂ε1 (λ)
. According to Theorems II.2.1–II.3.1 in [2, pp. 437–439], the function Ĝ(λ) is a meromorphic function

of sign-definite imaginary type if and only if it has the form Ĝ(λ) = P(λ)
Q(λ)

where P(λ) and Q(λ) are polynomials with
real coefficients, with real and simple zeros, which are interlacing.

Table 3 shows this interlacing property of eigenvalues for ε0 = 0.48 and ε1 = 0.5. The remainder term Rε =
‖Lf −λf ‖

‖λf ‖ measures the numerical error of computations. We have also computed numerically the values of Ĝ(λ) on
the grid 0.1 < Imλ < 100 and 0.1 < Reλ < 100 with step size 0.1 in both directions (not shown). Based on the
numerical data, we have confirmed that the function Ĝ(λ) does indeed belongs to the class of sign-definite imaginary
type functions while the eigenvalues {λn}n∈Z exhibit the interlacing property. This computation gives a numerical
verification that all eigenvalues of the spectral problem (1.3) are simple and purely imaginary.

5. Cauchy problem for the heat equation

We have proved that the operator L associated with the heat equation (1.1) admits a closure in L2
per([−π,π]) with

a domain in H 1
per([−π,π]) for |ε| < 2. The spectrum of L consists of eigenvalues of finite multiplicities. Using the

analytic function theory and the Fourier series, we have approximated eigenvalues numerically and showed that all
eigenvalues of the spectral problem (1.3) are purely imaginary. Furthermore, we have proved with the assistance of
numerical computations that the set of eigenfunctions of the spectral problem (1.3) is complete but does not form a
basis in the Hilbert space L2

per([−π,π]).
We shall show that these properties of the linear operator L are related to ill-posedness of the Cauchy problem for

the periodic heat equation (1.1). According to the Hille–Yosida Theorem (see Section IX.7 in [18]), if L is a linear
operator with a dense domain in a Banach space X and the resolvent operator (I − λ−1L)−1 exists for any Reλ > 0,
then L is the infinitesimal generator of a strongly continuous semigroup if and only if∥∥(I − λ−1L

)−1∥∥
X �→X

� C, (5.1)

for some C > 0 uniformly in Reλ > 0. Moreover, if C � 1, then the semi-group is a contraction. The Cauchy problem
associated with the operator L is well-posed if the conditions of the Hille–Yosida Theorem are satisfied and it is
ill-posed otherwise.

According to the numerical results on pseudo-spectra in [3] and [17], the level set of the resolvent norm

R(λ) = ∥∥(λI − L)−1
∥∥

L2 ([−π,π]) �→L2 ([−π,π])
per per
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extends to the right half-plane, such that R(λ) does not decay along the level set curves with Reλ > 0. This numerical
fact serves as an indication that the conditions of the Hille–Yosida Theorem are not satisfied and the Cauchy problem
for the heat equation is ill-posed. On the other hand, the ill-posedness of the periodic heat equation (1.1) is related to
the fact that the set of eigenfunctions of the operator L does not form a basis in the Hilbert space X = L2

per([−π,π]).
Indeed, if the set of eigenfunctions forms a basis in X, then a dense operator L with a purely discrete spectrum of
simple eigenvalues {λn}n∈Z on Reλn = 0 is the infinitesimal generator of a strongly continuous semigroup.

To prove the last claim, we assume that the set of eigenfunctions {fn}n∈Z forms a basis in the Hilbert space X. Then,
the solution of the inhomogeneous equation (λI −L)φ = ψ with ψ ∈ X can be solved by the series of eigenfunctions

φ =
∑
n∈Z

(f ∗
n ,ψ)

(f ∗
n , fn)

fn

λ − λn

, φ̄ =
∑
n∈Z

(fn, ψ̄)

(f ∗
n , fn)

f̄ ∗
n

λ̄ − λ̄n

. (5.2)

Using the orthogonality of eigenfunctions fn with respect to the adjoint eigenfunctions f ∗
n and the normalization

(f ∗
n , fn) = 1 for any n ∈ Z, we obtain

‖φ‖2
X =

∑
n∈Z

(f ∗
n ,ψ)(fn, ψ̄)

(λ − λn)(λ̄ − λ̄n)
, ‖ψ‖2

X =
∑
n∈Z

(
f ∗

n ,ψ
)
(fn, ψ̄).

Since Reλn = 0 and Reλ > 0, then ‖φ‖2
X � (Reλ)−2‖ψ‖2

X , such that ‖(λI − L)−1‖X→X � 1/Reλ and the condi-
tions of the Hille–Yosida Theorem are satisfied.

We conclude with the help of numerical computations that the Cauchy problem for the periodic heat equation (1.1)
is ill-posed. Depending on the initial data h0, the blow-up of solutions may occur in finite or infinitesimal time,
according to the conjecture in [3]. Although the series of eigenfunctions of operator L cannot be used to solve the
Cauchy problem for the periodic heat equation, conditional convergence of the series of eigenfunctions can sometimes
be achieved at least for finite times, as illustrated in [4]. Therefore, more detailed studies of applicability of the series
of eigenfunctions and its dependence from the initial data h0 are opened for further work.

Note. When the project was essentially complete, we became aware of a recent work [6], where similar results were
obtained. In particular, the author of [6] proves that the spectral problem (1.3) has no continuous spectrum and, assisted
with the numerical computations, illustrates that the eigenfunctions for isolated eigenvalues do not form a basis. The
analysis of [6] is based on the difference eigenvalue problem (4.6), which makes it different from analysis in our work.
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Appendix A. Spectrum of the linear operator L in weighted spaces

The operator L can be rewritten in the Sturm–Liouville symmetric form

L = −ε

∣∣∣∣cot

(
θ

2

)∣∣∣∣1/ε

L0, L0 = d

dθ

(∣∣∣∣tan

(
θ

2

)∣∣∣∣1/ε

sin θ
d

dθ

)
. (A.1)

Let r(θ) = | tan(θ/2)|1/ε be the weight of the Sturm–Liouville spectral problem

−εL0f (θ) = λr(θ)f (θ), (A.2)

acting on smooth functions f (θ) on θ ∈ [−π,π] in the weighted space f ∈ L2
r ([−π,π]).

Proposition A.1. The operator L0 admits a self-adjoint extension in L2
r ([−π,π]) for 0 < ε < 1, such that the spectrum

of L0 is purely discrete, consists of a set of simple real eigenvalues {λn}n∈Z with λ0 = 0, λn = −λ−n, ∀n ∈ N and
limn→∞ λn = ∞.
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Proof. By Lemma 6, the eigenfunction f (θ) of the spectral problem (A.2) for 0 < ε < 1 is in L2
r ([−π,π]) if and

only if it is spanned by the fundamental solutions f1(θ), f +
2 (θ) and f −

2 (θ), such that f (θ) is bounded at θ = 0 and
limθ→±π f (θ) = 0. Let f (θ) on ±θ ∈ [0,π] be represented by

f (θ) =
[
± cot

(
θ

2

)]1/2ε

g±(x), cos θ = x, (A.3)

where x ∈ [−1,1]. Then, the spectral problem (1.3) is rewritten in the form

−ε
d

dx

[(
1 − x2)dg±

dx

]
+ g±(x)

4ε(1 − x2)
= ± λg±(x)√

1 − x2
. (A.4)

If f (θ) belongs to L2
r ([−π,π]) for 0 < ε < 1, then g±(x) belong to L2

ρ([−1,1]) with the weight function ρ(x) =
1√

1−x2
. Since the symmetric spectral problem (A.4) is self-adjoint in space L2

ρ([−1,1]), its eigenvalues λ are all real-

valued. By Lemma 2 and the Sturm–Liouville theory [15], the eigenvalues {λn}n∈Z are all simple and symmetric with
λ0 = 0 and λn = −λ−n, ∀n ∈ N, while the sequence {λn}n∈Z is unbounded with limn→∞ λn = ∞. By the standard
Green’s identity,

λ‖g+‖2
L2

ρ
= ε

1∫
−1

(
1 − x2)∣∣g′+(x)

∣∣2 dx +
1∫

−1

|g+(x)|2 dx

4ε(1 − x2)
> 0, (A.5)

the eigenvalues λn of g+(x) are proved to be positive. If λn > 0 is an eigenvalue for g+(x), then −λn < 0 cannot
be an eigenvalue for g−(x), such that g−(x) = 0 on x ∈ [−1,1]. Therefore, fn(θ) = 0 on θ ∈ [−π,0] if λn > 0. The
proof that the spectrum of L0 in L2

r ([−π,π]) is purely discrete is done similarly to the proof of Lemma 5. �
The operator L0 admits a non-unique self-adjoint extension in L2

r ([−π,π]) for ε > 1. Indeed, if ε > 1, the eigen-
function f (θ) of the spectral problem (A.2) may exist in L2

r ([−π,π]) even if it is spanned by both fundamental
solutions of Lemma 6 in the form

f (θ) = Af1(θ) + Bf2(θ) = A+f +
1 (θ) + B+f +

2 (θ) = A−f −
1 (θ) + B−f −

2 (θ).

It follows from the Sturm–Liouville problem (A.2) that

λ

π∫
−π

r(θ)
∣∣f (θ)

∣∣2 dθ = −ε

∣∣∣∣tan

(
θ

2

)∣∣∣∣1/ε

sin(θ)f̄ (θ)f ′(θ)|θ=π
θ=−π + ε

π∫
−π

∣∣∣∣tan

(
θ

2

)∣∣∣∣1/ε

sin(θ)
∣∣f ′(θ)

∣∣2 dθ.

The second integral is finite for ε > 0 only if B = 0. In this case, the first term is computed explicitly as follows

21/ε
(
A+B+ + A−B−). (A.6)

This term is zero if A+ = A− = 0, which corresponds to the self-adjoint extension constructed in Proposition A.1.
However, this choice is not unique, e.g. the alternative pairing B+ = B− = 0 can also be applied.

Appendix B. Resonant poles of the Schrödinger operators

Eigenvalues of the operator L coincide for |ε| > 1
2 with resonant poles of the Schrödinger operators. To show this,

we use the transformation (3.5) on the intervals ±θ ∈ [0,π] and rewrite the spectral problem (1.3) as the uncoupled
spectral problems (3.6) for f (θ) ≡ f±(t) on t ∈ R. Let f (θ) satisfy the normalization condition f (π) = f (−π) = 1
and λ /∈ R. Then, eigenfunctions f±(t) of the uncoupled problems (3.6) satisfy the boundary conditions

lim
t→−∞f±(t) = 1, lim

t→∞f±(t) = a±, (B.1)

where a± are uniquely defined. The function f (θ) on θ ∈ [−π,π] constructed from f±(t) on t ∈ R is continuous at
θ = 0 if a+ = a−.
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Let ε > 1
2 and define f±(t) = e

t
2ε g±(t). The eigenfunctions g±(t) satisfy the linear Schrödinger equations(

1

4ε
− ε∂2

t

)
g± = ±λ sech tg±, (B.2)

but the boundary conditions (B.1) show that g± /∈ L2(R) and λ is not an eigenvalue. In fact, the eigenfunctions g±(t)

belong to the exponentially weighted L2-space, such that λ is a resonance pole of the Schrödinger operators. Let us
decompose the eigenfunctions by g±(t) = e− t

2ε + h±(t). By the theory of exponential asymptotics of solutions of
the Schrödinger problems (B.2), it follows that h± ∈ L2(R) if ε > 1

2 . Let h0(t) = e− t
2ε sech t ∈ L2(R) and define the

linear inhomogeneous problems for h±(t),

S±
ε (λ)h± = ±λh0(t), S±

ε (λ) = 1

4ε
− ε∂2

t ∓ λ sech t. (B.3)

The operator S±
ε (λ) maps H 2(R) to L2(R) and, if λ /∈ R, the kernel of S±

ε is empty. The boundary condition a+ = a−
is then equivalent to the zeros of the function

Hε(λ) = λ lim
t→∞ e

t
2ε
[(

S+
ε

)−1
(λ) + (

S−
ε

)−1
(−λ)

]
h0(t). (B.4)

The function Hε(λ) coincides (up to a multiplicative constant) with the analytic function Fε(λ) introduced in Corol-
lary 1 for |ε| < 2. Therefore, Hε(λ) represents a continuation of Fε(λ) from the domain |ε| < 2 to the domain |ε| > 1

2 .
The function Hε(λ) is analytic in λ ∈ C and its roots give isolated eigenvalues of the spectral problem (1.3) with the
account of their multiplicity.

The function Hε(λ) can be simplified for λ ∈ iR. Let λ = iω ∈ iR and represent h± = F(t) ± iG(t), where

LεF = −ω sech tG, LεG = ω sech tF + ωh0(t), Lε = 1

4ε
− ε∂2

t . (B.5)

Therefore, we can define a real-valued function H̃ε(ω) = Hε(iω) on ω ∈ R given by

H̃ε(ω) = ω lim
t→∞ e

t
2ε
(
Lε + ω2 sech tL−1

ε sech t
)−1

h0(t). (B.6)

By multiplying the linear inhomogeneous equation(
Lε + ω2 sech tL−1

ε sech t
)
G = ωh0(t),

by e
t

2ε and integrating on t ∈ R by parts, the function H̃ε(ω) can be represented in the integral form

H̃ε(ω) = ω

∞∫
−∞

sech t dt − ω2

∞∫
−∞

e
t

2ε sech tL−1
ε sech tG(t) dt.

Let h̃0(t) = sech tL−1
ε sech te

t
2ε . Then,

H̃ε(ω) = πω − ω2

∞∫
−∞

h̃0(t)G(t) dt.

Zeros of the real analytic function H̃ε(ω) are equivalent to purely imaginary eigenvalues of the spectral problem (1.3)
for |ε| > 1

2 .
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