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Abstract. We address the stability of multi-solitons for the cubic nonlinear
Schrödinger (NLS) equation on the line. By using the dressing transformation and the
inverse scattering transform methods, we establish the orbital stability of multi-solitons
in the L2(R) space when the initial data is in a weighted L2(R) space.
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1. Introduction

We study the stability properties of multi-solitons for the cubic nonlinear
Schrödinger (NLS) equation

i∂tq + ∂2
xq + 2|q|2q = 0, (1.1)

where q(x, t) : R × R → C. The initial value problem for the cubic NLS equation
(1.1) associated with initial data q|t=0 = q0 is locally and globally well-posed in
L2(R) thanks to the result of Tsutsumi based on Stritcharz inequalities [25] and
the conservation law

‖q(·, t)‖L2(R) = ‖q0‖L2(R), t ∈ R. (1.2)

The cubic NLS equation (1.1) can be studied by methods of the direct and
inverse scattering transforms known since the two classical works of Zakharov and
Shabat [26, 27]. There exists a vast literature on various applications of the inverse
scattering transform methods to the cubic NLS equation (1.1), which we do not
intend to overview (see, e.g. books [2, 1]).
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Our particular emphasis is on the problem of nonlinear stability of multi-solitons,
which are known to exist in the explicit form [26, 27]. Spectral and orbital stability
of n-solitons in Sobolev spaceHn(R) was proved by Kapitula [15], based on the clas-
sical work of Grillakis, Shatah, and Strauss on stability of 1-solitons in H1(R) [10].

Functional analytic methods were developed to study interactions of many
widely separated solitons in H1(R) for the NLS equation with cubic and higher-
order nonlinearities, in particular, by Perelman [23], Rodnianski, Schlag, and Sof-
fer [24], and Martel, Merle, and Tsai [17]. Recent progress along this direction
includes the work of Holmer and Zworski [14] on interaction of a soliton with a
δ-distribution impurity and the work of Holmer and Lin [13] on interactions of two
solitons. Because the inverse scattering transform methods are not used in this liter-
ature, the results are usually weaker than those obtained with the inverse scattering
transform.

New results on stability of 1-solitons were obtained recently in the context of
the cubic NLS equation (1.1) by combining functional analytic methods and the
inverse scattering transform. Deift and Park [5] computed long-time asymptotics
for the NLS equation with a delta potential to prove asymptotic stability of soliton-
defect modes in a weighted L2(R) space and to improve earlier results of Holmer and
Zworski [14]. Mizumachi and Pelinovsky [21] proved orbital stability of 1-solitons
in L2(R) improving the standard results of Grillakis, Shatah, and Strauss [10].
Cuccagna and Pelinovsky [4] proved asymptotic stability of 1-solitons in a weighted
L2(R) space by combining the inverse scattering transform and the steepest descent
method, which was earlier developed by Deift and Zhou [6, 7, 30].

In this paper, we would like to extend the results of [4, 5, 21] to multi-solitons of
the cubic NLS equation (1.1) by combining the inverse scattering transform method
and the dressing transformation, which was developed by Zakharov and Shabat long
ago [28, 29] (see, e.g. [22, Chap. 3]).

We denote by L2,s(R) the weighted L2(R) space with the norm

‖u‖L2,s(R) := ‖〈x〉su‖L2(R), 〈x〉 :=
√

1 + x2. (1.3)

The following theorem gives the main result of this paper.

Theorem 1.1. Let qS be a n-soliton solution of the cubic NLS equation (1.1) with
real parameters {ξj, ηj , xj , θj}nj=1 such that pairs (ξj , ηj) are all distinct. There exist
positive constants ε0 and C such that if q0 ∈ L2,s(R) for any s > 1

2 and if

ε := ‖q0 − qS(·, 0)‖L2,s(R) < ε0 (1.4)

then there exist a solution q of the cubic NLS equation (1.1) with q|t=0 = q0 and an
n-soliton solution qS

′
with real parameters {ξ′j , η′j , x′j , θ′j}nj=1 such that

max
1≤j≤n

|(ξ′j , η′j , x′j , θ′j) − (ξj , ηj , xj , θj)| ≤ Cε (1.5)

and

‖q(·, t) − qS
′
(·, t)‖L2(R) ≤ Cε, t ∈ R. (1.6)
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Remark 1.2. The orbital stability result (1.6) is not expected in the L2,s(R) norm
for s > 0 because, in a general situation, the variance of the solution ‖xq‖L2(R)

grows linearly in time t, according to the cubic NLS equation (1.1).

For n = 1, the L2(R) orbital stability result of Theorem 1.1 was proved by
Mizumachi and Pelinovsky [21] without the requirement that the initial data is
close to the 1-soliton in the weighted L2(R) space (1.4). Without this requirement,
the initial data can support more than one soliton in the long-time asymptotics,
but the additional solitons have small L2(R) norm and are included in the residual
terms of the L2(R) orbital stability result (1.6).

At the same time, a stronger result on the asymptotic stability of 1-solitons was
proved by Cuccagna and Pelinovsky [4] under the requirement (1.4) with the decay
of the L∞(R) norm of the residual term in time:

‖q(·, t) − qS
′
(·, t)‖L∞(R) ≤ Cεt−1/2, as t→ ∞. (1.7)

We believe that both the orbital stability if q0 ∈ L2(R) and the asymptotic
stability if q0 ∈ L2,s(R) with s > 1

2 hold for n solitons but the proofs of these two
refinements of Theorem 1.1 would require considerable lengthening of the present
work at the possible expense of obscuring the main argument. Note that a similar
constraint on the initial data to enable the inverse scattering transform method is
used by Gerard and Zhang [8] to prove the L∞(R) orbital stability of black solitons
in the cubic defocusing NLS equation.

For n = 2, the result of Theorem 1.1 provides orbital stability of the class of 2-
solitons in the cubic NLS equation (1.1). Note that interactions of widely separated
two solitons in this equation were recently considered by Holmer and Lin [13] using
an effective dynamical equation that describes the solitons dynamics for large but
finite time. Depending on the parameters (ξ1, ξ2, η1, η2), the two solitons collide and
scatter with different velocities but may also form a bound state (a time-oscillating
space-localized breather). Although Theorem 1.1 provides orbital stability of the
entire family of 2-solitons, this result does not exclude the phenomenon of instability
of the 2-soliton breather. Indeed, if the breather corresponds to the constraint ξ1 =
ξ2, whereas the initial condition yields ξ′1 �= ξ′2, the time-oscillating breather is
destroyed by the initial perturbation and transforms into two solitons moving with
different velocities.

In the end of this section, we mention related works on orbital and asymptotic
stability of multi-solitons in other integrable evolution equations. By using Miura
transformation, the orbital and asymptotic stability of one and many KdV solitons
in L2(R) was obtained by Martel and Vega [18] and Alejo, Munoz, and Vega [3],
respectively. Asymptotic stability of Toda lattice solitons was studied by Mizumachi
[19, 20] and Hoffmann and Wayne [11] with the use of the Bäcklund transformation.
Hoffman and Wayne [12] formulated an abstract orbital stability result for soliton
solutions of integrable equations that can be achieved via Bäcklund transformations.

The paper is organized as follows. Section 2 gives details of the dressing trans-
formation, which enables us to construct n-solitons from the trivial zero solution
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of the cubic NLS equation (1.1). Section 3 describes the time evolution for the
dressing transformation. The exact n-solitons are constructed in Sec. 4. Section 5
is devoted to analysis of the mapping between the L2-neighborhood of the zero
solution and the L2-neighborhood of the n-solitons: the mapping is one-to-one but
it is not onto, unless the constraints on soliton parameters are imposed. Instead of
adding constraints, we determine in Sec. 6 parameters of the n-soliton qS

′
based on

the inverse scattering transform method. The application of this method is enabled
by adding the requirement (1.4) on the initial data q0. All together, these arguments
will complete the proof of orbital stability of n-solitons in L2(R).

2. Dressing Transformation

We use the dressing method of Zakharov and Shabat [28, 29] to map a neighborhood
of the zero solution to a neighborhood of a multi-soliton in the cubic NLS equation
(1.1). The dressing method relies on the existence of the Lax operator pair{

∂xψ = −izσ3ψ +Q(q)ψ,

∂tψ = i(|q|2 − 2z2)σ3ψ + 2zQ(q)ψ − iQ(∂xq)σ3ψ,
(2.1)

where ψ(x, t) : R × R → C2 and

Q(q) :=
(

0 q

−q 0

)
, σ3 :=

(
1 0
0 −1

)
.

The compatibility condition ψxt = ψtx for a classical solution ψ ∈ C2(R × R,C2)
of the Lax system (2.1) with constant spectral parameter z is equivalent to the
requirement that q(x, t) is a classical solution of the NLS equation (1.1), that is, q
is C1 in t and C2 in x for all (x, t) ∈ R × R.

Let Φ(x, t, z) be a fundamental matrix solution of the system (2.1) such that
Φ(0, t, z) = I, where I is a 2 × 2 identity matrix. In what follows, we will only
consider the first part of the system (2.1) and will set φ(x, z) := Φ(x, 0, z). The
time evolution will be added in Sec. 3, according to the standard analysis.

We define a fundamental matrix solution φ(x, z) : R × C → M
2×2 from the

system of differential equations:{
∂xφ = U(x, z)φ,

φ|x=0 = I,
U(x, z) := −izσ3 +Q(q). (2.2)

Since U+ = −U , where U+ = ŪT , the fundamental matrix is inverted by the
following elementary result.

Proposition 2.1. Let φ be a fundamental matrix solution of the system (2.2).
Then, φ is invertible and φ−1(x, z) = φ+(x, z).

Proof. We verify that

∂x[φ+(x, z)φ(x, z)] = φ+(x, z)U+(x, z)φ(x, z) + φ+(x, z)U(x, z)φ(x, z) = 0,
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so that φ+(x, z)φ(x, z) is constant in x and equals to I because φ+(0, z)φ(0, z) = I.
A similar computation holds for φ(x, z)φ+(x, z), hence φ+(x, z) is the inverse for
φ(x, z).

Let φ0 denote the fundamental matrix solution of the system (2.2) for the poten-
tial q0. Here, in this section, q0 is not related to the initial data in Theorem 1.1 but
denotes another (simpler) solution of the cubic NLS equation (1.1). Let us define
the matrix function φ by the dressing transformation formula:

φ(x, z) := χ(x, z)φ0(x, z), χ(x, z) = I +
n∑
k=1

irk(x) ⊗ s̄k(x)
z − zk

, (2.3)

where for each k, Im(zk) > 0, rk(x), sk(x) : R → C
2 are to be defined, and ⊗

denotes an outer product of vectors in C2 (without complex conjugation). The
factor i is used in the sum for convenience. The following result summarizes the
dressing method of Zakharov and Shabat [28, 29]. For convenience of readers, we
give a precise proof of the dressing transformation.

Proposition 2.2. Assume q0 ∈ C(R) and define the set {sk}nk=1 from classical
solutions of the Zakharov–Shabat (ZS ) system

∂xsk = −iz̄kσ3sk +Q(q0)sk, 1 ≤ k ≤ n, (2.4)

such that the Gramian-type matrix with entries

Mk,j :=
−i

z̄k − zj
〈sj , sk〉, 1 ≤ k, j ≤ n (2.5)

is invertible, where 〈u, v〉 := ū1v1 + ū2v2 is the dot product between vectors in C2.
Let the set {rk}nk=1 be defined from the set {sk}nk=1 by unique solution of the linear
system

isk =
n∑
j=1

〈sj , sk〉
z̄k − zj

rj , 1 ≤ k ≤ n, (2.6)

with the inverse

irk =
n∑
j=1

〈rj , rk〉
z̄j − zk

sj , 1 ≤ k ≤ n. (2.7)

Then, the dressing transformation (2.3) is invertible with the inverse

φ−1(x, z) = φ+
0 (x, z)χ+(x, z), χ+(x, z) = I −

n∑
k=1

isk(x) ⊗ r̄k(x)
z − z̄k

, (2.8)

and φ is a solution of the system ∂xφ = U(x, z)φ for the potential q, which is related
to the potential q0 by the transformation formula

Q(q) = Q(q0) +
n∑
k=1

rk ⊗ s̄kσ3 − σ3sk ⊗ r̄k. (2.9)
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In addition, the set {rk}nk=1 satisfies the ZS system

∂xrk = −izkσ3rk +Q(q)rk, 1 ≤ k ≤ n, (2.10)

associated with the same potential q.

Proof. First, we check that

χ+(x, z)χ(x, z) = χ(x, z)χ+(x, z) = I,

which yields

φ+(x, z)φ(x, z) = φ(x, z)φ+(x, z) = I.

We use the partial fraction
1

(z − z̄j)(z − zk)
=

1
z̄j − zk

[
1

z − z̄j
− 1
z − zk

]
.

Then χ(x, z)χ+(x, z) = I is equivalent to the system

irk ⊗ s̄k =
n∑
j=1

(rk ⊗ s̄k) (sj ⊗ r̄j)
z̄j − zk

,

which yields the system (2.6) after projection to rk from the left.
Now, since χ(x, z) is a square n × n matrix and χ(x, z)χ+(x, z) = I, then

|det(χ(x, z))| = 1 and therefore, χ(x, z) is invertible with χ−1(x, z) = χ+(x, z).
On the other hand, χ+(x, z)χ(x, z) = I is equivalent to the system

irk ⊗ s̄k =
n∑
j=1

(sj ⊗ r̄j) (rk ⊗ s̄k)
z̄j − zk

,

which yields the system (2.7) after projection to sk from the right. Therefore, the
system (2.7) is inverse to the system (2.6). Note that all vectors in the sets {sk}nk=1

and {rk}nk=1 are nonzero because the matrix M in (2.5) is invertible.
Next, we confirm that the set {rk}nk=1, which is determined by the linear system

(2.6), satisfies the ZS system (2.10) with the potential q if the set {sk}nk=1 satisfies
the ZS system (2.4) with the potential q0 and if q and q0 are related by the transfor-
mation formula (2.9). Differentiating the linear system (2.6) in x and substituting
(2.4), we obtain

z̄kσ3sk + iQ(q0)sk = −i
n∑
j=1

〈σ3sj , sk〉rj +
n∑
j=1

〈sj , sk〉
z̄k − zj

∂xrj .

Using the transformation formula (2.9) and the inverse linear system (2.7), we
rewrite this equation as follows:

n∑
j=1

〈sj , sk〉
z̄k − zj

∂xrj = z̄kσ3sk +
n∑
j=1

〈sj , sk〉
z̄k − zj

Q(q)rj + iσ3

n∑
j=1

〈rj , sk〉sj

= z̄kσ3sk +
n∑
j=1

〈sj , sk〉
z̄k − zj

Q(q)rj + iσ3

n∑
j=1

〈sj , sk〉rj ,
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where the following transformation was used:

i

n∑
m=1

〈rm, sk〉sm =
n∑

m=1

n∑
j=1

〈rm, rj〉〈sj , sk〉
z̄m − zj

sm

=
n∑
j=1

〈sj , sk〉
n∑

m=1

〈rm, rj〉
z̄m − zj

sm

= i

n∑
j=1

〈sj , sk〉rj . (2.11)

Using the linear system (2.6) again, we obtain

n∑
j=1

〈sj , sk〉
z̄k − zj

[∂xrj + izjσ3rj −Q(q)rj ] = 0,

which yields the ZS system (2.10), because the matrix M in (2.5) is invertible.
We shall now verify that φ(x, z) is a solution of the system ∂xφ = Uφ from the

condition

U(x, z) = ∂xφ(x, z)φ−1(x, z) = [∂xχ(x, z) + χ(x, z)U0(x, z)]χ+(x, z), (2.12)

where U0(x, z) = ∂xφ0(x, z)φ−1
0 (x, z). By using the partial fraction decompositions,

we shall first remove the residue terms at simple poles of Eq. (2.12).
The residue terms at O( 1

z−zk
) are removed from Eq. (2.12) if

[i∂x(rk ⊗ s̄k) + zkrk ⊗ s̄kσ3 + irk ⊗ s̄kQ(q0)]


I − i

n∑
j=1

sj ⊗ r̄j
zk − z̄j


 = 0.

Because of the linear system (2.6), this equation simplifies to the form

rk ⊗ [i∂xs̄k + zks̄kσ3 + is̄kQ(q0)]


I − i

n∑
j=1

sj ⊗ r̄j
zk − z̄j


 = 0.

Projection to rk from the left (assuming rk is nonzero) and Hermite conjugation
with the help of equation Q+(q0) = −Q(q0) yields the new equation

I + i

n∑
j=1

rj ⊗ s̄j
z̄k − zj


 [−i∂xsk + z̄kσ3sk + iQ(q0)sk] = 0,

which is satisfied if sk is a nonzero solution of the ZS system (2.4). Note that the
operator on the left has a nontrivial kernel, hence the ZS system (2.4) is only a
particular solution of the constraint.
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Next, the residue terms at O( 1
z−z̄j

) are removed from Eq. (2.12) if

[
∂x

(
n∑
k=1

rk ⊗ s̄k
z̄j − zk

)
− z̄jσ3 − iQ(q0)

− iz̄j

n∑
k=1

rk ⊗ s̄k
z̄j − zk

σ3 +
n∑
k=1

rk ⊗ s̄k
z̄j − zk

Q(q0)

]
sj ⊗ r̄j = 0.

Projection to rj from the right yields the new equation[
∂x

(
n∑
k=1

rk ⊗ s̄k
z̄j − zk

)
− z̄jσ3 − iQ(q0) − iz̄j

n∑
k=1

rk ⊗ s̄k
z̄j − zk

σ3 +
n∑
k=1

rk ⊗ s̄k
z̄j − zk

Q(q0)

]
sj = 0.

If sk is a solution of the ZS system (2.4), then this equation reduces further to the
form [

n∑
k=1

(∂xrk) ⊗ s̄k
z̄j − zk

− z̄jσ3 − iQ(q0) − i
n∑
k=1

rk ⊗ s̄kσ3

]
sj = 0,

where the derivative in x applies now to rk only. This equation is rewritten with
the help of the reconstruction formula (2.9) in the form

n∑
k=1

〈sk, sj〉
z̄j − zk

∂xrk − z̄jσ3sj − iQ(q)sj − iσ3

n∑
m=1

〈rm, sj〉sm = 0.

Substituting transformation (2.11) to the previous equation and using the linear
system (2.6), we derive

n∑
k=1

〈sk, sj〉
z̄j − zk

[∂xrk −Q(q)rk + izkσ3rk] − z̄jσ3sj − iz̄jσ3

n∑
k=1

〈sk, sj〉
z̄j − zk

rk = 0.

The last two terms cancel out thanks to the linear system (2.6). As a result, the
equation is satisfied if rk is a solution of the ZS system (2.10).

Now, since all the residue terms are removed from Eq. (2.12), this equation
reduces a single equation, which is nothing but the reconstruction formula (2.9).

Remark 2.3. Note that φ given by (2.3) is not the fundamental matrix solution
of the system (2.2) because φ|x=0 = I is not satisfied. However, if we define

φ(x, z) := χ+(0, z)χ(x, z)φ0(x, z),

then this φ is the fundamental matrix solution of the system (2.2).

For 1-soliton solutions with n = 1, the result of Proposition 2.2 can be simplified
as follows. Let q0 = 0, z1 = ξ1 + iη1 with η1 > 0, and let s1 = (b1, b2) be a solution
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of the ZS system (2.4) with q0 = 0, or explicitly:{
∂xb1 = −(η1 + iξ1)b1,

∂xb2 = (η1 + iξ1)b2.
(2.13)

Then, r1 = (a1, a2) is found from the linear system (2.6) in the closed form:[
a1

a2

]
=

2η1
|b1|2 + |b2|2

[
b1

b2

]
. (2.14)

Note that r1 is an eigenfunction for an isolated eigenvalue z1 = ξ1 + iη1 of the ZS
system (2.10) associated with the 1-soliton. The transformation formula (2.9) yields
1-soliton:

q = −a1b̄2 − ā2b1 =
−4η1b1b̄2

|b1|2 + |b2|2 . (2.15)

Setting a general solution of the ZS system (2.13) in the form{
b1 = e−(η1+iξ1)(x−x0)+iθ,

b2 = −e(η1+iξ1)(x−x0)−iθ,

where x0, θ ∈ R are arbitrary parameters, we obtain from (2.14) and (2.15) the
1-soliton with four arbitrary parameters:

q = 2η1sech(2η1(x− x0))e2iθ−2iξ1(x−x0). (2.16)

Note that parameters (x0, θ) can be set to zero by using the translational and gauge
transformations of the cubic NLS equation (1.1), parameter ξ1 can be set to zero
by using the Lorentz transformation, and parameter η1 can be fixed at any positive
number because of the scaling transformation.

Remark 2.4. Note that the result of the dressing method is different from the
result of the auto-Bäcklund transformation used in recent papers [4, 5, 21], where
the vector (b1, b2) in the soliton reconstruction formula (2.15) was defined in terms
of the solution of the spectral system (2.4) with z1 instead of z̄1.

3. Time Evolution of the Dressing Transformation

Before looking at the time evolution of the dressing transformation, let us give
an explicit representation of the dressing transformation with the help of matrix
algebra.

Let the set {sk}nk=1 be defined by the solutions of the ZS system (2.4) such that
the Gramian-type matrix M in (2.5) is invertible. Vectors {rk}nk=1 are uniquely
defined by the linear system (2.6).

Let D := det(M) and Dk,j be the co-factor of the element Mk,j . Because M
is invertible, we have D �= 0. A unique solution of the linear system (2.6) can be
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expressed in the explicit form

rk =
n∑
j=1

Dj,k

D
sj . (3.1)

Note that matrix M is Hermitian and hence, Dj,k = D̄k,j . Under this constraint,
the transformation formula (2.9) yields

Q(q) −Q(q0) =
n∑
k=1

rk ⊗ s̄kσ3 − σ3sk ⊗ r̄k

=
n∑
k=1

(
rk,1s̄k,1 − r̄k,1sk,1 −rk,1s̄k,2 − r̄k,2sk,1

rk,2s̄k,1 + r̄k,1sk,2 −rk,2s̄k,2 + r̄k,2sk,2

)
,

where the diagonal entries are zeros and the off-diagonal entries yield the transfor-
mation formula

q − q0 = −
n∑
k=1

n∑
j=1

(
Dj,k

D
sj,1s̄k,2 +

D̄j,k

D
sk,1s̄j,2

)

= − 2
D

n∑
k=1

n∑
j=1

Dj,ksj,1s̄k,2. (3.2)

The time-dependent part of the Lax operator (2.1) can be included into con-
sideration thanks to the compatibility between the two linear equations and the
independence of the spectral parameter z from variables (x, t), under the condition
that q is a classical solution of the cubic NLS equation (1.1). Therefore, we consider
the time-dependent system

∂tφ = V (x, t, z)φ, V (x, t, z) := i(|q|2 − 2z2)σ3 + 2zQ(q)− iQ(∂xq)σ3. (3.3)

We assume that q0 is a classical solution of the cubic NLS equation (1.1) and φ0 is a
matrix solution of the system (3.3) for the potential q0. Then, we define the matrix
function φ by the same dressing transformation formula (2.3). The following result
gives a time-dependent analog of Proposition 2.2.

Proposition 3.1. In addition to conditions of Proposition 2.2, assume that q0 is
a classical solution of the cubic NLS equation (1.1) and the set {sk}nk=1 yields a
classical solution of the time-evolution part of the Lax operator pair

∂tsk = i(|q0|2 − 2z̄2
k)σ3sk + 2z̄kQ(q0)sk − iQ(∂xq0)σ3sk, 1 ≤ k ≤ n. (3.4)

Let φ be defined by the dressing transformation (2.3), the set {rk}nk=1 be defined by
the linear system (2.6), and q be defined by the transformation formula (2.9). Then,
φ is a solution of the system (3.3) for the potential q, {rk}nk=1 is a solution of the
time-evolution part of the Lax operator pair

∂trk = i(|q|2 − 2z2
k)σ3rk + 2zkQ(q)rk − iQ(∂xq)σ3rk, 1 ≤ k ≤ n, (3.5)
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and q is a classical solution of the cubic NLS equation (1.1). In addition to the
transformation formula (2.9), q and q0 are related by

|q|2 = |q0|2 + ∂2
x log(D), (3.6)

where D := det(M) and M is given by the Gramian-type matrix (2.5).

Proof. We prove that the linear system (2.6) and Eq. (3.4) yield Eq. (3.5) under
the transformation formula (3.6). The fact that φ is a solution of the system (3.3)
for the potential q follows from this reduction and is proved similarly to Proposition
2.2. Finally, q is sufficiently smooth as it is defined by the transformation formula
(2.9). As q is a compatibility condition between systems (2.10) and (3.5), q becomes
a classical solution of the cubic NLS equation (1.1).

To derive Eq. (3.5), we differentiate the linear system (2.6) in time and substitute
Eq. (3.4) to obtain

(2z̄2
k − |q0|2)σ3sk + 2iz̄kQ(q0)sk + iQ(∂xq0)σ3sk

= −2i
n∑
j=1

(z̄k + zj)〈σ3sj , sk〉rj − 2
n∑
j=1

〈Q(q0)sj , sk〉rj +
n∑
j=1

〈sj , sk〉
z̄k − zj

∂trj .

This can be written as
n∑
j=1

〈sj , sk〉
z̄k − zj

[∂trj − i(|q|2 − 2z2
k)σ3rk − 2zkQ(q)rk + iQ(∂xq)σ3rk] = Gk,

where

Gk := (2z̄2
k − |q0|2)σ3sk + 2iz̄kQ(q0)sk + iQ(∂xq0)σ3sk

+ 2i
n∑
j=1

(z̄k + zj)〈σ3sj , sk〉rj + 2
n∑
j=1

〈Q(q0)sj , sk〉rj

+ i

n∑
j=1

〈sj , sk〉
z̄k − zj

(|q|2 − 2z2
j )σ3rj + 2

n∑
j=1

〈sj , sk〉
z̄k − zj

zjQ(q)rj

− i

n∑
j=1

〈sj , sk〉
z̄k − zj

Q(∂xq)σ3rj .

If Gk = 0, then invertibility of the matrix M in (2.5) implies validity of Eq. (3.5).
To show that Gk = 0, we use the linear system (2.6) and rewrite

Gk = (|q|2 − |q0|2)σ3sk + 2iz̄k[Q(q0) −Q(q)]sk + [Q(∂xq0) −Q(∂xq)]σ3sk

+ 2i
n∑
j=1

(z̄k + zj)〈σ3sj , sk〉rj + 2
n∑
j=1

〈Q(q0)sj , sk〉rj

− 2i
n∑
j=1

(z̄k + zj)〈sj , sk〉σ3rj + 2
n∑
j=1

〈sj , sk〉Q(q)rj .
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We can now use the derivative of the transformation formula (2.9) in the following
form:

Q(∂xq) −Q(∂xq0) = 2
n∑
j=1

(∂xrj) ⊗ s̄jσ3 + rj ⊗ (∂xs̄j)σ3 − ∂xR, (3.7)

where

R :=
n∑
j=1

rj ⊗ s̄jσ3 + σ3sj ⊗ r̄j =
n∑
j=1

(
rj,1s̄j,1 + r̄j,1sj,1 −rj,1s̄j,2 + r̄j,2sj,1

rj,2s̄j,1 − r̄j,1sj,2 −rj,2s̄j,2 − r̄j,2sj,2

)
.

Substituting the ZS systems (2.4) and (2.10), as well as the expression (3.7) to the
expression for Gk, we obtain

Gk = (|q|2 − |q0|2 + ∂xR)σ3sk.

It follows from the explicit expression (3.1) for the set {rk}nk=1 that R is a diagonal
matrix. Moreover, the difference between the two diagonal entries of the matrix R
is constant in x because

n∑
k=1

(rk,1s̄k,1 + r̄k,1sk,1 + rk,2s̄k,2 + r̄k,2sk,2) =
2
D

n∑
k=1

n∑
j=1

Dj,k〈sk, s1〉

=
2i
D

n∑
k=1

n∑
j=1

(z̄j − zk)Dj,kMj,k

= 2i


 n∑
j=1

z̄j −
n∑
k=1

zk


.

Consequently, we have

∂x

n∑
k=1

(rk,1 s̄k,1 + r̄k,1sk,1 + rk,2s̄k,2 + r̄k,2sk,2) = 0.

On the other hand, we have
n∑
k=1

(rk,1s̄k,1 + r̄k,1sk,1 − rk,2s̄k,2 − r̄k,2sk,2) =
2
D

n∑
k=1

n∑
j=1

Dj,k〈σ3sk, sj〉

= − 2
D

n∑
k=1

n∑
j=1

Dj,k∂xMj,k

= −2∂x log(D).

The last two expressions show that Gk = 0 if and only if |q|2 and |q0|2 are related
by the transformation formula (3.6).

Remark 3.2. Transformation formulas (3.2) and (3.6) are known to be compatible
from the Hirota bilinear method [2] used in constructing explicit solutions of the
cubic NLS equation (1.1).
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By using the system (3.4) for q0 = 0, n = 1, and z1 = ξ1 + iη1 with η1 > 0, we
include the time evolution of the 1-soliton of the cubic NLS equation. In this way,
we find the solution for the vector s1 = (b1, b2) in the form{

b1 = e−(η1+iξ1)(x−x0)+2i(η1+iξ1)2t+iθ,

b2 = −e(η1+iξ1)(x−x0)−2i(η1+iξ1)2t−iθ,

and obtain the 1-soliton in the form

q = 2η1 sech(2η1(x+ 2ξ1t− x0))e2iθ−2iξ1(x+2ξ1t−x0)+4iη2
1t. (3.8)

For t = 0, this expression coincides with (2.16).

4. Construction of Multi-Solitons

The multi-soliton solutions of the cubic NLS equation (1.1) are obtained by applying
the dressing transformation of Propositions 2.2 and 3.1 with zero solution q0 = 0
for general n ≥ 1. In this case, we define solutions of the linear systems (2.4) and
(3.4) with q0 = 0 by

sk = e−iz̄k(x−xk)σ3−2iz̄2ktσ3+iθkσ3σ31, 1 ≤ k ≤ n, (4.1)

where 1 = (1, 1), zk = ξk + iηk, and real parameters (ξk, ηk, xk, θk) are arbitrary
with ηk > 0. The set {rk}nk=1 is uniquely found in the form (3.1). It follows from the
transformation formula (3.2) with q0 = 0 that the n-soliton solutions are defined in
the form q = 2Σ

D , where

Σ := −
n∑
k=1

n∑
j=1

Dj,kFj,k (4.2)

and we have denoted

Fj,k := sj,1s̄k,2, 1 ≤ k, j ≤ n. (4.3)

For 2-solitons with n = 2, we obtain the explicit form of the solution:

qS(x, t; η1, η2, ξ1, ξ2, x1, x2, θ1, θ2) =
2ΣS

DS
(4.4)

with

ΣS :=
e−2η2ϕ2+2iψ1 + e2η2ϕ2+2iψ1

2η2
+
e−2η1ϕ1+2iψ2 + e2η1ϕ1+2iψ2

2η1

− e−2η2ϕ2+2iψ1 + e2η1ϕ1+2iψ2

η1 + η2 + i(ξ1 − ξ2)
− e−2η1ϕ1+2iψ2 + e2η2ϕ2+2iψ1

η1 + η2 − i(ξ1 − ξ2)
and

DS :=
(e−2η1ϕ1 + e2η1ϕ1)(e−2η2ϕ2 + e2η2ϕ2)

4η1η2

− (e−η1ϕ1−η2ϕ2+iψ1−iψ2 + eη1ϕ1+η2ϕ2−iψ1+iψ2)
(η1 + η2)2 + (ξ1 − ξ2)2

× (e−η1ϕ1−η2ϕ2−iψ1+iψ2 + eη1ϕ1+η2ϕ2+iψ1−iψ2),
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Fig. 1. Surface plots of |qS |2 vs. (x, t) for the 2-soliton solutions (4.4) with η1 = 1, η2 = 1.5, and
either ξ1 = −ξ2 = 1 (left) or ξ1 = ξ2 = 0 (right). Other translation parameters are set to zero.

where 


ϕ1 = x+ 4ξ1t− x1,

ϕ2 = x+ 4ξ2t− x2,

ψ1 = θ1 − ξ1(x+ 2ξ1t− x1) + 2η2
1t,

ψ2 = θ2 − ξ2(x+ 2ξ2t− x2) + 2η2
2t.

(4.5)

Figure 1 shows two particular types of dynamics of 2-solitons: scattering of two
solitons with nonequal speeds for ξ1 �= ξ2 (left) and oscillations of bound states of
two solitons with equal speeds for ξ1 = ξ2 (right) if η1 �= η2. Note that the solution
becomes zero if ξ1 = ξ2 and η1 = η2.

5. Analysis of Neighborhood of Multi-Solitons

We consider the dressing transformation for small but nonzero q0 in L2(R). Recall
that the L2(R) norm of a solution of the cubic NLS equation (1.1) is conserved in
time t, according to the conservation law (1.2). To work with the dressing transfor-
mation, we consider a classical solution q0 of the cubic NLS equation (1.1) in L2(R)
with constant ‖q0‖L2(R).

Let sj be solutions of the spectral problems (2.4) and (3.4) associated with small
but nonzero q0 in L2(R) for zj = ξj + iηj with ηj > 0. We write this vector in the
separable form

sj := e−iz̄j(x−xj)−2iz̄2j t+iθjfj − eiz̄j(x−xj)+2iz̄2j t−iθjgj , (5.1)

where (xj , θj) are arbitrary real parameters and components of the 2-vectors fj =
(aj1, a

j
2) and gj = (bj1, b

j
2) satisfy the boundary conditions


lim
x→−∞ aj1 = 1,

lim
x→+∞ e−2iz̄j(x−xj)−4iz̄2j t+2iθj aj2 = 0,

(5.2)
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and 


lim
x→−∞ e2iz̄j(x−xj)+4iz̄2j t−2iθj bj1 = 0,

lim
x→+∞ bj2 = 1.

(5.3)

If q0 = 0, then we have unique solutions fj = (1, 0) and gj = (0, 1), so that the
separable form (5.1) recovers (4.1). Using the same analysis as in [21, Lemmas 4.1
and 4.3], we obtain the following result.

Proposition 5.1. Let q0 be a classical solution of the cubic NLS equation (1.1) in
L2(R). There exists a positive constant ε0 such that if ‖q0‖L2 ≤ ε0, then the spectral
problems (2.4) and (3.4) for zj = ξj + iηj admit a solution sj satisfying (5.1)–(5.3).
For all t ∈ R, components of fj = (aj1, a

j
2) and gj = (bj1, b

j
2) belong to the class

(aj1, a
j
2) ∈ L∞(R) × (L∞(R) ∩ L2(R)),

(bj1, b
j
2) ∈ (L∞(R) ∩ L2(R)) × L∞(R),

(5.4)

and there exists a positive q0-independent constant C such that

‖aj1 − 1‖L∞ + ‖aj2‖L2∩L∞ + ‖bj1‖L2∩L∞ + ‖bj2 − 1‖L∞ ≤ C‖q0‖L2. (5.5)

We now construct a neighborhood of a multi-soliton by using the dressing trans-
formation in Propositions 2.2 and 3.1. The arguments are valid for all multi-solitons,
but we give details of analysis in the case of 2-solitons, because of the nature of the
perturbations yielding page-long computations. At the end of the section, we sum-
marize the key steps and modifications required to obtain the result in the general
case n ≥ 1.

Let M , Σ, and F be the matrices defined by (2.5), (4.2), and (4.3), associated
to s1 and s2 as given in (5.1). Let MS, ΣS , and FS be the matrices corresponding
to the 2-soliton qS given by (4.4). We denote D = det(M) and DS = det(MS). The
following result tells us that if q0 ∈ L2 is small, then the transformation formula
(3.2) with s1 and s2 given by (5.1) yields a new solution q near the 2-soliton qS in
the L2 norm.

Proposition 5.2. Let q0 be a classical solution of the cubic NLS equation (1.1) in
L2(R) and qS be the 2-soliton given explicitly by (4.4) with (ξ1, η1) �= (ξ2, η2). There
exists a positive constant ε0 such that if ‖q0‖L2 ≤ ε0, then there exists a positive
q0-independent constant C such that the function q given by the transformation
formula (3.2) with the functions s1 and s2 given by Proposition 5.1 satisfies

‖q − qS‖L2 ≤ C‖q0‖L2, t ∈ R. (5.6)

Proof. For convenience, we express bound (5.6) as ‖q−qS‖L2 � ε with ε := ‖q0‖L2

and use these notations in the rest of the paper. The bound (5.6) follows from the
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triangle inequality if we can show that∥∥∥∥2Σ
D

− qS
∥∥∥∥
L2

� ε. (5.7)

In turn, since in this case Di,j = (−1)i+jM3−i,3−j , this bound will be a consequence
of the bounds∥∥∥∥∥F1,1M2,2

D
− FS1,1M

S
2,2

DS

∥∥∥∥∥
L2

,

∥∥∥∥∥F2,2M1,1

D
− FS2,2M

S
1,1

DS

∥∥∥∥∥
L2

� ε (5.8)

and ∥∥∥∥∥F2,1M1,2

D
− FS2,1M

S
1,2

DS

∥∥∥∥∥
L2

,

∥∥∥∥∥F1,2M2,1

D
− FS1,2M

S
2,1

DS

∥∥∥∥∥
L2

� ε. (5.9)

In fact, to prove (5.8) and (5.9), it will suffice to show the estimates for F1,1M2,2

and F2,1M1,2, since the estimates for F2,2M1,1 and F1,2M2,1 are analogous.
We divide the proof into three steps. In the first step, we write down global

estimates in L2(R) and L∞(R) measuring the discrepancy between (F,M) and
(FS ,MS). From these, in the second step, we obtain for any t ∈ R that∥∥∥∥2Σ

D
− 2ΣS

DS

∥∥∥∥
L∞([−R,R])

� ε,

for some R large but fixed.
Finally, the growth properties of D (and DS) together with the L2(R) control on

the difference between (F,M) and (FS ,MS) obtained in the first part, allows us to
derive the result outside a compact set. This result together with the L∞([−R,R])
estimate from the second step yields the desired bound (5.7).

Step 1: Global estimates for M1,2,M2,2, F2,1 and F1,1

From (5.1), we have

M1,2 =
1

η1 + η2 + i(ξ1 − ξ2)
[e−η2ϕ2−iψ2−η1ϕ1+iψ1(a2

1a
1
1 + a2

2a
1
2)

− eη2ϕ2+iψ2−η1ϕ1+iψ1(b2
1a

1
1 + b2

2a
1
2) − e−η2ϕ2−iψ2+η1ϕ1−iψ1(a2

1b
1
1 + a2

2b
1
2)

+ eη2ϕ2+iψ2+η1ϕ1−iψ1(b2
1b

1
1 + b2

2b
1
2)].

Using inequality (5.5), we expand this expression as follows:

M1,2 =
1

η1 + η2 + i(ξ1 − ξ2)
[e−η2ϕ2−iψ2−η1ϕ1+iψ1 [1 + OL∞(ε) + OL2∩L∞(ε)]

− eη2ϕ2+iψ2−η1ϕ1+iψ1 [OL2∩L∞(ε)(1 + OL∞(ε)) + (1 + OL∞(ε))OL2∩L∞(ε)]

− e−η2ϕ2−iψ2+η1ϕ1−iψ1 [OL2∩L∞(ε)(1 + OL∞(ε)) + (1 + OL∞(ε))OL2∩L∞(ε)]

+ eη2ϕ2+iψ2+η1ϕ1−iψ1 [1 + OL∞(ε) + OL2∩L∞(ε)]]
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=
(e−η2ϕ2−iψ2−η1ϕ1+iψ1 + eη2ϕ2+iψ2+η1ϕ1−iψ1)

η1 + η2 + i(ξ1 − ξ2)

+
(e−η2ϕ2−iψ2−η1ϕ1+iψ1 + eη2ϕ2+iψ2+η1ϕ1−iψ1)

η1 + η2 + i(ξ1 − ξ2)
[OL∞(ε) + OL2∩L∞(ε)]

− (eη2ϕ2+iψ2−η1ϕ1+iψ1 + e−η2ϕ2−iψ2+η1ϕ1−iψ1)
η1 + η2 + i(ξ1 − ξ2)

OL2∩L∞(ε),

which yields

M1,2 = MS
1,2 +MS

1,2[OL∞(ε) + OL2∩L∞(ε)]

− (eη2ϕ2+iψ2−η1ϕ1+iψ1 + e−η2ϕ2−iψ2+η1ϕ1−iψ1)
η1 + η2 + i(ξ1 − ξ2)

OL2∩L∞(ε), (5.10)

where OL∞(ε) means that the function is O(ε) small in the L∞(R) norm. In the
same way, we are able to show that

M2,2 = MS
2,2 +MS

2,2[OL∞(ε) + OL2∩L∞(ε)] − (e−2iψ2 + e2iψ2)
2η2

OL2∩L∞(ε). (5.11)

One can see that similar asymptotics hold for M2,1 and M1,1 which in turn yield
the following expansion of D:

D = DS +DSOL∞(ε) + (E1 + E2)OL2∩L∞(ε), (5.12)

where

E1 =
[

1
4η1η2

+
1

(η1 + η2)2 + (ξ1 − ξ2)2

]
[e2η2ϕ2−2η1ϕ1 + e−2η2ϕ2+2η1ϕ1

+ e2iψ2+2iψ1 + e−2iψ2−2iψ1 + e2η2ϕ2+2iψ1 + e−2η2ϕ2−2iψ1

+ e2η1ϕ1−2iψ2 + e−2η1ϕ1+2iψ2 ] (5.13)

and

E2 =
[

1
4η1η2

− 1
(η1 + η2)2 + (ξ1 − ξ2)2

]
[e2η2ϕ2+2η1ϕ1 + e−2η2ϕ2−2η1ϕ1

+ e2iψ2−2iψ1 + e−2iψ2+2iψ1 + e2η2ϕ2−2iψ1 + e−2η2ϕ2+2iψ1

+ e2η1ϕ1+2iψ2 + e−2η1ϕ1−2iψ2 ]. (5.14)

We claim D = DS(1 + OL∞(ε)), which has as a consequence

1
D

=
1

DS(1 + OL∞(ε))
=

1 + OL∞(ε)
DS

. (5.15)
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Indeed, assuming (η1, ξ1) �= (η2, ξ2) it is clear that

|DS | =
1

2η1η2
[cosh(2(η1ϕ1 + η2ϕ2)) + cosh(2(η1ϕ1 − η2ϕ2))]

− 2
(η1 + η2)2 + (ξ1 − ξ2)2

[cosh(2(η1ϕ1 + η2ϕ2)) + cos(2(ψ1 − ψ2))]

� cosh(2(η1ϕ1 + η2ϕ2)) + cosh(2(η1ϕ1 − η2ϕ2)), (5.16)

because (η1+η2)2+(ξ1−ξ2)2 > 4η1η2 and cosh 2(η1ϕ1−η2ϕ2) ≥ 1 ≥ cos(2(ψ1−ψ2)).
Using this estimate, we obtain

|E1| � cosh(2(η2ϕ2 − η1ϕ1)) � |DS |.
Since

cosh(2η1ϕ1) + cosh(2η2ϕ2) � cosh(2(η1ϕ1 + η2ϕ2)) + cosh(2(η1ϕ1 − η2ϕ2)),

we also have

|E2| � cosh(2(η1ϕ1 + η2ϕ2)) + cosh(2η1ϕ1) + cosh(2η2ϕ2) � |DS |,
from which the claim (5.15) follows.

We turn to the asymptotics for F. F2,1 satisfies the following

F2,1 = FS2,1 + FS2,1OL∞(ε) + [eη2ϕ2−iψ2+η1ϕ1+iψ1 + e−η2ϕ2+iψ2−η1ϕ1−iψ1

− eη2ϕ2−iψ2−η1ϕ1−iψ1 ]OL2∩L∞(ε), (5.17)

while F1,1 can be expanded as

F1,1 = FS1,1 + FS1,1OL∞(ε) + [e2η1ϕ1 + e−2η1ϕ1 − e−2iψ1 ]OL2∩L∞(ε). (5.18)

Step 2: Estimates on a compact set
Let R > 0 be a large constant independent of ε (and t) to be fixed later. The purpose
of this point is to obtain asymptotics of F1,1M2,2 and F2,1M1,2 on the compact set
{|x| < R} (for all t ∈ R). For our goal, it is enough to show that these terms differ
from FS1,1M

S
2,2 and FS2,1M

S
1,2 respectively, by a quantity uniformly controlled by ε.

To this end, we note that on the compact set, the previous estimates (5.10)–
(5.18) yield

|F1,1M2,2 − FS1,1M
S
2,2| � cosh(2(η1ϕ1 + η2ϕ2)) + cosh(2(η1ϕ1 − η2ϕ2)) (5.19)

and

|F2,1M1,2 − FS2,1M
S
1,2| � cosh(2(η1ϕ1 + η2ϕ2)) + cosh(2(η1ϕ1 − η2ϕ2)), (5.20)

where OL∞(ε) is now used in the L∞([−R,R]) norm.
From (5.15) and (5.16), we observe that

|D| � |DS | � cosh(2(η1ϕ1 + η2ϕ2)) + cosh(2(η1ϕ1 − η2ϕ2)), (5.21)
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so that∣∣∣∣∣F1,1M2,2

D
− FS1,1M

S
2,2

DS

∣∣∣∣∣ =

∣∣∣∣∣F1,1M2,2

DS
(1 + OL∞(ε)) − FS1,1M

S
2,2

DS

∣∣∣∣∣
�
∣∣∣∣∣F1,1M2,2

DS
− FS1,1M

S
2,2

DS

∣∣∣∣∣+ OL∞(ε)
∣∣∣∣F1,1M2,2

DS

∣∣∣∣
= OL∞(ε). (5.22)

Similarly, one has ∣∣∣∣∣F2,1M1,2

D
− FS2,1M

S
1,2

DS

∣∣∣∣∣ = OL∞(ε), (5.23)

thanks to (5.19) and (5.20).

Step 3: Estimates outside a compact set
We now deal with the estimates outside the compact set {|x| < R} for the same R
as in Step 2. Here, the norms L2, L∞ are taken outside the compact set {|x| < R}.
Again, from (5.10)–(5.18), we have

F11M22 = FS11M
S
22 −

1
2η2

(e−2η2ϕ2+2iψ1 + e2η2ϕ2+2iψ1)OL∞(ε) (5.24)

− 1
2η2

(e−2η1ϕ1 + e2η1ϕ1)(e2iψ2 + e−2iψ2)OL∞(ε)

+
1

2η2
(e−2η2ϕ2 + e2η2ϕ2)(e−2η1ϕ1 + e2η1ϕ1)OL2∩L∞(ε)

and

F2,1M1,2 = FS2,1M
S
1,2 +

1
η1 + η2 + i(ξ1 − ξ2)

[G1OL∞(ε) +G2OL2∩L∞(ε)], (5.25)

where

G1 = −e−η2ϕ2+iψ2+η1ϕ1+iψ1(e−η2ϕ2−iψ2−η1ϕ1+iψ1 + eη2ϕ2+iψ2+η1ϕ1−iψ1),

G2 = e−η2ϕ2+iψ2+η1ϕ1+iψ1(eη2ϕ2+iψ2−η1ϕ1+iψ1 + e−η2ϕ2−iψ2+η1ϕ1−iψ1)

+ (eη2ϕ2−iψ2+η1ϕ1+iψ1 + e−η2ϕ2+iψ2−η1ϕ1−iψ1)

× (e−η2ϕ2−iψ2−η1ϕ1+iψ1 + eη2ϕ2+iψ2+η1ϕ1−iψ1)

− eη2ϕ2−iψ2−η1ϕ1−iψ1(e−η2ϕ2−iψ2−η1ϕ1+iψ1 + eη2ϕ2+iψ2+η1ϕ1−iψ1)

+ (eη2ϕ2−iψ2+η1ϕ1+iψ1 + e−η2ϕ2+iψ2−η1ϕ1−iψ1)

× (−eη2ϕ2+iψ2−η1ϕ1+iψ1 − e−η2ϕ2−iψ2+η1ϕ1−iψ1)

− eη2ϕ2−iψ2−η1ϕ1−iψ1(−eη2ϕ2+iψ2−η1ϕ1+iψ1 − e−η2ϕ2−iψ2+η1ϕ1−iψ1).

From these estimates, we obtain

|F1,1M2,2 − FS11M
S
2,2| � OL2∩L∞(ε) + (H1 +H2)OL∞(ε) +H1H2 OL2∩L∞(ε),
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where

H1 = −(e−2η1ϕ1 + e2η1ϕ1)(e2iψ2 + e−2iψ2),

H2 = −(e−2η2ϕ2+2iψ1 + e2η2ϕ2+2iψ1).

We can see that these functions satisfy the bounds

|Hi| � cosh(2ηiϕi), for i = 1, 2. (5.26)

In the same way, we have

|F2,1M1,2 − FS2,1M
S
1,2|

� J1J3OL∞(ε) + (J1J4 + J2
3 + J2J3 + J3J4 + J2J4)OL2∩L∞(ε), (5.27)

where

J1 = −e−η2ϕ2+η1ϕ1 ,

J2 = −eη2ϕ2−η1ϕ1 ,

J3 = e−η2ϕ2−η1ϕ1 + eη2ϕ2+η1ϕ1 ,

J4 = −eη2ϕ2−η1ϕ1 − e−η2ϕ2+η1ϕ1 .

It follows from (5.26) that

|H1H2| � cosh(2(η1ϕ1 + η2ϕ2)) + cosh(2(η1ϕ1 − η2ϕ2)). (5.28)

In a similar fashion, we deduce from (5.28) that

|J1J4| � e−2η2ϕ2 + e2η1ϕ1 ,

|J2J4| � 1 + e2η2ϕ2−2η1ϕ1 ,

|J2
3 | � cosh(2η2ϕ2 + 2η1ϕ1) + 1,

|J3J4| � cosh(2η1ϕ1) + cosh(2η2ϕ2).

All these quantities can be bounded from above by |D| in light of (5.15) and (5.16).
Thus, we can assert that H1H2

D , J1J4
D ,

J2
3
D ,

J2J4
D and J3J4

D are L∞ functions whose
norms are bounded uniformly in t.

Now we show that H1
D , H2

D , J1J3
D and J2J3

D are bounded in L2, uniformly in t.

From (5.28) and similar estimates, we see that it suffices to prove that e2η1ϕ1

D ∈ L2

(the terms e−2η1ϕ1

D , e±2η2ϕ2 can be dealt with similarly).
Appealing once again to (5.15) and (5.16) we see that

e−2η1ϕ1

|D| � e−2η1ϕ1

cosh(2(η1ϕ1 + η2ϕ2)) + cosh(2(η1ϕ1 − η2ϕ2))

� e−2η1ϕ1

e2η2ϕ2+2η1ϕ1 + e−2η2ϕ2+2η1ϕ1
� sech(2η2ϕ2) ∈ L2. (5.29)



May 26, 2014 8:48 WSPC/S0219-8916 JHDE 1450010

Stability of multi-solitons in the cubic NLS equation 349

Collecting all these estimates, we see that outside the compact set {|x| < R}
F1,1M2,2

D
=
FS1,1M

S
2,2

DS
+ OL2(ε) (5.30)

and

F1,2M1,2

D
=
FS1,2M

S
1,2

DS
+ OL2(ε). (5.31)

Combining (5.22), (5.23), (5.30) and (5.31), we obtain (5.7).

Corollary 5.3. Under conditions of Proposition 5.2, there is a positive constant C
such that

‖q0‖L2 ≤ C‖q − qS‖L2, t ∈ R. (5.32)

Proof. Because the dressing transformation formulas (2.3) and (3.2) are invertible
by construction, the bound (5.32) follows from the triangle inequality and bound
(5.7).

Remark 5.4. Proposition 5.2 can be extended to the general case of multi-soliton
configurations. The global estimates obtained in (5.10)–(5.18) can be used to derive
explicit (though cumbersome) expansions for the Dj,k’s (including the determinant
D). On the compact set {|x| < R}, the OL∞(ε) difference between Dj,kFj,k’s and
DS
j,kF

S
j,k’s together with

1
D

=
1
DS

(1 + OL∞(ε))

suffices to show
Σ
D

=
ΣS

DS
+ OL∞(ε)

for all t ∈ R. The estimates outside the compact set {|x| < R} can be achieved as
in the third step of the proof of Proposition 5.2, thanks to the bound

e2(
Pn

i=1 σiηiϕi) � |D|, (5.33)

valid for any choice of signs σ : {1, . . . , n} → {−1, 1}, and making use of the fact
that for any j ∈ {1, . . . , n}, we have

e2
P

i�=j σiηiϕi

|D| � sech(2ηjϕj) ∈ L2. (5.34)

The estimates thus obtained are independent of the time, thanks to the conservation
of the L2(R) norm of the solution q0 of the cubic NLS equation (1.1).

6. Orbital Stability of Multi-Solitons

In this section, we prove the result on the orbital stability of multi-solitons in L2(R)
given by Theorem 1.1. First, we will assume that the initial data q0 for the cubic
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NLS equation (1.1) satisfies the bound (1.4) (that is, it is close to the multi-soliton
qS in the L2,s norm with s > 1

2 ) and belongs to H3(R). By the well-posedness
theory for the NLS equation [9, 16], there exists a unique solution in class

q ∈ C0(R, H3(R)) ∩ C1(R, H1(R)),

such that q|t=0 = q0. By Sobolev embeddings, qt and qxx are continuous functions
of (x, t) ∈ R × R such that q is a classical solution of the cubic NLS equation (1.1)
in L2(R).

By Proposition 5.2, a small L2-neighborhood of the zero solution of the cubic
NLS equation (1.1) is mapped into a small L2-neighborhood of a multi-soliton qS

(details were given for the case of 2-solitons). The dressing transformation formulas
(2.3) and (3.2) are invertible by the construction. However, since the dressing trans-
formation is not onto, an arbitrary point in a small L2-neighborhood of the multi-
soliton qS is not mapped back to the small L2-neighborhood of the zero solution,
unless constraints are set to specify uniquely the parameters of the multi-soliton
qS [21].

To avoid this technical difficulty, we apply the inverse scattering transform
method. Results of the inverse scattering transform method for the cubic NLS
equation are collected together in [4]. Given the initial data q0 near a multi-
soliton qS in the weighted L2(R) space according to the bound (1.4), the direct
and inverse scattering problems can be solved as in [4] to obtain parameters of the
multi-soliton qS

′
from the initial data q0. Thanks to the bound (1.4), the initial

data q0 supports exactly n eigenvalues in the Lax system (2.1) if qS supports n
eigenvalues.

Here we note two important facts. First, multi-solitons of the cubic NLS equa-
tion belong to the class of generic potentials in L1(R), which means that a small
perturbation to a multi-soliton in L1(R) does not change the number of solitons
(eigenvalues of the Lax operators). This applies to a small perturbation in L2,s(R)
with s > 1

2 , which is continuously embedded into L1(R). Second, the scattering data
associated with q0 are Lipschitz continuous in Hs(R) if q0 ∈ L2,s(R) with s > 1

2

(see [4, Lemma 2.4]). Bound (1.5) follows from Lipschitz continuity of the scattering
data associated with the initial data q0 satisfying the bound (1.4).

By inverting the dressing transformation (2.3) and (3.2) with parameters of the
multi-soliton qS

′
chosen from the inverse scattering transform method associated

with the potential q0, we map the initial data q0 to the new initial data q̃0, which
is free of solitons. By Corollary 5.3, it satisfies the bound

‖q̃0‖L2 ≤ Cε

for some C > 0, where ε is defined by the initial bound (1.4).
Let q̃ be a classical solution of the cubic NLS equation (1.1) in L2(R) such that

q̃|t=0 = q̃0. By the L2(R) conservation (1.2), we have ‖q̃‖L2 ≤ Cε for all t ∈ R.
Then, by the dressing transformation (2.3) and (3.2) with the same parameters as
in qS

′
and Proposition 5.2, we obtain the bound (1.6) for all t ∈ R.
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To complete the proof of Theorem 1.1, we need to show that the bound (1.6)
remains true if q0 satisfies the bound (1.4) but does not belong to H3(R). (Bound
(1.5) remains true, thanks to the inverse scattering transform method [4].) In this
case, q0 generates a global solution of the cubic NLS equation (1.1) in class q ∈
C(R, L2(R)), which is not a classical solution of the NLS equation [25]. Therefore,
the dressing transformation (2.3) and (3.2) cannot be used directly for the solution
q. Instead, we consider an approximating sequence in Sobolev spaces, similarly to
[4, 21].

Let {q(k)0 }k∈N be a sequence in H3(R) such that q(k)0 → q0 in L2(R) as k → ∞.
Then {q(k)}k∈N is a sequence of classical solutions of the cubic NLS equation such
that q(k)|t=0 = q

(k)
0 . By the previous arguments, there exists a sequence of n-soliton

solutions {qS(k)}k∈N with parameters {ξ(k)j , η
(k)
j , x

(k)
j , θ

(k)
j }nj=1 such that

max
1≤j≤n

|(ξ(k)j , η
(k)
j , x

(k)
j , θ

(k)
j ) − (ξj , ηj , xj , θj)| ≤ Cε

and

‖q(k)(·, t) − qS
(k)

(·, t)‖L2(R) ≤ Cε, t ∈ R.

Thanks to the L2(R) conservation (1.2), the sequence {q(k)}k∈N converges to q in
the L2(R) norm as k → ∞ for any t ∈ R. As a result, there is a subsequence
of n-soliton solutions {qS(k)}k∈N that converges to the n-soliton qS

′
with parame-

ters {ξ′j, η′j , x′j , θ′j}nj=1 such that bounds (1.5) and (1.6) are satisfied. The proof of
Theorem 1.1 is complete.
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