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Abstract. We analyze the spectral stability of the standing periodic waves in the massive
Thirring model in laboratory coordinates. Since solutions of the linearized MTM equation are
related to the squared eigenfunctions of the linear Lax system, the spectral stability of the
standing periodic waves can be studied by using their Lax spectrum. Standing periodic waves
are classified based on eight eigenvalues which coincide with the endpoints of the spectral bands
of the Lax spectrum. Combining analytical and numerical methods, we show that the standing
periodic waves are spectrally stable if and only if the eight eigenvalues are located either on the
imaginary axis or along the diagonals of the complex plane.
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This article is written in memory of D. Kaup for his many contributions to studies of stability
of nonlinear waves by using the squared eigenfunctions, including the pioneering work on the
MTM system in [39].

1. Introduction

The Massive Thirring model (MTM) is a mathematical model in quantum field theory. This
model was first proposed by Thirring in [57] and has been used as an integrable example of the
nonlinear Dirac equation in the space of one dimension [8]. Integrability of the MTM was first
established in [46] and then explored in [40, 41, 47].

We use the following normalized form of the MTM in the laboratory coordinates:{
i(ut + ux) + v + |v|2u = 0,
i(vt − vx) + u+ |u|2v = 0,

(1.1)

along with the initial condition (u, v)|t=0 = (u0, v0). The complete integrability of the MTM is
due to the existence of the following Lax pair of linear equations [46]:{

ψx = L(u, v, λ)ψ,
ψt =M(u, v, λ)ψ,

(1.2)
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Here, i is the imaginary unit with i2 = −1, the bar represents the complex conjugate, and σ3 is
the third Pauli matrix, σ3 = diag(1,−1).

The inverse scattering transform (IST) method for the linear system (1.2) was developed
formally in [59] and rigorously in [34, 42, 50]. The IST method was used to solve the initial-value
problem on the infinite line and to establish the long-time scattering properties near the soliton
solutions. Solutions in the quarter-plane were also obtained with the unified transform method
in [60]. The initial-value problem for the MTM system (1.1) has been alternatively studied by
using the contraction mapping and energy methods in Sobolev space Hs(R) with s > 1

2
(see

review in [48]). Solutions of the MTM system in the space L2(R) of low regularity were studied
in [9, 35, 54, 63].

For physical applications in the quantum field theory and quantum optics, it is important to
study stability of the standing and traveling waves in the time evolution of the MTM system
(1.1). Every standing wave solution can be extended as the traveling wave solution due to the
Lorentz symmetry[

u(x, t)
v(x, t)

]
7→
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)1/4
u
(
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)
(
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v
(

x+ct√
1−c2

, t+cx√
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) , c ∈ (−1, 1), (1.3)

which exists because the MTM system (1.1) is relativistically invariant. In addition, every stand-
ing wave solution can be translated in space, time, and complex phase due to the translational
and rotational symmetries[

u(x, t)
v(x, t)

]
7→

[
u(x+ x0, t+ t0)e

iθ0

v(x+ x0, t+ t0)e
iθ0

]
, x0, t0, θ0 ∈ R. (1.4)

The simplest standing wave solution of the MTM system is the Dirac soliton (also known as
the gap soliton): {

u(x, t) = iα sech
(
αx− iγ

2

)
e−iβt,

v(x, t) = −iα sech
(
αx+ iγ

2

)
e−iβt,

(1.5)

where α := sin γ, β := cos γ, and γ ∈ (0, π) is a free parameter. Spectral stability of Dirac
solitons was established with the completeness of squared eigenfunctions [39] and has been used
to study spectral stability of solitary waves in non-integrable Dirac equations [4, 7, 38]. Orbital
stability of Dirac solitons in Sobolev space H1(R) was obtained in [51] by using the higher-order
energy of the MTM system (1.1). Orbital stability of Dirac solitons in a weighted L2(R) space
was obtained in [22] with the Bäcklund–Darboux transformation. Transverse instability of Dirac
solitons in the two-dimensional generalizations of the MTM system (1.1) was shown in [52].
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Multi-soliton solutions to the MTM system have also been constructed with different algebraic
methods in [1–3, 11, 25] both on the zero and constant nonzero backgrounds. More recently, the
MTM system was studied for the existence of rogue waves given by the rational solutions which
arise on the constant nonzero background due to its modulational instability [12, 32, 33, 62]. It is
important to combine the study of multi-soliton and multi-rogue-wave solutions on the nonzero
background with the proper stability analysis of the nonzero background. This step was missing
in most of the previous publications, where algebraic methods have been used. Based on several
model examples involving the constant nonzero background [5, 6, 27] and the standing periodic
waves [16, 21, 53] (see also reviews in [28, 55]), we know that the space–time localization of
the rogue waves is related to the instability growth rate of the background. If the background
is modulationally stable, numerical simulations do not show the occurrence of large-amplitude
rogue waves [45].

The main motivation for our work is to give a complete spectral stability analysis of the
standing wave solutions to the MTM system (1.1) which include the constant nonzero solutions.

The standing wave solutions of the MTM system (1.1) are written in the form:

u(x, t) = U(x)e−iωt, v(x, t) = V (x)e−iωt, (1.6)

where ω ∈ R is the frequency parameter and (U, V ) ∈ C2 is the wave profile. To include the class
of Dirac solitons (1.5), we will consider here the standing waves satisfying the reduction V = Ū .

Figure 1 presents the existence diagram of the standing waves on the parameter plane (b, ω),
where

b := −ω(|U |2 + |V |2)− |U |2|V |2 − (ŪV + V̄ U) (1.7)

is the x-independent parameter that corresponds to the Hamiltonian of the spatial dynamical
system for (U, V ). The existence results for the standing waves are summarized as follows:

• Region I for b ∈ (−∞, 0) contains exactly one family of standing waves with the mapping
x 7→ arg(U) = − arg(V ) being monotonically increasing.

• Region II bounded by b = 0, ω ∈ [−1, 1] (black line), b = (1 − ω)2, ω ∈ (−∞, 1] (red
line), and b = (1+ ω)2, ω ∈ (−∞,−1] (blue line) contains exactly one family of standing
waves with the mapping x 7→ arg(U) = − arg(V ) being bounded and periodic.

• Region III for b ∈ (0, (1 + ω)2), ω ∈ (−∞,−1) contains exactly two families of standing
waves, both have the mapping x 7→ arg(U) = − arg(V ) monotonically increasing.

• Region IV contains no families of standing waves.

For each family of the standing waves with the mapping x 7→ arg(U) = − arg(V ) being mono-
tonically increasing, there is a symmetrically reflected family with the mapping x 7→ arg(U) =
− arg(V ) being monotonically decreasing. Strictly speaking, such standing waves of the form
(1.6) are not periodic in x even though the mapping x 7→ |U | = |V | is bounded and periodic. For
notational convenience, we still refer to these solutions loosely as the standing periodic waves.



4 SHIKUN CUI AND DMITRY E. PELINOVSKY

The constant solutions of the MTM system (1.1) occur on the boundary of the region II, that
is, for b = 0, ω ∈ [−1, 1] (black line), b = (1 − ω)2, ω ∈ (−∞, 1] (red line), and b = (1 + ω)2,
ω ∈ (−∞,−1] (blue line). The constant solution is zero in the first case and nonzero in the other
two cases.
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Figure 1. The existence diagram on the (b, ω) parameter plane.

We define the Lax spectrum of the standing periodic waves as the set of admissible values
of λ in the linear system (1.2) for which ψ(·, t) ∈ L∞(R,C2) for every t ∈ R. Accordingly, the
stability spectrum is defined as the set of admissible values of Λ in the linearized MTM system,
see (3.5) below, for which the eigenfunction is bounded on R. By using the squared eigenfunction
relation between solutions of the linear system (1.2) and solutions of the linearized MTM system
(3.5) found in [39], we study the spectral stability of the standing periodic waves from their Lax
spectrum. The spectral bands of the Lax spectrum which determine the spectral stability versus
the spectral instability of the standing periodic waves are located between eight roots of the
function

P (λ) :=
1

4

(
λ2 +

1

λ2
− 2ω

)2

− b. (1.8)

Coefficients of P (λ) are computed from parameters (b, ω) in (1.6) and (1.7). We show that if
U = V̄ , then the roots of P (λ) satisfy the triple symmetry of reflections in the complex plane:

• about the real axis R,
• about the imaginary axis iR,
• about the unit circle S1.

By converting the linear system (1.2) to the matrix eigenvalue problem, see Appendix A, we
compute the Lax spectrum numerically by using the Fourier collocation method from [61, Section

2.4]. The stability spectrum is obtained from the relation Λ = ±i
√
P (λ) due to the squared

eigenfunction relation.
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Figure 2 displays the Lax spectrum (top panels) and the stability spectrum (bottom panels)
for different families of the standing periodic waves. The location of the eight roots of P (λ) is
shown by red crosses. The dotted green line shows the unit circle S1. The location of roots of
P (λ), the Lax spectrum, and the stability spectrum are summarized as follows:

• In region I, the roots of P (λ) form two quadruplets of complex eigenvalues which are
symmetric about S1, see (a). The stability spectrum contains the unstable figure-eight
band if ω ̸= 0, see (f). For ω = 0, the bands connecting roots of P (λ) are located along
the main diagonals, see (b), and the stability spectrum is on iR, see (g).

• In region IIA, the roots of P (λ) form two quadruplets of complex eigenvalues located on
S1, see (c). The stability spectrum contains the unstable segment on R, see (h).

• In region IIB, the roots of P (λ) form a quadruplet of complex eigenvalues on S1 and
two pairs of purely imaginary eigenvalues which are symmetric about S1, see (d). The
stability spectrum contains the unstable segement on R, see (i).

• In region III, the roots of P (λ) form four pairs of purely imaginary eigenvalues, which
are symmetric about S1, see (e). The stability spectrum is on iR, see (j).

(a) I with ω ̸= 0. (b) I with ω = 0. (c) IIA. (d) IIB. (e) III.
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(f) I with ω ̸= 0.
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(g) I with ω = 0.
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Figure 2. Lax spectrum (top panels) and the stability spectrum (lower panels)
for the standing periodic waves in regions I, IIA, IIB, III of Figure 1.

We note that the Lax and stability spectra in region III are identical for both families of
the standing periodic waves which coexist in region III. Although Figure 2 only shows some
numerical approximations for particular points in the (b, ω) plane, we have checked that the
same results are true for every point in the corresponding regions of the parameter plane (b, ω).
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Based on these numerical approximations, we obtain the following stability criterion for the
standing periodic waves of the MTM system (1.1), which is the main result of this work.

The standing periodic waves in the form (1.6) with V = Ū are spectrally stable in the MTM
system (1.1) if and only if all roots of P (λ) in (1.8) are located either on the imaginary axis iR
or along the diagonals of the complex plane.

We also show the spectral stability of the constant nonzero background for b = (1 + ω)2,
ω ∈ (−∞,−1] (blue line on Fig. 1) and the constant zero background for b = 0, ω ∈ [−1, 1]
(black line on Fig. 1). Moreover, the family of solitary waves on the constant nonzero background
and the family of Dirac solitons (1.5) on the constant zero background are also spectrally stable.
On the other hand, we show that the constant nonzero background for b = (1−ω)2, ω ∈ (−∞, 1]
(red line on Fig. 1) is spectrally unstable.

The study of spectral stability of standing and traveling wave solutions of integrable equations
by using the squared eigenfunction method has started with the works of Deconinck and his
coathors [29–31, 56, 58]. With the algebraic nonlinearization method of Cao and Geng [10]
which connects standing and traveling waves with the integrable finite-dimensional Hamiltonian
systems, Chen and Pelinovsky found rogue wave solutions for many integrable equations [13–
16] (see also [20, 53]) in the cases when the wave background is modulationally unstable. The
stability problem for the standing periodic waves can be solved from the Lax spectrum due to
separation of variables and this has been explored for numerical study of the stability spectrum
in many integrable equations [18, 19, 21]. However, the variables do not separate for the double-
periodic solutions [49] and for traveling periodic waves in lattice equations [17]. Further study
of the spectral and orbital stability of the traveling wave solutions can be found in [43, 44]. Our
work expands the study of spectral stability to the case of the standing periodic waves in the
MTM system (1.1).

Organization of the paper. The standing waves of the form (1.6) with V = Ū are classified
in Section 2 by using the phase portraits for a planar Hamiltonian system. Section 3 reports the
squared eigenfunction relation between solutions of the linear system (1.2) and solutions of the
linearized MTM system at the standing waves. Properties of eigenvalues of the Lax and stability
spectra are described in Section 4. The Lax and stability spectra for the constant nonzero
solutions are computed explicitly in Section 5. With these exact solutions, we have also tested
the numerical method to recover the same spectra numerically. In Section 6, we obtain exact
solutions for the standing periodic waves in relation to roots of P (λ) and compute numerical
approximations of their Lax and stability spectra. The paper is concluded with a summary and
further discussions in Section 7. The numerical method is described in Appendix A.

Acknowledgements. The work of the first author was conducted during PhD studies while
visiting McMaster University. The first author thanks Professor Wendong Wang for the en-
couragement, the China Scholarship Council for financial support, and McMaster University for
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2. Classification of standing waves

Profiles (U, V ) of the standing wave solutions of the form (1.6) are found from the system of
first-order differential equations{

iU ′ + ωU + V + |V |2U = 0,
−iV ′ + ωV + U + |U |2V = 0,

(2.1)

which is obtained by substituting (1.6) into (1.1). System (2.1) can be written as the complex
Hamiltonian system

i
dU

dx
=
∂H

∂Ū
, −idV

dx
=
∂H

∂V̄
, (2.2)

generated by the real-valued Hamiltonian

H(U, V ) = −ω(|U |2 + |V |2)− |U |2|V |2 − (ŪV + V̄ U), (2.3)

which coincides with (1.7). Since H is independent of x, the Hamiltonian is conserved for every
solution of system (2.1). Another real-valued conserved quantity for system (2.1) is

F (U, V ) = |U |2 − |V |2, (2.4)

conservation of which follows by adding the following two equations

i(ŪU ′ − Ū ′U) + ŪV − UV̄ =0,

−i(V̄ V ′ − V̄ ′V ) + V̄ U − V Ū =0.

With two conserved quantities (2.3) and (2.4), system (2.1) is completely integrable. In what
follows, we will only consider the standing waves under the reduction V = Ū , which corresponds
to F (U, V ) ≡ 0. This particular case includes the Dirac solitons (1.5) at the constant zero
background. We use the polar form

U(x) = ζ(x)e
i
2
θ(x), V (x) = ζ(x)e−

i
2
θ(x) (2.5)

with real-valued ζ and θ and obtain the system of first-order differential equations{
ζ ′ = ζ sin θ,

θ′ = 2 cos θ + 2ζ2 + 2ω,
(2.6)

for which b := H(U, V ) = −2ωζ2 − ζ4 − 2ζ2 cos θ is a constant. With further transformation
ζ =

√
ξ, system (2.6) is rewritten in the form{

ξ′ = 2ξ sin θ,

θ′ = 2ω + 2ξ + 2 cos θ,
(2.7)

for which b = −2ωξ − ξ2 − 2ξ cos θ.
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The relevant periodic solutions of system (2.7) correspond to the domain

Γ+ := {(θ, ξ) : ξ ≥ 0}
and the line Γ0 := {(θ, ξ) : ξ = 0} is invariant with respect to evolution of the spatial dynamical
system (2.7). In addition, system (2.7) is 2π-periodic with respect to θ, which allows us to close
the system on the cylinder T× R, where T := [0, 2π) subject to the 2π-periodicity condition.

The following two propositions determine the equilibrium points of the planar system (2.7)
in T× R.
Proposition 2.1. System (2.7) admits the following equilibrium points in T× R.
• Two equilibrium points {P+,P−} exist for every ω ∈ R, where

P+ := {(θ, ξ) = (0,−(1 + ω))} and P− := {(θ, ξ) = (π, 1− ω)}.

• Two equilibrium points {Q+,Q−} exist for ω ∈ (−1, 1), where

Q+ := {(θ, ξ) = (arccos(−ω), 0)} and Q− := {(θ, ξ) = (2π − arccos(−ω), 0)}.

Proof. Assume that (θ0, ξ0) ∈ T× R is the equilibrium point of system (2.7). Then{
ξ0 sin θ0 = 0,

ω0 + ξ0 + cos θ0 = 0.

If ξ0 = 0, then either θ0 = arccos(−ω) or θ0 = 2π − arccos(−ω). This yields {Q+,Q−} for every
ω ∈ [−1, 1]. If sin θ0 = 0, then either θ0 = 0 and ξ0 = −(1 + ω) or θ0 = π and ξ0 = 1− ω. This
yields {P+,P−} for every ω ∈ R. For ω = ±1, the sets {Q+,Q−} and {P+,P−} coincide. □

Remark 2.1. The equilibrium points {Q+,Q−} belongs to the invariant line Γ0 for ω ∈ (−1, 1).
For applications of (2.7) in T× R+, the equilibrium point P+ is relevant for ω ∈ (−∞,−1] and
the equilibrium point P− is relevant for ω ∈ (−∞, 1]. No equilibrium points belong to T×R+ for
ω ∈ (1,∞).

Proposition 2.2. Classification of equilibrium points is given in the following table:

Point ω ∈ (1,∞) ω ∈ (−1, 1) ω ∈ (−∞,−1)
P+ center center saddle
P− saddle center center
Q+ - saddle -
Q− - saddle -

Table 1. The type of equilibrium points of Proposition 2.1.

Proof. Let (θ0, ξ0) ∈ T × R be an equilibrium point of system (2.7) and (θ1, ξ1) ∈ R × R be a
small perturbation. Linearized equations of system (2.7) at (θ0, ξ0) are given by{

ξ′1 = 2 sin θ0ξ1 + 2ξ0 cos θ0θ1,

θ′ = 2ξ1 − 2 sin θ0θ1.
(2.8)
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The linearized system (2.8) is defined by the coefficient matrix

A = 2

(
sin θ0 ξ0 cos θ0
1 − sin θ0

)
,

for which tr(A) = 0 and det(A) = −4
[
sin2 θ0 + ξ0 cos θ0

]
. The sign of det(A) determines the

type of the equilibrium point. It is a center if det(A) > 0 and a saddle if det(A) < 0.

For P+, we have det(A) = 4(1+ω) so that it is a center for ω > −1 and a saddle for ω < −1.
For P−, we have det(A) = 4(1− ω) so that it is a center for ω < 1 and a saddle for ω > 1. For
Q±, we have det(A) = −4 sin2 θ0 so that they are saddles for every ω ∈ (−1, 1). □

Remark 2.2. For ω = −1, the equilibrium points Q± coallesce with P+ and induce the change
of the type of P+ from a center for ω > −1 to a saddle for ω < −1. For ω = 1, the equilibrium
points Q± coallesce with P− and induce the change of the type of P− from a center for ω < 1 to
a saddle for ω > 1.

Next we classify all admissible solutions of system (2.7) by constructing phase portraits of the
dynamical system on the phase plane (θ, ξ) in T × R. The classification of admissible solutions
is summarized in the following proposition.

Proposition 2.3. The system (2.7) admits the following bounded solutions in T× R+:

• For ω ∈ (−∞,−1), three families exist for b ∈ (−∞, (1 + ω)2), b ∈ (0, (1 + ω)2), and
b ∈ ((1 + ω)2, (1 − ω)2), separated by two heteroclinic orbits for b = (1 + ω)2 from P+ and its
2π-periodic continuation. The second family disappears at ω = −1.

• For ω ∈ (−1, 1), two families exist for b ∈ (−∞, 0) and b ∈ (0, (1 − ω)2) separated by two
heteroclinic orbits for b = 0. The second family disappears at ω = 1.

• For ω ∈ (1,∞), only one family exists for b ∈ (−∞, 0).

Proof. The assertion follows from the study of orbits of the planar Hamiltonian system on the
phase plane (θ, ξ) in T × R shown on Figures 3, 4, and 5. The phase portraits are obtained by
plotting the level curves of the function B(θ, ξ) = b, where

B(θ, ξ) := −2ωξ − ξ2 − 2ξ cos θ.

Saddle points are shown by crosses and the center points are shown by stars.

For ω ∈ (−∞,−1), see Figure 3(a), we have B(0,−(1 + ω)) = (1 + ω)2 for the saddle point
P+ and B(π, 1 − ω) = (1 − ω)2 for the center point P−. P− is the maximum of B and P+ is
the saddle point of B. One family of periodic orbits for b ∈ ((1 + ω)2, (1− ω)2) exists inside the
punctured neightborhood of the center point P− bounded by the two heteroclinic orbits from
the saddle point P+ and its 2π-periodic continuation. The second family of periodic orbits for
b ∈ (−∞, (1 + ω)2) exists above the upper heteroclinic orbit. The third family of periodic orbits
for b ∈ (0, (1 + ω)2) exists between the lower heteroclinic orbit and the invariant line Γ0.
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(a) ω < −1. (b) ω > 1.

Figure 3. Phase portraits in the phase plane (θ, ξ) for (a) ω = −1.5 and (b) ω = 1.5.

When ω = −1, see Figure 4(a), the saddle point P+ and its 2π-periodic continuation belongs
to the invariant line Γ0. The third family of periodic orbits between the lower heteroclinic orbit
and the invariant line disappears whereas the other two families of periodic orbits remain.

(a) ω = −1. (b) ω = 1.

Figure 4. Phase portraits in the phase plane (θ, ξ) for (a) ω = −1 and (b) ω = 1.

For ω ∈ (1,∞), see Figure 3(b), both P− and P+ are located in T × R−. One family of
periodic orbits for b ∈ (−∞, 0) exists above the invariant line Γ0. When ω = 1, see Figure 4(b),
the saddle point P− belongs to the invariant line but does not affect the existence of the family
of periodic orbits for b ∈ (−∞, 0).
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Finally, for ω ∈ (−1, 1), see Figure 5, both P+ and P− are center points, but P+ ∈ T × R−
and P− ∈ T×R+. The other two equilibrium points Q+ and Q− are saddle points located on the
invariant line Γ0. One family of periodic orbits for b ∈ (0, (1 − ω)2) exists inside the punctured
neightborhood of the center point P− bounded by the two heteroclinic orbits from the two saddle
points Q+ and Q−. The second family of periodic orbits for b ∈ (−∞, 0) exists above the upper
heteroclinic orbit. □

(a) ω ∈ (−1, 0). (b) ω ∈ (0, 1).

Figure 5. Phase portraits in the phase plane (θ, ξ) for (a) ω = −0.5 and (b) ω = 0.5.

Remark 2.3. Existence of bounded solutions in Proposition 2.3 is represented in Figure 1, where
the parameter plane (b, ω) is divided into several regions. Region I for b ∈ (−∞, 0) and ω ∈ R
contains one family of periodic orbits in T × R+ above the upper heteroclinic orbit. Region II
for either b ∈ (0, (1 − ω)2) and ω ∈ (−1, 1) or b ∈ ((1 + ω)2, (1 − ω)2) and ω ∈ (−∞,−1]
contains one family of periodic orbits in T × R+ inside the two heteroclinic orbits. Region III
for b ∈ (0, (1 + ω)2) and ω ∈ (−∞,−1) contains two families of periodic orbits in T×R+ above
the upper heteroclinic orbit and between the lower heteroclinic orbit and the invariant line Γ0.
Region IV contains no periodic orbits.

Remark 2.4. Boundaries between regions I, II, III, and IV in Figure 1 correspond to some
particular non-periodic solutions of system (2.7). The black line at b = 0 and ω ∈ [−1, 1] gives
the constant zero solution for the saddle points Q+ and Q− and the solitary wave solutions on
the zero background for the upper heteroclinic orbit (if ω ̸= 1). The blue line at b = (1+ω)2 and
ω ∈ (−∞,−1) gives the constant nonzero solution for the saddle point P+ and two solitary wave
solutions on the nonzero background for the upper and lower heteroclinic orbits. The red line for
b = (1− ω)2 and ω ∈ (−∞, 1) gives the constant nonzero solution for the center point P−.
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3. Squared eigenfunction relation for the standing waves

By substituting the standing waves of the form (1.6) into the Lax system (1.2) and separating
the variables with

ψ(x, t) = e
i
2
ωtσ3+ΩtΨ(x), (3.1)

we obtain the following system of linear equations for Ψ ∈ C2 and Ω ∈ C,{
Ψ′(x) = L(U, V, λ)Ψ(x),
ΩΨ(x) =M(U, V, λ)Ψ(x)− i

2
ωσ3Ψ(x).

(3.2)

The following proposition establishes the admissible values of Ω obtained from the characteristic
function P (λ) given by (1.8).

Proposition 3.1. Let (U, V ) be solutions of (2.1) with H(U, V ) = b in (2.3) and F (U, V ) = 0
in (2.4). Then, Ω is found from the characteristic equation

4Ω2 + P (λ) = 0, (3.3)

where P (λ) is given by (1.8).

Proof. Since the second equation of system (3.2) is a linear homogeneous equation, there is a
nonzero solution for Ψ(x) ∈ C2 if and only if∣∣∣∣ − i

2
(λ2 + 1

λ2 ) +
i
2
(|U |2 + |V |2) + iω + 2Ω i

λ
Ū + iλV̄

i
λ
U + iλV i

2
(λ2 + 1

λ2 )− i
2
(|U |2 + |V |2)− iω + 2Ω

∣∣∣∣ = 0.

The characteristic equation is written in the form (3.3) with

P (λ) =
1

4

(
λ2 +

1

λ2
− |U |2 − |V |2 − 2ω

)2

+

(
1

λ
Ū + λV̄

)(
1

λ
U + λV

)
=

1

4

(
λ2 +

1

λ2
− 2ω

)2

+
1

2
(λ2 − 1

λ2
)(|V |2 − |U |2)

+
1

4
(|U |2 + |V |2)2 + ω(|U |2 + |V |2) + V̄ U + V Ū.

If H(U, V ) = b and F (U, V ) = 0, then P (λ) is given by (1.8). □

To derive the spectral stability problem for the standing waves of the form (1.6), we consider
the time-dependent MTM system (1.1) and substitute the perturbation in the form

u(x, t) = e−iωt[U(x) + u(x, t)], v(x, t) = e−iωt[V (x) + v(x, t)].

Perturbation terms satisfy the linearized equations of motion,
(i∂t + i∂x + ω + |V |2)u+ (1 + UV̄ )v+ UV v = 0,
(−i∂t − i∂x + ω + |V |2)u+ (1 + ŪV )v+ Ū V̄ v = 0,
(i∂t − i∂x + ω + |U |2)v+ (1 + ŪV )u+ UV u = 0,
(−i∂t + i∂x + ω + |U |2)v+ (1 + UV )u+ Ū V̄ u = 0.

(3.4)
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Normal modes are obtained after the separation of variables with

u(x, t) = eΛtu1(x), u(x, t) = eΛtu2(x), v(x, t) = eΛtv1(x), v(x, t) = eΛtv2(x),

where u2(x) ̸= ū1(x) and v2(x) ̸= v̄1(x) if Λ /∈ R. The normal modes are found from the spectral
stability problem, which follows from the linearized equations (3.4),

( i∂x + ω + |V |2)u1 + (1 + UV̄ )v1 + UV v2 = −iΛu1,
(−i∂x + ω + |V |2)u2 + (1 + ŪV )v2 + Ū V̄ v1 = iΛu2,
(−i∂x + ω + |U |2)v1 + (1 + ŪV )u1 + UV u2 = −iΛv1,
( i∂x + ω + |U |2)v2 + (1 + UV̄ )u2 + Ū V̄ u1 = iΛv2.

(3.5)

We define the admissible values of Λ from bounded solutions (u1, u2, v1, v2) ∈ L∞(R,C4). If the
admissible values of Λ include points with Re(Λ) > 0, then the standing wave of the form (1.6)
is called spectrally unstable. Otherwise, it is called spectrally stable.

The central part of the spectral stability theory in the integrable systems is the relation be-
tween solutions of the linearized system (3.5) and the squared eigenfunctions satisfying the linear
system (3.2). This relation for the solitary wave solutions was found by D. Kaup and T. Lakoba
in [39, equation (18)]. The following proposition reproduces this result with a straightforward
verification included for the sake of completeness.

Proposition 3.2. Let Ψ = (p, q)T be the eigenvector of the linear system (3.2) with some Ω ∈ C.
Then 

u1 =
1
λ
q2 + Upq,

u2 =
1
λ
p2 − Ūpq,

v1 = −λq2 − V pq,
v2 = −λp2 + V̄ pq

(3.6)

is the solution of the linearized MTM system (3.5) with

Λ = 2Ω = ±i
√
P (λ). (3.7)

Proof. Let Ψ = (p, q)T be the eigenvector of the linear system (3.2) for some Ω ∈ C. By adding
and subtracting the two equations, we obtain two linear systems

i

(
p′

q′

)
−
(

ω
2

0
0 −ω

2

)(
p
q

)
+ iΩ

(
p
q

)
=

(
|V |2
2

− λ2

2
λV̄

λV λ2

2
− |V |2

2

)(
p
q

)
, (3.8)

and

i

(
p′

q′

)
+

(
ω
2

0
0 −ω

2

)(
p
q

)
− iΩ

(
p
q

)
=

(
− |U |2

2
+ 1

2λ2 − 1
λ
Ū

− 1
λ
U |U |2

2
− 1

2λ2

)(
p
q

)
. (3.9)
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Multiplying the first equations in systems (3.8) and (3.9) by 2p and the second equations in
systems (3.8) and (3.9) by 2q yields

i(p2)′ − ωp2 − |V |2p2 + 2iΩp2 = −λ2p2 + 2λV̄ pq,
i(q2)′ + ωq2 + |V |2q2 + 2iΩq2 = λ2q2 + 2λV pq,
i(p2)′ + ωp2 + |U |2p2 − 2iΩp2 = 1

λ2p
2 − 2

λ
Ūpq,

i(q2)′ − ωq2 − |U |2q2 − 2iΩq2 = − 1
λ2 q

2 − 2
λ
Upq.

(3.10)

Multiplying the first equations in systems (3.8) and (3.9) by q and the second equations in
systems (3.8) and (3.9) by p, and adding them together, yields{

i(pq)′ = −2iΩpq + λ(V̄ q2 + V p2),
i(pq)′ = 2iΩpq − 1

λ
(Ūq2.+ Up2).

(3.11)

By using (2.1) and (3.11), we obtain
i(Upq)′ + ω(Upq) + |V |2(Upq) + 2iΩUpq = λUV̄ q2 + λUV p2 − V pq,
i(Ūpq)′ − ω(Ūpq)− |V |2(Ūpq) + 2iΩŪpq = λŪV̄ q2 + λŪV p2 + V̄ pq,

i(V pq)′ − ω(V pq)− |U |2(V pq)− 2iΩV pq = −(V Ū
λ
q2 + V U

λ
p2) + Upq,

i(V̄ pq)′ + ω(V̄ pq) + |U |2(V̄ pq)− 2iΩV̄ pq = −( V̄ Ū
λ
q2 + V̄ U

λ
p2)− Ūpq.

(3.12)

We are now ready to confirm all four equations of the linearized MTM system (3.5) from four
equations of (3.10) and (3.12):

(i∂x + ω + |V |2)( 1
λ
q2 + Upq) = −2iΩq2

λ
− 2iΩUpq + λq2 + V pq + λUV̄ q2 + λUV p2

= −2iΩu1 − v1 − UV̄ v1 − UV v2,

(i∂x − ω − |V |2)( 1
λ
p2 − Ūpq) = −2iΩp2

λ
+ 2iΩŪpq − λp2 + V̄ pq − λŪV̄ q2 − λŪV p2

= −2iΩu2 + v2 + Ū V̄ v1 + ŪV v2,

(i∂x − ω − |U |2)(λq2 + V pq) = 2iλΩq2 + 2iΩV pq − 1

λ
q2 − Upq − (

V Ū

λ
q2 +

V U

λ
p2)

= −2iΩv1 − u1 − V Ūu1 − V Uu2,

(i∂x + ω + |U |2)(−λp2 + V̄ pq) = −2iλΩp2 + 2iΩV̄ pq − 1

λ
p2 + Ūpq − (

V̄ Ū

λ
q2 +

V̄ U

λ
p2)

= 2iΩv2 − u2 − V̄ Ūu1 − V̄ Uu2.

This yields (3.5) with Λ = 2Ω. Then, 2Ω = ±i
√
P (λ) follows from (3.3). □
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4. Properties of eigenvalues of Lax and stability spectra

Here we consider solutions of the spectral problem given by the first equation of system (3.2).
If Ψ = (p, q)T , then the spectral problem can be written explicitly as{

p′(x) = i
4
(λ2 − 1

λ2 )p− iλ
2
V̄ (x)q + i

2λ
Ū(x)q + i

4
(|U(x)|2 − |V (x)|2)p,

q′(x) = − i
4
(λ2 − 1

λ2 )q − iλ
2
V (x)p+ i

2λ
U(x)p− i

4
(|U(x)|2 − |V (x)|2)q. (4.1)

Recall that (U, V ) are bounded and that V = Ū . The Lax spectrum of the spectral problem (4.1)
is defined as the set of admissible values of λ for which Ψ = (p, q)T is bounded. By Proposition
3.2, this solution of the spectral problem (4.1) defines a bounded solution (u1, u2, v1, v2) of the
spectral stability problem (3.5) and hence the stability spectrum of the standing periodic waves.

If ζ(x) = ζ(x + L) is the L-periodic solution of system (2.6), then θ(x) is either L-periodic
or monotonically increasing, see the phase portraits in the proof of Proposition 2.3. The profiles
(U, V ) in (2.5) are L-periodic in the former case and L-antiperiodic in the latter case. In both
cases, the Floquet theorem can be used either with the period L or with the period 2L to get
all bounded solutions (p, q) of the spectral problem (4.1) with λ in the Lax spectrum. Each
admissible value of λ in the Lax spectrum will be referred to as an eigenvalue for simplicity.

The following proposition specifies symmetries of eigenvalues in the Lax spectrum.

Proposition 4.1. Let (U, V ) be a solution of (2.1) and assume that λ ∈ C\(R ∪ iR) is an
eigenvalue of the spectral problem (4.1) with the eigenvector Ψ = (p, q)T . Then

• −λ is also an eigenvalue with the eigenvector Ψ = (p,−q)T .
• λ̄ is also an eigenvalue with the eigenvector Ψ = (q̄,−p̄)T .
• −λ̄ is also an eigenvalue with the eigenvector Ψ = (q̄, p̄)T .

If V = Ū , then 1
λ
is also an eigenvalue with the eigenvector Ψ = (q,−p)T .

Proof. Transformation λ → −λ and (p, q) → (p,−q) leaves system (4.1) invariant, which yields
the first assertion.

Taking complex conjugate of system (4.1) yields{
p̄′(x) = − i

4
(λ̄2 − 1

λ̄2 )p̄+
iλ̄
2
V q̄ − i

2λ̄
Uq̄ − i

4
(|U |2 − |V |2)p̄,

q̄′(x) = i
4
(λ̄2 − 1

λ̄2 )q̄ +
iλ̄
2
V̄ p̄− i

2λ̄
Ū p̄+ i

4
(|U |2 − |V |2)q̄.

Hence (q̄,−p̄)T is also a solution of (4.1) with λ replaced by λ̄, which yields the second assertion.

The third assertion is a composition of the first two.

If V = Ū , then using (4.1) and replacing λ with 1
λ
yields{

q′(x) = i
4
(λ2 − 1

λ2 )q − i
2λ
V p+ iλ

2
Up = i

4
(λ2 − 1

λ2 )q +
iλ
2
V̄ p− i

2λ
Ūp,

p′(x) = − i
4
(λ2 − 1

λ2 )p− i
2λ
V̄ q + iλ

2
Ūq = − i

4
(λ2 − 1

λ2 )p+
iλ
2
V q − i

2λ
Uq.

Hence (q,−p)T is also a solution of (4.1) with λ replaced by 1
λ
, which yields the final assertion. □
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Corollary 4.1. If λ ∈ R\{0} is an eigenvalue, then it is at least double with two eigenvectors
Ψ = (p, q)T and Ψ = (q̄,−p̄)T .

Proof. If λ ∈ R\{0} is a simple eigenvalue, then the symmetry in Proposition 4.1 implies that
there is a constant c1 ∈ C such that (

p
q

)
= c1

(
q̄
−p̄

)
,

which yields p = c1q̄, q̄ = −c̄1p, and hence |c1|2 = −1, a contradiction. Therefore, λ ∈ R\{0} is
at least a double eigenvalue. □

Corollary 4.2. If λ ∈ iR\{0} is an eigenvalue, then it is simple if and only if the eigenvector
Ψ = (p, q)T satisfies p = c2q̄ for some constant c2 ∈ C such that |c2| = 1.

Proof. If λ ∈ iR\{0} is a simple eigenvalue, then the symmetry in Proposition 4.1 implies that
there is a constant c2 ∈ C such that (

p
q

)
= c2

(
q̄
p̄

)
,

which yields p = c2q̄, q̄ = c̄2p, and hence |c2|2 = 1. This gives the criterion for the eigenvalue
λ ∈ iR\{0} to be simple. □

Next we relate the Lax spectrum of the spectral problem (4.1) and the stability spectrum of
the linearized MTM system (3.5) by using the relation

Λ = ±i
√
P (λ). (4.2)

It follows from (1.8) that P (λ) inherits the symmetry of Proposition 4.1 since V = Ū . If λ ∈ C
is a root of P (λ), so are −λ, λ−1, and −λ−1. Hence, let us introduce λ1, λ2 ∈ C and factorize
P (λ) by its roots {±λ1,±λ2,±λ−1

1 ,±λ−2
2 }

P (λ) =
1

4λ4
(λ2 − λ21)(λ

2 − λ−2
1 )(λ2 − λ22)(λ

2 − λ−2
2 ). (4.3)

The correspondence between (1.8) and (4.3) implies the relations between parameters (b, ω) ∈ R2

and (λ1, λ2) ∈ C2: {
4ω = λ21 + λ−2

1 + λ22 + λ−2
2 ,

4ω2 − 4b = (λ21 + λ−2
1 )(λ22 + λ−2

2 ).
(4.4)

Remark 4.1. If λ1 ∈ C\(R ∪ iR ∪ S1), then λ2 = λ̄1 by the symmetry of Proposition 4.1. Also
if λ1 ∈ R such that |λ1| ≠ 1, then λ2 = λ1 by the symmetry of Corollary 4.1. If either λ1 ∈ iR
or λ1 ∈ S1, then λ2 may be unrelated to λ1. Further details on the distribution of roots of P (λ)
in relation to the periodic solutions of system (2.1) with V = Ū and parameters (b, ω) ∈ R2 will
be given in Section 6.

The following three propositions state some general results on the stability spectrum Λ in
(4.2) from the roots of P (λ) in (4.3) and the location of the Lax spectrum of λ.
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Proposition 4.2. Assume that λ1, λ2 /∈ R in (4.3). If λ ∈ R, then Λ ∈ iR.

Proof. If λ1, λ2 /∈ R, then P (λ) has no zeros for λ ∈ R and P (λ) > 0 for every λ ∈ R from the
dominant term P (λ) ∼ 1

4
λ4 as |λ| → ∞. It follows from (4.2) that Λ ∈ iR for P (λ) > 0. □

Proposition 4.3. If λ ∈ iR, then Λ ∈ iR, provided the following conditions on the roots λ1, λ2
in (4.3) are satisfied:

• λ1, λ2 ∈ C\(R ∪ iR).
• λ1 ∈ S1 and λ2 = iβ2 with β2 ≥ 1 under further restriction:

Im(λ) ∈ (−∞,−β2] ∪ [−β−1
2 , β−1

2 ] ∪ [β2,∞). (4.5)

• λ1 = iβ1 and λ2 = iβ2 with β1 ≥ β2 ≥ 1 under further restriction:

Im(λ) ∈ (−∞,−β1] ∪ [−β2,−β−1
2 ] ∪ [−β−1

1 , β−1
1 ] ∪ [β−1

2 , β2] ∪ [β1,∞). (4.6)

Proof. If λ ∈ iR, we use λ = iβ and rewrite P (λ) as

P (iβ) =
1

4β4
(β2 + λ21)(β

2 + λ−2
1 )(β2 + λ22)(β

2 + λ−2
2 ).

If λ1, λ2 ∈ C\(R ∪ iR), then P (iβ) has no roots for β ∈ R and P (iβ) > 0 for every β ∈ R from
the dominant term P (iβ) ∼ 1

4
β4 as |β| → ∞. It follows from (4.2) that Λ ∈ iR for P (iβ) > 0.

If λ1 ∈ S and λ2 = iβ2 with β2 ≥ 1, then

P (iβ) =
1

4β4
(β2 + λ21)(β

2 + λ−2
1 )(β2 − β2

2)(β
2 − β−2

2 ).

We have P (iβ) ≥ 0 if β2 ≥ β2
2 or 0 ≤ β2 ≤ β−2

2 , which implies Λ ∈ iR under the restriction (4.5).

If λ1 = iβ1 and λ2 = iβ2 with β1 ≥ β2 ≥ 1, then

P (iβ) =
1

4β4
(β2 − β2

1)(β
2 − β−2

1 )(β2 − β2
2)(β

2 − β−2
2 ).

We have P (iβ) ≥ 0 if β2 ≥ β2
1 , or β

−2
2 ≤ β2 ≤ β2

2 , or 0 ≤ β2 ≤ β−2
1 , which implies Λ ∈ iR under

the restriction (4.6). □

Proposition 4.4. Assume that λ1 = α1e
πi
4 , λ2 = α1e

−πi
4 with α1 > 1. If λ = ±αe±πi

4 with
α−1
1 ≤ α ≤ α1, then Λ ∈ iR.

Proof. We rewrite (4.3) as

P
(
±αe±

πi
4

)
= − 1

4α4
(α4 − α4

1)(α
4 − α−4

1 ).

We have P (λ) ≥ 0 if α−4
1 ≤ α4 ≤ α4

1, which is equivalent to α−1
1 ≤ α ≤ α1 if α > 0. For this λ,

we have Λ ∈ iR. □
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5. Lax and stability spectra for constant-amplitude solutions

Here we compute explicitly the Lax and stability spectra for the constant-amplitude solutions
which correspond to the equilibrium points P± in Proposition 2.1. The exact results are used
for comparison with the numerical results to control accuracy of numerical approximations. We
do not compute the Lax and stability spectra for the zero-amplitude solutions which correspond
to the equilibrium points Q± since the spectral stability of the zero-amplitude solutions is well-
known for the MTM system (1.1) and the relevant Lax and stability spectra can be easily
computed in the exact form.

5.1. Constant-amplitude solution for P−. By Proposition 2.2, the equilibrium point is a
center for ω ∈ (−∞, 1), see Figures 3 (left), 4 (left), and 5. It is located in T × R+ along the
red curve on Figure 1, where b = (1 − ω)2 and ω ∈ (−∞, 1]. Since θ = π and ξ = 1 − ω by
Proposition 2.1, the constant-amplitude solution (2.5) is given by

U = i
√
1− ω, V = −i

√
1− ω, ω ∈ (−∞, 1). (5.1)

The Lax spectrum for the admissible solutions of the spectral problem (4.1) with (U, V ) in (5.1)
is given by the following proposition.

Proposition 5.1. Let (U, V ) be given by (5.1) and consider bounded solutions of the spectral
problem (4.1).

• If ω ∈ (−∞, 0], then the Lax spectrum is given by

R ∪
{
iβ : β ∈ (−∞,−β2] ∪ [−β−1

2 , β−1
2 ] ∪ [β2,+∞)

}
∪ S1\{0},

where β2 :=
√
1− ω +

√
−ω.

• If ω ∈ (0, 1), then the Lax spectrum is given by

R ∪ iR ∪
{
eiα : α ∈ [−α1, α1] ∪ [π − α1, π + α1]

}
\{0},

where α1 := arccos
√
ω.

Proof. The spectral problem for the Lax spectrum is obtained by substituting (5.1) into (4.1),{
p′(x) = i

4
(λ2 − λ−2)p+ 1

2
(λ+ λ−1)

√
1− ωq,

q′(x) = − i
4
(λ2 − λ−2)q − 1

2
(λ+ λ−1)

√
1− ωp.

(5.2)

Looking for nonzero bounded solutions of (5.2) in the form p(x) = p̂eiκx, q(x) = q̂eiκx with κ ∈ R
and constant (p̂, q̂) ∈ C2, we obtain the characteristic equation in the form∣∣∣∣ 1

4
(λ2 − λ−2)− κ − i

2
(λ+ λ−1)

√
1− ω

i
2
(λ+ λ−1)

√
1− ω −1

4
(λ2 − λ−2)− κ

∣∣∣∣ = 0.

Expansion of the determinant yields

κ2 =
1

16
(λ2 − λ−2)2 +

1

4
(λ+ λ−1)2(1− ω).

Next we analyze admissible values of λ for which κ ∈ R.
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• For every λ ∈ R and ω ∈ (−∞, 1), we have κ ∈ R.
• For λ ∈ iR, we set λ = iβ with β ∈ R and obtain

κ = ±1

4
(β − β−1)

√
(β + β−1)2 − 4(1− ω).

Since (β + β−1)2 ≥ 4 for any β ∈ R, we have κ ∈ R for every β ∈ R if ω ∈ (0, 1). On
the other hand, if ω ∈ (−∞, 0], then κ ∈ R if and only if β ∈ (−∞,−β2] ∪ [−β−1

2 , β−1
2 ] ∪

[β2,∞), where β2 :=
√
1− ω +

√
−ω.

• For λ ∈ S1, we set λ = eiα with α ∈ [0, 2π] and obtain

κ = ± cosα
√
cos2 α− ω.

If ω ∈ (−∞, 0], then κ ∈ R for any α ∈ [0, 2π]. On the other hand, if ω ∈ (0, 1), then
κ ∈ R for cos2 α ≥ ω, which yields α ∈ [−α1, α1] ∪ [π − α1, π + α1] with α1 := arccos

√
ω.

In addition, we checked that κ /∈ R if λ ∈ C\(R ∪ iR ∪ S1). □

The end points of the Lax spectrum in Proposition 5.1 are related to the roots of P (λ) in
(1.8) according to the following corollary.

Corollary 5.1. Let (U, V ) be given by (5.1) and consider roots of P (λ) in (1.8).

• If ω ∈ (−∞, 0], then roots of P (λ) are {±1,±1,±β2i,±β−1
2 i}, where β2 :=

√
1− ω +√

−ω.
• If ω ∈ (0, 1), then roots of P (λ) are {±1,±1,±eiα1 ,±e−iα1}, where α1 := arccos

√
ω.

Proof. We obtain from (4.4) with b = (1− ω)2 that{
4ω = λ21 + λ−2

1 + λ22 + λ−2
2 ,

8ω − 4 = (λ21 + λ−2
1 )(λ22 + λ−2

2 ).

Eliminating either λ21 + λ−2
1 or λ22 + λ−2

2 yields a quadratic equation with two roots at

λ21 + λ−2
1 = 2, λ22 + λ−2

2 = 4ω − 2.

Hence we have λ1 = 1 and either λ2 = iβ2 for ω ∈ (−∞, 0] with β2 :=
√
1− ω+

√
−ω or λ2 = eiα1

for ω ∈ (0, 1) with α1 := arccos(ω). This defines all roots of P (λ) in view of the factorization
formula (4.3). □

Remark 5.1. The part of the Lax spectrum of Proposition 5.1 on iR satisfy the stability restric-
tion (4.5) of Proposition 4.3. However, the other part of the Lax spectrum on S1 does not satisfy
the stability restriction. Hence the linearized MTM system (3.5) has the unstable spectrum for
the equilibrium point P−. The end points of the Lax spectrum on either iR or S1 are given by
roots of P (λ) in Corollary 5.1.
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5.2. Constant-amplitude solution for P+. By Proposition 2.2, the equilibrium point is a
saddle for ω ∈ (−∞,−1), see Figure 3 (left). It is located in T × R+ along the blue curve on
Figure 1, where b = (1 + ω)2 and ω ∈ (−∞,−1]. Since θ = 0 and ξ = −(1 + ω) by Proposition
2.1, the constant-amplitude solution (2.5) is given by

U =
√

−(1 + ω), V =
√

−(1 + ω), ω ∈ (−∞,−1). (5.3)

The Lax spectrum for the admissible solutions of the spectral problem (4.1) with (U, V ) in (5.3)
is given by the following proposition.

Proposition 5.2. Let (U, V ) be given by (5.3) and consider bounded solutions of the spectral
problem (4.1). If ω ∈ (−∞,−1), then the Lax spectrum is given by

R ∪
{
iβ : β ∈ (−∞,−β2] ∪ [−β−1

2 , β−1
2 ] ∪ [β2,+∞)

}
\{0},

where β2 :=
√

−(1 + ω) +
√
−ω.

Proof. The spectral problem for the Lax spectrum is obtained by substituting (5.3) into (4.1),{
p′(x) = i

4
(λ2 − λ−2)p− i

2
(λ− λ−1)

√
−(1 + ω)q,

q′(x) = − i
4
(λ2 − λ−2)q − 1

2
(λ− λ−1)

√
−(1 + ω)p.

(5.4)

Looking for nonzero bounded solutions of (5.4) in the form p(x) = p̂eiκx, q(x) = q̂eiκx with κ ∈ R
and constant (p̂, q̂) ∈ C2, we obtain the characteristic equation in the form∣∣∣∣ 1

4
(λ2 − λ−2)− κ −1

2
(λ− λ−1)

√
−(1 + ω)

−1
2
(λ− λ−1)

√
−(1 + ω) −1

4
(λ2 − λ−2)− κ

∣∣∣∣ = 0.

Expansion of the determinant yields

κ2 =
1

16
(λ2 − λ−2)2 − 1

4
(λ− λ−1)2(1 + ω).

Next we analyze admissible values of λ for which κ ∈ R.

• For every λ ∈ R and ω ∈ (−∞,−1), we have κ ∈ R.
• For λ ∈ iR, we set λ = iβ with β ∈ R and obtain

κ = ±1

4
(β + β−1)

√
(β − β−1)2 + 4(1 + ω).

Since ω ∈ (−∞,−1), we have κ ∈ R if and only if β ∈ (−∞,−β2]∪ [−β−1
2 , β−1

2 ]∪ [β2,∞),

where β2 :=
√

−(1 + ω) +
√
−ω.

• For λ ∈ S1, we set λ = eiα with α ∈ [0, 2π] and obtain

κ = ±i sinα
√

cos2 α− (1 + ω).

Since ω ∈ (−∞,−1), we have κ ∈ iR for any α ∈ [0, 2π]. The points α = 0 and α = π
for which κ = 0 correspond to λ = ±1 ∈ R.

In addition, we checked that κ /∈ R if λ ∈ C\(R ∪ iR ∪ S1). □
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The roots of P (λ) in (1.8) are given by the following corollary.

Corollary 5.2. Let (U, V ) be given by (5.3). Roots of P (λ) in (1.8) are given by {±i,±i,±β2i,±β−1
2 i},

where β2 :=
√

−(1 + ω) +
√
−ω.

Proof. We obtain from (4.4) with b = (1 + ω)2 that{
4ω = λ21 + λ−2

1 + λ22 + λ−2
2 ,

−8ω − 4 = (λ21 + λ−2
1 )(λ22 + λ−2

2 ).

Eliminating either λ21 + λ−2
1 or λ22 + λ−2

2 yields a quadratic equation with two roots at

λ21 + λ−2
1 = −2, λ22 + λ−2

2 = 4ω + 2.

Hence we have λ1 = i and λ2 = iβ2 with β2 :=
√

−(1 + ω) +
√
−ω. This defines all the roots of

P (λ) in view of the factorization formula (4.3). □

Remark 5.2. The double roots {±i,±i} of P (λ) in Corollary 5.2 do not belong to the Lax
spectrum of Proposition 5.2, whereas the roots {±iβ2,±iβ−1

2 } correspond to the end points of
the Lax spectrum on iR. This part of the Lax spectrum satisfy the stability restriction (4.5)
of Proposition 4.3. Hence the linearized MTM system (3.5) has the stable spectrum for the
equilibrium point P+.

5.3. Numerical approximation of the Lax and stability spectra. We will now approxi-
mate the Lax spectrum numerically in the complex λ-plane to confirm the conclusions of Propo-
sitions 5.1 and 5.2. Moreover, by using Λ = ±i

√
P (λ), we will also plot the stability spectrum

of the linearized MTM system (3.5) on the complex Λ-plane.

Figure 6 (a)–(b) gives the Lax and stability spectra for the equilibrium point P− with ω =
−0.1 obtained from Proposition 5.1. The red crosses display the roots of P (λ). The numerical
approximations of the Lax and stability spectra are shown in Figure 6 (c)-(d) for the same value
ω = −0.1. Details of the numerical method are explained in Appendix A.

The same results are shown in Figure 7 for the equilibrium point P− with ω = 0.1. Compared
with Figure 6 and in agreement with Proposition 5.1, the Lax spectrum on iR has gaps for
ω = −0.1 and no gaps for ω = 0.1 and the Lax spectrum on S1 has gaps for ω = 0.1 and no gaps
for ω = −0.1.

Figure 8 (a)–(b) gives the Lax and stability spectra for the equilibrium point P+ with ω =
−1.2 obtained from Proposition 5.2. The red crosses display again the roots of P (λ). Note that
the double roots ±i do not belong to the Lax spectrum. The numerical approximations of the
Lax and stability spectra are shown in Figure 8 (c)-(d) for the same value ω = −1.2. The green
dotted curve shows the unit circle S1 which is not a part of the Lax spectrum. We have again a
full agreement between the theory and the numerical approximations.
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(a) Lax spectrum in λ-plane.
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(b) Stability spectrum in Λ-plane.

(c) Lax spectrum in λ-plane.

-2 -1 0 1 2
Re

-2

-1

0

1

2

Im

(d) Stability spectrum in Λ-plane.

Figure 6. Lax and stability spectra for the equilibrium point P− with ω = −0.1
obtained analytically (a)–(b) and numerically (c)–(d).
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(a) Lax spectrum in λ-plane.
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(b) Stability spectrum in Λ-plane.

(c) Lax spectrum in λ-plane.
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(d) Stability spectrum in Λ-plane.

Figure 7. The same as in Figure 6 but for P− with ω = 0.1.
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(a) Lax spectrum in λ-plane.
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(b) Stability spectrum in Λ-plane.

(c) Lax spectrum in λ-plane.
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(d) Stability spectrum in Λ-plane.

Figure 8. The same as in Figure 6 but for P+ with ω = −1.2.

Remark 5.3. In agreement with Remarks 5.1 and 5.2, Figures 6, 7 and 8 confirm that the center
equilibrium point P− is spectrally unstable and the saddle equilibrium point P+ is spectrally stable
in the spectral stability problem (3.5).

6. Lax and stability spectra for standing periodic waves

Here we approximate the Lax and stability spectra for the standing periodic waves (1.6) with
V = Ū . By using (2.5), (2.6), and (2.7) with b = −2ωξ − ξ2 − 2ξ cos θ, the profile ξ of the
standing periodic waves is obtained from the first-order invariant

(ξ′)2 +R(ξ) = 0, (6.1)

where

R(ξ) = (b+ 2ωξ + ξ2)2 − 4ξ2

= ξ4 + 4ωξ3 + (4ω2 + 2b− 4)ξ2 + 4bωξ + b2

= (ξ − u1)(ξ − u2)(ξ − u3)(ξ − u4),
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where (u1, u2, u3, u4) satisfy
u1 + u2 + u3 + u4 = −4ω,

u1u2 + u1u3 + u1u4 + u2u3 + u2u4 + u3u4 = 4ω2 + 2b− 4,

u1u2u3 + u1u2u4 + u1u3u4 + u2u3u4 = −4bω,

u1u2u3u4 = b2.

(6.2)

The following proposition related roots {u1, u2, u3, u4} of the quartic polynomial R(ξ) in (6.1)
to roots {±λ1,±λ2,±λ−1

1 ,±λ−2
2 } of P (λ) in (1.8). For the cubic and derivative NLS equations,

such relations were found by Kamchatnov [36, 37].

Proposition 6.1. Roots (u1, u2, u3, u4) of R(ξ) are related to roots {±λ1,±λ2,±λ−1
1 ,±λ−1

2 } of
P (λ) by 

u1 = −1
4
(λ1 − λ−1

1 − λ2 + λ−1
2 )2,

u2 = −1
4
(λ1 + λ−1

1 − λ2 − λ−1
2 )2,

u3 = −1
4
(λ1 − λ−1

1 + λ2 − λ−1
2 )2,

u4 = −1
4
(λ1 + λ−1

1 + λ2 + λ−1
2 )2.

(6.3)

Proof. The proof is a direct calculation. We show that relations (4.4) and (6.3) recover relations
(6.2). For the first two equations of system (6.2), we obtain

u1 + u2 + u3 + u4 = −(λ21 + λ−2
1 + λ22 + λ−2

2 ) = −4ω

and

u1u2 + u1u3 + u1u4 + u2u3 + u2u4 + u3u4

=
3

8
(λ21 + λ−2

1 + λ22 + λ−2
1 )2 − 1

2
(λ21 + λ−2

1 )(λ22 + λ−2
2 )− 4

= 4ω2 + 2b− 4.

For the last two equations of system (6.2), we obtain from (4.4) that

4b =
1

4
(λ21 + λ−2

1 + λ22 + λ−2
2 )2 − (λ21 + λ−2

1 )(λ22 + λ−2
2 )

=
(λ1λ2 − 1)2(λ1λ2 + 1)2(λ1 − λ2)

2(λ1 + λ2)
2

4λ41λ
4
2

,

which yields

b2 =
(λ1λ2 − 1)4(λ1λ2 + 1)4(λ1 − λ2)

4(λ1 + λ2)
4

256λ81λ
8
2

,

and

4bω =
(λ1λ2 − 1)2(λ1λ2 + 1)2(λ1 − λ2)

2(λ1 + λ2)
2(λ21 + λ22)(λ

2
1λ

2
2 + 1)

16λ61λ
6
2

.
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These two equations define the right-hand sides of the last two equations of system (6.2). Substi-
tuting (6.3) to the left-hand sides of the last two equations of system (6.2) and using the symbolic
software program MAPLE, we verify their equivalence with the right-hand sides. □

Next, we identify the possible roots {±λ1,±λ2,±λ−1
1 ,±λ−1

2 } of P (λ) in each region of the
parameter plane (b, ω), see Figure 1, where the standing periodic waves exist.

Proposition 6.2. Recall that {±λ1,±λ2,±λ−1
1 ,±λ−1

2 } are roots of P (λ) given by (1.8). Then,
we have

• λ1 = λ̄2 ∈ C\(R ∪ iR ∪ S1) in region I,
• λ1, λ2 ∈ S1\(R ∪ iR) with λ1 ̸= λ2 in region IIA,
• λ1 ∈ S1\(R ∪ iR) and λ2 = iβ2 ∈ iR\(R ∪ S1) in region IIB,
• λ1 = iβ1 ∈ iR\(R ∪ S1) and λ2 = iβ2 ∈ iR\(R ∪ S1) with β1 ̸= β2 in region III.

Proof. Solving P (λ) = 0 in (1.8) yields

λ2 +
1

λ2
= 2ω ± 2

√
b. (6.4)

Since {±λ1,±λ2,±λ−1
1 ,±λ−2

2 } are roots of P (λ), we have

λ21 = (ω +
√
b) +

√
(ω +

√
b)2 − 1,

λ−2
1 = (ω +

√
b)−

√
(ω +

√
b)2 − 1,

λ22 = (ω −
√
b) +

√
(ω −

√
b)2 − 1,

λ−2
2 = (ω −

√
b)−

√
(ω −

√
b)2 − 1.

(6.5)

This allows us to consider different cases in each existence region of the parameter plane (b, ω)
given by Proposition 2.3.

• Since b ∈ (−∞, 0) and ω ∈ R in region I, we obtain from (6.5) that λ1 = λ̄2 ∈
C\(R ∪ iR ∪ S1).

• We have b ∈
(
0,min{(1− ω)2, (1 + ω)2}

)
and ω ∈ (−1, 1) in region IIA. It is sufficient to

consider the case of ω ∈ [0, 1) for which b ∈ (0, (1− ω)2), since the case of ω ∈ (−1, 0) is

similar. Since ω +
√
b, ω −

√
b ∈ (−1, 1), we obtain from (6.5) that λ1, λ2 ∈ S1\(R ∪ iR)

with λ1 ̸= λ2.

• We have b ∈
(
(1 + ω)2, (1− ω)2

)
and ω ∈ (−∞, 0) in region IIB. Since ω +

√
b ∈ (−1, 1)

and ω−
√
b < −1, we obtain from (6.5) that λ1 ∈ S1\(R∪iR) and λ2 = iβ2 ∈ iR\(R∪S1).
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• We have b ∈ (0, (1 + ω)2) with ω ∈ (−∞,−1) in region III. Since ω +
√
b < −1 and

ω−
√
b < −1, we obtain from (6.5) that λ1 = iβ1 ∈ iR\(R∪S1) and λ2 = iβ2 ∈ iR\(R∪S1)

with β1 ̸= β2.

This concludes the analysis since the standing periodic waves do not exist in region IV. □

We use Propositions 6.1 and 6.2 in order to investigate the spectral stability of the standing
periodic waves in different regions of the parameter plane (b, ω), see Figure 1. In each region,
we give the explicit representation for the periodic solution ξ(x) and the roots of P (λ), after
which we select several sample points to approximate the Lax spectrum numerically according
to the method explained in Appendix A. The sample points in each region are shown in Figure
9. From the numerical approximations of the Lax spectrum, we find the stability spectrum by
using (3.7). This will verify the stability and instability conclusions shown in Figure 2.
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Figure 9. Sample points in each region on the (b, ω) plane for numerical approximations.

6.1. Standing periodic waves in region I. By Proposition 6.2, roots of P (λ) form two com-
plex quadruplets, which are reflected symmetrically relative to the unit circle S1. For definiteness,
we write λ1 = α1 + iβ1 and λ2 = α1 − iβ1 with α2

1 + β2
1 ̸= 1 so that equations (6.2) yield

ω =
(α2

1 − β2
1)((α

2
1 + β2

1)
2 + 1)

2(α2
1 + β2

1)
2

and

b = −(α2
1 + β2

1 − 1)2(α2
1 + β2

1 + 1)2β2
1α

2
1

(α2
1 + β2

1)
4

.
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By using (6.3), we obtain 
u1 =

β2
1(α

2
1+β2

1+1)2

(α2
1+β2

1)
2 ,

u2 =
β2
1(α

2
1+β2

1−1)2

(α2
1+β2

1)
2 ,

u3 = −α2
1(α

2
1+β2

1−1)2

(α2
1+β2

1)
2 ,

u4 = −α2
1(α

2
1+β2

1+1)2

(α2
1+β2

1)
2 ,

which satisfy the ordering u4 ≤ u3 ≤ 0 ≤ u2 ≤ u1. The exact periodic solution of the first-order
invariant (6.1) with this ordering can be written in the explicit form, see [15]:

ξ(x) = u4 +
(u1 − u4)(u2 − u4)

(u2 − u4) + (u1 − u2)sn2(νx; k)
, (6.6)

where

ν =
1

2

√
(u1 − u3)(u2 − u4), k =

√
(u1 − u2)(u3 − u4)√
(u1 − u3)(u2 − u4)

.

The periodic solution ξ(x) in (6.6) is located in the interval [u2, u1] and has period L = 2K(k)ν−1.
The component θ(x) in the standing periodic waves (1.6) and (2.5) is given by

θ(x) =

{
arccos −(ξ2+2ωξ+b)

2ξ
, 0 ≤ θ ≤ π,

2π − arccos −(ξ2+2ωξ+b)
2ξ

, π ≤ θ ≤ 2π.
(6.7)

Since

θ′ = ξ − bξ−1 > 0

follows from (2.7) with b = −2ωξ − ξ2 − 2ξ cos θ, the mapping x 7→ θ(x) is monotonically
increasing in each period, in agreement with the phase portraits on Figures 3, 4, and 5 for b < 0.

Remark 6.1. As b → 0, the point inside the existence region I approaches to the boundary
given by the black vertical line on Figure 1. At this boundary, bifurcations of the two complex
quadruplets in the roots of P (λ) depend on the value of ω ∈ R.

• If ω ∈ (−1, 1), each of the four pairs of roots of P (λ) coalesce on S1. The solution con-
tinued inside region IIA has two complex quadruplets in the roots of P (λ) on S1.

• If ω ∈ (1,∞), each of the four pairs of roots of P (λ) coalesce on R. The four double
roots on R are reflected symmetrically relatively to the values ±1. The solution cannot be
continued inside region IV.

• If ω ∈ (−∞,−1), each of the four pairs of roots of P (λ) coalesce on iR. The four double
roots on iR are reflected symmetrically relatively to the values ±i. The solution continued
inside region III has four pairs of roots on iR which are reflected symmetrically relatively
to the values ±i.
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To compute the Lax and stability spectra, we use the numerical method from Appendix A
and approximate the Floquet spectrum at different points in region I shown in Figure 9 after
which we use the transformation Λ = ±i

√
P (λ) to approximate the stability spectrum of the

standing periodic waves.

At point A, we take α1 = 1.4 and β1 = 1.1. The Lax spectrum is shown in Figure 10(a),
where the red crosses represent roots of P (λ) as two complex quadruplets, which are reflected
symmetrically about S1. The stability spectrum is shown in Figure 10(b) and contains the
figure-eight instability band.

Figure 11 shows similar Lax and stability spectra at point B, for which we take α1 = 1.1
and β1 = 1.4. The Lax spectra between the two cases are only different by the convexity of
the spectral bands connecting the complex quadruplets, whereas the stability spectra are very
similar and contain the figure-eight instability band.

(a) Lax spectrum in λ-plane.
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(b) Stability spectrum in Λ-plane.

Figure 10. The Lax and stability spectra for the standing periodic wave with
α1 = 1.4 and β1 = 1.1 at point A.

Figure 12 shows the Lax and stability spectra for point C close to the boundary b = 0 for
ω ∈ (1,∞), for which we take α1 = 1.1 and β1 = 0.1. The complex quadruplets are very
close to the real axis of the λ plane. The same figure-eight appears in the stability spectrum
in the Λ plane. Figure 13 shows the Lax and stability spectra for point D which is also close
to the boundary b = 0 but for ω ∈ (−∞,−1), for which we take α1 = 0.2 and β1 = 1.2. The
complex quadruplets are now close to the imaginery axis of the λ plane. We have checked that
the spectral bands of the Lax spectrum outside S1 are transformed to one half of the figure-eight
in the stability spectrum located for Re(Λ)Im(Λ) < 0, whereas the spectral bands of the Lax
spectrum inside S1 are transformed to the other half of the figure-eight in the stability spectrum
located for Re(Λ)Im(Λ) > 0.
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(a) Lax spectrum in λ-plane.
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(b) Stability spectrum in Λ-plane.

Figure 11. The same as Figure 10 but for α1 = 1.1 and β1 = 1.4 at point B.

(a) Lax spectrum in λ-plane.
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(b) Stability spectrum in Λ-plane.

Figure 12. The same as Figure 10 but for α1 = 1.1 and β1 = 0.1 at point C.

In the symmetric case ω = 0, the roots of P (λ) are located at the diagonals in the λ plane.
Figure 14 shows the Lax and stability spectra at point E for which α1 = β1 = 1.4. We can
see that the spectral bands of the Lax spectrum are located at the diagonals in the λ plane.
Consequently, the stability spectrum is located on iR and the figure-eight shrinks to the vertical
line. We note that the derivative NLS equation considered in [19] does not have such families of
standing periodic wave solutions.

Figure 15 shows the same at point F for which α1 = β1 = 0.8. Since the point is close to the
boundary b = 0 for ω ∈ (−1, 1), the complex quadruplets are close to the unit circle S1 in the λ
plane, whereas the stability spectrum on iR admits some bandgaps.
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(a) Lax spectrum in λ-plane.
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(b) Stability spectrum in Λ-plane.

Figure 13. The same as Figure 10 but for α1 = 0.2 and β1 = 1.2 at point D.

(a) Lax spectrum in λ-plane.
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(b) Stability spectrum in Λ-plane.

Figure 14. The same as Figure 10 but for α1 = β1 = 1.4 at point E.

We summarize that every standing periodic wave in region I with ω ̸= 0 is spectrally unstable
due to the figure-eight instability band. On the other hand, every standing periodic wave in
region I with ω = 0 is spectrally stable.

6.2. Standing periodic waves in region IIA. By Proposition 6.2, roots of P (λ) form two
complex quadruplets located on the unit circle S1. Hence we write λ1 = α1+iβ1 and λ2 = α2+iβ2
with α2

1 + β2
1 = α2

2 + β2
2 = 1 so that equations (6.2) yield

ω =
1

2
(α2

1 + α2
2 − β2

1 − β2
2)

and

b = −(α2
1 − α2

2)(β
2
1 − β2

2) = (β2
1 − β2

2)
2.
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(a) Lax spectrum in λ-plane.
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(b) Stability spectrum in Λ-plane.

Figure 15. The same as Figure 10 but for α1 = β1 = 0.8 at point F.

By using (6.3), we obtain 
u1 = (β1 + β2)

2,

u2 = (β1 − β2)
2,

u3 = −(α1 − α2)
2,

u4 = −(α1 + α2)
2,

which satisfy the same ordering u4 ≤ u3 ≤ 0 ≤ u2 ≤ u1 as in region I. The exact periodic solution
of the first-order invariant (6.1) with this ordering is still written in the same explicit form (6.6).
It follows from the phase portraits on Figure 5 for ω ∈ (−1, 1) that the mapping x 7→ θ(x) is
periodic for the periodic orbits inside the heteroclinic orbits. The values of θ(x) can be computed
from the same formula (6.7).

Remark 6.2. As b→ min{(1−ω)2, (1+ω)2}, the point inside the existence region IIA approaches
the boundaries given by the red line for ω ∈ (0, 1) and by the green line for ω ∈ (−1, 0) in Figure
1. At each boundary, bifurcations of the roots of P (λ) occur as follows.

• If ω ∈ (0, 1) and b → (1 − ω)2, then β1 → 0 which implies that λ1 → 1. Hence, in this
limit one quadruplet is still located on S1 but the other becomes double real eigenvalues at
±1. The solution cannot be continued inside region IV.

• If ω ∈ (−1, 0) and b → (1 + ω)2, then α2 → 0 which implies that λ2 → i. Hence, in this
limit one quadruplet is still located on S1 but the other becomes double purely imaginary
eigenvalues at ±i. The solution continued inside region IIB has one complex quadruplet
on S1 and two pairs of purely imaginary eigenvalues symmetrically reflected about ±i.

Figure 16 shows numerically computed Lax and stability spectra at point H, for which we
take α1 = 0.6 and α2 = 0.5. Besides the Lax spectrum on R ∪ iR, there exists four bands on S1

in between the two complex quadruplets in the roots of P (λ). The stability spectrum includes a
segment on the real axis related to the four bands of the Lax spectrum on S1.
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Figure 17 shows similar Lax and stability spectra at point G, for which α1 = 0.9 and α2 = 0.2.
Since the point G is close to the boundary b = (1 + ω)2 for ω ∈ (−1, 0), the bands of the Lax
spectrum on S1 are wider and four roots of P (λ) are close to the points ±i . The stability
spectrum includes a larger segment along the real axis.

We summarize that every standing periodic wave in region IIA is spectrally unstable due to
the instability band on R.

(a) Lax spectrum in λ-plane.
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(b) Stability spectrum in Λ-plane.

Figure 16. The same as Figure 10 but for α1 = 0.6 and α2 = 0.5 at point H.

(a) Lax spectrum in λ-plane.
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(b) Stability spectrum in Λ-plane.

Figure 17. The same as Figure 10 but for α1 = 0.9 and α2 = 0.2 at point G.

6.3. Standing periodic waves in region IIB. By Proposition 6.2, roots of P (λ) form a com-
plex quadruplet located on the unit circle S1 and two pairs of purely imaginary eigenvalues



STABILITY OF STANDING PERIODIC WAVES IN MTM 33

symmetrically reflected about ±i. Hence we write λ1 = α1 + iβ1 and λ2 = iβ2 with α2
1 + β2

1 = 1
so that equations (6.2) yield

ω = −1

4
(β2

2 + β−2
2 − 2α2

1 + 2β2
1)

and

b =
1

16

(
β2
2 + β−2

2 + 2− 4β2
1

)2
.

By using (6.3), we obtain 
u1 =

1
4
(2β1 + β2 + β−1

2 )2,

u2 =
1
4
(2β1 − β2 − β−1

2 )2,

u3 = −1
4
(2α1 − i(β2 − β−1

2 ))2,

u4 = −1
4
(2α1 + i(β2 − β−1

2 ))2,

which satisfy the same ordering 0 ≤ u2 ≤ u1 with u3 and u4 being complex conjugate to each
other. For definiteness, we will define u3 = γ + iη and u4 = γ − iη with

γ = −α2
1 +

1

4
(β2 − β−1

2 )2, η = α1(β2 − β−1
2 ).

The exact periodic solution of the first-order invariant (6.1) with this ordering of roots of R(ξ)
can be written in the explicit form, see [15],

ξ(x) = u1 +
(u2 − u1)

(
1− cn(µx; k)

)
1 + δ + (δ − 1)cn(µx; k)

, (6.8)

where positive parameters δ, µ and k are uniquely expressed by

δ =

√
(u2 − γ)2 + η2√
(u1 − γ)2 + η2

,

µ = 4
√

[(u1 − γ)2 + η2][(u2 − γ)2 + η2],

2k2 = 1− (u1 − γ)(u2 − γ) + η2√
[(u1 − γ)2 + η2][(u2 − γ)2 + η2]

.

The periodic solution ξ(x) in (6.8) is located in the interval [u2, u1] and has period L = 4K(k)µ−1.
It follows from the phase portraits on Figures 3, 4, and 5 for ω ∈ (−∞, 0) that the mapping
x 7→ θ(x) is periodic for the periodic orbits inside the heteroclinic orbits. The values of θ(x) can
be computed from the same formula (6.7).

Remark 6.3. As b → (1 − ω)2 or b → (1 + ω)2, the point inside the existence region IIB
approaches the boundary given by the red line in the former limit and by the blue line in the
latter limit in Figure 1. At each boundary, bifurcations of the roots of P (λ) occur as follows.

• If b → (1 − ω)2, then β1 → 0 which implies that λ1 → 1. Hence, in this limit there
still exist two pairs of purely imaginary eigenvalues symmetrically reflected about ±i but
the complex quadruplet becomes double real eigenvalues at ±1. The solution cannot be
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continued inside region IV.

• If b → (1 + ω)2, then α1 → 0 which implies that λ1 → i. Hence, in this limit there
still exist two pairs of purely imaginary eigenvalues symmetrically reflected about ±i but
the complex quadruplet becomes double purely imaginary eigenvalues at ±i. The solution
continued inside region III has four pairs of purely imaginary eigenvalues symmetrically
reflected about ±i.

Figure 18 shows numerically computed Lax and stability spectra at point I, for which we take
α1 = 0.95 and β2 = 1.5. The Lax spectrum includes R, bands on iR between four roots of P (λ)
and λ = 0, and two bands on S1 between the complex quadruplet of roots of P (λ). The stability
spectrum includes a segment on the real axis related to the bands of the Lax spectrum on S1.

We summarize that every standing periodic wave in region IIB is spectrally unstable due to
the instability band on R.

(a) Lax spectrum in λ-plane.
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(b) Stability spectrum in Λ-plane.

Figure 18. The same as Figure 10 but for α1 = 0.95 and β2 = 1.5 at point I.

6.4. Standing periodic waves in region III. By Proposition 6.2, roots of P (λ) form four
pairs of purely imaginary eigenvalues symmetrically reflected about ±i. Hence we write λ1 = iβ1
and λ2 = iβ2 with β2 > β1 > 1 so that equations (6.2) yield

ω = −1

4
(β2

1 + β−2
1 + β2

2 + β−2
2 )

and

b =
1

16
(β2

1 + β−2
1 − β2

2 − β−2
2 )2.
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By using (6.3), we obtain 
u1 =

1
4
(β1 − β−1

1 + β2 − β−1
2 )2,

u2 =
1
4
(β1 + β−1

1 + β2 + β−1
2 )2,

u3 =
1
4
(β1 − β−1

1 − β2 + β−1
2 )2,

u4 =
1
4
(β1 + β−1

1 − β2 − β−1
2 )2,

which satisfy the ordering 0 ≤ u4 ≤ u3 ≤ u2 ≤ u1. Two periodic solutions of the first-order
invariant (6.1) exist for this ordering of roots of R(ξ). One solution is given by (6.6) with ξ(x)
located in the interval [u2, u1]. Another solution is obtained from (6.6) by exchanging u1 with u3
and u2 with u4,

ξ(x) = u2 +
(u2 − u3)(u2 − u4)

(u2 − u4) + (u3 − u4)sn2(νx; k)
, (6.9)

where ν and k are exactly the same. The periodic solution ξ(x) in (6.9) is located in the interval
[u4, u3] and has the same period L = 2K(k)ν−1 as (6.6).

It follows from the phase portraits on the left panel of Figure 3 that the mapping x 7→ θ(x)
is monotonically increasing in each period for each of the periodic solutions. The values of θ(x)
can be computed from the same formula (6.7).

(a) Lax spectrum in λ-plane.
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(b) Stability spectrum in Λ-plane.

Figure 19. The same as Figure 10 but for β1 = 1.1 and β2 = 1.4 at point J.

Figure 19 shows numerically computed Lax and stability spectra at point J, for which we
take β1 = 1.1 and β2 = 1.4. The Lax spectrum includes R and bands on iR between eight roots
of P (λ). The stability spectrum is located on iR. The Lax and stability spectra remain very
similar for every point in region III.

We summarize that every standing periodic wave in region III is spectrally stable.
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7. Conclusion

We have clarified the spectral stability of the standing periodic waves for the MTM system
(1.1). The standing waves are written in the form (1.6) with the wave frequency ω ∈ R and
they can be extended as the traveling waves with the wave speed c ∈ (−1, 1) under the Lorentz
transformation (1.3). The existence of standing periodic waves with the reduction V = Ū was
obtained in regions I, II, and III of the parameter plane (b, ω) shown in Figure 1, where b is the
constant value of the Hamiltonian function for the spatial Hamiltonian system.

The Lax spectrum was obtained numerically as the Floquet spectrum of the spectral problem
in the Lax pair (1.2). The spectral bands which determine stability or instability of the standing
periodic waves are located between eight roots of the characteristic function P (λ). Depending
on the point in each region of the parameter plane (b, ω), roots of P (λ) appear either as two
quadruplets of complex eigenvalues outside the unit circle S1, or as two quadruplets of complex
eigenvalues on S1, or as one quadruplet on S1 and two pairs of purely imaginary eigenvalues, or
as four pairs of purely imaginary eigenvalues.

We have found numerically that the standing periodic waves are spectrally stable either if
the two quadruplets are located at the diagonals of the complex λ plane or if all roots of P (λ)
are purely imaginary. In other cases, the standing periodic waves are spectrally unstable either
because of the figure-eight instability band or because of the instability band on the real axis.
The stability conclusion relies on the relation Λ = ±i

√
P (λ) between Lax and stability spectra.

In the particular limit, periodic solutions degenerate to the constant-amplitude solutions and
we have found that the constant-amplitude solutions for the saddle points of the spatial Hamil-
tonian system are spectrally stable. Related to this fact, the solitary wave solutions associated
with the heteroclinic orbits of the spatial Hamiltonian system to the saddle points are found
to be spectrally stable. However, the constant-amplitude solutions for the center points of the
spatial Hamiltonian system are spectrally unstable.

As further problems, one can extend the analytical and numerical studies to the standing
waves in a more general setting with V ̸= Ū , as well as to try to prove some of the stability and
instability conclusions analytically. These problems will wait for further work.

Appendix A. Numerical method for calculating the Lax spectrum

Let us consider the first equation of the Lax pair (3.2) rewritten as the spectral problem

ψx = L(U, V, λ)ψ, (A.1)

where

L =
i

4
(λ2 − 1

λ2
)σ3 −

iλ

2

(
0 V̄
V 0

)
+

i

2λ

(
0 Ū
U 0

)
+
i

4
(|U |2 − |V |2)σ3.
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The spectral problem (A.1) is transformed into a linear eigenvalue problem with the help of the
following auxillary variables:

ψ0 = λψ, ψ1 =
1

λ
ψ and ψ2 =

1

λ
ψ1. (A.2)

For the extended choice of variables, the spectral problem (A.1) is written as the following linear
eigenvalue problem

0 2V̄ f − 4i∂x 0 0 −2Ū 1 0
−2V 0 0 f + 4i∂x 2U 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0




ψ0

ψ
ψ1

ψ2

 = λ


ψ0

ψ
ψ1

ψ2

 , (A.3)

where f = |V |2 − |U |2. Indeed, multiplying both sides of (A.1) by 4σ3 and using (A.2), we have

4σ3∂xψ = i(λ2 − 1

λ2
)ψ + 2iλ

(
0 −V̄
V 0

)
ψ +

2i

λ

(
0 Ū

−U 0

)
ψ − ifψ

= iλψ0 − iψ2 + 2i

(
0 −V̄
V 0

)
ψ0 + 2i

(
0 Ū

−U 0

)
ψ1 − ifψ,

which yields

ψ2 − 4iσ3∂xψ + 2

(
0 V̄

−V 0

)
ψ0 + 2

(
0 −Ū
U 0

)
ψ1 + fψ = λψ0. (A.4)

Combining (A.2) and (A.4) yields (A.3).

Remark A.1. Assume that U and V are periodic in x with the same period L and

f = |V |2 − |U |2 = 0.

According to Floquet’s Theorem, the bounded solutions of the linear equation (A.3) can be repre-
sented in the following form 

ψ0(x)
ψ(x)
ψ1(x)
ψ2(x)

 =


ψ̂0(x)

ψ̂(x)

ψ̂1(x)

ψ̂2(x)

 eiµx,
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where ψ̂(x) = ψ̂(x+ L) and µ ∈
[
− π

L
, π
L

]
. The linear eigenvalue problem is now rewritten in the

following form:

0 2V̄ −4i(∂x + iµ) 0 0 −2Ū 1 0
−2V 0 0 4i(∂x + iµ) 2U 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0




ψ̂0

ψ̂

ψ̂1

ψ̂2

 = λ


ψ̂0

ψ̂

ψ̂1

ψ̂2

 . (A.5)

The Fourier collocation method, see [61, Chapter 2,p.45], can be used to solve the linear eigenvalue
problem (A.5) with the Floquet parameter µ. Tracing the set of eigenvalues λ for µ ∈

[
− π

L
, π
L

]
gives the band of the Floquet spectrum in the λ plane.

Remark A.2. The Fourier collocation method from [61] is similar to Hill’s method used in
[24, 26]. Both of them use Fourier series to approximate U , V and the eigenfunctions.

Remark A.3. For given functions U and V defined on R, the Chebyshev collocation method
[23] can be used to solve the linear eigenvalue problem (A.3). However, this method seems to be
not applicable to periodic domain. On the other hand, the finite difference method can also be
used to calculate the linear eigenvalue problem (A.3), see [21] for a similar study. However, the
accuracy of the finite difference method is poor.
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