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Abstract

Periodic waves of the one-dimensional cubic defocusing NLS equation are considered. Using tools from 
integrability theory, these waves have been shown in [4] to be linearly stable and the Floquet–Bloch spec-
trum of the linearized operator has been explicitly computed. We combine here the first four conserved 
quantities of the NLS equation to give a direct proof that cnoidal periodic waves are orbitally stable with 
respect to subharmonic perturbations, with period equal to an integer multiple of the period of the wave. 
Our result is not restricted to the periodic waves of small amplitudes.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We consider the cubic defocusing NLS (nonlinear Schrödinger) equation in one space dimen-
sion:

iψt + ψxx − |ψ |2ψ = 0, (1.1)

where ψ = ψ(x, t) ∈ C and (x, t) ∈ R × R. This equation arises in the study of modulational 
stability of small amplitude nearly harmonic waves in nonlinear dispersive systems [14]. In 
this context, monochromatic waves of the original system correspond to spatially homogeneous 
solutions of the cubic NLS equation (1.1) of the form ψ(x, t) = ae−ia2t , where the positive 
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parameter a can be taken equal to one without loss of generality, due to scaling invariance. Ac-
cording to the famous Lighthill criterion, these plane waves are spectrally stable with respect 
to sideband perturbations [16], because the nonlinearity in (1.1) is defocusing. Moreover, using 
energy methods, it can be shown that plane waves are also orbitally stable under perturbations 
in H 1(R) [17, Section 3.3], where the orbit is defined with respect to arbitrary rotations of the 
complex phase of ψ .

More generally, it is important for the applications to consider spatially inhomogeneous waves 
of the form ψ(x, t) = u0(x)e−it , where the profile u0 : R → C satisfies the second-order differ-
ential equation

d2u0

dx2
+ (

1 − |u0|2
)
u0 = 0, x ∈ R. (1.2)

Such solutions of the cubic NLS equation (1.1) correspond to slowly modulated wave trains 
of the original physical system. A complete list of all bounded solutions of the second-order 
equation (1.2) is known, see [4,7]. Most of them are quasi-periodic in the sense that u0(x) =
r(x)eiϕ(x) for some real-valued functions r , ϕ such that r and ϕ′ are periodic with the same 
period T0 > 0. The corresponding solutions of the cubic NLS equation (1.1) are usually called 
“periodic waves”, although strictly speaking they are not periodic functions of x in general. In 
addition, the second-order equation (1.2) has nonperiodic solutions such that r and ϕ′ converge 
to a limit as x → ±∞; these correspond to “dark solitons” of the cubic NLS equation. In the 
present paper, we focus on real-valued solutions of the second-order equation (1.2), which form 
a one-parameter family of periodic waves (often referred to as “cnoidal waves”).

Several recent works addressed the stability of periodic waves for the cubic NLS equation 
(1.1). Using the energy method, it was shown in [6,7] that periodic waves are orbitally stable 
within a class of solutions which have the same periodicity properties as the wave itself. More 
precisely, if u0(x) = eipxq0(x) where p ∈R and q0 is T0-periodic, the wave u0(x)e−it is orbitally 
stable among solutions of the form ψ(x, t) = ei(px−t)q(x, t), where q(·, t) ∈ H 1

per(0, T0). Here 
the orbit is defined with respect to translations in space and rotations of the complex phase. The 
proof follows the general strategy proposed in [8] and relies on the fact that the periodic wave is 
a constrained minimizer of the energy

E(ψ) =
∫
I

[
|ψx |2 + 1

2

(
1 − |ψ |2)2

]
dx, (1.3)

subject to fixed values of the charge Q and the momentum M given by

Q(ψ) =
∫
I

|ψ |2 dx, M(ψ) = i

2

∫
I

(ψ̄ψx − ψψ̄x)dx. (1.4)

Here I = (0, T0). On the other hand, if we consider the more general case of “subharmonic 
perturbations”, which correspond to q(·, t) ∈ H 1

per(0, NT0) for some integer N ≥ 2, then the 
second variation of E at u0 with I = (0, NT0) contains additional negative eigenvalues, which 
cannot be eliminated by restricting the energy to the submanifold where Q and M are con-
stant.
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Generally speaking, in such an unfavorable energy configuration, there is no chance to estab-
lish orbital stability using the standard energy method [3]. However, the cubic defocusing NLS 
equation can (at least formally) be integrated using the inverse scattering transform method, and 
it admits therefore a countable sequence of independent conserved quantities. For instance, one 
can verify directly or with an algorithmic computation (see [15, Section 2.3] for a review of such 
techniques) that the higher-order functional

R(ψ) =
∫
I

[
|ψxx |2 + 3|ψ |2|ψx |2 + 1

2
(ψ̄ψx + ψψ̄x)

2 + 1

2
|ψ |6

]
dx, (1.5)

is also invariant under the time evolution defined by (1.1). These additional properties can be 
invoked to rescue the stability analysis of periodic waves. Indeed, using the eigenfunctions of 
Lax operators arising in the inverse scattering method, a complete set of Floquet–Bloch eigen-
functions satisfying the linearization of the cubic NLS equation (1.1) at the periodic wave with 
profile u0 has been constructed in [4]. Moreover, it is shown in [4] that an appropriate linear 
combination of the energy E, the charge Q, the momentum M , and the higher order quantity R

produces a functional for which the periodic wave with profile u0 is a strict local minimizer, up to 
symmetries. This result holds for q(·, t) ∈ H 2

per(0, NT0), for any N ∈ N, where T0 is the period 
of |u0|. This easily implies that the periodic wave with profile u0 is orbitally stable with respect 
to subharmonic perturbations.

The proof given in [4] that any periodic wave can be characterized as a local minimizer of 
a suitable higher-order conserved quantity is not direct. Indeed, the authors prove the positivity 
of the second variation at the periodic wave by evaluating the corresponding quadratic form on 
the basis of the Floquet–Bloch eigenfunctions associated with the linearized NLS flow. These, 
however, are not the eigenfunctions of the self-adjoint operator associated with the second varia-
tion itself, which would be more natural to use in the present context. In addition, many explicit 
computations are not transparent because they rely on nontrivial properties of the Jacobi elliptic 
functions and integrals that are used to represent the profile u0 of the periodic wave. This is why 
we feel that it is worth revisiting the problem using more standard PDE techniques, which is the 
goal of the present work.

The idea of using higher-order conserved quantities to solve delicate analytical problems 
related to orbital stability of nonlinear waves in integrable evolution equations has become in-
creasingly popular in recent years. Orbital stability of n-solitons in the Korteweg–de Vries (KdV) 
and the cubic focusing NLS equations was established in the space Hn(R) by combining the first 
(n + 1) conserved quantities of these equations in [11] and [9], respectively. For the modified 
KdV equation, orbital stability of breathers in the space H 2(R) was established in [2] by using 
two conserved quantities. For the massive Thirring model (a system of nonlinear Dirac equa-
tions), orbital stability of solitary waves was proved in the space H 1(R) with the help of the first 
four conserved quantities [13].

As already mentioned, we consider in this paper periodic waves of the cubic defocusing NLS 
equation (1.1) which correspond to real-valued solutions of the second-order equation (1.2). 
In that case, the second-order equation (1.2) can be integrated once to obtain the first-order 
equation

(
du0

)2

= 1 [(
1 − u2

0

)2 − E2], x ∈ R, (1.6)

dx 2
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Fig. 1. The level set given by (1.6) on the phase plane (u0, u′
0) for E = 0,0.4,0.8.

where the integration constant E ∈ [0, 1] can be used to parameterize all bounded solutions, up to 
translations. If 0 < E < 1, we obtain a periodic solution which has the explicit form

u0(x) = √
1 − E sn

(
x

√
1 + E

2
,

√
1 − E
1 + E

)
, (1.7)

where sn(ξ, k) denotes the Jacobi elliptic function with argument ξ and parameter k [10]. This 
solution corresponds to a closed orbit in the phase plane for (u0, u′

0), which is represented in 
Fig. 1. When E → 1 the orbit shrinks to the center point (0, 0), while in the limit E → 0 the 
solution u0 approaches the black soliton

u0(x) = tanh

(
x√
2

)
, (1.8)

which corresponds to a heteroclinic orbit connecting the two saddle points (−1, 0) and (1, 0). If 
E ∈ (0, 1), the period of u0 (which is exactly twice the period T0 of the modulus |u0|) is given by

2T0 = 4

√
2

1 + E K

(√
1 − E
1 + E

)
, (1.9)

where K(k) is the complete elliptic integral of the first kind. It can be verified that T0 is a de-
creasing function of E which satisfies T0 → +∞ as E → 0 and T0 → π as E → 1 [7].

Now we study the stability of the periodic wave ψ(x, t) = u0(x)e−it , where u0 is given 
by (1.7) for some E ∈ (0, 1). It is clear from (1.2) that the wave profile u0 is a critical point 
of the energy functional E defined by (1.3). In addition, one can verify by explicit (but rather 
cumbersome) calculations that u0 is also a critical point of the higher-order functional

S(ψ) = R(ψ) − 1

2

(
3 − E2)Q(ψ), (1.10)

where R is given by (1.5) and Q by (1.4). Using an idea borrowed from [4], we combine E and S

by introducing the functional

Λc(ψ) = S(ψ) − cE(ψ), (1.11)
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where c ∈ R is a parameter that will be fixed below. Our first result is the following proposition, 
which establishes an unconstrained variational characterization for the periodic waves of the 
NLS equation (1.1), at least when their amplitude is small enough.

Proposition 1.1. There exists E0 ∈ (0, 1) such that, for all E ∈ (E0, 1), there exist values c−
and c+ in the range 1 < c− < 2 < c+ < 3 such that, for any c ∈ (c−, c+), the second variation 
of the functional Λc at the periodic wave profile u0 is nonnegative for perturbations in H 2(R). 
Furthermore, we have

c± = 2 ± √
2(1 − E) +O(1 − E) as E → 1. (1.12)

Remark 1.2. The second variation of Λc at u0 is the quadratic form associated with a fourth-
order selfadjoint operator with T0-periodic coefficients, which will be explicitly calculated in 
Section 2 below. Proposition 1.1 asserts that the Floquet–Bloch spectrum of that operator is non-
negative, if we consider it as acting on the whole space H 4(R). In particular, the same operator 
has nonnegative spectrum when acting on H 4

per(0, T ), where T is any multiple of T0. In fact, 
the proof of Proposition 1.1 shows that Λ′′

c (u0) is positive except for two neutral directions cor-
responding to symmetries (translations in space and rotations of the complex phase). This key 
observation will allow us to prove orbital stability of the periodic wave with respect to subhar-
monic perturbations, see Theorem 1.8 below.

Our second result suggests a rather explicit formula for the limiting values c± that appear in 
Proposition 1.1.

Proposition 1.3. For all E ∈ (0, 1) and all c ≥ 1, the second variation of the functional Λc at the 
periodic wave profile u0 is positive, except for two neutral directions due to symmetries, only if 
c ∈ [c−, c+] with

c± = 2 ± 2k

1 + k2
, where k =

√
1 − E
1 + E . (1.13)

Remark 1.4. Proposition 1.3 gives a necessary condition for the second variation Λ′′
c (u0) to be 

positive except for two neutral directions due to translations and phase rotations. The condition is 
obtained by considering one particular band of the Floquet–Bloch spectrum of the fourth-order 
operator associated with Λ′′

c (u0). That band touches the origin when the Floquet–Bloch wave 
number is equal to zero, is strictly convex near the origin if c ∈ (c−, c+), and is strictly concave 
if c ≥ 1 and c /∈ [c−, c+]. In the latter case, the second variation Λ′′

c (u0) has therefore negative 
directions. Interestingly enough, the alternative approach of Bottman et al. [4] suggests that, 
for any E ∈ (0, 1), the second variation Λ′′

c (u0) is positive (except for neutral directions due 
to symmetries) whenever c ∈ (c−, c+). Indeed, after adopting our definition of the functionals E
and S, and performing explicit computations with Jacobi elliptic functions, one can show that the 
conditions implicitly defined in [4, Theorem 7] exactly correspond to choosing our parameter c
in the interval (c−, c+) given by (1.13).

In Fig. 2, the values c± are represented as a function of the parameter E by a solid line. Note 
that the asymptotic expansion (1.12) is recovered from the analytical expressions (1.13) in the 
limit k → 0, that is, E → 1. The asymptotic result (1.12) is shown by dashed lines.
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Fig. 2. The values c± given by the explicit expressions (1.13) are represented as a function of the parameter E (solid 
line). The asymptotic result (1.12) is shown by dashed lines.

The result of Proposition 1.1 relies on perturbation theory and is therefore restricted to peri-
odic waves of small amplitude. Although the analytic formula (1.13) suggests that the conclusion 
of Proposition 1.1 should hold for all periodic waves, namely for all E ∈ (0, 1), the result of 
Proposition 1.3 is only a necessary condition for positivity of the functional Λc. In the next re-
sult, we fix c = 2 (the mean value in the interval [c−, c+]) and prove the positivity of the second 
variation of the functional Λc=2.

Proposition 1.5. Fix c = 2. For every E ∈ (0, 1), the second variation of the functional Λc=2 at 
the periodic wave profile u0 is positive, except for two neutral directions due to symmetries.

Remark 1.6. In the proof of Proposition 1.5, we show that the quadratic form defined by the 
second variation Λ′′

c=2(u0) restricted to purely imaginary perturbations of the periodic wave 
can be decomposed as a sum of squared quantities, hence is obviously nonnegative. In order to 
control the quadratic form for the real perturbations to the periodic wave, we use a continuation 
argument from the limit to the periodic waves of small amplitude, combined with the analysis of 
a pair of second-order Schrödinger operators with T0-periodic coefficients.

Remark 1.7. Proposition 1.5 implies the spectral stability of the periodic wave profile u0 for 
every E ∈ (0, 1), see the end of Section 5.

Our final result establishes orbital stability of the periodic wave (1.7) with respect to the sub-
harmonic perturbations in H 2

per(0, T ), where T > 0 is any integer multiple of the period of u0. 
Therefore, we use I = (0, T ) in the definition of all functionals (1.3)–(1.5). If we consider Λc

as defined on H 2
per(0, T ), we know from Proposition 1.5 that Λ′

c(u0) = 0 and that the second 
variation Λ′′

c=2(u0) is strictly positive, except for two neutral directions corresponding to sym-
metries. Since Λc=2(ψ) is a conserved quantity under the evolution defined by the cubic NLS 
equation (1.1), we obtain the following orbital stability result.

Theorem 1.8. Fix E ∈ (0, 1) and let T be an integer multiple of the period 2T0 of u0. For any 
ε > 0, there exists δ > 0 such that, if ψ0 ∈ H 2

per(0, T ) satisfies

‖ψ0 − u0‖H 2 (0,T ) ≤ δ, (1.14)

per
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the unique global solution ψ(·, t) of the cubic NLS equation (1.1) with initial data ψ0 has the 
following property. For any t ∈ R, there exist ξ(t) ∈R and θ(t) ∈ R/(2πZ) such that∥∥ei(t+θ(t))ψ

(· + ξ(t), t
) − u0

∥∥
H 2

per(0,T )
≤ ε. (1.15)

Moreover ξ and θ are continuously differentiable functions of t which satisfy∣∣ξ̇ (t)
∣∣ + ∣∣θ̇ (t)

∣∣ ≤ Cε, t ∈R, (1.16)

for some positive constant C.

Remark 1.9. It is well known that the Cauchy problem for the cubic NLS equation (1.1) is 
globally well posed in the Sobolev space Hs

per(0, T ) for any integer s ≥ 0, see [5].

Remark 1.10. The proof of Theorem 1.8 shows that, when ε ≤ 1, one can take δ = ε/C for some 
constant C ≥ 1 depending on E and on the ratio T/T0. We emphasize, however, that C → ∞ as 
T/T0 → ∞. This indicates that, although a given periodic wave is orbitally stable with respect 
to perturbations with arbitrary large period T , the size of the stability basin becomes very small 
when the ratio T/T0 is large.

Applying the same technique, we can also prove the orbital stability of the black soliton (1.8)
with respect to perturbations in H 2(R). The details of this analysis are given in Part II, which is 
a companion paper to this work.

The rest of this article is organized as follows. Section 2 contains the proof of Proposition 1.1. 
The sufficient condition of Proposition 1.3 is proved in Section 3. In Section 4, we provide a 
representation of the quadratic form associated with Λ′′

c (u0) as a sum of squared quantities. 
Section 5 reports the continuation argument, which yields the proof of Proposition 1.5. Section 6
is devoted to the proof of Theorem 1.8. Appendix A summarizes some explicit computations 
with the use of Jacobi elliptic functions.

2. Positivity of Λ′′
c (u0) for periodic waves of small amplitude

This section presents the proof of Proposition 1.1.
Let u0 be the periodic wave profile defined by (1.7) for some E ∈ (0, 1). We consider pertur-

bations of u0 of the form ψ = u0 +u + iv, where u, v are real-valued. Since u0 is a critical point 
of both E and S defined by (1.3) and (1.10), the leading order contributions to the renormalized 
quantities E(ψ) − E(u0) and S(ψ) − S(u0) are given by the second variations

1

2

〈
E′′(u0)[u,v], [u,v]〉 = ∫

I

[
u2

x + (
3u2

0 − 1
)
u2]dx +

∫
I

[
v2
x + (

u2
0 − 1

)
v2]dx (2.1)

and

1

2

〈
S′′(u0)[u,v], [u,v]〉 = ∫

I

[
u2

xx + 5u2
0u

2
x + (−5u4

0 + 15u2
0 − 4 + 3E2)u2]dx

+
∫ [

v2
xx + 3u2

0v
2
x + (

u2
0 − 1

)
v2]dx. (2.2)
I
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In the proof of the orbital stability theorem (Theorem 1.8) given in Section 6, we eventually 
take I = (0, T ), where T is a multiple of the period 2T0 of the periodic wave profile u0, and 
we assume that u, v ∈ H 2

per(0, T ). In this case, the formulas (2.1) and (2.2) represent the second 
variations of the functionals E and S defined on the space H 2

per(0, T ). However, here and in the 
following three sections, we only investigate the positivity properties of the second variations. 
For that purpose, it is more convenient to take I =R and to assume that u, v ∈ H 2(R).

As is clear from (2.1) and (2.2), the second variations E′′(u0) and S′′(u0) are block-diagonal 
in the sense that the contributions of u and v do not mix together (this is the main reason for 
which we restrict our analysis to real-valued wave profiles u0). We can thus write

1

2

〈
E′′(u0)[u,v], [u,v]〉 = 〈L+u,u〉L2 + 〈L−v, v〉L2

and

1

2

〈
S′′(u0)[u,v], [u,v]〉 = 〈M+u,u〉L2 + 〈M−v, v〉L2,

where 〈· ,·〉L2 is the scalar product on L2(R) and the operators L± and M± are defined by

L+ = −∂2
x + 3u2

0 − 1, M+ = ∂4
x − 5∂xu

2
0∂x − 5u4

0 + 15u2
0 − 4 + 3E2,

L− = −∂2
x + u2

0 − 1, M− = ∂4
x − 3∂xu

2
0∂x + u2

0 − 1. (2.3)

Note that L+u′
0 = M+u′

0 = 0, due to the translation invariance of the cubic NLS equation (1.1), 
and that L−u0 = M−u0 = 0, due to the gauge invariance ψ → eiθψ with θ ∈ R.

We now fix c ∈R and consider the functional Λc(ψ) = S(ψ) − cE(ψ), as in (1.11). We have

1

2

〈
Λ′′

c (u0)[u,v], [u,v]〉 = 〈
K+(c)u,u

〉
L2 + 〈

K−(c)v, v
〉
L2 , (2.4)

where K±(c) = M± − cL±. By construction, K±(c) are selfadjoint, fourth-order differential 
operators on R with T0-periodic coefficients, where T0 is the period of |u0|. Our goal is to show 
that these operators are nonnegative, at least if E is sufficiently close to 1 and if the parameter c

is chosen appropriately. Equivalently, the quadratic forms in the right-hand side of (2.4) are 
nonnegative for all u, v ∈ H 2(R) under the same assumptions on E and c.

Before going further, let us explain why a careful choice of the parameter c is necessary. 
Assume for simplicity that E = 1, so that u0 = 0. In that case, we have

〈
K±(c)u,u

〉
L2 =

∫
R

[
u2

xx − cu2
x + (c − 1)u2]dx

=
∫ (

uxx + c

2
u

)2

dx −
(

1 − c

2

)2 ∫
u2 dx. (2.5)
R R
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This simple computation shows that the second variation Λ′′
c (0) is nonnegative if and only if 

c = 2. By a perturbation argument, we shall verify that Λ′′
c(u0) remains nonnegative for E suf-

ficiently close to 1, provided c is close enough to 2. More precisely, we shall prove that the 
operators K+(c) and K−(c) are nonnegative and have only the following zero modes

K+(c)u′
0 = 0, and K−(c)u0 = 0. (2.6)

This means that the second variation Λ′′
c (u0) is strictly positive, except along the subspace 

spanned by the eigenfunctions u′
0 and iu0, which correspond to symmetries of the NLS equa-

tion (1.1). Note that, when E = 1, the second variation Λ′′
c (u0) vanishes on a four-dimensional 

subspace, according to the representation (2.5), but the degeneracy disappears as soon as E < 1.
The proof of Proposition 1.1 relies on perturbation theory for the Floquet–Bloch spectrum 

of the operators K±(c). First, we normalize the period of the profile u0 to 2π by using the 
transformation u0(x) = U(�x), where � = π/T0, so that U(z + 2π) = U(z). The second-order 
differential equation satisfied by rescaled profile U(z), as well as the associated first-order in-
variant, is given by

�2 d2U

dz2
+ U − U3 = 0 ⇒ �2

(
dU

dz

)2

= 1

2

[(
1 − U2)2 − E2]. (2.7)

In agreement with the exact solution (1.7) we assume that U is odd with U ′(0) > 0, so that 
U ∈ H 2

per(0, 2π) is entirely determined by the value of E ∈ (0, 1). As was already mentioned, it 
is known for the soft potential in (2.7) that the map (0, 1) � E → � ∈ (0, 1) is strictly increasing 
and onto [7]. The following proposition specifies the precise asymptotic behavior of the rescaled 
profile U as E → 1.

Proposition 2.1. The map (0, 1) � E → (�, U) ∈ R × H 2
per(0, 2π) can be uniquely described, 

when E → 1, by a small parameter a > 0 in the following way:

E = 1 − a2 +O
(
a4), �2 = 1 − 3

4
a2 +O

(
a4), (2.8)

and

U(z) = aU0(z) +OH 2
per(0,2π)

(
a3),

where U0(z) = sin(z).

Proof. The argument is rather standard, so we just mention here the main ideas. Since the wave 
profile U(z) is an odd function of z, we work in the space

L2
per,odd(0,2π) = {

U ∈ L2
loc(R): U is odd and 2π-periodic

}
.

We use the Lyapunov–Schmidt decomposition �2 = 1 + �̃, U = aU0 + Ũ , where the perturbation 
Ũ ∈ H 2

per,odd(0, 2π) is orthogonal to U0 in L2
per(0, 2π), namely 〈U0, Ũ〉L2

per
= 0. The quantities �̃

and Ũ can be determined by projecting Eq. (2.7) onto the one-dimensional subspace Span{U0} ⊂
L2 (0, 2π) and its orthogonal complement. This gives the relations
per,odd
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a�̃ = −
〈U0, (aU0 + Ũ )3〉L2

per

〈U0,U0〉L2
per

(2.9)

and

(1 + �̃)Ũ ′′ + Ũ = (aU0 + Ũ )3 −
〈U0, (aU0 + Ũ )3〉L2

per

〈U0,U0〉L2
per

U0. (2.10)

For any small �̃ and a, it is easy to verify (by inverting the linear operator in the left-hand side 
and using a fixed point argument) that Eq. (2.10) has a unique solution Ũ ∈ H 2

per,odd(0, 2π) such 

that 〈U0, Ũ〉L2
per

= 0 and Ũ =OH 2
per(0,2π)(a

3) as a → 0. This solution depends smoothly on �̃, so 

if we substitute it into the right-hand side of (2.9) we obtain an equation for �̃ only, which can in 
turn be solved uniquely for small a > 0. The result is

�̃ = −a2
〈U0,U

3
0 〉L2

per

〈U0,U0〉L2
per

+O
(
a4) = −3

4
a2 +O

(
a4).

Finally the expression E = 1 − a2 +O(a4) follows from the first-order invariant (2.7), if we use 
the above decompositions and the asymptotic formulas for �̃ and Ũ . �

We next study the Floquet–Bloch spectrum of the operators K±(c) = M± − cL±. Using the 
same rescaling z = �x and the Floquet parameter κ , we write these operators in the following 
form

P−(c, κ) = �4(∂z + iκ)4 − 3�2(∂z + iκ)U2(∂z + iκ) + c�2(∂z + iκ)2 + (c − 1)
(
1 − U2),

P+(c, κ) = �4(∂z + iκ)4 − 5�2(∂z + iκ)U2(∂z + iκ) + c�2(∂z + iκ)2

− 5U4 + (15 − 3c)U2 − 4 + 3E2 + c.

Note that the operators P±(c, κ) have π -periodic coefficients, hence we can look for π -periodic 
Bloch wave functions so that κ can be defined in the Brillouin zone [−1, 1]. However, for com-
putational simplicity of the perturbation expansions, it is more convenient to work with the 
2π -periodic Bloch wave functions, in which case κ is defined in the Brillouin zone T = [− 1

2 , 12 ]. 
If κ ∈ T and if the function w(·, κ) ∈ H 4

per(0, 2π) satisfies

P±(c, κ)w(z, κ) = λ(κ)w(z, κ), z ∈R, (2.11)

for some λ(κ) ∈ R and either sign, then defining u(x, κ) = eiκ�xw(�x, κ) we obtain a function 
u(·, κ) ∈ L∞(R) ∩ H 4

loc(R) such that

K±(c)u(x, κ) = λ(κ)u(x, κ), x ∈ R.

This precisely means that λ(κ) belongs to the Floquet–Bloch spectrum of K±(c).
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Fig. 3. Left: spectral bands given by (2.12) for c = 2 and a = 0. Right: spectral bands given by the matrix eigenvalue 
problem (2.16) for c = 2 and a = 0.2.

By Proposition 2.1, when E is close to 1, the operators P±(c, κ) can be expanded as

P±(c, κ) = P (0)(c, κ) + a2P
(1)
± (c, κ) +OH 4

per(0,2π)→L2
per(0,2π)

(
a4),

where

P (0)(c, κ) = (∂z + iκ)4 + c(∂z + iκ)2 + c − 1,

P
(1)
− (c, κ) = −3

2
(∂z + iκ)4 − 3(∂z + iκ)U2

0 (∂z + iκ) − 3

4
c(∂z + iκ)2 + (1 − c)U2

0 ,

P
(1)
+ (c, κ) = −3

2
(∂z + iκ)4 − 5(∂z + iκ)U2

0 (∂z + iκ) − 3

4
c(∂z + iκ)2 + (15 − 3c)U2

0 − 6.

The operator P (0)(c, κ) has constant coefficients, and its spectrum in the space L2
per(0, 2π)

consists of a countable family of real eigenvalues {λ(0)
n (κ)}n∈Z given by

λ(0)
n (κ) = (κ + n)4 − c(κ + n)2 + c − 1, n ∈ Z. (2.12)

As was already observed, one has λ(0)
n (κ) ≥ 0 for all n ∈ Z and all κ ∈ T if and only if c = 2. This 

is the case represented in Fig. 3 (left), where it is clear that all spectral bands {λ(0)
n (κ)}κ∈T are 

strictly positive, except for two bands corresponding to n = ±1 which touch the origin at κ = 0.
For small a > 0, the eigenvalues of the perturbed operators P±(c, κ) are denoted by λ±

n (κ)

with n ∈ Z, and we number them in such a way that λ±
n (κ) → λ

(0)
n (κ) as a → 0 for n �= ±1. 

By classical perturbation theory, we know that the eigenvalues λ±
n (κ) stay bounded away from 

zero for n �= ±1, so it remains to study how the bands {λ±
1 (κ)}κ∈T and {λ±

−1(κ)}κ∈T behave near 
κ = 0 as a → 0. The following proposition indicates that these bands separate from each other 
when a > 0, so that one band still touches the origin at κ = 0 while the other one remains strictly 
positive for all κ ∈ T. In other words, the degeneracy of the limiting case c = 2, a = 0 is unfold 
by the perturbation as soon as a > 0. This phenomenon is illustrated in Fig. 3 (right), which 
shows the solutions of the matrix eigenvalue problem (2.16) obtained below.

Proposition 2.2. If a > 0 is sufficiently small and c ∈ (c−, c+), where

c± = 2 ± √
2a +O

(
a2), (2.13)
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the operator K±(c) has exactly one Floquet–Bloch band denoted by {λ±
−1(κ)}κ∈T that touches 

the origin at κ = 0, while all other bands are strictly positive. Moreover, for any ν <
√

2, there 
exist positive constants C1, C2, C3 (independent of a) such that, if |c − 2| ≤ νa, one has

λ±
−1(κ) ≥ C1κ

2, λ±
1 (κ) ≥ C2

(
a2 + κ2), λ±

n (κ) ≥ C3, n ∈ Z \ {+1,−1}, (2.14)

for all κ ∈ T.

Proof. From (2.12) we know that, if |c − 2| is sufficiently small, there exists a constant C > 0
(independent of c) such that

0 < λ(0)
n (κ)−1 ≤ C for all n ∈ Z \ {+1,−1} and all κ ∈ T. (2.15)

By classical perturbation theory, this bound remains true (with possibly a larger constant C) for 
the perturbed eigenvalues λ±

n (κ) when n �= ±1 and a > 0 is small enough. We thus obtain the 
third estimate in (2.14).

To control the critical bands corresponding to n = ±1, we concentrate on the operator 
P−(c, κ) (the argument for P+(c, κ) being similar, see below), and for simplicity we denote 
its eigenvalues by λn(κ) instead of λ−

n (κ). The same perturbation argument as before shows that 
λ±1(κ) is bounded away from zero if |κ| ≥ κ0 and a is sufficiently small, where κ0 > 0 is an 
arbitrary positive number. On the other hand, for small values of a, |c − 2|, and |κ|, solutions to 
the spectral problem (2.11) for P−(c, κ) are obtained by the Lyapunov–Schmidt decomposition

w(z, κ) = b1(κ)eiz + b−1(κ)e−iz + w̃(z, κ),
〈
e±i·, w̃(·, κ)

〉
L2

per
= 0,

where all terms can be determined by projecting the spectral problem (2.11) onto the two-
dimensional subspace Span{ei·, e−i·} ⊂ L2

per(0, 2π) and its orthogonal complement in

L2
per(0, 2π). Using the bound (2.15), one can prove that w̃(·, κ) = OH 4

per(0,2π)(a
2), which al-

lows us to find λ(κ) near λ(0)
±1(κ) as a solution of the matrix eigenvalue problem

[
λ

(0)
1 (κ) + a2g1,1(κ) +O(a4) −a2g1,−1(κ) +O(a4)

−a2g−1,1(κ) +O(a4) λ
(0)
−1(κ) + a2g−1,−1(κ) +O(a4)

][
b1

b−1

]

= λ(κ)

[
b1

b−1

]
, (2.16)

where

g±1,±1(κ) = −3

2
(κ ± 1)4 + 3

4
c(κ ± 1)2 + 1

2
(1 − c) + 3

2
(κ ± 1)2,

g±1,∓1(κ) = 1

4
(1 − c) + 3

4

(
κ2 − 1

)
.

Setting c = 2 + γ with small |γ |, we have
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λ
(0)
±1(κ) = ∓2γ κ + (4 − γ )κ2 ± 4κ3 + κ4,

g±1,±1(κ) = 1 + 1

4
γ ± 3

2
γ κ − 6κ2 + 3

4
γ κ2 ∓ 6κ3 − 3

2
κ4,

g±1,∓1(κ) = −1 − 1

4
γ + 3

4
κ2.

If we denote by A the matrix in the left-hand side of (2.16), we thus obtain the expansions

1

2
tr(A) = a2 + 4κ2 +O

((
a2 + κ2)(|γ | + a2 + κ2)),

det(A) = (
a2 + 4κ2)2 − a4 − 4γ 2κ2 +O

((
a2 + κ2)2(|γ | + a2 + κ2)).

As a result, the eigenvalues λ±1(κ) of A satisfy

λ±1(κ) = a2 + 4κ2 +O
((

a2 + κ2)(|γ | + a2 + κ2))
±

√
a4 + 4γ 2κ2 +O

((
a2 + κ2

)2(|γ | + a2 + κ2
))

. (2.17)

It remains to analyze (2.17). If a > 0 is small, we obviously have

λ1(κ) ≥ a2 + 4κ2 +O
((

a2 + κ2)(|γ | + a2 + κ2)) > 0,

which implies the second bound in (2.14). To estimate λ−1(κ), we first consider the regime where 
|κ| ≤ a. If |γ | ≤ νa for any ν > 0 independently of a, further expansion of (2.17) yields

λ−1(κ) = μ + 4κ2 − 2γ 2κ2

a2
+O

(
κ2(|γ | + a2)), (2.18)

where μ = O(a2(|γ | + a2)) does not depend on κ . But since K−(c)u0 = 0 for any c, we must 
have λ−1(0) = 0 to all orders in a and γ , hence actually μ = 0. Then (2.18) shows that λ−1(κ)

has a nondegenerate minimum at κ = 0 if and only if

γ 2 < 2a2 +O
(
a3). (2.19)

Since γ = c − 2, this yields expansion (2.13) for c±. From now on, we assume that |γ | ≤ νa

for some ν ∈ (0, 
√

2), so that the inequality (2.19) certainly holds if a is sufficiently small. The 
expansion (2.18) shows that if |κ| ≤ a, then

λ−1(κ) = (
4 − 2ν2)κ2 +O

(
κ2(|γ | + a2)).

On the other hand, if |κ| ≥ a, we easily find from (2.17) that

λ−1(κ) ≥ 4κ2 − 2|γ ||κ| +O
(
κ2(|γ | + κ2)1/2) ≥ κ2 +O

(
κ2(|γ | + κ2)1/2)

,

because 2|γ ||κ| ≤ κ2 + γ 2 ≤ κ2 + ν2a2 ≤ 3κ2. Altogether, we obtain the first estimate in (2.14).



3620 T. Gallay, D. Pelinovsky / J. Differential Equations 258 (2015) 3607–3638
The spectral problem (2.11) for the operator P+(c, κ) can be studied in a similar way and 
results in the matrix eigenvalue problem (2.16) with

g±1,±1(κ) = −3

2
(κ ± 1)4 + 3

4
c(κ ± 1)2 + 3

2
(1 − c) + 5

2
(κ ± 1)2,

g±1,∓1(κ) = 3

4
(5 − c) + 5

4

(
κ2 − 1

)
.

Although the matrix A has now different entries, the leading order terms for the quantities tr(A)

and det(A) are unchanged, hence the eigenvalues λ±1(κ) still satisfy (2.17). Consequently, the 
conclusion remains true for c in the same interval (2.13). �
Remark 2.3. In view of expansion (2.8), Proposition 1.1 is a direct consequence of Proposi-
tion 2.2.

3. Necessary condition for positivity of Λ′′
c (u0)

This section presents the proof of Proposition 1.3.
In Section 2, we only considered small amplitude periodic waves (1.7) with E close to 1. To 

get some information on the quadratic form Λ′′
c (u0) for larger periodic waves, we recall that, for 

any E ∈ (0, 1) and any c ∈ R, the operators P±(c, κ) have at least one Floquet–Bloch spectral 
band that touches the origin at κ = 0, because we know from (2.6) that the kernel of P±(c, 0) in 
L2

per(0, 2π) is nontrivial.
In what follows, we focus on the operator P−(c, κ). Assuming that ker(P−(c, 0)) in 

L2
per(0, 2π) is one-dimensional, we compute an asymptotic expansion as κ → 0 of the unique 

Floquet–Bloch band that touches the origin at κ = 0. By Proposition 2.2, the assumption on 
ker(P−(c, 0)) is satisfied at least for the periodic waves of small amplitude, in which case the 
Floquet–Bloch band that touches the origin is actually the lowest band λ−

−1(κ).

Proposition 3.1. Fix E ∈ (0, 1) and assume that U = u0(�
−1·) is the only 2π -periodic solution 

of the homogeneous equation P−(c, 0)w = 0 for some c ∈ R. Denote by μ(κ) the Floquet–Bloch 
band of P−(c, κ) that touches zero at κ = 0. Then μ is C2 near κ = 0, μ(0) = μ′(0) = 0, and

μ′′(0) = 2

‖U‖2
L2

per

[−4�4(c − 2)2〈U ′,
(
P−(c,0)

)−1
U ′〉

L2
per

+ 3�4
∥∥U ′∥∥2

L2
per

+ (3 − c)�2‖U‖2
L2

per

]
, (3.1)

where W =(P−(c, 0))−1U ′ is uniquely defined under the orthogonality condition 〈U, W 〉L2
per

=0.

Proof. We consider P−(c, κ) as a self-adjoint operator in L2
per(0, 2π) with domain H 4

per(0, 2π). 
As κ → 0, we have

P−(c, κ) = P0(c) + iκP1(c) − κ2P2(c) +OH 4 (0,2π)→L2 (0,2π)

(
κ3),
per per
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where

P0(c) = �4∂4
z − 3�2∂zU

2∂z + c�2∂2
z + (c − 1)

(
1 − U2),

P1(c) = 4�4∂3
z − 6�2U2∂z − 6�2UU ′ + 2c�2∂z,

P2(c) = 6�4∂4
z − 3�2U2 + c�2.

We note that P0(c) and P2(c) are self-adjoint, whereas P1(c) is skew-adjoint. Under the as-
sumptions of the proposition, the Floquet–Bloch band μ(κ) that touches zero at κ = 0 is 
separated from all the other bands of P−(c, κ) locally near κ = 0. Thus, μ(κ) is smooth near 
κ = 0, and it is possible to choose a nontrivial solution w(z, κ) of the eigenvalue equation 
P−(c, κ)w(z, κ) = μ(κ)w(z, κ) which also depends smoothly on κ . We look for an expansion 
of the form

μ(κ) = iκμ1 − κ2μ2 +O
(
κ3)

and

w(z, κ) = U(z) + iκw1(z) − κ2w2(z) +OH 4
per(0,2π)

(
κ3),

where w1, w2, and the remainder term belong to the orthogonal complement of span{U} in 
L2

per(0, 2π). This gives the following system for the correction terms

P0(c)w1 + P1(c)U = μ1U, (3.2)

P0(c)w2 + P1(c)w1 + P2(c)U = μ1w1 + μ2U. (3.3)

If we take the scalar product of (3.2) with U in L2
per(0, 2π) and use the fact that P0(c) is self-

adjoint, P1(c) is skew-adjoint, and P0(c)U = 0, we obtain μ1 = 0. Similarly, taking the scalar 
product of (3.3) with U gives a nontrivial equation for μ2:

μ2‖U‖2
L2

per
= 〈

U,P1(c)w1
〉
L2

per
+ 〈

U,P2(c)U
〉
L2

per
.

We note that

P1(c)U = 2�2(2�2U ′′′ − 6U2U ′ + cU ′) = 2�2(c − 2)U ′,

P2(c)U = �2(6�2U ′′ − 3U3 + cU
) = �2(3�2U ′′ + (c − 3)U

)
.

Setting w1 = −2�2(c − 2)W , where W is the unique solution of P0(c)W = U ′ subject to the 
orthogonality condition 〈U, W 〉L2

per
= 0, we obtain

μ2‖U‖2
L2

per
= 4�4(c − 2)2〈U ′,W

〉
L2

per
− (

3�4
∥∥U ′∥∥2

L2
per

+ (3 − c)�2‖U‖2
L2

per

)
,

which yields the result (3.1) since μ′′(0) = −2μ2. �
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Note that the first term in the right-hand side of (3.1) is negative, whereas the other two are 
positive for c ≤ 3. In the particular case where c = 2, it follows from Lemma 4.1 below that 
ker(P−(2, 0)) = span{U} for any value of the parameter E ∈ (0, 1), so that the assumption of 
Proposition 3.1 is satisfied. In this case, the formula (3.1) shows that μ′′(0) > 0.

Next, we give an explicit expression for μ′′(0) by evaluating the various terms in (3.1) using 
known properties of the Jacobi elliptic functions. These computations are performed in Ap-
pendix A, see Eqs. (A.8)–(A.12), and yield the explicit formula

μ′′(0) = 2�2k2(4k2 − (c − 2)2(1 + k2)2)

(1 + k2)(1 − E(k)
K(k)

)(2k2 + (c − 2)(1 + k2)(1 − E(k)
K(k)

))
, (3.4)

where K(k) and E(k) are the complete elliptic integrals of the first and second kind, respectively, 
and the parameter k ∈ (0, 1) is given by (1.13). The denominator in (3.4) is strictly positive if 
c ≥ 1. Indeed, since K(k) > E(k) for all k ∈ (0, 1), thanks to Eq. (A.10) in Appendix A, the 
denominator in (3.4) is a strictly increasing function of c, and for c = 1 we have

2k2 + (c − 2)
(
1 + k2)(1 − E(k)

K(k)

)∣∣∣∣
c=1

= k2 − 1 + (
k2 + 1

) E(k)

K(k)
> 0.

The expression above is positive for all k ∈ (0, 1), thanks to Eq. (A.11) in Appendix A. Thus, 
for c ≥ 1, the sign of μ′′(0) is the sign of the numerator in (3.4). It follows that μ′′(0) ≥ 0 if 
c ∈ [c−, c+] ⊂ [1, 3], where c± are given by (1.13). Similarly, we have μ′′(0) < 0 if c ≥ 1 and 
c /∈ [c−, c+].

Remark 3.2. The computations above imply the conclusion of Proposition 1.3. Indeed, either the 
kernel of P−(c, 0) in L2

per(0, 2π) is one-dimensional, in which case the perturbation argument of 
Proposition 3.1 applies and proves the existence of negative spectrum if c ≥ 1 is outside [c−, c+], 
or the kernel is higher-dimensional and the second variation Λ′′

c(u0) has more neutral directions 
than the two directions due to the symmetries. Note that we do not claim that the second variation 
Λ′′

c (u0) (or even the quadratic form associated with K−(c)) is indeed positive if c ∈ (c−, c+), 
although by Proposition 2.2 this is definitely the case for the periodic waves of small amplitudes.

Remark 3.3. If we compare the above results with the computations in [4], one advantage of our 
approach is that we clearly distinguish between the spectra of the two linear operators K+(c)

and K−(c). In particular, the necessary condition in Proposition 1.3 is derived from the positivity 
of the Floquet–Bloch spectrum of K−(c). We expect that, for any E ∈ (0, 1), the Floquet–Bloch 
spectrum of K+(c) is positive for c in a larger subset of R than (c−, c+). For instance, the oper-
ator K+(c) is positive in L2(R) for every c ≤ 3 in the case of the black soliton that corresponds 
to E = 0, see Remark 4.6 below.

4. Positive representations of Λ′′
c (u0)

As a first step in the proof of Proposition 1.5, which claims that the quadratic forms associated 
with the linear operators K±(c) are nonnegative on H 2(R) if c = 2, we look for representations 
of these quadratic forms as sums of squared quantities.

Our first result shows that, if c = 2, the quadratic form associated with K−(c) is always 
positive, for all E ∈ [0, 1], including the black soliton for E = 0 and the zero solution for E = 1.
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Lemma 4.1. Fix c = 2. For any E ∈ [0, 1] and any v ∈ H 2(R), we have

〈
K−(2)v, v

〉
L2 = ‖L−v‖2

L2 + ∥∥u0vx − u′
0v

∥∥2
L2 . (4.1)

Proof. Using the definition (2.3) of the operator L− and integrating by parts, we obtain

‖L−v‖2
L2 =

∫
R

[
v2
xx + 2

(
1 − u2

0

)
vvxx + (

1 − u2
0

)2
v2]dx

=
∫
R

[
v2
xx − 2

(
1 − u2

0

)
v2
x − 2

(
u0u

′
0

)′
v2 + (

1 − u2
0

)2
v2]dx.

Similarly, we obtain

∥∥u0vx − u′
0v

∥∥2
L2 =

∫
R

[
u2

0v
2
x + (

u0u
′
0

)′
v2 + (

u′
0

)2
v2]dx.

As a consequence, we have

‖L−v‖2
L2 + ∥∥u0vx − u′

0v
∥∥2

L2 =
∫
R

[
v2
xx + (

3u2
0 − 2

)
v2
x + [(

1 − u2
0

)2 − u0u
′′
0

]
v2]dx,

which yields the desired result since (1 − u2
0)

2 − u0u
′′
0 = 1 − u2

0. �
Remark 4.2. It is easy to verify that the right-hand side of the representation (4.1) vanishes if and 
only if v = Cu0 for some constant C. As u0 /∈ H 2(R), this shows that 〈K−(2)v, v〉L2 > 0 for any 
nonzero v ∈ H 2(R).

Unfortunately, we are not able to find a positive representation for the quadratic form associ-
ated with the operator K+(c). If we proceed as in the proof of Lemma 4.1, we obtain

〈
K+(2)u,u

〉
L2 = ‖L+u‖2

L2 −
∫
R

[
u2

0u
2
x − 3u2

0u
2 + 5u4

0u
2]dx. (4.2)

Here the second term in the right-hand side has no definite sign, hence it is difficult to exploit 
the representation (4.2). In the following lemma, we give a partial result which shows that the 
quadratic form associated with K+(c) is positive for c < 3 at least on a subspace of H 2(R).

Lemma 4.3. For any E ∈ (0, 1), any c ∈ R, and any u ∈ H 2(R) such that u(x) = 0 whenever 
u′

0(x) = 0, we have

〈
K+(c)u,u

〉
L2 = ‖wx‖2

L2 + (3 − c)‖w‖2
L2 + 2E2

∥∥∥∥u0w

u′
0

∥∥∥∥
2

L2
, (4.3)

where w = ux − u′′
0′ u ∈ H 1(R) satisfies w′ ∈ L2(R).
u0 u0



3624 T. Gallay, D. Pelinovsky / J. Differential Equations 258 (2015) 3607–3638
Proof. Since u′
0 satisfies the second-order differential equation L+u′

0 = 0, the zeros of u′
0 are all 

simple, as can also be deduced from the explicit formula (1.7). Thus, if u ∈ H 2(R) is such that 
u(x) = 0 whenever u′

0(x) = 0, we can write u = u′
0ũ and it follows from Hardy’s inequality that 

ũ ∈ H 1(R). With this notation, we have

w := ux − u′′
0

u′
0
u = ux − u′′

0ũ = u′
0ũx,

so that w ∈ H 1(R) and w
u′

0
∈ L2(R). As a consequence, all terms in right-hand side of (4.3) are 

well-defined, and the integrations by parts used in the computations below can easily be justified.
To prove the representation (4.3), we first note that

uxx + (
1 − 3u2

0

)
u = uxx − u′′′

0

u′
0

u = wx + u′′
0

u′
0
w.

Integrating by parts, we thus obtain

‖L+u‖2
L2 =

∥∥∥∥wx + u′′
0

u′
0
w

∥∥∥∥
2

L2
= ‖wx‖2

L2 +
∫
R

[(
1 − 3u2

0

)
w2 + 2(u′′

0)
2

(u′
0)

2
w2

]
dx.

On the other hand, we have

‖w‖2
L2 =

∫
R

[
u2

x + (
3u2

0 − 1
)
u2]dx,

and

‖u0w‖2
L2 =

∫
R

[
u2

0u
2
x + (

5u2
0 − 3

)
u2

0u
2]dx.

Thus, using the analogue of (4.2) for all c ∈ R, we find

〈
K+(c)u,u

〉
L2 = ‖L+u‖2

L2 + (2 − c)

∫
R

[
u2

x − u2 + 3u2
0u

2]dx −
∫
R

[
u2

0u
2
x − 3u2

0u
2 + 5u4

0u
2]dx

= ‖wx‖2
L2 + (3 − c)‖w‖2

L2 + 2
∫
R

[
(u′′

0)
2

(u′
0)

2
− 2u2

0

]
w2 dx,

which yields the desired result since 
(u′′

0)2

(u′
0)

2 − 2u2
0 = E2 u2

0
(u′

0)
2 holds by Eqs. (1.2) and (1.6). �

Remark 4.4. If c ≤ 3, the right-hand side of the representation (4.3) is nonnegative and vanishes 
if and only if w = 0, which is equivalent to u = Cu′

0 for some constant C. However, this does 
not imply positivity of the quadratic form associated with K+(c), because the representation 
(4.3) only holds for u in a subspace of H 2(R). As a matter of fact, the right-hand side of the 
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representation (4.3) is positive for any c ≤ 3, whereas we know from the proof of Proposition 2.2
that, when E is close to 1, the operator K+(c) is positive if and only if c ∈ (c−, c+) where c± → 2
as E → 1.

For the black soliton (1.8) corresponding to the case E = 0, the proof of Lemma 4.3 yields 
a much stronger conclusion, because u′

0 never vanishes so that we do not need to impose any 
restriction to u ∈ H 2(R). Using the identity u′′

0 = −√
2u0u

′
0 which holds for the black soliton 

(1.8) only, we obtain the following result.

Corollary 4.5. Consider the black soliton (1.8), for which E = 0. For any c ∈ R and any u ∈
H 2(R), we have

〈
K+(c)u,u

〉
L2 = ‖wx‖2

L2 + (3 − c)‖w‖2
L2, (4.4)

where w = ux + √
2u0u ∈ H 1(R).

Remark 4.6. If c ≤ 3, the right-hand side of the representation (4.4) is nonnegative and vanishes 
if and only if w = 0, which is equivalent to u = Cu′

0 for some constant C. Note that u′
0 ∈ H 2(R)

in the present case. On the other hand, using definitions (2.3) and the fact that u0(x) → ±1 as 
x → ±∞, it is easy to verify that K+(c) has some negative essential spectrum as soon as c > 3. 
Thus the representation (4.4) gives a sharp positivity criterion for the operator K+(c) in the case 
of the black soliton (1.8).

5. Positivity of Λ′′
c=2(u0) for periodic waves of large amplitude

This section presents the proof of Proposition 1.5.
The energy functionals (1.3) and (1.10) generate two different flows in the hierarchy of inte-

grable NLS equations, see [4]. If we consider E and S as functions of the complex variables ψ
and ψ̄ , these flows are defined by the evolution equations

i
∂ψ

∂t
= δE

δψ̄
, i

∂ψ

∂τ
= δS

δψ̄
, (5.1)

where the symbol δ is used to denote the standard variational derivative. Here t is the time of the 
cubic defocusing NLS equation (1.1), whereas τ is the time of the higher-order NLS equation. 
Since the quantities E and S are in involution, the flows defined by both equations in (5.1)
commute with each other.

In what follows, we fix some E ∈ (0, 1) and consider the periodic wave profile u0 defined 
by (1.7). Using the real-valued variables u, v for the perturbations, as in the representations (2.1)
and (2.2), we obtain the following evolution equations for the linearized flows of the cubic NLS 
equation and the higher-order NLS equation at the periodic wave profile u0:

∂
[

u
]

=
[

0 L−
][

u
]

,
∂

[
u

]
=

[
0 M−

][
u

]
, (5.2)
∂t v −L+ 0 v ∂τ v −M+ 0 v
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where the operators L± and M± are given by (2.3). Because the linearized flows also commute 
with each other, the operators L± and M± satisfy the following intertwining relations

L−M+ = M−L+, L+M− = M+L−. (5.3)

Of course, the relations (5.3) can also be verified by a direct calculation, using the differential 
equations (1.2) and (1.6) satisfied by the periodic wave profile u0. It follows from the rela-
tion (5.3) that, for every c ∈R, we have

L−K+(c) = K−(c)L+, L+K−(c) = K+(c)L−, (5.4)

where K±(c) = M± − cL± as before.
Given the positivity of the operator K−(2) established in Lemma 4.1, we shall use the in-

tertwining relations (5.4) to deduce the positivity of the operator K+(2). This is achieved by 
studying all bounded solutions of the homogeneous equations associated with operators L± and 
K±(2) and by applying a continuation argument from the limit E → 1, where positivity of the 
operator K+(2) is proved in Proposition 2.2.

Lemma 5.1. If u ∈ L∞(R) ∩ H 2
loc(R) satisfies L+u = 0, then u = Cu′

0 for some constant C. 
Moreover, there exists a unique odd, 2T0-periodic function U ∈ H 2

per,odd(0, 2T0) such that 
L+U = u0, where 2T0 is the period of u0.

Proof. We know that L+u′
0 = 0. Another linearly independent solution to the equation L+v = 0

can be obtained by differentiating the periodic wave profile u0 with respect to the parameter 
E ∈ (0, 1), namely v = ∂Eu0. Indeed, if we differentiate the equation

u′′
0 + u0 − u3

0 = 0

with respect to the parameter E , we see that

L+v = −v′′ + (
3u2

0 − 1
)
v = 0.

Moreover, v(x) is an odd function of x that grows linearly as |x| → ∞. The latter claim can be 
verified by differentiating the explicit formula (1.7) with respect to E , but that calculation is not 
immediate because it involves the derivative of the Jacobi elliptic function sn(ξ, k) with respect 
to the parameter k. Alternatively, we can use Floquet theory to deduce that v is either periodic 
of period 2T0, where 2T0 is the minimal period of u0, or grows linearly at infinity. The first 
possibility is excluded by the following argument. If we denote u0(x) = u0(x; E) and T0 = T0(E)

to emphasize the dependence upon the parameter E , we have by construction

u0(0;E) = u0
(
2T0(E);E) = 0.

Differentiating that relation with respect to E , we find

v(0) = 0 and v(2T0) + 2u′ (2T0)T
′(E) = 0.
0 0



T. Gallay, D. Pelinovsky / J. Differential Equations 258 (2015) 3607–3638 3627
But we know that u′
0(2T0) = u′

0(0) > 0 and that T ′
0(E) < 0, hence we deduce that v(2T0) > 0, 

which implies that v is not periodic of period 2T0. This proves that the kernel of L+ (in the space 
of bounded functions) is spanned by u′

0, which is the first part of the statement.
For the second part of the statement, we look for solutions of the inhomogeneous equation 

L+U = u0 and note that the Fredholm solvability condition 〈u′
0, u0〉L2

per
= 0 is trivially sat-

isfied in the space of 2T0-periodic functions. Hence, there exists a unique odd 2T0-periodic 
solution U of the inhomogeneous equation L+U = u0 in the domain of L+, that is, U ∈
H 2

per,odd(0, 2T0). �
Lemma 5.2. If v ∈ L∞(R) ∩ H 2

loc(R) satisfies L−v = 0, then v = Cu0 for some constant C. 
Moreover, there exists a unique even, 2T0-periodic function V ∈ H 2

per,even(0, 2T0) such that 
L−V = u′

0, where 2T0 is the period of u0.

Proof. We know that L−u0 = 0. Another linearly independent solution to the equation L−v = 0
is given by

v(x) = 2u′
0(x) − u0(x)

x∫
0

u0(y)2 dy, x ∈R,

as is easily verified by a direct calculation. Clearly v(x) is an even function of x that grows 
linearly as |x| → ∞. This proves that the kernel of L− (in the space of bounded functions) is 
spanned by u0. The second part of the statement follows by the same argument as in the proof of 
Lemma 5.1. �
Remark 5.3. The solutions U and V of the inhomogeneous equations L+U = u0 and L−V = u′

0
can be expressed explicitly in terms of the Jacobi elliptic functions, see Eqs. (A.5) and (A.17) in 
Appendix A.

Next, we establish analogues of Lemmas 5.1 and 5.2 for the operators K±(c) in the particular 
case c = 2.

Lemma 5.4. If v ∈ L∞(R) ∩ H 4
loc(R) satisfies K−(2)v = 0, then v = Cu0 for some constant C.

Proof. Using integration by parts as in the proof of Lemma 4.1, we obtain the following identity 
for any v ∈ H 4(−NT0, NT0), where N ∈ N and 2T0 is the period of u0:

NT0∫
−NT0

vK−(2)v dx =
NT0∫

−NT0

(|L−v|2 + ∣∣u0vx − u′
0v

∣∣2)dx − [
2
(
1 − u2

0

)
vvx + u0u

′
0v

2]∣∣x=NT0
x=−NT0

.

Assume now that v ∈ L∞(R) ∩ H 4
loc(R) satisfies K−(2)v = 0. By standard elliptic estimates, we 

know that v is smooth on R and that all derivatives of v are bounded. Moreover, since the operator 
K−(2) has T0-periodic coefficients, it follows from Floquet theory that v(x) = eiγ xw(x), where 
γ ∈R and w is smooth on R and T0-periodic. Using the identity above, we thus obtain
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0 = 1

N

NT0∫
−NT0

(|L−v|2 + ∣∣u0vx − u′
0v

∣∣2)dx − 1

N

[
2
(
1 − u2

0

)
vvx + u0u

′
0v

2]∣∣x=NT0
x=−NT0

=
T0∫

−T0

(|L−v|2 + ∣∣u0vx − u′
0v

∣∣2)
dx − 1

N

[
2
(
1 − u2

0

)
vvx + u0u

′
0v

2]∣∣x=NT0
x=−NT0

.

Taking the limit N → ∞ and using the boundedness of v and vx , we obtain L−v = 0 and u0vx −
u′

0v = 0 for all x ∈ R. By Lemma 5.2, we conclude that v = Cu0 for some constant C. �
Lemma 5.5. If u ∈ L∞(R) ∩ H 4

loc(R) satisfies K+(2)u = 0, then u = Cu′
0 for some constant C.

Proof. Assume that u ∈ L∞(R) ∩ H 4
loc(R) satisfies K+(2)u = 0. By the intertwining rela-

tion (5.4), we have K−(2)L+u = L−K+(2)u = 0. Using Lemma 5.4, we deduce that L+u = Bu0
for some constant B . Finally, Lemma 5.1 implies that u = BU + Cu′

0 for some constant C. In 
particular, we have 0 = K+(2)u = BK+(2)U , because K+(2)u′

0 = 0. Now an explicit computa-
tion that is carried out in Appendix A shows that K+(2)U = Du0 for some constant D �= 0, see 
Eq. (A.19), so that K+(2)U is not identically zero. Thus B = 0, hence u = Cu′

0. �
Remark 5.6. The result of Lemma 5.5 yields the conclusion of Proposition 1.5. Indeed, in the 
limit E → 1, positivity of the operator K+(2) is proved in Proposition 2.2. All Floquet–Bloch 
bands are strictly positive, except for the lowest band that touches the origin because of the zero 
eigenvalue due to translational symmetry, see Fig. 3. When the parameter E is decreased from 1
to 0, the Floquet–Bloch spectrum of K+(2) evolves continuously, and positivity of the spectrum 
is therefore preserved as long as no other band touches the origin. Such an event would result in 
the appearance of another bounded solution to the homogeneous equation K+(2)u = 0, besides 
the zero mode u′

0 due to translation invariance. By Lemma 5.5, such a solution does not exist, 
hence K+(2) is a nonnegative operator for any E ∈ (0, 1).

To conclude this section, we note that the intertwining relations (5.4) and the positivity of the 
operators K±(2) established in Proposition 1.5 imply the spectral stability of the periodic wave. 
Consider the linearized operator with T0-periodic coefficients given by

JL :=
[

0 1

−1 0

][
L+ 0

0 L−

]
=

[
0 L−

−L+ 0

]
, (5.5)

and acting on vectors in L2(R) × L2(R). We say that the periodic wave is spectrally stable if the 
Floquet–Bloch spectrum of JL is purely imaginary. Let λ ∈C belong to the Floquet–Bloch spec-
trum, so that JLψ = λψ for some nonzero eigenfunction ψ . We know that ψ(x) = eiγ xψ̃(x), 
where γ ∈ R and ψ̃ is T0-periodic. We want to show that λ ∈ iR.

Let K := diag[K+(2), K−(2)]. Then JLJKψ = JKJLψ = λJKψ , because the operators 
JL and JK commute due to the intertwining relations (5.4). As J is invertible, we thus have 
LJKψ = λKψ . If we now take the scalar product of both sides with the eigenfunction ψ in the 
space L2(0, T0) × L2(0, T0), we obtain

λ〈ψ,Kψ〉L2 = 〈ψ,LJKψ〉L2 = −〈JLψ,Kψ〉L2 = −λ̄〈ψ,Kψ〉L2,
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where we have used the fact that L is self-adjoint and J is skew-adjoint. If λ �= 0, then ψ is not 
a linear combination of the two neutral eigenfunctions (u′

0, 0) and (0, u0). In that case, we have 
〈ψ, Kψ〉L2 > 0 by Proposition 1.5, and the identity above shows that λ = −λ̄, that is, λ ∈ iR.

Remark 5.7. Spectral stability of the periodic wave is established in [4], where explicit expres-
sions for the Floquet–Bloch spectrum of the operator JL and the associated eigenfunctions are 
obtained using Jacobi elliptic functions. In our approach, once positivity of the operator K is 
known, the spectral stability of the periodic wave follows from the commutativity of the opera-
tors JL and JK and is established by a general argument that does not use the specific form of 
the eigenfunctions.

6. Proof of orbital stability of a periodic wave

This section is devoted to the proof of Theorem 1.8.
We fix E ∈ (0, 1) and consider the periodic wave profile u0 given by (1.7). Let T be a multiple 

of the period 2T0 of u0, so that T = 2NT0 for some integer N ≥ 1. If ψ0 ∈ H 2
per(0, T ) is close 

to u0 in the sense of the initial bound (1.14), we claim that the solution ψ ∈ C(R, H 2
per(0, T )) of 

the cubic NLS equation (1.1) with initial data ψ0 can be characterized as follows.
For any t ∈R, there exist modulation parameters ξ(t) ∈R and θ(t) ∈R/(2πZ) such that

eit+iθ(t)ψ
(
x + ξ(t), t

) = u0(x) + u(x, t) + iv(x, t), x ∈ R, (6.1)

where u(·, t), v(·, t) ∈ H 2
per(0, T ) are real-valued functions satisfying the orthogonality condi-

tions

〈
u′

0, u(·, t)〉
L2

per
= 0,

〈
u0, v(·, t)〉

L2
per

= 0, (6.2)

where 〈· ,·〉L2
per

denotes the usual scalar product in L2
per(0, T ). Note that the orthogonality condi-

tions (6.2) are not symplectic orthogonality conditions for the NLS equation, in contrast with the 
conditions that are often used to study the asymptotic stability of nonlinear waves [12].

To prove the decomposition (6.1), we proceed in two steps. We first show that the represen-
tation (6.1) holds whenever ψ(·, t) is sufficiently close to the orbit of u0 under translations and 
phase rotations.

Lemma 6.1. There exists constants ε0 ∈ (0, 1) and C0 ≥ 1 such that, for any ψ ∈ H 2
per(0, T )

satisfying

d := inf
ξ,θ∈R

∥∥eiθψ(· + ξ) − u0
∥∥

H 2
per

≤ ε0, (6.3)

one can find modulation parameters ξ ∈R and θ ∈ R/(2πZ) such that

eiθψ(x + ξ) = u0(x) + u(x) + iv(x), x ∈ R, (6.4)

where u, v ∈ H 2
per(0, T ) satisfy the orthogonality conditions (6.2) and d ≤ ‖u + iv‖H 2 ≤ C0d .
per
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Proof. We consider the smooth function f :R2 →R
2 defined by

f(ξ, θ) =
[ 〈u′

0(· − ξ),Re(eiθψ)〉L2
per

〈u0(· − ξ), Im(eiθψ)〉L2
per

]
.

We have f(ξ, θ) = 0 if and only if ψ can be represented as in the decomposition (6.4) with 
u, v satisfying the orthogonality conditions (6.2). Let (ξ0, θ0) ∈ R

2 denote the arguments of the 
infimum in (6.3) (note that one can restrict the values of (ξ, θ) to [0, T ] × [0, 2π ], so that the 
minimum exists). Then assumption (6.3) implies that ‖f(ξ0, θ0)‖ ≤ Cd , for some constant C
independent of ψ . On the other hand, the Jacobian matrix of the function f at the point (ξ0, θ0) is 
given by

Df(ξ0, θ0) =
[‖u′

0‖2
L2

per
0

0 ‖u0‖2
L2

per

]

+
[−〈u′′

0,Re(eiθ0ψ(· + ξ0) − u0)〉L2
per

−〈u′
0, Im(eiθ0ψ(· + ξ0) − u0)〉L2

per

−〈u′
0, Im(eiθ0ψ(· + ξ0) − u0)〉L2

per
〈u0,Re(eiθ0ψ(· + ξ0) − u0)〉L2

per

]
.

The first term in the right-hand side is a fixed invertible matrix and the second term is bounded 
in norm by Cd , hence Df(ξ0, θ0) is invertible if ε0 is small enough, with ‖(Df(ξ0, θ0))

−1‖ ≤ C

where C is a positive constant independent of ψ . Finally, it is straightforward to verify that the 
second order derivative of f is uniformly bounded if ε0 < 1. These observations together imply 
that there exists a unique pair (ξ, θ), in the O(d) neighborhood of the point (ξ0, θ0), such that 
f(ξ, θ) = 0. Thus, we have the decomposition (6.4) with these values of (ξ, θ), and

‖u + iv‖H 2
per

= ∥∥eiθψ(· + ξ) − u0
∥∥

H 2
per

= ∥∥ψ − e−iθu0(· − ξ)
∥∥

H 2
per

≤ ∥∥ψ − e−iθ0u0(· − ξ0)
∥∥

H 2
per

+ ∥∥e−iθ0u0(· − ξ0) − e−iθu0(· − ξ)
∥∥

H 2
per

≤ C0d,

where C0 ≥ 1 is independent of ψ . This concludes the proof. �
We next show that the solution ψ(·, t) of the cubic NLS equation (1.1) stays close to the orbit 

of u0 for all times. To show this, we use the conserved quantity Λc given by (1.11), where it 
is understood that the integration domain I = (0, T ) is used in the definitions of all functionals 
(1.3), (1.4), and (1.5). Because positivity of the second variation of Λc is only proved for c = 2
independently of the parameter E , see Proposition 1.5, we assume henceforth that c = 2.

Lemma 6.2. Assume that ψ is given by (6.4) for some (ξ, θ) ∈R
2 and some real-valued functions 

u, v ∈ H 2
per(0, T ) satisfying the orthogonality conditions (6.2). There exist positive constants 

C1, C2, and ε1 such that, if ‖u + iv‖H 2
per

≤ ε1, then

C1‖u + iv‖2
H 2

per
≤ Λc=2(ψ) − Λc=2(u0) ≤ C2‖u + iv‖2

H 2
per

. (6.5)
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Proof. We first note that the functional Λc is invariant under translations and phase rotations in 
H 2

per(0, T ), so that Λc(ψ) = Λc(u0 + u + iv) if ψ satisfies the representation (6.4). Therefore, 
recalling that u0 is a critical point of Λc and using the same notations as in Section 2, we find

Λc(ψ) − Λc(u0) = 〈
K+(c)u,u

〉
L2

per
+ 〈

K−(c)v, v
〉
L2

per
+ Nc(u, v), (6.6)

where Nc(u, v) collects all terms that are at least cubic in (u, v). In particular, there exists a 
constant C > 0 such that, if ‖u + iv‖H 2

per
≤ ε1, we have the estimate

∣∣Nc(u, v)
∣∣ ≤ C‖u + iv‖3

H 2
per

. (6.7)

The upper bound in (6.5) holds from the expressions (2.1) and (2.2) for the quadratic part, the 
estimate (6.7) for the cubic and quartic parts, and the decomposition (6.6).

To bound the expression (6.6) from below, we use the spectral properties of the operators 
K±(c) established in Sections 2, 4, and 5.

For periodic waves of small amplitude and for c in the interval (c−, c+), we know from 
Propositions 1.1 and 2.2 that the spectrum of K±(c) in L2(R) is the union of the nonnegative 
Floquet–Bloch spectral bands. If K±(c) are considered as operators in L2

per(0, T ) with T =
2NT0, the same result holds except that the Floquet parameter only takes discrete values. In view 
of the bounds (2.14), this discretization of the Floquet–Bloch spectral bands implies that both 
K+(c) and K−(c) have exactly one zero eigenvalue, and that the rest of the spectrum is positive 
and bounded away from zero. As was already observed, the kernels of K±(c) are due to the 
symmetries of the NLS equation, and we have the explicit formulas (2.6) for the eigenvectors. 
Thus, the orthogonality conditions (6.2) mean precisely that u is orthogonal in L2

per(0, T ) to the 
kernel of K+(c) and v to the kernel of K−(c).

Although the results of Propositions 1.1 and 2.2 hold for periodic waves of small amplitude 
where E is close to one, Proposition 1.5 implies that the same result holds for periodic waves of 
arbitrary amplitude independently of the parameter E ∈ (0, 1) in the case c = 2. It then follows 
that there is a positive constant C such that

〈
K+(2)u,u

〉
L2

per
≥ C‖u‖2

L2
per

and
〈
K−(2)v, v

〉
L2

per
≥ C‖v‖2

L2
per

.

Using in addition Gårding’s inequality for the elliptic operators K±(c) we conclude that

〈
K+(2)u,u

〉
L2

per
≥ C‖u‖2

H 2
per

,
〈
K−(2)v, v

〉
L2

per
≥ C‖v‖2

H 2
per

, (6.8)

with a possibly smaller constant C. The lower bound in (6.5) is a direct consequence of (6.6), 
(6.7), and (6.8). �

Without loss of generality, we assume from now on that C0ε0 ≤ ε1, where C0, ε0, and ε1 are 
as in the previous lemmas. It then follows from Lemmas 6.1 and 6.2 that, if ψ ∈ H 2

per(0, T ) is 
close to the orbit of u0 in the sense of the bound (6.3), then

C1d
2 ≤ Λc=2(ψ) − Λc=2(u0) ≤ C2C

2d2. (6.9)
0
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With this estimate at hand, it is now easy to prove that the decomposition (6.1) with the orthog-
onality conditions (6.2) holds for all t ∈ R if ψ(·, t) is the solution of the cubic NLS equation 
(1.1) with initial data ψ0 ∈ H 2

per(0, T ) satisfying the initial bound (1.14), where δ > 0 is small 
enough so that

C0(C2/C1)
1/2δ < ε0. (6.10)

Indeed, let d(t) be the distance in H 2
per(0, T ) from ψ(·, t) to the orbit of u0, in the sense of (6.3). 

Initially we have d(0) ≤ δ < ε0 by (1.14) and (6.10). Let J ⊂ R be the largest time interval 
containing the origin such that d(t) ≤ ε0 for all t ∈ J . As d(t) is a continuous function of time, 
it is clear that J is closed. On the other hand, for any t ∈ J , we have by (6.9)

C1d(t)2 ≤ Λc=2
(
ψ(·, t)) − Λc=2(u0) = Λc=2(ψ0) − Λc=2(u0) ≤ C2C

2
0δ2,

where we have used the crucial fact that Λc is conserved under the evolution defined by the 
cubic NLS equation (1.1) in H 2

per(0, T ). Thus d(t) ≤ C0(C2/C1)
1/2δ < ε0, hence by continuity 

the interval J contains a neighborhood of t . So J is open, hence finally J =R. This shows that 
the decomposition (6.1) holds for all t ∈R with real-valued functions u(·, t), v(·, t) ∈ H 2

per(0, T )

satisfying the orthogonality conditions (6.2) as well as the uniform bound

∥∥u(·, t) + iv(·, t)∥∥
H 2

per
≤ C0d(t) ≤ C2

0(C2/C1)
1/2δ, t ∈R.

This yields the bound (1.15) with ε = C2
0(C2/C1)

1/2δ. To conclude the proof of Theorem 1.8, it 
remains to show that the modulation parameters ξ and θ are continuously differentiable functions 
of time t and satisfy the bound (1.16).

Lemma 6.3. Assume that the solution ψ(·, t) of the cubic NLS equation (1.1) satisfies d(t) ≤
ε ≤ ε1 for all t ∈ R, where d(t) denotes as in (6.3) the distance to the orbit of u0. Then the 
modulation parameters ξ(t), θ(t) given by Lemma 6.1 are continuously differentiable functions 
of t satisfying (1.16).

Proof. As ψ ∈ C(R, H 2
per(0, T )), the proof of Lemma 6.1 shows that ξ(t) and θ(t) depend con-

tinuously on t . To prove differentiability, we first consider more regular solutions with initial data 
ψ0 ∈ H 4

per(0, T ), and then recover the general case by a density argument. For regular solutions, 
we can differentiate both sides of the decomposition (6.1) and use the cubic NLS equation (1.1)
to obtain the evolution system

{
ut = L−v + ξ̇

(
u′

0 + ux

) − θ̇v + (
2u0u + u2 + v2)v,

−vt = L+u − ξ̇ vx − θ̇ (u0 + u) + (
3u0u + u2 + v2)u + u0v

2,

where the operators L± are defined in (2.3). Using the orthogonality conditions (6.2), we elim-
inate the time derivatives ut , vt by taking the scalar product of the first line with u′

0 and of the 
second line with u0. This gives the following linear system for the derivatives ξ̇ and θ̇ :

B

[
ξ̇

θ̇

]
=

[ 〈u′
0,L−v〉L2

per

〈u0,L+u〉 2

]
+

[ 〈u′
0, (2u0u + u2 + v2)v〉L2

per

〈u , (3u u + u2 + v2)u + u v2〉 2

]
, (6.11)
Lper 0 0 0 Lper
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where

B =
[−‖u′

0‖2
L2

per
0

0 ‖u0‖2
L2

per

]
+

[−〈u′
0, ux〉L2

per
〈u′

0, v〉L2
per

〈u0, vx〉L2
per

〈u0, u〉L2
per

]
. (6.12)

Since ‖u(·, t) + iv(·, t)‖H 2
per

≤ C0d(t) ≤ C0ε for all t ∈ R, the second term in the right-hand 
side of (6.12) is of size O(ε), hence the matrix B is invertible if ε is small enough. Inverting B
in (6.11), we obtain a formula for the derivatives ξ̇ , θ̇ where the right-hand side is a continuous 
function of time under the mere assumption that ψ ∈ C(R, H 2

per(0, T )). By a classical density 
argument, we conclude that ξ , θ are differentiable in the general case, and that their derivatives 
are given by (6.11). Finally, the first term in the right-hand side of (6.11) is of size O(ε), whereas 
the second term is O(ε2), hence |ξ̇ (t)| + |θ̇ (t)| ≤ Cε for all t ∈ R, where the positive constant C
is independent of t . �
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Appendix A. Explicit expressions involving Jacobi elliptic functions

In this appendix, we derive explicit formulas the generalized eigenvectors of the linearized 
operators in (5.2) by using Jacobi elliptic functions. In particular, we show how to compute the 
explicit expression (3.4).

Fix E ∈ (0, 1) and let k ∈ (0, 1) be given by (1.13). The periodic wave profile u0 defined 
in (1.7) can be rewritten in the explicit form

u0(x) =
√

2k2

1 + k2
sn

(
x√

1 + k2
, k

)
=

√
2k2

1 + k2
j

(
x√

1 + k2

)
, x ∈ R,

where j (ξ) = sn(ξ, k) denotes the Jacobi elliptic function. To simplify the calculations below, it 
is convenient to use the space variable ξ = x/

√
1 + k2 instead of x.

Let us recall a few properties of the Jacobi elliptic functions sn(ξ, k), cn(ξ, k), and 
dn(ξ, k) [10]. The functions sn(ξ, k) and cn(ξ, k) are periodic with period T = 4K(k), where 
K(k) denotes the complete elliptic integral of the first kind. On the other hand, the function 
dn(ξ, k) = √

1 − k2 sn(ξ, k)2 is periodic with period 2K(k).
We have the following expressions for the first-order derivatives of the Jacobi elliptic func-

tions:

d

dξ

⎡
⎣ sn(ξ, k)

cn(ξ, k)

⎤
⎦ =

⎡
⎣ cn(ξ, k)dn(ξ, k),

− sn(ξ, k)dn(ξ, k),

2

⎤
⎦ (A.1)
dn(ξ, k) −k sn(ξ, k) cn(ξ, k).
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In particular, the function j (ξ) = sn(ξ, k) satisfies the differential equation

d2j

dξ2
= −(

1 + k2)j + 2k2j3. (A.2)

Let us also introduce the incomplete elliptic integral of the second kind

E(ξ, k) =
ξ∫

0

dn2(y, k)dy, ξ ∈R. (A.3)

This function is not periodic and we have the relation

E
(
ξ + 2K(k), k

) = E(ξ, k) + 2E(k) for all ξ ∈ R,

where E(k) := 1
2E(2K(k), k) is the complete elliptic integral of the second kind. This means 

that the function ξ → E(ξ, k) is linearly growing at infinity with asymptotic rate E(k)/K(k).
Using the chain rule for the operator L− = −∂2

x + u2
0(x) − 1, we obtain L− = (1 + k2)L−, 

where

L− = −∂2
ξ − (

1 + k2) + 2k2j (ξ)2.

Recall that L−j = 0. Using the relations (A.1)–(A.3), it is easy to verify that

L−
(
cn(ξ, k)dn(ξ, k)

) = −4k2 cn(ξ, k)dn(ξ, k) sn2(ξ, k),

L−
(
sn(ξ, k)E(ξ, k)

) = −2 cn(ξ, k)dn(ξ, k)
(
1 − 2k2 sn2(ξ, k)

)
,

L−
(
ξ sn(ξ, k)

) = −2 cn(ξ, k)dn(ξ, k).

Therefore, the function

V (ξ) := cn(ξ, k)dn(ξ, k) + sn(ξ, k)

[
E(ξ, k) − E(k)

K(k)
ξ

]
, (A.4)

is periodic with period T = 4K(k) and satisfies the inhomogeneous equation

L−V = −2

(
1 − E(k)

K(k)

)
cn(ξ, k)dn(ξ, k) = −2

(
1 − E(k)

K(k)

)
j ′. (A.5)

Note that the numerical coefficient in (A.5) is nonzero because K(k) > E(k) for all k ∈ (0, 1).
Using the chain rule for the operator M− = ∂4

x − 3∂xu
2
0∂x + u2

0 − 1, we obtain
M− = (1 + k2)2M−, where

M− = ∂4
ξ − 6k2∂ξ j (ξ)2∂ξ + 2k2(1 + k2)j (ξ)2 − (

1 + k2)2
.

A long but direct calculation using (A.1) shows that the same function V in (A.4) also satisfies

M−V = 4

[
k2 −

(
1 − E(k)

)(
1 + k2)]j ′. (A.6)
K(k)
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Recall that K−(c) = M− − cL−. Combining (A.5) and (A.6) and using the chain rule, we obtain

(
M− − c

(
1 + k2)L−

)
V =

[
4k2 + 2(c − 2)

(
1 + k2)(1 − E(k)

K(k)

)]
j ′. (A.7)

Note that j and V are orthogonal with respect to the scalar product 〈· ,·〉L2
per

in

L2
per(−2K(k), 2K(k)) because V is even and j is odd.

Remark A.1. The fact that both quantities L−V and M−V are proportional to the same func-
tion j ′ is not an accident. Associated with the neutral mode (u′

0, 0), we have L−v = u′
0 arising 

in the solutions of the linearized evolution operator at u0:

[
0 L−

−L+ 0

][
u′

0

0

]
=

[
0

0

]
and

[
0 L−

−L+ 0

][
0

v

]
=

[
u′

0

0

]
,

hence (0, v) is the generalized neutral mode. Now the higher-order operators M± are associated 
with the linearization of another flow in the hierarchy of the integrable NLS equation, which 
commutes with the original flow of (1.1), see Section 5. As is easily verified, this implies that 
the same function v satisfies M−v = Au′

0 for some constant A ∈R, in agreement with (A.5) and 
(A.6) after the scaling transformation from x to ξ .

We can now obtain the explicit expression (3.4) from the formula (3.1). Recall that z = �x

and U = u0(�
−1·). If W = w(�−1·) satisfies P−(c, 0)W = U ′, then

(
P−(c,0)W

)
(z) = (

1 + k2)−2(M− − c
(
1 + k2)L−

)
w(ξ), ξ = z

�
√

1 + k2
.

Using the chain rule, we rewrite the formula (3.1) in the equivalent form

μ′′(0) = 2�2

‖j‖2
L2

per

[−4(c − 2)2(1 + k2)〈j ′,
(
M− − c

(
1 + k2)L−

)−1
j ′〉

L2
per

+ 3
(
1 + k2)−1∥∥j ′∥∥2

L2
per

+ (3 − c)‖j‖2
L2

per

]
. (A.8)

It follows from (A.7) that

(
M− − c

(
1 + k2)L−

)−1
j ′ = V

4k2 + 2(c − 2)(1 + k2)(1 − E(k)
K(k)

)
. (A.9)

It remains to compute the norms and the scalar products in the right-hand side of Eq. (A.8). Using 
the notations above, we find for all k ∈ (0, 1),

‖j‖2
L2

per
= 4K(k)

k2

[
1 − E(k)

K(k)

]
> 0, (A.10)

∥∥j ′∥∥2
L2

per
= 4K(k)

2

[
k2 − 1 + (

k2 + 1
)E(k)

]
> 0, (A.11)
3k K(k)
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and

〈
j ′,V

〉
L2

per
= 2K(k)

k2

[
k2 − 1 + 2

E(k)

K(k)
− E(k)2

K(k)2

]
. (A.12)

Substituting these expressions into (A.8) and finding a common denominator for all terms, we 
obtain the expression (3.4).

Next, using the chain rule for the operator L+ = −∂2
x + 3u2

0(x) − 1, we obtain
L+ = (1 + k2)L+, where

L+ = −∂2
ξ − (

1 + k2) + 6k2j (ξ)2.

Recall that L+j ′ = 0. Using the relations (A.1)–(A.3), it is easy to verify that

L+
(
sn(ξ, k)

) = 4k2 sn3(ξ, k),

L+

(
cn(ξ, k)dn(ξ, k)

ξ∫
0

sn2(y, k)

dn2(y, k)
dy

)
= −2 sn(ξ, k)

(
1 − 2 sn2(ξ, k)

)
,

L+
(
ξ cn(ξ, k)dn(ξ, k)

) = 2 sn(ξ, k)
(
1 + k2 − 2k2 sn2(ξ, k)

)
.

Therefore, the function

U(ξ) := (
1 − k2)(1 + bk2) sn(ξ, k)

− k2(1 − k2) cn(ξ, k)dn(ξ, k)

[ ξ∫
0

sn2(y, k)

dn2(y, k)
dy − bξ

]
, (A.13)

satisfies the inhomogeneous equation

L+U = 2k2(1 − k2)(1 + b
(
1 + k2)) sn(ξ, k) = 2k2(1 − k2)(1 + b

(
1 + k2))j, (A.14)

for an arbitrary coefficient b ∈ R.
We shall find the value of b from the condition that U is periodic with period T = 4K(k). To 

do so, we recall the identity (see 16.26.6 in [1]):

(
1 − k2) ξ∫

0

dy

dn2(y, k)
= E(ξ, k) − k2 sn(ξ, k) cn(ξ, k)

dn(ξ, k)
.

Using this identity, we rewrite the function U given by (A.13) in the equivalent form

U(ξ) = (
1 − k2)(1 + bk2) sn(ξ, k) + k2 sn(ξ, k) cn2(ξ, k)

− cn(ξ, k)dn(ξ, k)
[
E(ξ, k) − (

1 − k2)(1 + bk2)ξ]
, (A.15)
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which is periodic if and only if (1 −k2)(1 +bk2) = E(k)
K(k)

. Substituting this expression into (A.15), 
we finally obtain the 4K(k)-periodic solution

U(ξ) = E(k)

K(k)
sn(ξ, k) + k2 sn(ξ, k) cn2(ξ, k)

− cn(ξ, k)dn(ξ, k)

[
E(ξ, k) − E(k)

K(k)
ξ

]
(A.16)

of the inhomogeneous equation

L+U = 2

(
k2 − 1 + (

1 + k2) E(k)

K(k)

)
j. (A.17)

Note that the numerical coefficient in (A.17) is nonzero for every k ∈ (0, 1), thanks to (A.11).
Using the chain rule for the operator M+ = ∂4

x − 5∂xu
2
0∂x − 5u4

0 + 15u2
0 − 4 + 3E2, we obtain 

M+ = (1 + k2)2M+, where

M+ = ∂4
ξ − 10k2∂ξ j (ξ)2∂ξ − 20k4j (ξ)4 + 30k2(1 + k2)j (ξ)2 − (

1 + 14k2 + k4).
After a long but direct calculation, we obtain that the same function U in (A.16) also satisfies

M+U = 4

[
2k4 − k2 − 1 + (

1 + 4k2 + k4) E(k)

K(k)

]
j. (A.18)

Combining (A.17) and (A.18) into K+(c) = M+ − cL+ for c = 2 and using the chain rule, we 
obtain

(
M+ − 2

(
1 + k2)L+

)
U = 4k2

[
k2 − 1 + 2E(k)

K(k)

]
j. (A.19)

Since 2 > 1 + k2, the numerical coefficient in front of j is positive for all k ∈ (0, 1), thanks to 
(A.11).

Remark A.2. Again, we observe that both quantities L+U and M+U are proportional to the 
same function j . This is due to the generalized neutral mode (u, 0) associated with the neutral 
mode (0, u0), which arise in the solution of L+u = u0. See also Remark A.1.
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