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Abstract

Combining the usual energy functional with a higher-order conserved quantity originating from integra-
bility theory, we show that the black soliton is a local minimizer of a quantity that is conserved along the 
flow of the cubic defocusing NLS equation in one space dimension. This unconstrained variational charac-
terization gives an elementary proof of the orbital stability of the black soliton with respect to perturbations 
in H 2(R).
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this work we show how the techniques developed in the companion paper [5] to inves-
tigate the stability properties of the cnoidal periodic waves of the cubic defocusing nonlinear 
Schrödinger equation in one space dimension can be extended to provide a new and rather ele-
mentary proof of orbital stability in the limiting case of the black soliton. We thus consider the 
cubic defocusing NLS equation

iψt (x, t) + ψxx(x, t) − ∣∣ψ(x, t)
∣∣2

ψ(x, t) = 0, (1.1)

* Corresponding author.
E-mail address: dmpeli@math.mcmaster.ca (D. Pelinovsky).
http://dx.doi.org/10.1016/j.jde.2015.01.019
0022-0396/© 2015 Elsevier Inc. All rights reserved.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.jde.2015.01.019
http://www.elsevier.com/locate/jde
mailto:dmpeli@math.mcmaster.ca
http://dx.doi.org/10.1016/j.jde.2015.01.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2015.01.019&domain=pdf


3640 T. Gallay, D. Pelinovsky / J. Differential Equations 258 (2015) 3639–3660
where ψ is a complex-valued function of (x, t) ∈ R × R. The black soliton is the particular 
solution of (1.1) given by ψ(x, t) = e−it u0(x), where

u0(x) = tanh

(
x√
2

)
, x ∈ R. (1.2)

For the later use, we note that the soliton profile u0 :R → R satisfies the differential equations

u′
0 = 1√

2

(
1 − u2

0

)
, hence u′′

0 + u0 − u3
0 = 0. (1.3)

The NLS equation (1.1) has many symmetries and conserved quantities, which play a cru-
cial role in the dynamics of the system. In particular, the gauge invariance ψ �→ eiθψ and the 
translation invariance ψ �→ ψ(· − ξ) give rise to the conservation of the charge Q and the mo-
mentum M , respectively, where

Q(ψ) =
∫
R

(|ψ |2 − 1
)

dx, M(ψ) = i

2

∫
R

(ψ̄ψx − ψψ̄x)dx. (1.4)

Since the NLS equation (1.1) is an autonomous Hamiltonian system, we also have the conserva-
tion of the energy

E(ψ) =
∫
R

(
|ψx |2 + 1

2

(
1 − |ψ |2)2

)
dx. (1.5)

In what follows, our goal is to study the stability of the black soliton (1.2), and we shall therefore 
restrict ourselves to solutions of (1.1) for which |ψ | → 1 as |x| → ∞. This is why we defined 
the conserved quantities (1.4), (1.5) in such a way that the integrands vanish when |ψ | = 1 and 
ψx = 0.

The nonlinear stability of the black soliton (1.2) has been studied in several recent works. In 
[1] the authors apply the variational method of Cazenave and Lions [3], which relies on the fact 
that the black soliton (1.2) is a global minimizer of the energy E for a fixed value of the momen-
tum M . The difficulty with this approach is that the momentum is not defined for all finite-energy 
solutions, so that the integral defining M in (1.4) has to be renormalized and properly interpreted. 
A slightly different proof was subsequently given in [8], in the spirit of the work by Weinstein 
[12] and Grillakis, Shatah, and Strauss [9]. The main idea is to show that the energy functional 
(1.5) becomes coercive in a neighborhood of the black soliton (1.2) if the conservation of the 
momentum is used to get rid of one unstable direction. Both results in [1,8] are variational in 
nature and establish orbital stability of the black soliton in the energy space. Note that asymp-
totic stability of the black soliton is also proved in [8], using ideas and techniques developed by 
Martel and Merle for the generalized Korteweg–de Vries equation [10]. In a different direction, 
a more precise orbital stability result was obtained in [7] for sufficiently smooth and localized 
perturbations, using the inverse scattering transform method which relies on the integrability of 
the cubic defocusing NLS equation (1.1). Similarly, asymptotic stability of the black soliton and 
several dark solitons was recently proved in [4].
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As consequence of integrability, the NLS equation (1.1) has many conserved quantities in 
addition to the charge, the momentum, and the energy. In the present work, we introduce a new 
variational approach based on the higher-order functional

S(ψ) =
∫
R

[
|ψxx |2 + 3|ψ |2|ψx |2 + 1

2
(ψ̄ψx + ψψ̄x)

2 + (
1 − |ψ |2)2

(
1 + 1

2
|ψ |2

)]
dx, (1.6)

which is also conserved under the evolution defined by (1.1). The latter claim can be proved by a 
straightforward but cumbersome calculation, or by more educated techniques as described, e.g., 
in [11, Section 2.3]. The natural domain of definition for the functional (1.6) is the H 2 energy 
space defined by

X = {
ψ ∈ H 2

loc(R) : ψx ∈ H 1(R), 1 − |ψ |2 ∈ L2(R)
}
. (1.7)

Indeed, if ψ ∈ X, then ζ := 1 − |ψ | belongs to H 1(R), because |ζ | ≤ |1 − |ψ |2| ∈ L2(R) and 
ζx = −|ψ |x ∈ L2(R). By Sobolev’s embedding of H 1(R) into L∞(R), we thus have |ψ | =
1 − ζ ∈ L∞(R), and from the definitions (1.6) and (1.7) it follows easily that S(ψ) < ∞. Since 
u′

0, u′′
0, and 1 − u2

0 decay exponentially to zero as |x| → ∞, it is clear that u0 + H 2(R) ⊂ X, so 
that the functional (1.6) is well defined for H 2 perturbations of the soliton profile u0. This allows 
us to define the differential of S at u0, and a direct calculation using the differential equations 
(1.3) reveals that u0 is a critical point of S, in the sense that S′(u0) = 0.

Unfortunately, the second variation S′′(u0) has no definite sign [5], hence it is not possible 
to prove orbital stability of the black soliton using the functional S alone. As is explained in the 
companion paper [5], which is devoted to the stability of periodic waves for the NLS equation 
(1.1), it is possible to cure that problem by subtracting from S an appropriate multiple of the 
energy E, which is well defined on X and also satisfies E′(u0) = 0. The optimal choice is

Λ(ψ) = S(ψ) − 2E(ψ), ψ ∈ X. (1.8)

We then have Λ′(u0) = 0, and the starting point of our approach is the following result, which 
asserts that the second variation Λ′′(u0) is nonnegative.

Proposition 1.1. The second variation of the functional (1.8) at the black soliton (1.2) is nonneg-
ative for perturbations in H 2(R).

It is important to realize that Proposition 1.1 gives an unconstrained variational character-
ization of the black soliton u0, which is our main motivation for introducing the higher-order 
conserved quantity (1.6). In contrast, the approach in [1,8] relies on the fact that u0 is a min-
imum of the energy E(ψ) subject to the constraint M(ψ) = M(u0), where M is a suitably 
renormalized version of the momentum M defined in (1.4).

The proof of Proposition 1.1 developed in Section 2 actually shows that the second variation 
Λ′′(u0) is positive except for degeneracies due to symmetries: the nonnegative self-adjoint oper-
ator associated with Λ′′(u0) has a simple zero eigenvalue which is due to translation invariance, 
and the essential spectrum extends all the way to the origin due to gauge invariance. As a conse-
quence, perturbations in H 2(R) can include slow modulations of the phase of the black soliton 
far away from the origin, which hardly increase the functional Λ. This means that the second 
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variation Λ′′(u0) is not coercive in H 2(R), even if modulation parameters are used to remove 
the zero modes due to the symmetries. For that reason, we are not able to control the perturba-
tions of the black soliton in the topology of H 2(R), but only in a weaker sense that allows for a 
slow drift of the phase at infinity, see Section 3 below for a more detailed discussion.

To formulate our main result, we equip the space X with the distance

dR(ψ1,ψ2) = ∥∥(ψ1 − ψ2)x
∥∥

H 1(R)
+ ∥∥|ψ1|2 − |ψ2|2

∥∥
L2(R)

+ ‖ψ1 − ψ2‖L2(−R,R), (1.9)

where R ≥ 1 is a parameter. Note that dR is the exact analogue, at the H 2 level, of the distance 
that is used in previous variational studies of the black soliton, including [1,6,8]. As is easily 
verified, a function ψ ∈ H 2

loc(R) belongs to X if and only if dR(ψ, u0) < ∞; moreover, different 
choices of R give equivalent distances on X. To prove orbital stability of the black soliton with 
profile u0, the idea is to consider solutions ψ of the NLS equation (1.1) for which dR(ψ, u0)

is small. This is certainly the case if ‖ψ − u0‖H 2 is small, but the converse is not true because 
dR(ψ, u0) does not control the L2 norm of the difference ψ −u0 on the whole real line. We shall 
prove in Section 4 that the distance dR is well adapted to the functional Λ near u0, in the sense 
that

Λ(ψ) − Λ(u0) ≥ CdR(ψ,u0)
2 when dR(ψ,u0)  1, (1.10)

provided the perturbation ψ −u0 satisfies a pair of orthogonality conditions. As is usual in orbital 
stability theory, these orthogonality conditions can be fulfilled if we replace ψ by eiθψ(· + ξ) for 
some appropriate modulation parameters θ, ξ ∈ R, see Section 3 below. It is then easy to deduce 
from (1.10) that solutions of the NLS equation (1.1) with initial data ψ satisfying dR(ψ0, u0)  1
will stay close for all times to the orbit of the black soliton under the group of translations and 
phase rotations. The precise statement is:

Theorem 1.2. Fix R ≥ 1 and let u0 ∈ X be the black soliton (1.2). Given any ε > 0, there exists 
δ > 0 such that, for any ψ0 ∈ X satisfying

dR(ψ0, u0) ≤ δ, (1.11)

the global solution ψ(·, t) of the NLS equation (1.1) with initial data u0 has the following prop-
erty. For any t ∈R, there exist ξ(t) ∈R and θ(t) ∈R/(2πZ) such that

dR

(
ei(t+θ(t))ψ

(· + ξ(t), t
)
, u0

) ≤ ε. (1.12)

Moreover ξ and θ are continuously differentiable functions of t which satisfy

∣∣ξ̇ (t)
∣∣ + ∣∣θ̇ (t)

∣∣ ≤ Cε, t ∈R, (1.13)

for some positive constant C.

Remark 1.3. It is known from the work of Zhidkov [13] that the Cauchy problem for the NLS 
equation (1.1) is globally well-posed in X. This is the functional framework that is used to define 
solutions of (1.1) in Theorem 1.2.



T. Gallay, D. Pelinovsky / J. Differential Equations 258 (2015) 3639–3660 3643
Remark 1.4. Except for the use of a different distance dR , which controls the perturbations in the 
topology of H 2

loc(R), Theorem 1.2 is the exact analogue of the orbital stability results obtained 
in [1,8]. However the proof is quite different, and in some sense simpler, because the profile u0

of the black soliton is an unconstrained local minimizer of the higher-order functional Λ.

Remark 1.5. It is also possible to prove asymptotic stability results for the black soliton of 
the cubic NLS equation (1.1). In that perspective, it is useful to consider the black soliton as a 
member of the one-parameter family of traveling dark solitons, given by the exact expression

eitψν(x + νt, t) =
√

1 − 1

2
ν2 tanh

(√
1

2
− 1

4
ν2x

)
+ iν√

2
, (1.14)

where ν ∈ (−√
2, 

√
2). Asymptotic stability of the family of dark solitons with nonzero speed 

ν was proved in [2], using the Madelung transformation and the hydrodynamic formulation of 
the NLS equation. This approach applies to solutions whose modulus is strictly positive, and 
therefore excludes the case of the black soliton. Very recently, the asymptotic stability of the 
black soliton (within the one-parameter family of all dark solitons) has been established in [4,8].

The rest of this article is organized as follows. In Section 2 we establish positivity and co-
ercivity properties for the quadratic form associated with the second variation of the functional 
(1.8) at u0. In Section 3, we introduce modulation parameters in a neighborhood of the soliton 
profile to eliminate the zero modes of the second variation Λ′′(u0). Combining these results and 
using a new variable borrowed from [8], we prove in Section 4 the orbital stability of the black 
soliton (1.3) in the space X.

2. Positivity and coercivity of the second variation

Let u0 be the soliton profile (1.2) and Λ = S − 2E be the functional defined by (1.5), (1.6), 
and (1.8). In this section, we prove that the second variation Λ′′(u0) is nonnegative, as stated 
in Proposition 1.1, and we deduce some coercivity properties that will be used in the proof of 
Theorem 1.2. We consider perturbations of u0 of the form ψ = u0 +u + iv, where u, v ∈ H 2(R)

are real-valued. As in [5], the second variations at u0 of the functionals E and S satisfy

1

2

〈
E′′(u0)[u,v], [u,v]〉 = 〈L+u,u〉L2 + 〈L−v, v〉L2 ,

1

2

〈
S′′(u0)[u,v], [u,v]〉 = 〈M+u,u〉L2 + 〈M−v, v〉L2 ,

where 〈·,·〉L2 denotes the usual scalar product in L2(R). The self-adjoint operators L± and M±
have the following expressions:

L+ = −∂2
x + 3u2

0 − 1, M+ = ∂4
x − 5∂xu

2
0∂x − 5u4

0 + 15u2
0 − 4,

L− = −∂2 + u2 − 1, M− = ∂4 − 3∂xu
2∂x + u2 − 1. (2.1)
x 0 x 0 0
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In view of (1.8), it follows that

1

2

〈
Λ′′(u0)[u,v], [u,v]〉 = 〈K+u,u〉L2 + 〈K−v, v〉L2 , (2.2)

where K± = M± − 2L±. More explicitly, the quadratic forms associated with K± are given by

〈K+u,u〉L2 =
∫
R

(
u2

xx + (
5u2

0 − 2
)
u2

x + (
9u2

0 − 5u4
0 − 2

)
u2)dx, (2.3)

〈K−v, v〉L2 =
∫
R

(
v2
xx + (

3u2
0 − 2

)
v2
x + (

1 − u2
0

)
v2)dx. (2.4)

Our first task is to show that the quadratic forms (2.3), (2.4) are nonnegative on H 2(R). Due 
to translation invariance of the NLS equation (1.1), we have L+u′

0 = M+u′
0 = 0, hence also 

K+u′
0 = 0. As u′

0 ∈ H 2(R), this shows that the quadratic form associated with K+ has a neutral 
direction, hence is not strictly positive, see Lemma 2.1 below. The situation is slightly different 
for K−: due to gauge invariance, we have L−u0 = M−u0 = 0, hence K−u0 = 0, but of course 
u0 /∈ H 2(R). In fact, the result of Lemma 2.3 below shows that the quadratic form associated 
with K− is strictly positive on H 2(R).

We first prove that the quadratic form (2.3) is nonnegative, see also [5, Corollary 4.5].

Lemma 2.1. For any u ∈ H 2(R), we have

〈K+u,u〉L2 = ‖wx‖2
L2 + ‖w‖2

L2 ≥ 0, (2.5)

where w = ux + √
2u0u.

Proof. Integrating by parts and using the differential equations (1.3) satisfied by u0, we easily 
obtain

∫
R

w2 dx =
∫
R

(
u2

x + 2
√

2u0uux + 2u2
0u

2)dx =
∫
R

(
u2

x + (
3u2

0 − 1
)
u2)dx. (2.6)

Similarly, as wx = uxx + √
2u0ux + √

2u′
0u, we find

∫
R

w2
x dx =

∫
R

(
u2

xx + 2
√

2u0uxuxx + 2u2
0u

2
x + 2

√
2u′

0uuxx + 4u0u
′
0uux + 2u′ 2

0 u2)dx

=
∫
R

(
u2

xx + (
5u2

0 − 3
)
u2

x + 8u0u
′
0uux + 2u′ 2

0 u2)dx

=
∫ (

u2
xx + (

5u2
0 − 3

)
u2

x + (
1 − u2

0

)(
5u2

0 − 1
)
u2)dx, (2.7)
R
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because 2u′ 2
0 − 4(u0u

′
0)

′ = (1 − u2
0)(5u2

0 − 1). If we now combine (2.6) and (2.7), we see that 
‖wx‖2

L2 + ‖w‖2
L2 is equal to the right-hand side of (2.3), which is the desired conclusion. �

Remark 2.2. The right-hand side of (2.5) vanishes if and only if w = 0, which is equivalent to 
u = Cu′

0 for some constant C. Thus zero is a simple eigenvalue of K+ in L2(R). Moreover, 
since u0(x) → ±1 as x → ±∞, it is clear from (2.3) that the essential spectrum of K+ is the 
interval [2, ∞). Thus if we restrict ourselves to the orthogonal complement of u′

0 with respect 
to the scalar product 〈·, ·〉L2 , the spectrum of K+ is bounded from below by a strictly positive 
constant, and the corresponding quadratic form is thus coercive in the topology of H 2(R), see 
Remark 2.7 below.

We next prove the positivity of the quadratic form (2.4), see also [5, Lemma 4.1].

Lemma 2.3. For any v ∈ H 2(R), we have

〈K−v, v〉L2 = ‖L−v‖2
L2 + ∥∥u0vx − u′

0v
∥∥2

L2 ≥ 0, (2.8)

where L− = −∂2
x + u2

0 − 1.

Proof. Integrating by parts we obtain∫
R

(L−v)2 dx =
∫
R

(
v2
xx + 2

(
1 − u2

0

)
vvxx + (

1 − u2
0

)2
v2)dx

=
∫
R

(
v2
xx + 2

(
u2

0 − 1
)
v2
x − 2

(
u0u

′
0

)′
v2 + (

1 − u2
0

)2
v2)dx.

Similarly, we have∫
R

(
u0vx − u′

0v
)2 dx =

∫
R

(
u2

0v
2
x + (

u0u
′
0

)′
v2 + u′ 2

0 v2)dx.

It follows that

‖L−v‖2
L2 + ∥∥u0vx − u′

0v
∥∥2

L2 =
∫
R

(
v2
xx + (

3u2
0 − 2

)
v2
x + [(

1 − u2
0

)2 − u0u
′′
0

]
v2)dx,

and that expression coincides with the right-hand side of (2.4) since (1 − u2
0)

2 − u0u
′′
0 = 1 − u2

0
by (1.3). This proves (2.8). �
Remark 2.4. The right-hand side of (2.8) vanishes if and only if L−v = 0 and u0vx − u′

0v = 0, 
namely if v = Cu0 for some constant C. As u0 /∈ H 2(R), this shows that 〈K−v, v〉L2 > 0 for 
any nonzero v ∈ H 2(R). However, since |u0(x)| → 1 as |x| → ∞, it is clear from the represen-
tation (2.4) that zero belongs to the essential spectrum of the operator K−, hence the associated 
quadratic form is not coercive in the topology of H 2(R). Some weaker coercivity property will 
nevertheless be established below, see Remark 2.9.
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Remark 2.5. In view of the decomposition (2.2), Proposition 1.1 is an immediate consequence 
of Lemmas 2.1 and 2.3.

In the rest of this section, we show that the quadratic forms (2.3), (2.4) are not only positive, 
but also coercive in some appropriate sense.

Lemma 2.6. Let u0 be the black soliton (1.2). There exists a positive constant C such that, for 
any u ∈ H 2(R) satisfying 〈u′

0, u〉L2 = 0, we have the estimate

‖u‖H 2 ≤ C‖w‖H 1, (2.9)

where w = ux + √
2u0u.

Proof. Solving the linear differential equation ux + √
2u0u = w by Duhamel’s formula, we find 

u = Au′
0 + W for some A ∈R, where

W(x) =
x∫

0

K(x,y)w(y)dy, K(x, y) = cosh2(y/
√

2)

cosh2(x/
√

2)
. (2.10)

The constant A is uniquely determined by the orthogonality condition 〈u′
0, u〉L2 = 0, which im-

plies that A‖u′
0‖2

L2 + 〈u′
0, W 〉L2 = 0. Using (2.10), we easily obtain

〈
u′

0,W
〉
L2 =

∞∫
−∞

{ x∫
0

K(x,y)w(y)dy

}
u′

0(x)dx

=
∞∫

0

{ ∞∫
y

K(x, y)u′
0(x)dx

}(
w(y) − w(−y)

)
dy

= 1

3

∞∫
0

e−√
2y 3 + e−√

2y

1 + e−√
2y

(
w(y) − w(−y)

)
dy, (2.11)

hence |〈u′
0, W 〉L2 | ≤ 2−1/4‖w‖L2 . It follows that |A| ≤ C‖w‖L2 for some C > 0.

On the other hand, if we introduce the operator notation W = K̂(w) for the representation 
(2.10), we note that K̂ is a bounded operator from L∞(R) to L∞(R) with norm

K∞ = sup
x∈R

|x|∫
0

K(x,y)dy = 1√
2

sup
x∈R

1 + 2
√

2|x|e−√
2|x| − e−2

√
2|x|

1 + 2e−√
2|x| + e−2

√
2|x| < ∞,

as well as a bounded operator from L1(R) to L1(R) with norm

K1 = sup
y∈R

∞∫
K(x,y)dx = 1√

2
sup
y∈R

(
1 + e−√

2|y|) = √
2.
|y|
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By the Riesz–Thorin interpolation theorem, it follows that K̂ is a bounded operator from L2(R)

to L2(R), and we have the estimate ‖W‖L2 = ‖K̂(w)‖L2 ≤ (K1K∞)1/2‖w‖L2 .
Summarizing, we have shown that ‖u‖L2 ≤ |A|‖u′

0‖L2 + ‖W‖L2 ≤ C‖w‖L2 for some C > 0. 
Since w = ux + √

2u0u, we also have ‖ux‖L2 ≤ ‖w‖L2 + √
2‖u‖L2 and (after differentiating) 

‖uxx‖L2 ≤ ‖wx‖L2 + √
2‖ux‖L2 + ‖u‖L2 . This proves the bound (2.9). �

Remark 2.7. Combining (2.5) and (2.9), we conclude that there exists a constant C+ > 0 such 
that

〈K+u,u〉L2 ≥ C+‖u‖2
H 2, (2.12)

for all u ∈ H 2(R) satisfying 〈u′
0, u〉L2 = 0.

Lemma 2.8. Let u0 be the black soliton (1.2). There exists a positive constant C such that, for 
any v ∈ H 2

loc(R) satisfying vx ∈ H 1(R) and 〈u′′
0, v〉L2 = 0, we have the estimate

‖vxx‖L2 + ‖vx‖L2 + ∣∣v(0)
∣∣ ≤ C

(‖p‖L2 + ‖q‖L2

)
, (2.13)

where p = u0vx − u′
0v and q = −L−v = vxx + (1 − u2

0)v.

Proof. Any solution of the linear differential equation u0vx −u′
0v = p has the form v = Bu0 +Z

for some B ∈R, where

Z(x) = u0(x)

x∫
0

(
p(y) + √

2q(y)
)

dy − √
2p(x). (2.14)

Indeed, we observe that px = u0vxx −u′′
0v = u0(vxx + (1 −u2

0)v) = u0q . Thus, if v = Bu0 +Z, 
we have

vx(x) = u′
0(x)

(
B +

x∫
0

(
p(y) + √

2q(y)
)

dy

)
+ u0(x)p(x), (2.15)

hence u0vx − u′
0v = (u2

0 + √
2u′

0)p = p. The constant B is uniquely determined by the orthog-
onality condition 〈u′′

0, v〉L2 = 0, which implies that B‖u′
0‖2

L2 = 〈u′′
0, Z〉.

Since p ∈ L2(R) and px = u0q ∈ L2(R), we have p ∈ L∞(R) by Sobolev’s embed-
ding, which implies the bound ‖p‖2

L∞ ≤ ‖p‖L2‖px‖L2 ≤ ‖p‖L2‖q‖L2 . Thus, using (2.14) and 
Hölder’s inequality, we deduce that

∣∣Z(x)
∣∣ ≤ √

2
(|x|1/2 + 1

)(‖p‖L2 + ‖q‖L2

)
, x ∈ R.

This moderate growth of Z is compensated for by the exponential decay of u′′
0 to zero at infinity, 

and we obtain |〈u′′
0, Z〉| ≤ C(‖p‖L2 + ‖q‖L2) for some C > 0, hence also |B| ≤ C(‖p‖L2 +

‖q‖L2). In the same way, it follows from (2.15) that ‖vx‖L2 ≤ C(‖p‖L2 + ‖q‖L2). A similar 
estimate holds for ‖vxx‖L2 because vxx = q − (1 −u2)v and 1 −u2 has the exponential decay to 
0 0
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zero at infinity. Finally, since v(0) = −√
2p(0), we also have |v(0)| ≤ C(‖p‖L2 + ‖q‖L2). This 

proves the bound (2.13). �
Remark 2.9. Combining (2.8) and (2.13), we conclude that there exists a constant C− > 0 such 
that

〈K−v, v〉L2 ≥ C−
(‖vx‖2

H 1 + ∣∣v(0)
∣∣2)

, (2.16)

for all v ∈ H 2
loc(R) satisfying vx ∈ H 1(R) and 〈u′′

0, v〉L2 = 0. As is clear from the proof of 
Lemma 2.8, we need some orthogonality condition on v to prove estimate (2.16), and since 
u0 /∈ L2(R) we cannot impose 〈u0, v〉L2 = 0. Thus we use u′′

0 = u0(u
2
0 − 1) instead of u0. Al-

though u′′
0 is only an approximate eigenfunction of K−, the orthogonality condition 〈u′′

0, v〉L2 = 0
is good enough for our purposes, as we shall see in Section 3.

3. Modulation parameters near the black soliton

This section contains some important preliminary steps in the proof of Theorem 1.2. To es-
tablish the orbital stability of the black soliton with profile u0, our general strategy is to consider 
solutions ψ(x, t) of the cubic NLS equation (1.1) of the form

ei(t+θ(t))ψ
(
x + ξ(t), t

) = u0(x) + u(x, t) + iv(x, t), (x, t) ∈R×R, (3.1)

where the perturbations u, v are real-valued and satisfy the orthogonality conditions

〈
u′

0, u(·, t)〉
L2 = 0,

〈
u′′

0, v(·, t)〉
L2 = 0, t ∈R. (3.2)

As was discussed in Remarks 2.7 and 2.9, these conditions are needed to exploit the coercivity 
properties of the second variation Λ′′(u0), where Λ is the conserved quantity (1.8). They also 
allow us to determine uniquely the “modulation parameters”, namely the translation ξ(t) and the 
phase θ(t), at least for solutions ψ(x, t) in a small neighborhood of the black soliton. To make 
these considerations rigorous, we first need to specify in which topology that neighborhood is 
understood; in other words, we need to choose an appropriate perturbation space. Next we have 
to verify that the modulation parameters exist and depend smoothly on the solution ψ(x, t) in 
the vicinity of the black soliton.

Concerning the first point, we observe that the functional (1.8) which serves as a basis for our 
analysis is invariant under translations and gauge transformations, and we recall that Λ′(u0) = 0. 
Thus, if ψ(x, t) is a solution of the NLS equation (1.1) of the form (3.1) with u, v ∈ H 2(R), we 
have for each fixed t ∈R the following expansion

Λ(ψ) − Λ(u0) = 〈K+u,u〉L2 + 〈K−v, v〉L2 + N(u,v), (3.3)

where N(u, v) collects all terms that are at least cubic in u and v. However, unlike in the periodic 
case considered in the companion paper [5], the decomposition (3.3) is not sufficient to prove the 
orbital stability of the black soliton. Indeed, the quadratic terms in (3.3) are nonnegative, but 
they are degenerate in the sense that they do not control the L2(R) norm of v, as can be seen 
from the lower bound (2.16). This is due to the fact that the operator K− has essential spectrum 
touching the origin, with generalized eigenfunctions corresponding to slow modulations of the 
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phase of the black soliton. As is clear from the proof of Lemma 2.8, one cannot even prove that 
v ∈ L∞(R) if we only know that 〈K−v, v〉L2 < ∞. This in turn makes it impossible to control 
the nonlinearity N(u, v) in (3.3) in terms of the quadratic part 〈K+u, u〉L2 + 〈K−v, v〉L2 .

There are good reasons to believe that the above problem is not just a technical one, and that 
the H 2 topology for the perturbations u, v is not appropriate to prove orbital stability of the black 
soliton. Indeed, as is well known, the cubic NLS equation (1.1) has a family of travelling dark 
solitons ψν(x, t) given by (1.14). Rigorous results [8] and numerical simulations indicate that a 
small, localized perturbation of the black soliton ψ0 can lead to the formation of a dark soliton 
ψν with a small nonzero speed ν. If this happens, the functions u, v defined in (3.1) cannot stay 
bounded in L2(R) for all times, because ψν − ψ0 /∈ L2(R) if ν �= 0. Note, however, that the 
quantity |ψν | − |ψ0| does belong to L2(R) and decays exponentially at infinity. This suggests 
that a particular combination of u, v may be controlled in L2(R) for all times.

Following [8], we introduce the auxiliary variable

η = |u0 + u + iv|2 − |u0|2 = 2u0u + u2 + v2, (3.4)

which allows us to control the perturbations of the modulus of the black soliton u0. The idea is 
now to consider perturbations u, v for which ux, vx ∈ H 1(R), η ∈ L2(R), and u, v ∈ L2(−R, R)

for some fixed R ≥ 1. If ψ = u0 + u + iv, this is equivalent to requiring that ψ ∈ X, where X is 
the function space (1.7), or that dR(ψ, u0) < ∞, where dR is the distance (1.9). Indeed, we have 
by definition

dR(ψ,u0) = ‖ux + ivx‖H 1(R) + ‖η‖L2(R) + ‖u + iv‖L2(−R,R). (3.5)

Note, however, that we do not assume any longer that u, v are square integrable at infinity. In 
particular, the perturbed solutions we consider include dark solitons ψν with nonzero speed ν.

Now that we have defined a precise perturbation space, we can state our first result showing 
the existence and the continuity of the modulation parameters ξ and θ in a neighborhood of the 
orbit of the soliton profile u0. The following statement is very close in spirit to Proposition 2 
in [8] or Lemma 6.1 in [5].

Lemma 3.1. Fix any R ≥ 1. There exists ε0 > 0 such that, for any ψ ∈ X satisfying

inf
ξ,θ∈RdR

(
eiθψ(· + ξ), u0

) ≤ ε0, (3.6)

there exist ξ ∈R and θ ∈ R/(2πZ) such that

eiθψ(x + ξ) = u0(x) + u(x) + iv(x), x ∈ R, (3.7)

where the real-valued functions u and v satisfy the orthogonality conditions (3.2). Moreover, 
the modulation parameters ξ ∈ R and θ ∈ R/(2πZ) depend continuously on ψ in the topology 
defined by the distance (1.9).

Proof. It is sufficient to prove (3.7) for all ψ ∈ X such that ε := dR(ψ, u0) is sufficiently small. 
Given such a ψ ∈ X, we consider the smooth function f :R2 → R

2 defined by
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f(ξ, θ) =
( 〈u′

0(· − ξ),Re(eiθψ)〉L2

〈u′′
0(· − ξ), Im(eiθψ)〉L2

)
, (ξ, θ) ∈R

2.

By construction, we have f(ξ, θ) = 0 if and only if ψ can be represented as in (3.7) for some 
real-valued functions u, v satisfying the orthogonality conditions (3.2).

If we decompose ψ = u0 + u + iv where u, v are real-valued, we have 〈u′
0, Re(ψ)〉L2 =

〈u′
0, u〉L2 because 〈u′

0, u0〉L2 = 0. As in the proof of Lemma 2.8, we observe that

∣∣u(x)
∣∣ ≤ C

(‖u‖L2(−1,1) + (
1 + |x|1/2)‖ux‖L2(R)

) ≤ C
(
1 + |x|1/2)dR(ψ,u0),

where in the last inequality we have used (3.5). Thus |〈u′
0, Re(ψ)〉L2 | ≤ CdR(ψ, u0), and a sim-

ilar argument gives |〈u′′
0, Im(ψ)〉L2 | ≤ CdR(ψ, u0). This shows that ‖f(0, 0)‖ ≤ Cε for some 

positive constant C independent of ε.
On the other hand, the Jacobian matrix of the function f at the origin (0, 0) is given by

Df(0,0) =
(‖u′

0‖2
L2 0

0 −‖u′
0‖2

L2

)
+

( −〈u′′
0,Re(ψ − u0)〉L2 −〈u′

0, Im(ψ − u0)〉L2

−〈u′′′
0 , Im(ψ − u0)〉L2 〈u′′

0,Re(ψ − u0)〉L2

)
.

The first term in the right-hand side is a fixed invertible matrix and the second term is bounded in 
norm by Cε, hence Df(0, 0) is invertible if ε is small enough. In addition, the norm of the inverse 
of Df(0, 0) is bounded by a constant independent of ε. Finally, it is straightforward to verify that 
the second-order derivatives of f are uniformly bounded when ε ≤ 1. These observations together 
imply that there exists a unique pair (ξ, θ), in a neighborhood of the origin of size O(ε), such 
that f(ξ, θ) = 0. Thus the decomposition (3.1) holds for these values of (ξ, θ). In addition, the 
above argument shows that the modulation parameters ξ, θ depend continuously on ψ ∈ X in the 
topology defined by the distance (1.9). This concludes the proof. �

As was already mentioned, the Cauchy problem for the NLS equation (1.1) is globally well-
posed in the space X [13]. If ψ(·, t) is a solution of (1.1) in X which stays for all times in a 
neighborhood of the orbit of the black soliton, the modulation parameters ξ(t), θ(t) given by 
the decomposition (3.1) subject to the orthogonality conditions (3.2) are continuous functions of 
time. In fact, as in [5, Lemma 6.3], we have the following stronger conclusion:

Lemma 3.2. If ε > 0 is sufficiently small and if ψ(·, t) is any solution of the NLS equation (1.1)
in X satisfying, for all t ∈R,

inf
ξ,θ∈RdR

(
eiθψ(· + ξ, t), u0

) ≤ ε, (3.8)

then the modulation parameters ξ(t), θ(t) in the decomposition (3.1), (3.2) are continuously 
differentiable functions of t satisfying (1.13).

Proof. If ψ(·, t) is any solution of the NLS equation (1.1) in X, it is easy to verify that the map 
t �→ eitψ(·, t) − ψ(·, 0) is continuously differentiable in the topology of L2(R), with

∂t

(
eitψ(·, t) − ψ(·,0)

) = ieit
(
ψxx + (

1 − |ψ |2)ψ) ∈ L2(R).
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In particular, for all (ξ, θ) ∈R
2, the scalar products〈

u′
0(· − ξ),Re

(
eiθψ(·, t))〉

L2,
〈
u′′

0(· − ξ), Im
(
eiθψ(·, t))〉

L2 ,

are continuously differentiable functions of time. Thus, if assumption (3.8) holds for all times, 
the proof of Lemma 3.1 shows that the modulations parameters ξ(t), θ(t) in the decomposition 
(3.1), (3.2) are C1 functions of time.

Differentiating both sides of (3.1) and using (1.1), we obtain the evolution system{
ut = L−v + ξ̇

(
u′

0 + ux

) − θ̇v + (
2u0u + u2 + v2

)
v,

−vt = L+u − ξ̇ vx − θ̇ (u0 + u) + (
3u0u + u2 + v2

)
u + u0v

2,

where the operators L± are defined in (2.1). Using the orthogonality conditions (3.2), we elim-
inate the time derivatives ut , vt by taking the scalar product of the first line with u′

0 and of the 
second line with u′′

0. This gives the following linear system for the derivatives ξ̇ and θ̇ :

B

(
ξ̇

θ̇

)
=

( 〈L−u′
0, v〉L2

〈L+u′′
0, u〉L2

)
+

( 〈u′
0, (2u0u + u2 + v2)v〉L2

〈u′′
0, (3u0u + u2 + v2)u + u0v

2〉L2

)
, (3.9)

where

B =
(−‖u′

0‖2
L2 0

0 −‖u′
0‖2

L2

)
+

(−〈u′
0, ux〉L2 〈u′

0, v〉L2

〈u′′
0, vx〉L2 〈u′′

0, u〉L2

)
. (3.10)

As in the proof of Lemma 3.1, it is easy to verify using (3.8) that the second term in the right-hand 
side of (3.10) is bounded by Cε for some positive constant C, hence the matrix B is invertible 
if ε is small enough, with uniformly bounded inverse. On the other hand, the first term in the 
right-hand side of (3.9) is of size O(ε), whereas the second term is O(ε2), hence |ξ̇ (t)| +|θ̇ (t)| ≤
Cε for all t ∈R, where the positive constant C is independent of t . This concludes the proof. �
4. Proof of orbital stability of the black soliton

This final section is entirely devoted to the proof of Theorem 1.2. As in the previous section, 
we consider solutions of the NLS equation (1.1) of the form (3.1), where the real-valued per-
turbations u, v satisfy the orthogonality conditions (3.2). Our main task is a detailed analysis of 
the functional (1.8) in a neighborhood of the orbit of the soliton profile u0. Instead of using the 
straightforward decomposition (3.3), the main idea is to express the difference Λ(ψ) −Λ(u0) in 
terms of the variables u, v, and η, where η is defined in (3.4).

Lemma 4.1. If ψ = u0 + u + iv satisfies dR(ψ, u0) < ∞, then

Λ(ψ) − Λ(u0) =
∫
R

[
u2

xx + v2
xx + (

3u2
0 − 2

)(
u2

x + v2
x

) + (
1 − u2

0

)(
u2 + v2)

− 3
(
1 − u2

0

)(
1 − 3u2

0

)
u2 + 1

2
η2

x + 1

2

(
3u2

0 − 2
)
η2

+ 1
η3 + 3η

(
u2

x + v2
x

) + 6u′
0

(
u2 + v2)ux

]
dx. (4.1)
2
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Proof. We observe that |ψ |2 = u2
0 + η and ψ̄ψx + ψψ̄x = 2u0u

′
0 + ηx . Thus, if

A(ψ) = |ψxx |2 + |ψx |2
(
3|ψ |2 − 2

) + 1

2
(ψ̄ψx + ψψ̄x)

2 + 1

2
|ψ |2(1 − |ψ |2)2

denotes the integrand in the functional Λ = S − 2E, a direct calculation shows that

A(ψ) − A(u0) = L(u, η) + 6ηu′
0ux + u2

xx + v2
xx + (

3u2
0 − 2

)(
u2

x + v2
x

)
+ 1

2
η2

x + 1

2

(
3u2

0 − 2
)
η2 + 1

2
η3 + 3η

(
u2

x + v2
x

)
, (4.2)

where L(u, η) = 2u′′
0uxx + 2(3u2

0 − 2)u′
0ux + 2u0u

′
0ηx + η(1 − u2

0)(2 − 3u2
0). We now integrate 

the right-hand side of (4.2) over x ∈ R, starting with the terms L(u, η) which are linear in u
and η. Using the identities u′′

0 + u0 − u3
0 = 0 and u′′′′

0 + (1 − 3u2
0)u

′′
0 − 6u0u

′ 2
0 = 0, we find

2
∫
R

(
u′′

0uxx + (
3u2

0 − 2
)
u′

0ux

)
dx = 2

∫
R

(
u′′′′

0 − (
3u2

0 − 2
)
u′′

0 − 6u0u
′ 2
0

)
udx

= 2
∫
R

u′′
0udx = −2

∫
R

(
1 − u2

0

)
u0udx.

Similarly, as 2(u0u
′
0)

′ = (1 − u2
0)(1 − 3u2

0), we have

2
∫
R

u0u
′
0ηx dx = −2

∫
R

(
u0u

′
0

)′
η dx = −

∫
R

(
1 − u2

0

)(
1 − 3u2

0

)
ηdx.

We conclude that

∫
R

L(u, η)dx =
∫
R

(
1 − u2

0

)
(η − 2u0u)dx =

∫
R

(
1 − u2

0

)(
u2 + v2)dx. (4.3)

Note that (4.3) is now quadratic in u and v, which could be expected since u0 is a critical point 
of the functional Λ. We next consider the quadratic term 6ηu′

0ux in (4.2), which has no definite 
sign. Using the definition (3.4), we find 6ηu′

0ux = 12u0u
′
0uux +6u′

0(u
2 +v2)ux , and integrating 

by parts, we obtain

6
∫
R

ηu′
0ux dx = −3

∫
R

(
1 − u2

0

)(
1 − 3u2

0

)
u2 dx + 6

∫
R

u′
0

(
u2 + v2)ux dx. (4.4)

Now, combining (4.2), (4.3), and (4.4), we arrive at (4.1). �
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To simplify the notations, we define

B0(u) = u2
xx + (

5u2
0 − 2

)
u2

x + (
9u2

0 − 5u4
0 − 2

)
u2

B1(u) = u2
xx + (

3u2
0 − 2

)
u2

x + (
1 − u2

0

)
u2 − 3

(
1 − u2

0

)(
1 − 3u2

0

)
u2

B2(v) = v2
xx + (

3u2
0 − 2

)
v2
x + (

1 − u2
0

)
v2

B3(η) = 1

2
η2

x + 1

2

(
3u2

0 − 2
)
η2. (4.5)

The quadratic terms in the right-hand side of (4.1) can be written in the compact form

Q(u,v, η) =
∫
R

(
B1(u) + B2(v) + B3(η)

)
dx. (4.6)

We see that Q(u, v, η) contains 〈K−v, v〉 ≡ ∫
R

B2(v) dx, but not 〈K+u, u〉 ≡ ∫
R

B0(u) dx. In-
stead, it only contains 

∫
R

B1(u) dx and 
∫
R

B3(η) dx. This discrepancy is due to that fact that the 
variables u and η are not independent. As η = 2u0u +u2 +v2, the quantity 

∫
R

B3(η) dx also con-
tains quadratic terms in u and ux , which should be added to 

∫
R

B1(u)dx to obtain 
∫
R

B0(u)dx.
Due to the relation between u and η, it is not obvious that each quadratic term in (4.6) is 

positive independently of the others. To avoid that difficulty, we fix some R ≥ 1 (which will be 
chosen large enough below) and we split the integration domain into two regions. When |x| ≤ R, 
we replace η by 2u0u +u2 +v2, and we use extensions of Lemmas 2.6 and 2.8 to prove positivity 
of the quadratic terms in (4.6). In the outer region |x| > R, the analysis is much simpler, because 
the expressions B1(u), B2(v), and B3(η) are obviously positive if R is large enough.

Since η is a nonlinear function of u and v, the analysis of the quadratic expression (4.6)
will produce higher-order terms, which will be controlled using a smallness assumption on the 
distance dR(ψ, u0). To that purpose, we find it convenient to introduce the quantity

ρ2(u, v, η) =
∫
R

(
u2

xx + v2
xx + u2

x + v2
x

)
dx +

∫
|x|≤R

(
u2 + R−2v2)dx +

∫
|x|≥R

(
η2

x + η2)dx,

(4.7)

which is equivalent to the squared distance (3.5) in a neighborhood of u0. Indeed, we have the 
following elementary result:

Lemma 4.2. Fix R ≥ 1, and assume that ψ = u0 +u + iv, where u, v ∈ H 2
loc(R) are real-valued. 

Let dR(ψ, u0) be given by (3.5) and ρ(u, v, η) by (4.7).

a) One has dR(ψ, u0) < ∞ if and only if ρ(u, v, η) < ∞.
b) There exists a constant C0 ≥ 1 (independent of R) such that, if dR(ψ, u0) ≤ 1 or if 

R1/2ρ(u, v, η) ≤ 1, then

C−1
0 ρ(u, v, η) ≤ dR(ψ,u0) ≤ C0Rρ(u, v, η). (4.8)
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Proof. Throughout the proof, we denote dR(ψ, u0) by dR and ρ(u, v, η) simply by ρ. We pro-
ceed in three steps.

Step 1: Assume first that dR < ∞, so that ux, vx ∈ H 1(R), u, v ∈ L2(−R, R), and η ∈ L2(R), 
where η = |ψ |2 − |u0|2 = 2u0u + u2 + v2. We claim that u, v ∈ L∞(R) and that

K := ‖u‖L∞(R) + ‖v‖L∞(R) ≤ C(1 + dR), (4.9)

for some universal constant C > 0. Indeed, if f = |ψ | − |u0|, we observe that

d2
R ≥

∫
R

η2 dx ≥
∫

|x|≥1

(|ψ | − |u0|
)2(|ψ | + |u0|

)2 dx ≥ C

∫
|x|≥1

f 2 dx,

hence f ∈ L2(I ), where I = {x ∈ R : |x| ≥ 1}, and ‖f ‖L2(I ) ≤ CdR . Moreover, we have 
|fx | ≤ 2u′

0 + |ux | + |vx | almost everywhere, hence fx ∈ L2(R) and ‖fx‖L2(R) ≤ C(1 + dR). 
By Sobolev embedding, this implies that f ∈ L∞(I ), hence also u, v ∈ L∞(I ), and we have 
the bound ‖u‖L∞(I ) + ‖v‖L∞(I ) ≤ C(1 + dR). Finally, since ‖ux‖L2(R) + ‖vx‖L2(R) ≤ CdR , we 
conclude that u, v ∈ L∞(R) and that (4.9) holds.

Step 2: Next, we assume that ρ < ∞, so that ux, vx ∈ H 1(R), u, v ∈ L2(−R, R), and η ∈
H 1(IR), where IR = {x ∈ R : |x| ≥ R}. We claim that u, v ∈ L∞(R) and that

K := ‖u‖L∞(R) + ‖v‖L∞(R) ≤ C
(
1 + R1/2ρ

)
, (4.10)

for some universal constant C > 0. Indeed, we know that η ∈ L∞(IR) with ‖η‖L∞(IR) ≤ Cρ. 
This implies that ψ ∈ L∞(IR), hence also u, v ∈ L∞(IR), and that ‖u‖L∞(IR) + ‖v‖L∞(IR) ≤
C(1 + ρ)1/2. On the other hand, we know that ‖u‖L∞(−R,R) ≤ C‖u‖H 1(−R,R) ≤ Cρ and that

‖v‖L∞(−R,R) ≤ C

(‖v‖L2(−R,R)

R1/2
+ ‖v‖1/2

L2(−R,R)
‖vx‖1/2

L2(−R,R)

)
≤ CR1/2ρ,

because ‖v‖L2(−R,R) ≤ Rρ and ‖vx‖L2(−R,R) ≤ ρ. Thus we conclude that u, v ∈ L∞(R) and 
that (4.10) holds.

Step 3: Finally we assume that K = ‖u‖L∞(R) +‖v‖L∞(R) < ∞, which is the case if dR < ∞
or if ρ < ∞. As η = 2u0u + u2 + v2, we find

‖η‖L2(−R,R) ≤ C(1 + K)
(‖u‖L2(−R,R) + ‖v‖L2(−R,R)

) ≤ C(1 + K)Rρ,

because ‖u‖L2(−R,R) ≤ ρ and ‖v‖L2(−R,R) ≤ Rρ. This shows that, if ρ < ∞, then η ∈ L2(R), 
so that dR < ∞, and we have the bound dR ≤ C(1 + K)Rρ. Conversely, since ηx = 2(u′

0u +
u0ux + uux + vvx), we obtain

‖ηx‖L2(R) ≤ C(1 + K)
(‖u‖L2(−1,1) + ‖ux‖L2(R) + ‖vx‖L2(R)

) ≤ C(1 + K)dR,

where to estimate u′
0u we used the fact that |u(x)| ≤ C(‖u‖L2(−1,1) + (1 + |x|)1/2‖ux‖L2(R)). 

This shows that, if dR < ∞, then ηx ∈ L2(R), so that ρ < ∞, and we have the bound ρ ≤
C(1 + K)dR . This concludes the proof. �
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In the calculations below, to avoid boundary terms when integrating by parts in expressions 
such as (4.6), it is technically convenient to split the integration domain using a smooth partition 
of unity. Let χ : R → [0, 1] be a smooth cut-off function such that

χ(x) = 1 for |x| ≤ 1

2
, and χ(x) = 0 for |x| ≥ 3

2
.

We further assume that χ is even, that χ ′(x) ≤ 0 for x ≥ 0, and that χ(1) = 1
2 . Given R ≥ 1, we 

denote χR(x) = χ(x/R). The following estimates will be useful to control the functions u, v on 
the support of χ ′

R .

Lemma 4.3. Fix R ≥ 1, and assume that ψ = u0 + u + iv satisfies dR(ψ, u0) < ∞. Then there 
exists a constant C1 > 0 (independent of R) such that

‖u‖L2(−2R,2R) ≤ C1
(
ρ(u, v, η) + R3/2ρ(u, v, η)2), (4.11)

‖u‖L∞(−2R,2R) + ‖v‖L∞(−2R,2R) ≤ C1R
1/2ρ(u, v, η), (4.12)

where ρ(u, v, η) is given by (4.7).

Proof. If f is either u or v, then |f (x)| ≤ C(R−1/2‖f ‖L2(−R,R) + (|x| + R)1/2‖fx‖L2(R)), and 
this gives the bound (4.12). To prove estimate (4.11), we recall that ‖u‖L2(−R,R) ≤ ρ(u, v, η), so 
we only need to control u(x) for R ≤ |x| ≤ 2R. In that region we have |u| ≤ C(|η| + u2 + v2), 
hence using the bound (4.12) and the fact that ‖η‖L2(|x|≥R) ≤ ρ(u, v, η) we obtain the desired 
result. �

We now analyze the quadratic terms in the representation (4.6).

Lemma 4.4. Under the assumptions of Lemma 4.2, if dR(ψ, u0) ≤ 1, we have

∫
R

(
B1(u) + B3(η)

)
χR(x)dx =

∫
R

B0(u)χR(x)dx

+O
(
R3ρ(u, v, η)3 + e−Rρ(u, v, η)2), (4.13)

where the estimate in the big O term holds uniformly for R ≥ 1.

Proof. Since η = 2u0u + u2 + v2, we find by a direct calculation

B3(η) = 2u′ 2
0 u2 + 2u2

0u
2
x + 4u0u

′
0uux + 2

(
3u2

0 − 2
)
u2

0u
2 + Ñ(u, v),

where

Ñ(u, v) = 4(uux + vvx)
(
u′

0u + u0ux

) + 2(uux + vvx)
2

+ 2
(
3u2

0 − 2
)
u0u

(
u2 + v2) + 1(

3u2
0 − 2

)(
u2 + v2)2

.

2
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In view of the definitions (4.5), this implies that

B1(u) + B3(η) = B0(u) + (
2u0u

′
0u

2)
x

+ Ñ(u, v).

If we now multiply both sides by χR(x) and integrate over x ∈ R, we arrive at (4.13), because it 
is straightforward to verify using (4.7), (4.9) and (4.12) that

−2
∫
R

u0u
′
0u

2χ ′
R(x)dx =O

(
e−Rρ(u, v, η)2), and

∫
R

Ñ(u, v)χR(x)dx =O
(
R3ρ(u, v, η)3).

This concludes the proof of the lemma. �
Using Lemma 4.4, we are able to derive the desired lower bound on the difference Λ(ψ) −

Λ(u0) in terms of the quantity ρ(u, v, η).

Proposition 4.5. If R ≥ 1 is sufficiently large, there exists a constant C2 > 0 such that, if ψ =
u0 + u + iv satisfies dR(ψ, u0) ≤ 1 and if 〈u′

0, u〉L2 = 〈u′′
0, v〉L2 = 0, then

Λ(ψ) − Λ(u0) ≥ C2ρ(u, v, η)2 +O
(
R3ρ(u, v, η)3), (4.14)

where the estimate in the big O term is uniform in R.

Proof. Proceeding as in the proof of Lemma 4.2, it is easy to estimate the cubic terms in (4.1) in 
terms of ρ(u, v, η) using, in particular, the uniform bound (4.9) and the estimate (4.12). We thus 
find

Λ(ψ) − Λ(u0) = Q(u,v, η) +O
(
R3ρ(u, v, η)3), (4.15)

where Q(u, v, η) is given by (4.5) and (4.6). Then, in the definition (4.6), we split the integral 
using the partition of unity 1 = χR + (1 − χR) and we use Lemma 4.4. This gives

Q(u,v, η) =
∫
R

B2(v)dx +
∫
R

B0(u)χR(x)dx

+
∫
R

(
B1(u) + B3(η)

)(
1 − χR(x)

)
dx +O

(
R3ρ(u, v, η)3 + e−Rρ(u, v, η)2).

(4.16)

As 〈u′′
0, v〉 = 0, we know from Lemma 2.8 and Remark 2.9 that

∫
R

B2(v)dx ≥ C

∫
R

(
v2
xx + v2

x

)
dx + C

R2

∫
|x|≤R

v2 dx, (4.17)

where the last term in the right-hand side follows from the bound |v(x)| ≤ |v(0)| +|x|1/2‖vx‖L2 , 
which implies
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∫
|x|≤R

v2 dx ≤ 4R
∣∣v(0)

∣∣2 + 2R2
∫
R

v2
x dx ≤ CR2

∫
R

B2(v)dx.

On the other hand, if R ≥ 1 is large enough so that 3u2
0 − 2 ≥ 1

2 for |x| ≥ R, it is clear from (4.5)
that

∫
R

(
B1(u) + B3(η)

)(
1 − χR(x)

)
dx ≥ C

∫
|x|≥R

(
u2

xx + u2
x + η2

x + η2)dx. (4.18)

Finally, we estimate from below the term 
∫
R

B0(u)χR(x) dx under the orthogonality assump-
tion 〈u′

0, u〉L2 = 0. Arguing as in Lemma 2.1 and Corollary 2.3, we introduce the auxiliary 
variable w = ux + √

2u0u. After integrating by parts, we obtain the identity

∫
R

B0(u)χR(x)dx =
∫
R

(
w2

x + w2)χR(x)dx + JR,

where

JR =
∫
R

(√
2u0u

2
x + 2

√
2u′

0uux + (
2u0u

′
0 − √

2u′′
0

)
u2 + √

2u2
0u

2)χ ′
R(x)dx.

Since χ ′
R(x) = R−1χ ′(x/R), we have using the estimate (4.11)

|JR| ≤ C

R

∫
|x|≤3R/2

(
u2

x + u2)dx ≤ C3ρ(u, v, η)2

R
+O

(
R2ρ(u, v, η)4),

where C3 > 0 is independent of R. Moreover, proceeding as in the proof of Lemma 2.6, we find

∫
|x|≤R

(
u2

xx + u2
x + u2)dx ≤ C

∫
|x|≤R

(
w2

x + w2)dx +O
(
e−Rρ(u, v, η)2). (4.19)

Indeed, we have the representation u = Au′
0 + W , where the function W is defined in (2.10) and 

the constant A is fixed by the orthogonality condition 〈u′
0, u〉L2 = 0. The proof of Lemma 2.6

shows that ‖W‖L2(|x|≤R) ≤ C‖w‖L2(|x|≤R). From the orthogonality relation

0 =
∫

|x|≤R

u′
0(x)

(
Au′

0(x) + W(x)
)

dx +
∫

|x|≥R

u′
0(x)u(x)dx,

we easily obtain the bound |A| ≤ C‖W‖L2(|x|≤R) +O(e−Rρ(u, v, η)). This shows that

‖u‖L2(|x|≤R) ≤ C‖w‖L2(|x|≤R) +O
(
e−Rρ(u, v, η)

)
,



3658 T. Gallay, D. Pelinovsky / J. Differential Equations 258 (2015) 3639–3660
and since ux = w − √
2u0u we obtain similar estimates for the derivatives ux and uxx , which 

altogether give (4.19). Summarizing, we have shown

∫
R

B0(u)χR(x)dx ≥ C

∫
|x|≤R

(
u2

xx + u2
x + u2)dx − C3ρ(u, v, η)2

R

+O
(
R2ρ(u, v, η)3 + e−Rρ(u, v, η)2), (4.20)

where in the big O term we replaced R2ρ(u, v, η)4 with R2ρ(u, v, η)3 using the fact that 
ρ(u, v, η) ≤ C0dR(ψ, u0) ≤ C0 by (4.8). Now, combining (4.15), (4.16), (4.17), (4.18), (4.20), 
and taking R ≥ 1 sufficiently large, we arrive at (4.14). �
Corollary 4.6. Fix any R ≥ 1. There exist ε1 ∈ (0, 1) and C4 ≥ 1 such that, if ψ = u0 + u + iv

satisfies dR(ψ, u0) ≤ ε1 and if 〈u′
0, u〉L2 = 〈u′′

0, v〉L2 = 0, then

C−1
4 dR(ψ,u0)

2 ≤ Λ(ψ) − Λ(u0) ≤ C4dR(ψ,u0)
2. (4.21)

Proof. Choose R ≥ 1 large enough so that the conclusion of Proposition 4.5 holds, and ρ0 > 0
small enough so that R3ρ0  C2, where C2 is as in (4.14). Take ε1 ≤ 1 such that C0ε1 ≤ ρ0, 
where C0 is as in (4.8). If ψ = u0 +u +iv satisfies dR(ψ, u0) ≤ ε1 and 〈u′

0, u〉L2 = 〈u′′
0, v〉L2 = 0, 

it follows from (4.8) that the quantity ρ(u, v, η) defined in (4.7) satisfies ρ(u, v, η) ≤ ρ0. By 
Proposition 4.5, we thus have

1

2
C2ρ(u, v, η)2 ≤ Λ(ψ) − Λ(u0) ≤ C′

2ρ(u, v, η)2,

where the lower bound follows from (4.14), and the upper bound can be established by a much 
simpler argument (which does not use any orthogonality condition). Since ρ(u, v, η) is equivalent 
to dR(ψ, u0) by Lemma 4.2, we obtain (4.21). Finally, Corollary 4.6 holds for any R ≥ 1 because 
different values of R give equivalent distances dR on X. �

It is now easy to conclude the proof of Theorem 1.2. Fix any R ≥ 1. Given any ε > 0, we take

δ = 1

2C4
min(2ε, ε0, ε1),

where C4 ≥ 1 and ε1 > 0 are as in Corollary 4.6 and ε0 > 0 is as in Lemma 3.1. If ψ0 ∈ X satisfies 
dR(ψ0, u0) ≤ δ, then Λ(ψ0) − Λ(u0) ≤ C4δ

2 by the upper bound in (4.21), which does not 
require any orthogonality condition. Since Λ is a conserved quantity, we deduce that the solution 
ψ(·, t) of the cubic NLS equation (1.1) with initial data ψ0 satisfies Λ(ψ(·, t)) − Λ(u0) ≤ C4δ

2

for all t ∈ R. We claim that, for all t ∈ R, we have

inf
ξ,θ∈RdR

(
eiθψ(· + ξ, t), u0

) ≤ 2C4δ ≤ ε0. (4.22)

Indeed, the bound (4.22) holds for t = 0 by assumption. Let J ⊂ R be the largest time interval 
containing the origin such that the bound (4.22) holds for all t ∈ J . As is well-known [6,13], 
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the solutions of the cubic NLS equation (1.1) with initial data in X depend continuously on time 
with respect to the distance dR(ψ, u0). This implies that the left-hand side of the bound (4.22) is 
a continuous function of t , so that J is closed. On the other hand, if t ∈ J , then by Lemma 3.1
we can find ξ, θ ∈ R such that the function ψ̃(x) = ei(θ+t)ψ(x + ξ, t) can be decomposed as 
in (3.7) with u, v satisfying the orthogonality conditions (3.2). Applying Corollary 4.6 to ψ̃ , we 
deduce that

C−1
4 dR(ψ̃, u0)

2 ≤ Λ(ψ̃) − Λ(u0) = Λ(ψ0) − Λ(u0) ≤ C4δ
2,

so that dR(ψ̃, u0) ≤ C4δ. Using again a continuity argument, we conclude that J contains a 
neighborhood of t . Thus J is open, hence finally J = R, so that the bound (4.22) holds for all 
t ∈ R. Using Lemma 3.1, we thus obtain modulations parameters ξ(t), θ(t) such that

dR

(
ei(θ(t)+t)ψ

(· + ξ(t), t
)
, u0

) ≤ C4δ ≤ ε, t ∈R.

Finally, Lemma 3.2 shows that the functions ξ : R → R and θ : R → R/(2πZ) are continuously 
differentiable and satisfy the bounds (1.13). The proof of Theorem 1.2 is now complete.

Remark 4.7. Instead of introducing the auxiliary variable η to cure the imperfect decomposition 
(3.1), it would be advantageous to find a parametrization of the perturbations that fully takes into 
account the geometry of the functional Λ, and in particular the degeneracy of Λ′′(u0). Near the 
constant solution u1 ≡ 1, it is most natural to write ψ(x, t) = (1 + r(x, t))eiϕ(x,t), where r and 
ϕ are real-valued functions. In that case, the usual energy function (1.5) allows us to control r in 
H 1(R) and ϕx in L2(R). In the same spirit, it is tempting to consider perturbations of the black 
soliton of the form

ψ(x, t) = (
u0(x) + r(x, t)

)
eiϕ(x,t), x ∈ R, (4.23)

where r, ϕ are again real-valued functions. With this representation, we find

Λ(ψ) − Λ(u0) = 〈K+r, r〉 +
∫
R

(
u2

0ϕ
2
xx + ϕ2

x

)
dx + Ñ(r, ϕx), (4.24)

where Ñ(r, ϕx) collects the higher order terms. This formula is interesting, because it is not 
difficult to verify that Ñ(r, ϕx) can be controlled by the quadratic terms in (4.24) if r is small in 
H 2(R) and ϕx small in H 1(R). However, not all perturbations of the black soliton can be written 
in the form (4.23) with r, ϕ satisfying such smallness conditions, because u0 vanishes at x = 0
in (4.23).
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