
Nonlocal Models for Envelope Waves in a 
Stratified Fluid 

By Dmitry E. Pelinovsky and Roger H. J. Grimshaw 

A new, nonlocal evolution equation similar to the nonlinear Schrodinger 
equation is derived for envelope waves in a continuously stratified fluid by 
means of a multiscale perturbation technique. This new equation governs 
propagation of quasi-harmonic wave packets having length scales much 
longer than the depth of the density variations and much shorter than the 
total depth of fluid. Generalizations of the nonlocal evolution equation for a 
description of two-dimensional wave modulations are also presented. The 
modulational stability of small-amplitude waves is then investigated in the 
framework of the derived equations. It is shown that quasi-harmonic waves 
with the scales under consideration are unstable with respect to oblique 
perturbations at certain angles. 

1. Introduction 

For the last 30 years the problem of self-modulation of small-amplitude 
nonlinear waves has been investigated intensively both for surface water 
waves [1-4] and for internal waves in a density-stratified fluid [5-9]. It was 
shown that the cubic nonlinear Schrodinger (NLS) equation is a universal 
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model for a description of wave propagation when there is no resonance 
between the main quasi-harmonic wave and the second or zero (mean flow) 
harmonics induced by nonlinear effects. If the coefficients of the linear 
dispersive term and the cubic nonlinear term have the same sign, then 
small-amplitude waves are unstable with respect to sub harmonic generation 
and this effect results in the formation of envelope solitary waves from a 
localized initial perturbation. Otherwise, small-amplitude waves are stable 
and the localized wave packets disperse. A critical situation can arise when 
either the coefficient of the linear dispersive term or that of the cubic 
nonlinear term become zero. Such situations were discovered for both 
surface and internal waves along special curves in parameter space [4, 5]. 

A correct description of wave propagation and of the instability criterion 
in these critical cases can be found if one takes into account higher-order 
dispersive and/or nonlinear terms in the governing evolution equation. For 
instance, the evolution of surface gravity waves in a vicinity of the critical 
depth kh:::: 1.363 is described by a modified NLS equation with fifth-order 
nonlinearity and also derivative third-order nonlinear terms [10]. For this 
case, it was shown by Kakutani and Michihiro [11] that quasi-harmonic 
waves may become unstable even in the subcritical region if their amplitudes 
are large enough. This result coincides with a full analysis of periodic wave 
stability of surface waves carried out by McLean [12]. A similar situation 
appears for interfacial waves between two layers of different densities but 
the marginal stability curve depends now on three parameters, the depths of 
the upper and lower layers and the ratio of their densities [5]. 

Besides the aforementioned situation, interfacial waves cannot also be 
described by the cubic NLS equation for a certain case, the so-called 
shallow - deep limit of a stratified fluid, when the upper layer is shallow and 
the lower one is deep compared to the scales of quasi-harmonic wave 
packets. For this case, it was shown by Tanaka [5] and Grimshaw [13] that 
the lowest-order part of the cubic nonlinear coefficient becomes zero be­
cause the nonlinear effects induced by the second harmonics exactly com­
pensate those induced by the mean flow. Since the shallow-deep limit is 
very important for internal waves on a real oceanic pycnocline, the present 
problem is to derive a new type of NLS equation describing quasi-harmonic 
wave packets for this situation. 

A first step to the solution of this problem has been recently achieved by 
Pelinovsky [14] where a new evolution equation was derived by means of 
asymptotic multiscale reduction of the nonlocal intermediate long-wave 
equation. The latter equation governs evolution of long internal waves to the 
first order in the shallow-deep limit. The new equation is also nonlocal and 
it was referred to as the intermediate NLS equation. In addition, it was 
shown that this new equation is integrable and supports N-soliton solutions 
on a modulationally stable wave background. The inverse scattering trans-
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form for the intermediate NLS equation was constructed in our previous 
paper [15]. 

However, the applicability region of this intermediate NLS equation is 
limited by that of the nonlocal long-wave equation. Second-order effects in 
the long-wave expansions are not described by this latter equation while they 
might influence the behavior of quasi-harmonic wave packets. The aim of 
the present article is to take into account these second-order effects and to 
derive a universal evolution equation of the NLS type in the shallow-deep 
limit of a continuously stratified fluid. This equation is finally found in the 
form 

i'l'/ = a'l'xx + {3'1'(i +Th)(I'I'12)x - yl'l'12'1', (1.1) 

where 'I' is the slowly varying amplitude of quasi-harmonic waves, Th is 
nonlocal operator 

1 Joo [ 1T ( Z - x) ] Th ( u) = 2h p.v. -00 coth 2h u( z) dz, (1.2) 

p.v. stands for principal value of the integral, and the positive coefficients a, 
{3, and yare expressed by the parameters of the fluid stratification. For 
y ~ 0 (1.1) transforms to the intermediate NLS equation, while for {3 ~ 0 it 
transforms to the cubic NLS equation. These special limits can arise for 
special relationships between the wavelength of quasi-harmonic wave pack­
ets and the two characteristic scales of density stratification. 

Our strategy is as follows. In Section 2 we obtain a higher-order nonlocal 
long-wave equation from the original Euler equations when there are rapid 
variations of the density stratification compared to the wavelength. In 
addition to the well-known analysis of Benjamin [16] and Davis and Acrivos 
[17], we keep not only the lowest-order terms of the long-wave expansions 
but also the second-order terms. A similar second-order expansion was 
recently analyzed for surface and interfacial waves in a general form by 
Kraenkel et al. [18] and Matsuno [19] as well as for internal steady-state 
waves by Grimshaw [20]. Then, in Section 3 we consider the propagation of 
modulated quasi-harmonic long waves whose modulation scale is much 
shorter than the total depth of the stratified fluid. As a result, we find the 
desired evolution equation (1.1). The generalizations of our approach for 
two-dimensional modulations of quasi-harmonic waves are discussed in 
Section 4. Our approach is based on a two-dimensional nonlocal long-wave 
equation derived for internal waves by Ablowitz and Segur [21]. We find two 
types of two-dimensional evolution equations of the NLS type. The first 
describes perturbations with equal scales in the longitudinal and transverse 
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directions and was first derived by Grimshaw and Pullin [6]. The other, 
essentially nonlocal two-dimensional evolution equation is found for smooth 
transverse modulations. Using both these models we then investigate the 
problem of small-amplitude wave stability in Section 5 and show that a 
quasi-harmonic wave is unstable with respect to oblique perturbations at 
certain angles. These results are in agreement with recent results of Spector 
and Miloh [22] and clarify the physical mechanism of this instability. The 
final Section 6 is devoted to discussion. Appendices A and B present the 
explicit form of coefficients of Eq. (1.1) calculated for two conventional 
representations of the density stratification. 

2. A higher-order nonlocal long-wave equation 

We consider an incompressible and inviscid fluid that is density stratified 
along the vertical coordinate z. In Sections 2 and 3 we restrict ourselves only 
to two-dimensional motion of the stratified fluid, which is described by the 
Euler equations, 

p(UI + UU" + wu z ) + p" = 0, 

p( WI + UW" + wWz) + pz + pg = 0, 

PI + up" + wPz = 0, 

as well as by the incompressibility equation 

U x + Wz = O. 

(2.1a) 

(2.1b) 

(2.1c) 

(2.1d) 

Here u, ware horizontal and vertical components of fluid velocity; p, pare 
its density and pressure; and g is the gravity constant. The fluid is bounded 
by upper and lower surfaces, which are supposed to be plane and rigid. 
Under these conditions we impose the boundary conditions to (2.1a)-(2.1d) 
in the form 

wlz~o 0, 

w I z~ -h 0, 

(2.2a) 

(2.2b) 

Let us consider a basic continuous stratification of the fluid, which is 
presented by a density profile p = R(z). We suppose that the stratification 
has two characteristic scales. The first scale describes a rapid density 
variation in the near-surface shallow layer (for - d < z < 0, where d« h). 
The second one corresponds to a nearly nonstratified deep layer (for 
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- h < z < - d), where R::::: /Jx. Long internal waves are localized in the 
upper layer and, therefore, the shallow scale is responsible for the nonlinear 
effects of wave propagation. On the other hand, the deep layer is-responsi­
ble for the dispersive effects essential for the problem. 

According to the profile of density stratification assumed above we 
introduce two vertical scales, an inner scale described by variable z and an 
outer scale described by a slow variables (= EZ so that h = H / E. Here E is 
a small parameter that specifies both the small amplitude and the smooth 
modulation of long internal waves according to the following asymptotic 
expansions, 

u = E(U(O)(g'T;z,n+ n~lEnu(n)(g'T;z,n), (2.3a) 

w = E2(W(O)(g,T;z,n+ n~lEnw(n)(g'T;z,n), (2.3b) 

p = R(z) + E( p(O)( g,T;z,n + n~l Enp(n)( g'T;z,n), (2.3c) 

p = P(z) + E(P(O)( g,T;z,n + i: Enp(n)( g'T;z,n), (2.3d) 
n=l 

where g = E(X - ct), T =(T2,T3 , ••• ), Tn = ent, c is the linear long-wave phase 
speed and the hydrostatic pressure P(z) is given by Pz = - gR. 

Substitution of (2.3a)-(2.3d) into (2.1a)-(2.1d) reduces the original Euler 
equations into a set of equations for each order in E. It is convenient to 
express the leading-order terms in the form 

u(O) = f( g,T; n~(z), 

w(O) = - f~( g,T; nW(z), 

1 
p(O) = - -f( g,T; nRAz)W(z), 

c 

p(O) = cf( g,T; nR(z)~( z). 

(2.4a) 

(2.4b) 

(2.4c) 

(2.4d) 

In this representation the inner and outer variables z and ( are separated 
from each other. Note that such a representation is different from the 
conventional one [20] where asymptotic expansions similar to (2.3a)-(2.3d) 
are constructed independently for both regions and then are matched for 
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z ~ - 00, (~O. However, this modification of an asymptotic multiscale 
technique gives the same results as the standard scheme. 

The function f( ~, T; 0 in (2.4a)-(2.4d) represents the varying amplitude 
of long internal waves, while W(z) is found from the inner eigenvalue 
problem 

LW == (R(z)~(z»)z - gzRAz)W(z) = 0 (2.5) 
c 

with boundary conditions 

W(O) = 0, (2.6a) 

~(-oo) = o. (2.6b) 

Moreover, we specify the normalization of the modal function W(z) as 
W( - 00) = 1. This can always be done because of the linear properties of 
(2.5). Note that the boundary condition (2.2b) is not fulfilled for the fast 
variable z for the modal function W(z). However, if the function f(~, T; {) 
vanishes at l = - H, the function w(O) satisfies (2.2b) according to (2Ab). 

Next, we consider the restrictions to be imposed on the function f( ~, T; l ) 
to obtain a valid asymptotic series (2.3a)-(2.3d). As is well known, such 
restrictions reduce in the leading order of E to the intermediate long-wave 
(IL W) equation for the amplitude of internal waves localized in a stratified 
layer, A(~, T) = f(~, T; ( = 0). However, here we do not confine ourselves to 
the leading order of asymptotic expansions but present a general scheme for 
the calculation of the second-order corrections to the IL W equation. 

First, we deal with the first-order approximation and find the corrections 
uO>, pO), p(1) in terms of w(1). As a result, Eqs. (2.1a)-(2.1d) reduce at the 
first order to the linear equation 

(1) _ 2 [()] Lw - - cfT,(R~)z + fa RW z + R~ 

+ -}.If!'; [( R»'»'zz - R~2 - R z»'»'z) z + W( R~ Lz - ~(R~ L] . 

(2.7) 

The solution of (2.7) with boundary conditions w(l)(z = 0) and w~l)(z ~ - 00) 
= 0 can be found only if a certain, compatibility condition is met. To obtain 
this condition we multiply (2.7) by W(z) and then perform an integration 
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with respect to z. As a result, we get an evolution equation for the func­
tion I, 

afT2 - ada + bdfE = 0, (2.8) 

where 

(T = 2fO RW2 dz z , 
-00 

a1 cpoo, - fO 3 b1 - 3 R~ dz. 
-00 

Next, using this restriction on IT2 we can solve the linear inhomogeneous 
equation (2.7) in the form 

w(l) = - hW(z) + laWll(Z) + ~ffEWdz). (2.9) 

Here the function j( g, T; () describes a correction to the amplitude of the 
long waves and the functions Wll (z), W1iz) satisfy equations 

LWln H 1n , for n = 1,2, 

where 

) 
2poo 

Hll = (RW z + R~ - CT(R~L, 

( 2) 2b1 
H12 = R~z-R~ -Rz~ z+W(R~Lz-~(R~L+CT(R~L· 

Furthermore, the functions W1n(z) can be explicitly expressed in terms of 
the modal function W(z) according to the formula 

Win = W(z)~z R(ZI)~2(ZI) ~z'dzIlW(ZIl)Hln(ZIl). (2.10) 

Now we turn to the second-order approximation and derive a correction 
to the evolution equation (2.8). To do this, we obtain the inhomogeneous 
linear equation for the correction term W(2) and again apply a compatability 
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condition. As a result of direct but laborious calculations, we find finally the 
following equation for the function f, 

a-l2 - aJ'u + bl(tf)~ + a-fT3 + a2d'T2 + a2zfm + + a23J fT2T2 d~ 

+ b21(ff,)~ + b22 ff,g + b23 ffT2 + b24 fd fT2 d~ + Czf2fg = O. (2.11) 

The coefficients of this equation are presented by the following expressions 

a2l Poo - 2 JO Rw,.Wl1z dz, 
-00 

a22 = - c JO (R zWWl1 +2RWWllz ) dz, 
-00 

a­
a23 2c' 

- JO (2 2 ) b2l - 2RW w,.z -3Rw,. Wl1z - R)V~2 -2R~2z dz, 
-00 

b22 = JO (Rww,.zWl1z - Rw,.w,.zWl1 - RW2w,.z) dz, 
-00 

_ 1 JO ( 3 ) b23 - - -2Rw,.W12z +5R~ +6R~~z dz, 
c -00 

bl 
b24 = 3c' 

1 JO ( 9 2 c2 = C -00 Rww,.zWl2z - RUiUizWl2 - 2"RUi W12z 

-2RW2w,.; +6Rw,.4 + 12Rww,.2Uiz) dz. 

Thus, for the function f we obtain an evolution equation whose linear part 
is the linearization of (2.8) and whose inhomogeneous part contains the 
function f and its higher-order time derivative fT [18,20]. 

3 ~ 

Let us next consider the functions f( ~, T; C), f( ~, T; C) with respect to 
the vertical coordinate r It is readily checked that the condition (2.11) 
removes only a linear secular divergence for W(2) in z for z ~ - 00. However, 
the inhomogeneous equation for the correction term W(2) might also gener-
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ate a quadratic secular growth (w(2) "" Z2 as Z ~ -00) unless the function 
I( g, T; () satisfies the outer problem 

lu + I~~ = 0, 

with boundary conditions 

1'(=0 = A(g,T), 

I'(=-H=O. 

(2.12) 

(2.13a) 

(2.13b) 

It is convenient for our analysis to introduce the function g( g, T; (), 
which is expressed through the first-order correction term w(1) continued to 
the nonstratified layer as z ~ - 00, 

- - 1-
w(l) ~ - It; + WIII(~ + C W12 fft; == - g~. 

Here we have denoted WIn = lim z --. -00 Wln(z). Then, at the order of a(E 3) 
we find that the function g( g, T; n satisfies the same problem (2.12) but 
with boundary conditions 

_- - W122 g,(=o - A( LT) - WIII( 1(=0 - 2"CA , (2.14a) 

g,(= -H = 0, (2.14b) 

where A( g, T) = 1< g, T; ( = 0). Note that the second boundary condition [see 
(2.13b) and (2.14b)] provides vanishing of the vertical velocity at z = - h. 

The solutions to the outer problem (2.12) with (2.13a)-(2.13b) and 
(2.14a)-(2.14b) can be found by Fourier transforms [20]. Using this analysis, 
we can relate the functions II;' ic for (= 0 to the amplitudes A, A as 
follows, 

I( 11;=0 = -TH( At;), (2.15a) 

ic 11;=0 = -TH(A~)-WIITJ(A~~)-WIIA€€ 

WI2 W12 () + -C-TH(AA~) - -c-ATH At; , (2.15b) 

where the integral operator TH is given by formula (1.2). 
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Finally, using relations (2.1Sa)-(2.1Sb) we rewrite Eqs. (2.8) and (2.11) at 
( = 0 in the form of a higher-order long-wave equation for the sum ampli­
tude A'(~, 'd == A + EA + O(E Z

), 

AT + alTH(Agd + f3l AAg 

= E[ azlAm - a 22TJ(A m ) + f32l(ATH(Ag))g + f322ATH(Au) 

+ f323TH(Mg)g +'Y2A2Ag] + O(EZ). (2.16) 

Here we have omitted the superscript prime for the variable A and intro­
duced the following coefficients 

a l 
a l (J' 

a -a
21 

22 - alWll 
(J' 

a l ( a 2l + (J' ur11 + a l a23 ) 
a 22 2 

(J' 

bl 
131 = fi' 

b -
/321 21 - P""W12 + a 1 b24 

(J' 

bzz + a l ( b23 - b Z4 - /31 aZ3 ) 
f3Z2 = (J' , 

PooW12 - /31(a 21 + a 1a Z3 ) 
1323 = (J' 

1'2 
- C2 + f31( bZ3 + bZ4 /2 - 131 a23 ) 

(J' 

This equation governs the evolution of long internal waves in a deep fluid 
with a thin stratification layer. Note that for the infinitely deep fluid (H =00) 
and for stationary solitary wave solutions the higher-order long-wave equa­
tion (2.16) can be simplified and reduced to the equations derived by 
Grimshaw [20]. In this case, solutions to (2.16) can be constructed by means 
of perturbation theory and the higher-order derivative term AT3 can be 
found from the dispersion relation for small-amplitude waves [18, 20]. 
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However, for our problem it is more convenient to keep the higher-order 
long-wave equations in the form of a unique equation (2.16) and then 
expand its solution in a series of the wave amplitude. 

3. Nonlocal NLS equation for modulated waves 

3.1. Derivation 

Now we turn to the problem of wave packet self-modulation for the 
shallow-deep limit of a stratified fluid, which is described by our higher-order 
long-wave equation (2.16). We suppose that the length of the wave packets is 
much longer than the stratification scale but much shorter than the total 
depth of fluid. Hence we introduce a new small parameter JL so that 
H = 8/ JL. This parameter also determines the small amplitude of the wave 
packets as O( {iZ) and their slow modulation being O( JL) according to the 
following asymptotic expansion, 

A = L JLn/ zAn(X,T;0), (3.1) 
n~l 

where the leading term is presented in the form of a slowly modulated 
quasi-harmonic wave 

Al = 'I'(X,T)exp(i0) + 'I'*(X,T)exp( - i0), (3.2) 

depending on a fast phase 0 = keg - VpT) (k > 0) and on slow variables 
X = JL( g - ~ T) and T = JL ZT. Here Vp determines the higher -order correc­
tions of the phase velocity of a quasi-harmonic wave with respect to the 
limiting long-wave phase speed c, while ~ corresponds to those of the group 
velocity of the wave packet. The linear part of the higher-order long-wave 
equation (2.16) allows us to find the first terms of the phase and group 
velocities from the parameters of the fluid stratification, Vp = - a l k + 
e(azl + azz)e + O(e Z

) and ~ = -2a l k +3e(azl + azz)k Z + O(e Z
). 

The second-order term A Z is generated by nonlinear effects and includes 
second harmonics and mean flow terms as 

A Z = 2~~k[n+'I'zexp(2i0)+'I':iexp(-2i0)], (3.3) 

where n(X, T), 'l'iX, T) designate amplitudes of the mean flow and the 
second harmonics respectively. Substitution of (3.1)-0.3) into the long-wave 
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equation (2.16) allows us to relate n, '1'2 to the amplitude of the carrier 
wave '1', 

n = -I'I'IZ[ 1 + €k( 2( (3z~: (3zz) + 3( a Zl :1 
aZZ) ) + O( €Z)] (3.4a) 

'l'z = 'l'Z[1+ €k( 2{3Z1 + ~~Z +2{3Z3 + 3( aZla~ a zz )) + O( €Z)]. (3.4b) 

It is remarkable that the second and zero harmonics completely compensate 
each other in the leading order of our asymptotic expansions and do not 
influence the nonlinear self-modulation of quasi-harmonic wave packets. As 
a result, in the third-order approximation in JL where the cubic NLS 
equation usually appears, we have no restrictions imposed on the amplitude 
'1'. Therefore, we have to extend the asymptotic expansion (3.1) to higher­
order approximations and find the higher-order corrections, 

A3 = (2~~k r['I'3 eXP(3ie) + '1': exp( -3ie)] (3.5) 

A4 = ~ [ii + q,z exp(2ie) + q,r exp( -2ie)] 
4a 1k 

+ ( 2~:k r ['1'4 exp( 4i0) + '1'; exp( -4i0)]. (3.6) 

Substituting these expressions into the long-wave equation (2.16) we consec­
utively find the coefficients ii, q,z, '1'3' and '1'4' 

ii = i('I''I'l-'I'x'l'*) + Til (l'I'nx - (31:kl'l'14 + O(€) 
2a1 

q,Z = 2i'l''I'x + O( €), '1'3 = '1'3 + O( E), '1'4 = '1'4 + O( € ) . 

Finally, at the order of JL5/Z we get the desired equation of NLS type, 
which governs the evolution of the amplitude '1', 

i'l'T = a'l'xx + {3'1'(i +TIl)(I'I'lzh - !..yl'l'lz'I', (3.7) 
JL 
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( a Zt + a 22 ) _ f3t(2f32t + f322 +2(323) ) 

1 12 4 2 2a· at t 

3.2. Discussion 
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Equation (3.7) contains a balance of local and nonlocal cubic nonlinear 
terms and we call it a mixed NLS equation. It is difficult to evaluate the 
coefficients a, f3, 1 in the general case. Therefore, we consider two 
conventional representations of the density stratification (two-layer fluid and 
constant stratification layer) to find the coefficients of the higher-order 
long-wave equation (2.16) and those of the mixed NLS equation (3.7) in 
explicit form. The corresponding results are presented in Appendices A and 
B. For both cases we find that all coefficients of the mixed NLS equation are 
positive. The consequences of this fact for the problem of small-amplitude 
wave stability are discussed in Section 5. 

It is obvious that Eq. (3.7) reduces in physical variables to the form (1.1), 
where the formal small parameters E", JL are absent. However, the form (3.7) 
makes clear the range of applicability of the mixed NLS equation for the 
description of internal quasi-harmonic waves. In physical variables, the 
factor E" / JL is proportional to the quantity S = k 2dh and, therefore, 
the mixed NLS equation is valid when this quantity is 00). 

Now we discuss solutions to the mixed NLS equation. First, let us 
consider the limiting cases when the parameter S is small or large. For these 
limiting cases, the mixed NLS equation can be reduced to the integrable 
intermediate or cubic NLS equations respectively. 

Indeed, if S « 1 the local nonlinear term in (3.7) is negligible and we get 
the intermediate NLS equation [14, 15]. Solitary envelope waves of this 
equation are described by a family of so-called dark solitons, which are the 
amplitude dips propagating along the quasi-harmonic wave, 

1'1'12 = aZ _ aKsin[K8] 
f3(cosh[K(X - VT)] +cos[K8]) ' 

(3.8a) 

where a is the amplitude of the carrier quasi-harmonic wave, and K, V are 
parameters of solitons, which are related by the equation 

V(V+2f3a2 ) + a 2K2 = 2af3azKcot[K8]. 
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Note that the dark solitons (3.8a) are anisotropic; i.e., solitons with equal 
amplitudes propagate with different velocities to the left and to the right in 
the reference frame moving with the group velocity ~. In a general case, 
the range of soliton velocity is limited by the interval 

-V{32a4 +2a{3/5 - {3a 2 ~ V ~ f{32a 4 +2a{3/fJ - {3a 2 • 

In the opposite limit (S :» 1), we can neglect the nonlocal nonlinear term 
in (3.7) and, therefore, get the cubic NLS equation with dark solitons in the 
form 

1'1'12 = a2 _ 2aK
2 

ycosh2[K(X - VT)] , 
(3.8b) 

where the soliton dispersion relation takes the form 

V2 + 4a 2K2 = 2aya2 , 

For this case, solitary waves are isotropic and their velocities belong to the 
interval - ...j2aya ~ V ~ ...j2a'Ya. 

In the analysis presented above we considered the case of finite fJ when 
both solitary waves (3.8a)-(3.8b) have exponentially decaying tails. However, 
for an infinitely deep fluid (fJ -+ (0) the difference between the solitary waves 
(3.8a)-(3.8b) becomes greater because the solitary waves (3.8a) transform to 
algebraically decaying solitons described by the rational function, 

1'1'12 "'" a2 _ 2 aK 
(3[1+K 2(X-VT)2] . 

(3.8c) 

Here K appears in the limiting transition 8 -+ 00, so that K 8 = '7T[1-
l/(K8)]. The velocity of the algebraic solitons V can be found from the 
equation 

V(V +2{3a2) + 2a{3a2K = O. 

It is obvious that the algebraic solitons always have the negative velocity, 
-2{3a2 ~ V ~ O. 

In the general case, when S is 0(1), we may conjecture that the mixed 
NLS equation (3.7) possesses dark-soliton solutions that have features of 
both limiting solutions (3.8a)-O.8b). Because for X -+ 00 the nonlocal non­
linear term dominates over the local term, such soliton solutions are 
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expected to resemble the asymptotic solutions (3.8a) or (3.8c) in the far-field 
region, KX» 1 or Kx» 1. On the other hand, in the near-field region 
(KX « 1) the local nonlinear term is more essential and the solitons of the 
mixed NLS equation (3.7) are locally close to the dark solitons (3.8b). Thus, 
the balance of the local and nonlocal nonlinearities is crucially important for 
a correct description of quasi-harmonic wave packets in the shallow-deep 
limit of a stratified fluid. 

4. Two-dimensional nonlocal evolution equations 

In this section we generalize our analysis to three-dimensional motion of a 
stratified shallow-deep fluid and present local and nonlocal models describ­
ing quasi-harmonic internal waves modulated in both the transverse and 
longitudinal directions with respect to the wave propagation direction. It is 
important to emphasize that the form of the evolution model essentially 
depends on a ratio of the perturbation scales in both directions. 

It is sufficient for our purposes to find only the first correction to the 
higher-order long-wave equation (2.16) induced by fluid motion in the 
transverse direction, whose coordinate is y. This correction was derived by 
Ablowitz and Segur [21] under the conditions of a balance between nonlin­
ear, dispersive, and diffractive effects. Therefore, we refer to their article for 
details and obtain a two-dimensional (2D) generalization of the long-wave 
equation in the form 

(AT+a1TH{AU)+/31AAg)g +1AT/T/ = O(€), (4.1) 

where 1'/ = €3/2y. It is remarkable that after substitution of (4.1) into a 
modified equation (2.7) for the first-order correction term w(1), which con­
tains now an additional term responsible for transverse effects, we get the 
same form of w(l) as before [see (2.9)]. Therefore, 2D modulations of long 
internal waves do not lead to a change of the coefficients a2l> a 22 , /321' /322' 

/323' and 12 of the second-order terms of Eq. (2.16). 
First, let us consider evolution of quasi-harmonic internal waves under 

the action of perturbations with comparable scales in the transverse and 
longitudinal directions. Therefore, we introduce the asymptotic expansion, 

00 

A = E JL"An(X,Y,T;E», ( 4.2) 
n=l 

with functions Al and A2 given by (3.2) and (3.3) but now depending also 
on a slow transverse variable Y = JL1'/. Then, in the orders of O( JL3) and 
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D( J.L4) we get a standard set of evolution equations for amplitude of 
quasi-harmonic waves qr(X, Y, T) and self-consistent mean flow n(X, Y, T), 

·.Tr C /312 ( 1 12) I'rT + 2kqryy = alqrXX + 2a
j 

n+ 'I' '1', (4.3a) 

C 2 
nXX + 4a

j
k nyy + (1'1'1 }xx = o. ( 4.3b) 

This system has the form of the Davey-Stewartson equations [3] describing 
gravity-capillary wave packets on the surface of homogeneous fluid. On the 
other hand, the system (4.3a)-(4.3b) with parameters presented in Appen­
dix A follows also from the general equations for quasi-harmonic interfacial 
waves [6-9] in the shallow-deep limit of the fluid depths. Note that for 
arbitrary fluid depths the coupling of mean flow n and amplitude 'I' of the 
interfacial waves is given by a fourth-order differential equation that is 
different from the Davey-Stewartson system. 

It is easy to see that Eqs. (4.3a)-(4.3b) transform to a cubic NLS equation 
for any plane-wave solutions that depend on a combination kxx + kyY 
excepting the case ky ~ O. For the latter case, the leading-order nonlinear 
effects completely disappear according to the analysis presented above. 
Therefore, for wave packets with ky «kx the model (4.3a)-(4.3b) becomes 
incorrect and we should modify the asymptotic expansions (4.2). In this case 
we introduce a modified expansion (3.1) where all terms An depend also on 
a transverse coordinate, which is now given by the variable Y = J.L3/2'Y"J. Using 
the same asymptotic technique as that in Section 3, we finally get a set of 
nonlocal equations 

iqrT = aqrxx + /3qr(i +TIJ)(lqrnx - ylqrl2qr + /3itqr, (4.4a) 

it xx = 2
c
a (lqrI2)yy. (4.4b) 

Here it is the Y-induced part of the higher-order mean flow [see (3.6)], which 
is consistent with amplitude of a carrier quasi-harmonic wave, while the 
parameters a, /3, and yare the same as those in (3.7). It is clear that for 
Y-independent perturbations the system (4.4a)-(4.4b) transforms to the 
mixed NLS equation (3.7). However, for X-independent perturbations the 
system (4.4a)-(4.4b) fails. Therefore, this new nonlocal model can be applied 
to describe only almost longitudinal perturbations of quasi-harmonic inter­
nal waves. 
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5. Modulational stability of small-amplitude waves 

Here we use the evolution equations derived in the previous section to 
discuss the problem of modulational stability of small-amplitude internal 
waves in the shallow-deep stratified fluid. This problem has been partially 
considered earlier. Tanaka [5] found that the shallow-deep limit of a 
two-layer fluid yields a stable region with respect to longitudinal modula­
tions of interfacial waves. However, this case is very special and a correct 
description can be carried out only in the framework of the mixed NLS 
equation (3.7). Later, Grimshaw and Pullin [6] considered the stability of 
small-amplitude interfacial waves with respect to oblique perturbations and 
showed that the small-amplitude waves in the shallow-deep limit become 
unstable due to a quartet resonance with oblique wave satellites. However, 
their analysis was restricted by a set of amplitude-mean flow equations, 
which reduce to the cubic NLS equation for plane-wave perturbations. 
Recently, similar results were rediscovered by Spector and Miloh [22] who 
considered a more general problem of nonlinear periodic wave stability in 
the framework of the 2D long-wave model (4.1) for H =00. However, terms 
of the order of O( e) were not analyzed in this article, although they might 
be important for this problem. Now we present a general solution of the 
stability problem in the shallow-deep limit of a stratified fluid. 

We start our analysis from the system (4.3a)-(4.3b), which is correct for 
comparable scales of 2D perturbations of small-amplitude waves. We lin­
earize these equations about a background carrier wave with amplitude a, as 

'I' = [a + (u r + iuj)exp( AT + iKx X + iKyY) ]exp ( - i ~)2a2 T), 
a) (5.1) 

n = Un exp( AT + iKxX + iKyY) , 

where U r ' U j , Un « a. From this linear analysis, we obtain the growth rate A 
as a function of the modulation wavenumbers K x' K y, 

2 _ a'13? (2alkK;-CK~) 2 _ ( 2 _ CK~)2 
A - 2a1k 4a

1
kK; + cK~ Ky a)KX 2k (5.2) 

The first term of (5.2) coincides with the result of Spector and Miloh (see 
their formulas (4.9), (4.18) in [22]), while the full expression (5.2) can also be 
deduced from the analysis of Grimshaw and Pullin [6]. It follows from this 
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expression that an instability occurs for wavenumbers K x , Ky limited from 
above by a critical value, 

Ky (Ky) _ f¥alk 
Kx.:5: K - -c-' 

x u 

(5.3a) 

where we have supposed that a l > 0 according to the calculations presented 
in Appendices A and B. The critical ratio (Ky / Kx)u determines a slope of 
the resonance curve in (Kx,Ky)-space for a quartet-wave resonant interac­
tion (see [1Z]), 

Zw(k,O) = w(k+Kx,Ky) + w(k-KX,-Ky ), 

where w(kx ' ky) is the frequency of small-amplitude waves that follows from 
(4.1) in the limit H ~OO, 

ck2 
2 y 

W = - alkx + Zk . 
x 

It is important to note that the instability region of quartet resonance does 
not disappear in the shallow-deep limit of a stratified fluid, which is 
different from the shallow-shallow limit [6]. 

The lower boundary of the instability region can be found from (5.Z) in 
the limit K y « K x. It is expressed by the quadratic curve 

Ky (Ky) 
K2 ~ K2 

X X I 

Zal,;a;t( 
a{3l 

(5.3b) 

However, it was emphasized in Section 4 that the model (4.3a)-(4.3b) loses 
validity for such small scales of transverse wavenumbers. Therefore, a 
correct description of the lower boundary of the instability region can be 
realized only in the framework of model (4.4a)-(4.4b). 

Next, we tum to the nonlocal model (4.4a)-(4.4b) and use a linearization 
technique similar to that described for (5.1). The result is presented by the 
following dispersion relation for the growth rate A: 

(A - i{3a2KX)2 = c{3a2Kf - ({32a 2 +Zya )a2Ki 

- Za{3a2Kl coth[ Kxo] - a 2Kt. (5.4) 
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It is readily found in the limit K x , Ky ~ 0 that the lower boundary of the 
instability region is a linear rather than quadratic curve. For longitudinal 
perturbations (Ky = 0) we see that small-amplitude waves are stable be­
cause ll', {3, 'Y > O. This result is in agreement with the analysis of Tanaka [5]. 
Thus, the instability region is presented by the angular region, 

({32a2+2'Yll'~+2ll'{3/8) ~ (~: r ~ 2;k. (5.5) 

If the cubic nonlinear term can be neglected ('Y ~ 0) and the fluid is 
infinitely deep (8 ~ 00), formula (5.5) transforms to that obtained by Spector 
and Miloh [22] by direct analysis of periodic wave stability in the framework 
of the long-wave model (4.1) at H ~OO. Here we have obtained a more 
general formula for the instability region using another approach, which is 
based on the short-wave nonlocal models for small-amplitude waves. It is 
important to mention that for different ratios of perturbation wavenumbers 
we should use different short-wave models, namely Eqs. (4.3a)-(4.3b) or 
(4.4a)-(4.4b). 

6. Conclusion 

In this article we have shown that a correct description of short internal 
(interfacial) waves in a thin-layer stratified fluid can be realized within the 
framework of higher-order nonlocal evolution equations. We have derived a 
new evolution equation that we call the mixed NLS equation. We believe 
that this equation is universal for the theory of shallow-deep stratified fluid 
and it governs the evolution not only of internal and interfacial waves but 
also for wave perturbations in shear and shear-stratified flows where the 
corresponding long-wave equation takes the form of the IL W equation [23]. 
Note that usually a cubic NLS equation is considered as an adequate model 
for envelope waves in stratified shear flows [24, 25]. 

However, it is important to note that two-dimensional generalizations of 
this mixed NLS equation will be different for stratified and shear-stratified 
fluids. This difference is a consequence of the anisotropy induced by shear 
flows, which modifies the dispersion relation for 2D wave perturbations. 
Therefore, the problem of finding new 2D nonlocal models for description of 
envelope waves in stratified shear flows remains open for further studies. 

Appendix A: Two-layer fluid 

Here we suppose that the fluid is represented by two layers of constant but 
different densities, Po for - d < z ~ 0 and Poo for - h ~ z < - d. Therefore, 
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the density profile can be expressed by means of the generalized functions, 

R = Po0(z+d) + Px[1-0(z+d)], 

where 0(z) is the unit Heaviside function, 0(z) = 0 for z < 0 and 0(z) = 1 
for z> O. For this profile we can find the modal function W(Z) and 
eigenvalue c of the problem (2.5), (2.6a)-(2.6b) in explicit form, 

W={-Z/d, 
1, 

for - d < z < 0 
for - 00 < z < - d ' 

c2 = g( Px- Po)d 
Po 

Next, we find the coefficients (T = 2 Po / d and b 1 = - 3 Po / d and the func­
tions Wll(z) and W12(z), 

W
ll

={-Z2/d , 
-d, 

for - d < z < 0 
for - 00 < z < - d ' 

2 
W12 = 1l(1-0(z+d»), 

so that Wl1 = - d, W12 = 2/ d. Using the properties of the generalized 
functions, we evaluate the integrals entering into the coefficients of Eqs. 
(2.S) and (2.11). As a result, we obtain the following coefficients of the 
higher-order long-wave equation (2.16), 

cpood 
0: 1 = 2po ' 

cd 2 

0:21 -6' 
2 2 3cd Poo 

0:22 = Sp~ , 

3 Poo + 6 Po Poo 17 Poo + 12 Po 
/31=-2d,/321=- 4po ,/322=-SPO,/323= Spo 'Y2=0. 

Finally, we find the coefficients of the mixed NLS equation (3.7), 

cpood > 0, 
0: = 2po 

9po > 0, 
/3 = Sckdpoo 

9kp~ ( 31p; ) y= 1+-- >0 
Scd2p; 12 p~ . 

Note that coefficient Y coincides with the results of Tanaka [5] and Grimshaw 
and Pullin [6]. 
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Appendix B: Constant stratification layer 

For this case we suppose that R(z) = Px exp[ - N 2(z + d)j g] for - d ~ z ~ 0 
and R(z) = Px for - h ~ z ~ - d, where the constant quantity N 2 is re­
ferred to as the Brunt-Vaisala frequency. In addition, we use the Boussi­
nesq approximation so that the function R(z) in the problem (2.5) and all 
integral coefficients is considered to be constant. Then, we find a simple 
solution to the problem (2.5), 

w = {( -l(+l sin [ 7T(1 ;in)z], 

1, 

for - d < z < 0 

for - 00 < z < - d 

2Nd 
+ = + 2 )' e == - en - 7T( 1 + n 

where n = 0,1,2, .... Thus, for this case there is an infinite countable set of 
modes of long internal waves. We can derive the higher-order long-wave 
equation for each internal mode. First, we evaluate the parameters (T = 
7T 2(1+2n)2j(4d) and bl = -7T 2(1+2n)2j(2d 2) and solve the linear inho­
mogeneous equations for the functions WI1(z) and W12(z), 

{(
_l)n+1 (. [7T(1+2n)z]_ 2 [7T(1+2n)z]) w: _ z sm 2d 7T(1+2n) cos 2d ' 

11 -
for - d < z < 0 

- d, for - 00 < z < - d 

{ 

(-1)n7T(1+2n) [7T(1+2n)z] 
W

12 
= d2 zcos 2d ' 

0, 

for - d < z < 0 

for - 00 < z < - d. 

Using these expressions we can evaluate coefficients of Eq. (2.16), 

4ed 8ed2 

a l 2 2 ' 7T (1+2n) a 21 = - 7T 4(1+2n)4' 

a 22 
40ed

2 (1- 7T
2
(1+2n)2) 

7T4(1+2n)4 20' 

2 (40) 
f31 = -d' f321 = - 1+ 37T 2(1+2n)2 ' 

8 
ry , f322 = 7T 2(1+2n) 

f3 =1+ 20 -~ 
23 7T 2(1+2n)2' 'Y2-ed2' 
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and of the mixed NLS equation (3.7), 

4cd 
a = 2 > 0, 

1T2(1 +2n) 

f3 = 1T2(1+2n)2 0 
4ckd3 >, 

= ~(1 91T
2
(1+2n)2) 0 

'Y 3cd2 + 32 >. 
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