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Abstract. We demonstrate existence of waves localized at the interface of two nonlinear periodic media with
different coefficients of the cubic nonlinearity via the one-dimensional Gross–Pitaevsky equation.
We call these waves the surface gap solitons (SGSs). In the case of smooth symmetric periodic
potentials, we study analytically bifurcations of SGSs from standard gap solitons and determine
numerically the maximal jump of the nonlinearity coefficient allowing for SGS existence. We show
that the maximal jump vanishes near the thresholds of bifurcations of gap solitons. In the case of
continuous potentials with a jump in the first derivative at the interface, we develop a homotopy
method of continuation of SGS families from the solution obtained via gluing of parts of the standard
gap solitons and study existence of SGSs in the photonic band gaps. We explain the termination of
the SGS families in the interior points of the band gaps from the bifurcation of linear bound states
in continuous nonsmooth potentials.
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1. Introduction. We are concerned with localized waves at the interface of two periodic
nonlinear media called surface gap solitons (SGSs). One of the first publications on optical
solitons propagating along material interfaces is [17], where the interface of a linear and a
focusing Kerr nonlinear medium is studied. In the last two years relevant publications in the
context of nonlinear optics have dealt, for instance, with discrete surface solitons in nonlinear
waveguide arrays [4, 10, 16], SGSs at the interface of a uniform and a periodic medium with the
defocusing cubic nonlinearity [7], and surface vortex solitons at the interface of two periodic
media with different mean values of the refractive index and with saturable nonlinearity [5, 6].
One of the typical models employed in the theory of gap solitons is the one-dimensional
nonlinear Schrödinger (NLS) equation with cubic nonlinearity and periodic potential called
the Gross–Pitaevsky equation.

We investigate here the existence of surface waves at the interface of two media with
identical periodic linear parts of the refractive index and with different cubic nonlinearities.
It is known that for most photonic materials a variation in the nonlinear part of the refractive
index n2 is necessarily accompanied by a larger change in the linear part n0. Nevertheless,
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certain materials exhibit large variations in n2 accompanied by small variations in n0; see
[1, 15]. Localized states have been studied theoretically in media with constant n0 and spatially
periodic n2 in [3].

Each of the two periodic nonlinear media supports at least two families of standard gap
solitons in every bounded nonempty frequency gap. One family is always unstable, while the
other can be stable depending on the locations of spectral bands and bifurcations of eigenvalues
from the band edges [13]. The potentially stable family looks like a single-humped envelope
soliton with exponential decay and oscillations near the central peak. Multihumped envelope
solitons may also exist in such periodic nonlinear media, but we shall focus herein on existence
of a single-humped solution localized near the interface between the two periodic nonlinear
media.

The paper is organized as follows. Section 2 reviews Floquet theory for the governing
Gross–Pitaevsky equation and summarizes the results on existence of gap solitons. In section 3
we study the existence of SGSs for a smooth symmetric periodic potential function and find
the maximal allowed jump in the nonlinearity coefficient between the two media for existence
of SGSs. Section 4 discusses bifurcations and existence of SGSs for a continuous potential
function with a derivative jump at the nonlinearity interface. Section 5 concludes the paper
with conjectures on the stability of SGSs.

2. Background: Floquet theory and gap soliton existence. We consider the one-dimen-
sional periodic cubic Schrödinger equation in the form

(2.1) iut = −uxx + V (x)u− Γ(x)|u|2u, x ∈ R, t ≥ 0,

where x and t are the spatial and temporal variables, respectively, V (x) is a real, continuous,
and d-periodic potential, and Γ(x) = Γ± for ±x > 0 is a real nonlinearity coefficient with
constants Γ+ and Γ−. The positive values of Γ(x) correspond to the focusing nonlinearity and
the negative values of Γ(x) to the defocusing nonlinearity.

We are interested in the existence of stationary solutions of (2.1) localized near the inter-
face at x = 0 and having the form

(2.2) u(x, t) = e−iωtφ(x) s.t. φ : R → R, φ → 0 as |x| → ∞.

The function φ(x) has to satisfy the second-order nonautonomous ODE

(2.3) −φ′′ − ωφ + V (x)φ− Γ(x)φ3 = 0,

which can be cast in the Hamiltonian form with the Hamiltonian function

(2.4) H[φ] =
1

2

[
(φ′)2 + ωφ2 − V (x)φ2

]
+

1

4
Γ(x)φ4.

Since Γ(x) is discontinuous at x = 0, φ(x) is a weak solution of the ODE (2.3) in φ ∈
C2(R+ ∪ R−), such that the second derivative φ′′(x) may have a jump at x = 0. The contin-
uously differentiable solution φ ∈ C1(R) is a critical point of the energy functional

Eω[φ] =
1

2

∫
R

[
|φ′|2 + ω|φ|2 − V (x)|φ|2

]
dx +

1

4

∫
R

Γ(x)|φ|4dx,
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such that the first variation E′
ω[φ] recovers the ODE (2.3).

Replacing t by z in (2.1) and (2.2), the x-localized solution u(x, z) can be viewed as a
spatial soliton propagating along the direction z and localized in the transverse direction x.
The parameter ω plays the role of the propagation constant. Other applications of the ODE
(2.3) occur in the theory of stationary solutions of the nonlinear Maxwell and Klein–Gordon
equations in one dimension.

As we show below, the localized solutions of the ODE (2.3) decay exponentially as |x| → ∞
only if ω belongs to the frequency gaps in the continuous spectra of the operator L := −∂xx +
V (x) called the photonic band gaps. To do so, we recall the basic Floquet theory (see [2, 9])
for the Hill equation

(2.5) Lψ(x) = −ψ′′(x) + V (x)ψ(x) = ωψ(x), x ∈ R.

The bounded solutions ψ(x) of the Hill equation (2.5) are usually called Bloch functions.
Given a real, continuous, and d-periodic potential V (x), bounded solutions ψ(x) exist for ω
in a union of (possibly disjoint) spectral bands

Σ := [ω0, ω1] ∪ [ω2, ω3] ∪ [ω4, ω5] ∪ . . . ,

where ω2n−2 < ω2n−1 ≤ ω2n, n ∈ N, and ωn → ∞ as n → ∞. The set Σ represents the
complete (purely continuous) spectrum of the operator L [2]. We shall assume for simplicity
that all spectral bands are disjoint with ω2n−1 < ω2n, n ∈ N, such that all finite frequency
gaps are nonempty.

For a fixed ω in the interior point of Σ, both fundamental solutions of the second-order
ODE (2.5) are quasi-periodic in x and have the representation ψ = p±(x)e±ikx, where p±(x) =
p±(x + d) and k ∈

[
0, πd

]
. The parameter k parameterizes the frequency parameter ω, such

that we shall use the notation ω = ω2n,2n+1(k) for the spectral band in ω ∈ [ω2n, ω2n+1]. If
the nth band is separated from the (n + 1)th band (i.e., ω2n−1 < ω2n and ω2n+1 < ω2n+2),
then ω′

2n,2n+1(k) = 0 and ω′′
2n,2n+1(k) �= 0 at the endpoints k = 0 and k = π

d [8].
When ω = ωn, one of the solutions ψ = ψn(x) is either d-periodic (corresponding to k = 0)

or d-antiperiodic (corresponding to k = π
d ), and the other fundamental solution ψ(x) grows

linearly in x. For a fixed ω ∈ R \Σ the two fundamental solutions of (2.5) grow exponentially
in either x or −x and have the representation ψ = u±(x)e±κx, where u±(x) is either periodic
or antiperiodic and κ = κ(ω) ∈ R+. The functions u±(x) are periodic (antiperiodic) if the
bounded solutions ψn(x) are periodic (antiperiodic) at the band edges ω2n−1 and ω2n, which
surround the band gap.

Suppose that φ(x) is a localized solution of the ODE (2.3). It is then obvious from
the linearized analysis that the solution φ(x) decays exponentially as |x| → ∞ only if ω ∈
R \ Σ. It was shown under fairly general assumptions (see [13] and references therein) that
the families of gap solitons of the ODE (2.3) with constant coefficient Γ(x) = Γ0 undertake
a local bifurcation from all points ω = ω2m, m ≥ 0, to the left if Γ0 > 0 and from all points
ω = ω2m+1, m ≥ 0, to the right if Γ0 < 0 (the term local bifurcation means that ‖φ‖L∞ → 0
as ω → ωn). This conjecture was rigorously proved in [11], where existence of exponentially
decaying gap solitons in H1(R) was confirmed in every finite frequency gap ω ∈ (ω2m−1, ω2m),
m ∈ N, and in the semi-infinite frequency gap ω < ω0 for Γ0 > 0. We use this result but
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simplify our consideration by working with the class of symmetric potentials V = V0(x), where
V0(−x) = V0(x) on x ∈ R. In particular, we shall perform numerical computations with

(2.6) V0(x) = sin2
(πx

d

)
, d = 10,

which has a minimum at x = 0, i.e., at our interface location. The spectral bands and gaps of
V0(x) are approximated numerically from the Hill equation (2.5). For instance, the first five
band edges of the potential (2.6) are located as follows:

ω0 ≈ 0.283, ω1 ≈ 0.291, ω2 ≈ 0.747, ω3 ≈ 0.843, ω4 ≈ 1.057.

As seen in Figure 1 of [13], the Bloch functions ψ = ψn(x) at the band edges ω = ωn, n ≥ 0,
have the following symmetry properties:

ψn(−x) = ψn(x), n ∈ {0, 1, 4, 5, 8, 9, . . .},
ψn(−x) = −ψn(x), n ∈ {2, 3, 6, 7, . . .}.

(2.7)

Symmetry properties (2.7) can be proved for any even potential V0(−x) = V0(x). Indeed, since
the Hill equation (2.5) is symmetric with respect to reflection x �→ −x and admits only one
linearly independent bounded eigenfunction ψ = ψn(x) at ω = ωn, the function ψn(x) must
be either even or odd in x. By the trace of the monodromy matrix [2], the periodic functions
ψn(x) correspond to the set n ∈ S+ with S+ = {0, 3, 4, 7, 8, . . .}, and the antiperiodic functions
ψn(x) correspond to the set n ∈ S− with S− = {1, 2, 5, 6, . . .}. By Sturm’s theorem [2], the
periodic functions ψn(x) with n ∈ S+ have exactly indS+(n) − 1 nodes on x ∈

(
−d

2 ,
d
2

)
,

where indS+(n) is the order number of n in the set S+. For instance, ψ0(x) has no nodes
(positive definite), ψ3(x) has one node, ψ4(x) has two nodes, etc. Combining the symmetry
with respect to reflections and the number of nodes, we conclude that the set of eigenfunctions
{ψn(x)}n∈S+ alternates the symmetry in x, such that ψ0(x) is even, ψ3(x) is odd, ψ4(x) is
even, etc. Similarly, the antiperiodic functions ψn(x) with n ∈ S− have exactly indS−(n) − 1
nodes on x ∈

(
−d

2 ,
d
2

)
. For instance, ψ1(x) has no nodes, ψ2(x) has one node, etc. We

conclude again that the set of eigenfunctions {ψn(x)}n∈S− alternates the symmetry in x, such
that ψ1(x) is even, ψ2(x) is odd, etc.

Altogether, this set of facts is summarized in Table 1.

Table 1
Properties of the Bloch functions ψn(x) and gap soliton bifurcations at the first eight band edges of an even

potential V0(−x) = V0(x).

n 0 1 2 3 4 5 6 7

symmetry even even odd odd even even odd odd

periodicity S+ S− S− S+ S+ S− S− S+

# nodes on
(
− d

2
, d

2

)
0 0 1 1 2 2 3 3

sign of Γ0 for local bifurcation 1 −1 1 −1 1 −1 1 −1

Let φ0(x) be a single-humped solution of the ODE (2.3) with Γ(x) = Γ0 and V (x) = V0(x)
which bifurcates from the band edge ω = ωn. By the local bifurcation theory [13], it inherits
the symmetry properties (2.7) of the Bloch function ψn(x). Therefore, φ0(−x) = φ0(x) for
branches of gap solitons to the left of ωn with n = {0, 4, 8, . . .} (for Γ0 > 0) and to the right
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of ωn with n = {1, 5, 9, . . .} (for Γ0 < 0), while φ0(−x) = −φ0(x) for branches of gap solitons
to the left of ωn with n = {2, 6, . . .} (for Γ0 > 0) and to the right of ωn with n = {3, 7, . . .}
(for Γ0 < 0). See Figures 2–3 in [13] for gap solitons φ0(x) in the potential (2.6).

In this paper, we shall consider the existence of SGSs in the ODE (2.3) with piecewise
constant coefficient Γ(x) = Γ± for ±x > 0 and potential V (x) of the following two classes:

(2.8) (i) V = V0(x), (ii) V = V0(x− δ)χ(−∞,0) + V0(x + δ)χ[0,∞),

where χ[a,b] = 1 on x ∈ [a, b] and zero otherwise, while 0 < δ < d. Here V0(x) is a smooth,
even, d-periodic function on x ∈ R. We note that V (x) in (ii) is continuous and even on x ∈ R

but smooth and periodic only on each ±x > 0.
One can develop a general shooting method for numerical approximations of SGSs from the

condition that a localized solution φ(x) of the second-order ODE (2.3) with ω ∈ (ω2m−1, ω2m),
m ∈ N, decays to zero at infinity according to two fundamental solutions p±(x)e∓κx as
x → ±∞, where κ = κ(ω) is a positive number. Solving the ODE (2.3) with Γ(x) = Γ+ for
a general initial value φ(0) and φ′(0) to x > 0 and the same ODE with Γ(x) = Γ− to x < 0,
one can construct a continuously differentiable solution φ(x) on x ∈ R which decays to zero
as x → ±∞ if and only if the projections to the growing fundamental solutions p±(x)e±κx are
zero at infinity. The system of two constraints for two initial values constitutes a well-posed
problem of numerical analysis. This numerical approach was adopted in recent work [18].
Practical implementations of this algorithm are unclear as the shooting method may depend
sensitively on starting approximations of the initial value and may require long computational
time to search through all appropriate initial values. In addition, the ODE solvers of the
shooting method may develop numerical instabilities in approximations of growing solutions.

Due to these reasons, we shall develop an alternative view on numerical approximations of
SGSs, starting with local bifurcation analysis and using the homotopy continuation method
to trace the solution families along parameters ω, Γ±, and δ. Using these analytical and
numerical results, we have obtained the following main results.

(1) We prove analytically that any gap soliton for Γ+ = Γ− can be continued to the SGS
for sufficiently small |Γ+ − Γ−| under a nondegeneracy assumption.

(2) We prove analytically that the maximal difference |Γ+ −Γ−| leading to SGS existence
converges to 0 when ω approaches the band edge which features the local bifurcation
of a gap soliton.

(3) SGSs are computed numerically when the potential V (x) is given by (2.8)(i), and the
maximal |Γ+ − Γ−| allowing their existence is found. Our numerical results confirm
the analytical results (1)–(2) above.

(4) Existence of SGSs for V (x) in (2.8)(ii) with Γ+ > 0 and Γ− < 0 is studied. We
numerically show that local bifurcations may occur from a countable set of points in
the parameter domain (ω, δ) ∈ (ω2m−1, ω2m) × (0, d), m ∈ N.

(5) We numerically compute the points of local bifurcation of SGSs for the potential
(2.8)(ii) and use the homotopy continuation of the bifurcating solution. As a result,
we show that the family of SGSs exists typically in a subset of the plane (ω, δ).

(6) We analytically show that the termination of families of SGSs for the potential (2.8)(ii)
is related to existence of linear bound states for the nonsmooth potential.

Results (1)–(3) are reported in section 3, and results (4)–(6) are described in section 4.
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3. Bifurcations of SGSs for smooth potentials. In this section we study continuation of
SGSs from gap solitons existing for Γ+ = Γ− in the case of a smooth potential function V (x).
A prototypical example of such potential is the symmetric function V0(x) in (2.8)(i).

3.1. Existence of bifurcations from gap solitons. Let γ = (Γ+ + Γ−)/2 and ν = (Γ+ −
Γ−)/2. Then, the ODE (2.3) can be rewritten in the form

(3.1) F (φ, ν) = −φ′′ − ωφ + V (x)φ− γφ3 − ν sign(x)φ3 = 0,

where F (φ, ν) : H1(R) × R �→ H−1(R) is a nonlinear operator acting on a function φ(x) in
space H1(R) and parameter ν ∈ R.

We assume that there exists a solution φ0(x) ∈ H1(R) for ω ∈ R \ Σ and some γ and
V (x), such that F (φ0, 0) = 0. The Jacobian DφF (φ0, 0) is given by the Schrödinger operator
L : H2(R) �→ L2(R), where

(3.2) L = −∂2
x − ω + V (x) − 3γφ2

0(x).

Since ω ∈ R\Σ, we have φ2
0(x) → 0 exponentially fast as |x| → ∞, such that the term −3γφ2

0(x)
is a relatively compact perturbation to the unbounded operator L−ω, where L = −∂2

x+V (x).
By a standard argument (see Corollary 2 in section XIII.4 in [14]), the essential spectrum of L
and (L−ω) coincide. Since ω ∈ R\Σ, the zero point is isolated from the essential spectrum of
L. If we further assume that L has the trivial kernel in H1(R), then L is invertible on L2(R).
Since the translational invariance is broken if V (x) �= 0, L generally has the trivial kernel,
unless a bifurcation of branches of gap solitons occur. By the standard analysis based on the
implicit function theorem, there exists a unique smooth continuation of φν(x) from φ0(x) in
H1(R) for sufficiently small ν, such that F (φν , ν) = 0 and φν(x) → φ0(x) in H1(R) as ν → 0.

In other words, we have proved above that if a gap soliton exists for Γ+ = Γ− and
ω ∈ R \ Σ and the linearized operator L is nondegenerate, then the gap soliton is uniquely
continued into the SGS for small nonzero |Γ+−Γ−|. We confirm this prediction via numerical
analysis of the ODE (2.3) with V (x) in (2.8)(i) for ω taken in the semi-infinite band gap
and the first two finite gaps. Numerical approximations of φ0(x) for Γ+ = Γ− are obtained
from the Newton–Raphson iterations and the homotopy continuation method. The initial
guess for the Newton iteration is taken from an asymptotic expansion leading to the NLS
approximation [13] when ω is close to the local bifurcation threshold ωn. After a successful
convergence for one such ω we use a standard homotopy continuation and generate a family
of gap solitons φ0(x) parameterized by ω. The discretization of the ODE (2.3) is based on a
fourth-order central difference approximation of ∂xx on a truncated domain with zero Dirichlet
boundary conditions.

3.2. Numerical computations of SGSs. We now proceed to construct SGSs, i.e., solutions
φ(x) of the second-order ODE (2.3) with Γ+ �= Γ−. When φ0(x) is obtained for a given value
of ω, we can apply the numerical homotopy continuation of the solution by deviating Γ− from
Γ+. At each step, the SGS φ(x) is thus found via Newton’s iterations. The final value of Γ−,
up to which the iteration converges, is denoted by Γ∗.

Figure 1 shows the values of Γ∗ for Γ+ = +1 (a) and Γ+ = −1 (b). The computational
tolerance in Γ∗ is 0.006 inside the band gaps and 0.002 near the band edges. In the case
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(b)  Lower edge SGS families: Γ
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Figure 1. The values of Γ∗ for SGSs originating from symmetric GS families of the first three frequency
gaps of V (x) = sin2(πx/10). In (a) the upper inset zooms in and the lower inset zooms out on the graph in the
semi-infinite gap. The points A–L are referenced in Figure 2.

Γ+ = 1, local bifurcations of small-amplitude gap solitons occur from the lower band edges.
Figure 1(a) shows that the SGSs exist in the semi-infinite gap, as well as in the first two
frequency gaps. In the case Γ+ = −1, local bifurcations of gap solitons occur from the upper
band edges. Figure 1(b) shows that the SGSs exist in the first and second frequency gaps.
The two insets of Figure 1(a) show that Γ∗ decreases quickly as ω moves away from the edge
of the first band and that the convergence Γ∗ ↑ 1 as ω ↑ ω0 is smooth. We further see from
Figure 1 that the interval of existence shrinks as ω approaches the value ωn for any band
edge, where gap solitons undertake a local bifurcation. In addition, the interval of existence
is extremely large in the semi-infinite gap (−∞, ω0), but it becomes narrow in the finite gaps
(ω2m−1, ω2m) for m ≥ 1.

For comparison, the family of SGSs in the gap (ω1, ω2) exists for −0.24 < Γ∗ < 1 in the
case Γ+ = +1 and −1 < Γ∗ < 0.47 in the case Γ+ = −1. The family of SGSs in the gap
(ω3, ω4) exists in a very narrow region of 0.92 < Γ∗ < 1 in the case Γ+ = +1 and in a bigger
interval −1 < Γ∗ < 0.37 in the case Γ+ = −1 (similarly to that in the first gap).

Figure 2 shows profiles of SGSs which correspond to the twelve points labeled A–L in
Figure 1. The solid lines correspond to the gap solitons from which the homotopy in Γ− is
started (i.e., points A, D, G, and J). Clearly, the total power and maximum amplitude of the
SGSs increase as |Γ+ −Γ−| increases. Also notice that the profiles become more concentrated
on the half x > 0 in the case Γ+ = +1 (see Figure 2 (a–b)) and on the half x < 0 in the
case Γ+ = −1 (see Figure 2 (c–d)) as |Γ+ − Γ−| increases. This is in accord with the law
of refraction: when Γ+ = +1 and Γ− decreases from 1, the half x > 0 becomes relatively
more focusing and therefore attracts more energy of the soliton, while when Γ+ = −1 and Γ−
increases from −1, the situation is the opposite.

3.3. Asymptotic analysis near gap soliton bifurcation points. Now we shall explain why
the existence interval shrinks to zero when ω approaches the value ωn where a local bifurcation



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Figure 2. The profiles of SGSs corresponding to the points A–L in Figure 1. Values of ω are A–C: 0.26,
D–F : 0.55, G–I: 0.6, J–L: 0.96. Values of Γ− are A: 1, B: −3.9, C: −15.3, D: 1, E: 0.38, F : −0.235, G:
−1, H: −0.45, I: 0.002, J : −1, K: −0.4, L: 0.164.

of gap solitons occurs. As ω → ωn, we have ‖φ0‖L∞ → 0 and L → (L−ωn). Since the operator
(L−ωn) is not invertible, the implicit function theorem cannot be used and the solution φ0(x)
cannot be continued beyond ν = 0. In order to give a more precise explanation of this
phenomenon, we adopt the NLS approximation for local bifurcation of gap solitons from [13]
(see also the review in [12]). In particular, we consider an asymptotic solution to the ODE
(2.3),

ω = ωn + ε2 Ω + O(ε4),

φ(x) = εA(X)ψn(x) + ε2 A′(X)ψ̃n(x) + ε3 φ(3)(x,X) + O(ε4),
(3.3)

where X = ε x, ε << 1, the function A(X) and parameter Ω are defined below, and ψn and
ψ̃n are the d-periodic (or d-antiperiodic) Bloch functions and generalized Bloch functions,
respectively, of the Hill equation (2.5) for ω = ωn, such that

(3.4) (L− ωn)ψn = 0, (L− ωn)ψ̃n = 2ψ′
n.

The correction term φ(3)(x,X) at O(ε3) solves the nonhomogeneous problem

(3.5) (L− ωn)φ(3) = ΩAψn + A′′ψn + 2A′′ψ̃′
n + Γ(X)A3ψ3

n.

To ensure boundedness of φ(3)(x,X) with respect to the variable x, and, hence, legitimacy of
the expansion (3.3), one has to apply the Fredholm alternative which imposes the orthogonality
condition of the right-hand side of (3.5) with respect to ψn(x) on x ∈ [0, d]. The orthogonality
condition is written as

(3.6) ΩA + μA′′ + ρΓ(X)A3 = 0,
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where

μ = 1 + 2
(ψ̃′

n, ψn)

(ψn, ψn)
, ρ =

(ψ2
n, ψ

2
n)

(ψn, ψn)
,

and we have used the standard L2 inner product (·, ·) over one period x ∈ [0, d]. It is shown
in [13] that μ = 1

2ω
′′
2n,2n+1(k) with either k = 0 or k = π

d at the point ω = ωn, where
ω2n,2n+1(k) is the dispersion relation between ω ∈ [ω2n, ω2n+1] and k ∈ [0, πd ].

Due to the nature of the nonlinearity interface, the function Γ(X) is the same as Γ(x),
i.e., Γ(X) = Γ± for ±X > 0. We shall prove that no localized solution of the ODE (3.6) exists
under the condition Γ− �= Γ+. Indeed, consider the Hamiltonian of the ODE (3.6):

(3.7) H[A] =
1

2

[
μ(A′)2 + ΩA2

]
+

1

4
ρΓ(X)A4.

If A(X) solves the ODE (3.6), then

d

dX
H[A(X)] =

1

4
ρΓ′(X)A4(X) =

1

4
ρ(Γ+ − Γ−)δ(X)A4(X),

where δ(X) is the Dirac delta-function. If A(X) is a localized solution on X ∈ R, then the
integration on X ∈ R gives the constraint

0 = lim
x→+∞

H[A(X)] − lim
x→−∞

H[A(X)] =
1

4
ρ(Γ+ − Γ−)A4(0),

since H[A(X)] → 0 if A(X), A′(X) → 0 as |X| → ∞. Therefore, A(0) = 0 if Γ+ �= Γ−.
Consider now H[A(X)] on X > 0. It is clear from the decaying conditions as X → ∞
that H[A(X)] = const = 0, which together with the fact that A(0) = 0 leads to 0 =
limX↓0 H[A(X)] = 1

2μ|A′(0)|2, such that A′(0) = 0. The only solution of the ODE (3.6)
with A(0) = A′(0) = 0 is the zero solution A(X) ≡ 0.

If Γ+ = Γ− = Γ0 and sign(μ) = sign(ρΓ0) = − sign(Ω), the ODE (3.6) has the standard
sech-soliton decaying as |X| → ∞. However, the result above shows that the sech-soliton with
Γ+ = Γ− cannot be homotopically continued to a decaying solution of (3.6) for Γ+ �= Γ−.
This proves that Γ∗ → Γ+ as ω → ωn, where ωn is a local bifurcation value.

4. Bifurcations of SGSs for nonsmooth potentials. In this section, we study local bifur-
cations of solutions of the ODE (2.3) when V (x) is a continuous function with the jump in the
first derivative at the nonlinearity interface. The prototypical example of such potentials is
given by (2.8)(ii), where V0(x) is an even potential (in our numerical computations we use V0

from (2.6)). We shall consider the existence of SGSs under the normalization Γ+ = −Γ− = +1.

4.1. SGS numerical construction via gluing. The point (δ∗, ω∗) in the parameter domain
δ ∈ (0, d) and ω ∈ (ω2m−1, ω2m), m ∈ N, is defined to be a point of a local bifurcation of SGSs
according to the following two-step algorithm.

(i) Construction of continuous solutions. Let φ±(x;ω) denote the family of single-humped
gap solitons parameterized by ω ∈ (ω2m−1, ω2m) and centered at x = 0 corresponding to (2.3)
with Γ(x) ≡ Γ±, respectively. These families bifurcate from the points ω = ω2m for Γ+ > 0
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Figure 3. Two-step search for (ω∗, δ∗) in the gap (ω1, ω2). (a) Result of step (i)—parametrization of the
families of continuous solutions (4.1): black line ωA(δ), gray line ωB(δ). (b) Step (ii)—search for δ∗: solid
black φ′

+(δ;ωA), dashed black φ′
−(−δ;ωA), solid gray −φ′

+(δ;ωB), and dashed gray φ′
−(−δ;ωB). Labeled points

correspond to SGSs.

and ω = ω2m−1 for Γ− < 0. In order to find continuous solutions, we now study for each fixed
δ ∈ (0, d) the two functions

fA(ω) = φ−(−δ;ω) − φ+(δ;ω), fB(ω) = φ−(−δ;ω) + φ+(δ;ω)

and find their zeros denoted by ωA,B = ωA,B(δ), respectively. For each δ existence of zeros of
either fA(ω) or fB(ω) is guaranteed by continuity of φ± as functions of ω and by the fact that
φ−(−δ;ω2m−1) = φ+(δ;ω2m) = 0 and φ−(−δ;ω2m) �= 0, φ+(δ;ω2m−1) �= 0. Moreover, several
zeros of these functions may occur for the same δ.

When a zero ωA(δ) or ωB(δ) is found, a δ-parameterized family of continuous solutions
φA(x; δ) or φB(x; δ), respectively, is constructed by gluing two individual gap solitons:

φA(x; δ) = φ−(x− δ;ωA)χ(−∞,0) + φ+(x + δ;ωA)χ[0,∞),

φB(x; δ) = φ−(x− δ;ωB)χ(−∞,0) − φ+(x + δ;ωB)χ[0,∞).
(4.1)

The functions φA,B(x; δ) decay as |x| → ∞ and are smooth in x everywhere except at the
nonlinearity interface x = 0, where they generally have a jump in the first derivative.

Note that it is important to consider both φA and φB due to the sign invariance of the
ODE (2.3). Each sign produces a branch of continuous solutions of the ODE (2.3).

Figures 3 (a) and 4 (a) present the numerically computed ωA,B(δ) for δ ∈ (0, d) in the
gaps (ω1, ω2) and (ω3, ω4), respectively. The lack of smoothness in the curves in these figures
is due to an insufficient resolution in the search algorithm and can be corrected with a finer
resolution. Note that when ωA,B(δ) is multiple-valued, as seen in Figures 3 (a) and 4 (a), we
may have several decaying solutions φA(x) and/or φB(x) for the same δ.

(ii) Construction of SGSs. Next, we search for continuously differentiable solutions within
the above family φA,B(x; δ). To ensure the continuity of the first derivative of φ(x; δ) at x = 0,
we search for zeros of the two functions

gA(δ) = φ′
−(−δ;ωA) − φ′

+(δ;ωA), gB(δ) = φ′
−(−δ;ωB) + φ′

+(δ;ωB).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SURFACE GAP SOLITONS AT A NONLINEARITY INTERFACE 259

0 2.5 5 7.5 10

0.85

0.9

0.95

1

1.05

(a)

δ

ω
A

,B

0 2.5 5 7.5 10

−0.5

−0.25

0

0.25

0.5

(b)

δ

φ ±′(±
δ,

ω
A

,B
)

 

 

Q

R S

T

Figure 4. Analogous to Figure 3 but for the gap (ω3, ω4).

If a zero of either gA(δ) or gB(δ), denoted by δ∗, exists, then the function φA(x; δ∗) or φB(x; δ∗),
respectively, in (4.1) has a continuous first derivative across the point x = 0. Figures 3 (b)
and 4 (b) present the numerical results on computing δ∗. The labeled intersection points O,
P , Q, R, S, and T correspond to zeros of gA,B(δ). They are found as intersection points of
solid and dashed curves of the same color. The solid black line shows the plot of φ′

+(δ;ωA),
and the dashed black line shows φ′

−(−δ;ωA). Similarly, the solid gray line plots −φ′
+(δ;ωB),

and the dashed gray line plots φ′
−(−δ;ωB). Therefore, an intersection of a solid black and

a dashed black line (points O,Q, S) gives zeros δ∗ of gA(δ) and, thus, a solution φA(x; δ∗).
Similarly, an intersection of a solid gray and a dashed gray line (points P,R, T ) gives zeros δ∗
of gB(δ) and, thus, a solution φB(x; δ∗).

Table 2 shows the approximate computed values of δ∗ and corresponding ω∗ = ωA,B(δ∗)
at the points O–T for branches A,B of solutions given by (4.1). Note that additional points
(δ∗, ω∗) can be obtained by generalizing the above functions fA,B and gA,B to

fjA(ω) = φ−(−(jd + δ);ω) − φ+(jd + δ;ω), fjB (ω) = φ−(−(jd + δ);ω) + φ+(jd + δ;ω)

and

gjA(δ) = φ′
−(−(jd + δ);ωA) − φ′

+(jd + δ;ωA), gjB (δ) = φ′
−(−(jd + δ);ωB) + φ′

+(jd + δ;ωB)

for j ∈ {1, 2, . . .} with V still defined as in (2.8)(ii). Nontrivial points (ω∗, δ∗) may exist for
any such j. For example, we have found one such point for j = 1. The computed value is
(ω∗, δ∗) ≈ (0.73, 7.33), and the resulting SGS corresponds to the point Z in Figure 5(a). Such
additional solutions are SGSs of smaller amplitude compared to those for j = 0.

Table 2
Bifurcation points for SGSs in the domain ω ∈ (ω1, ω2) ∪ (ω3, ω4) and δ ∈ (0, d).

Point O P Q R S T

Branch of solution A B A B A B

ω∗ 0.58 0.70 0.94 0.97 1.03 1.03

δ∗ 1.54 9.66 0.78 3.24 7.97 9.57



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Figure 5. (a) SGS continuation curves, total power versus frequency, in the gap (ω1, ω2). Labeled points
O,P correspond to those in Figure 3 (b). Point Z is discussed in section 4.1. Points OL, PL, and ZL are SGS
termination points. (b) Point spectrum of the linear Schrödinger operator inside (ω1, ω2) for all δ ∈ (0, d).
Solid/dashed lines: eigenvalues with even/odd eigenfunctions.
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Figure 6. (a) SGS continuation curves, total power versus frequency, in the gap (ω3, ω4). Labeled points
Q–T correspond to those in Figure 4 (b). Points QL–TL are SGS termination points. (b) Point spectrum of
the linear Schrödinger operator inside (ω3, ω4) for all δ ∈ (0, d). Solid/dashed lines: eigenvalues with even/odd
eigenfunctions.

4.2. Numerical homotopy continuation of SGSs. Assuming the existence of a point
(ω∗, δ∗), we have constructed the SGS of the ODE (2.3), where the potential function V (x)
is given by (2.8)(ii) and (ω, δ) = (ω∗, δ∗). The SGS denoted as φ∗(x) is represented by one of
the functions in (4.1) with (ω, δ) = (ω∗, δ∗). Each of these solutions can be used as a starting
point for a numerical homotopy continuation to generate a family of SGSs parameterized
by ω ⊂ (ω2m−1, ω2m) for a given value of δ = δ∗. Similarly, for a fixed ω = ω∗ a family
parameterized by δ ⊂ (0, d) can be constructed. Under the same assumption that the operator
L = −∂2

x − ω∗ + V (x) − 3Γ(x)φ2
∗(x) is invertible, the implicit function theorem implies that

there exists a unique smooth continuation of the particular solution φ∗(x) to the family of
solutions along parameters ω and δ.

We restrict our numerical studies to the continuation in ω. Numerical results of such
continuation from the SGSs at points O–T are shown in Figures 5 (a) and 6 (a). The curves
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plot the total soliton power ‖φ‖2
L2(R) as a function of frequency ω for fixed δ = δ∗. Note that

each curve corresponds to a different value of δ∗ and hence a different potential V (x). The
values of δ∗ can be read in Table 2. Termination of a continuation curve is defined when the
total power of the soliton becomes zero or when Newton iteration convergence fails. As the
figures show, the latter case is always accompanied by the slope of the continuation curve
becoming infinite, suggesting a violation of the implicit function theorem assumptions. The
former termination case is studied in the following subsection.

4.3. Analysis of termination points of SGSs. We shall now consider the termination
points of the solution families plotted in Figures 5 (a) and 6 (a), where the soliton power
becomes zero. The points are labeled OL–TL, and their corresponding values of δ and ω are
given in Table 3.

Table 3
Termination points for the six SGS families in Figures 5 (a) and 6 (a).

Point OL PL QL RL SL TL

δ 1.54 9.66 0.78 3.24 7.97 9.57

ω 0.65 0.70 0.98 1.02 1.03 1.03

The termination points are expected to be related to the existence of nontrivial bound
states in the (point) spectrum of the Schrödinger operator for the same potential V (x), i.e.,
with exponentially decaying solutions of the linear ODE

(4.2) −ψ′′ − ωψ + V (x)ψ = 0, ψ : R �→ R,

for V (x) in (2.8)(ii) and ω ∈ R\Σ. The point spectrum is nonempty due to the singularity of
V (x) at x = 0.

4.3.1. Numerical results. Results of numerical computations of the point spectrum con-
tained in the first two finite gaps (ω1, ω2) and (ω3, ω4) are shown in Figures 5 (b) and 6 (b)
for all values δ ∈ [0, d]. The eigenfunctions ψ are either even (solid lines) or odd (dashed
lines). For the six values of δ corresponding to the SGS families in Figures 5 (a) and 6 (a)
the eigenvalues are marked by black dots and are in perfect agreement with the values of ω at
the termination points OL–TL. The symmetry (even/odd) of the bound states at OL–TL also
matches that of the eigenfunctions at the marked points in the point spectrum. The eigenvalue
curve originating as well as ending at ω2 in Figure 5 (b) corresponds to the termination point
ZL of the SGS family for j = 1 in Figure 5 (a). The termination point ZL for the same value
of δ is shown by a triangle.

4.3.2. Bifurcation analysis for |δ| small. In this subsection we consider bifurcations of
point spectrum of the Schrödinger operator from the band edges for small values of |δ| (or,
due to the d periodicity of V , equivalently for δ near 0 from above and near d from below).
This analysis will prove the existence of the spectral curves near δ = 0 and δ = 10 in Figures
5 (b) and 6 (b), i.e., the existence of curves with points OL and QL locally to δ = 0 and the
curves with points PL and TL locally to δ = 10.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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In order to construct solutions of the spectral problem (4.2), we first consider exponentially
decaying solutions of the ODE on the half-line

−ψ′′
+ − ωψ+ + V0(x + δ)ψ+ = 0, ψ+ : R+ �→ R.

By using the fundamental solution of the Hill equation (2.5), we can express ψ+(x) in the
form ψ+ = e−κxu−(x+ δ), where u−(x) are periodic or antiperiodic bounded solutions of the
Hill equation (2.5) with V (x) = V0(x).

As V (x) is even, the function ψ+(x) admits a symmetric (even) reflection about x = 0 if
ψ′

+(0) = 0, which is equivalent to the condition

G1(δ, κ) = u′−(δ) − κu−(δ) = 0,

and it admits an antisymmetric (odd) reflection about x = 0 if ψ+(0) = 0, which is equivalent
to the condition

G2(δ, κ) = u−(δ) = 0.

Since eigenvalues of the spectral problem (4.2) are simple and the eigenfunctions are either
even or odd, all eigenvalues of the spectral problem (4.2) in the band gaps ω ∈ R\Σ are
defined by zeros of the functions G1(δ, κ) and G2(δ, κ) in κ for a given value of δ, where κ ≥ 0
and the values of κ are related to the values of ω in the band gaps. Both functions G1,2 are
analytic in δ ∈ R and periodic with period d. Both functions admit analytic continuation in
the parameter κ ∈ R+ [8].

If δ = 0, the only zeros of G1(δ, κ) and G2(δ, κ) occur at κ = 0, i.e., at the band edges
ω = ωn. Indeed, if G1(0, κ) = 0, then ψ′

+(0) = 0, such that ψ+(x) = ψn(x) is an even
function on x ∈ R. However, ψ+(x) decays exponentially as x → ∞ and grows exponentially
as x → −∞ if κ > 0. Therefore, G1(0, κ) = 0 is equivalent to κ = 0. A similar argument
works for G2(0, κ) = 0.

(i) Bifurcation of even eigenfunctions. Let us first consider the zeros of G1(δ, κ). Com-
puting the derivatives of G1(δ, κ) in δ and κ at (δ, κ) = (0, 0), we obtain

∂δG1(0, 0) = u′′−(0) = ψ′′
n(0) = (V0(0) − ωn)ψn(0),

∂κG1(0, 0) = −ψ̃′
n(0) − ψn(0),

where ψ̃n is the generalized Bloch function; see (3.4). The fact that ψ̃n = −∂u−
∂κ

∣∣
κ=0

is clear
from differentiation of (2.5) with respect to κ.

It is found in [12] that

D(x) = ψn(x)ψ̃′
n(x) − ψ′

n(x)ψ̃n(x) + ψ2
n(x)

is constant in x, i.e., D(x) = D(0), and that

(4.3) D(0) =
1

2
ω′′

2n−1,2n(k)(ψn, ψn),

where either k = 0 or k = π
d at the bifurcation point ω = ωn. Since ψ′

n(0) = 0, D(0) =

ψn(0)(ψ̃′
n(0)+ψn(0)), and the leading-order approximation for the root of G1(δ, κ) near (δ, κ) =
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(0, 0) is given by

δ =
ψ̃′
n(0) + ψn(0)

ψn(0)(V0(0) − ωn)
κ + O(κ2) =

D(0)

ψ2
n(0)(V0(0) − ωn)

κ + O(κ2),

where ψn(0) �= 0 (which is met since ψ′
n(0) = 0). Using (4.3) and the facts that ωn > 0 and

V0(0) = 0 for the numerical example (2.6), we get

δ = −
ω′′

2n−1,2n(k)(ψn, ψn)

2ψ2
n(0)ωn

κ + O(κ2).

Therefore, the bifurcation occurs for δ > 0 if ω′′
2n−1,2n(k) < 0 (e.g., for ω to the right of ω1)

and for δ < 0 if ω′′
2n−1,2n(k) > 0 (e.g., for ω to the left of ω0 and ω4); see Table 1. Note that

the negative values of δ correspond to the values of δ below the level δ = d due to periodicity
of the function G1(δ, κ) in δ. The above local existence analysis for even bound states is
confirmed by the solid lines near δ = 0 in Figure 5 (b) and near δ = d = 10 in Figure 6 (b).

(ii) Bifurcation of odd eigenfunctions. Similarly to (i), we study the zeros of G2(δ, κ). We
compute the derivatives of G2(δ, κ) in δ and κ at (δ, κ) = (0, 0),

∂δG2(0, 0) = u′−(0) = ψ′
n(0),

∂κG2(0, 0) = −ψ̃n(0),

such that the leading-order approximation for the root of G2(δ, κ) near (δ, κ) = (0, 0) is given
by

δ =
ψ̃n(0)

ψ′
n(0)

κ + O(κ2) = −
ω′′

2n−1,2n(k)(ψn, ψn)

2(ψ′
n(0))2

κ + O(κ2),

where ψ′
n(0) �= 0 (which is met since ψn(0) = 0). From the expansion, we conclude that the

bifurcation occurs for δ > 0 if ω′′
2n−1,2n(k) < 0 (e.g., for ω to the right of ω3) and for δ < 0 if

ω′′
2n−1,2n(k) > 0 (e.g., for ω to the left of ω2). The dashed lines near δ = 0 in Figure 6 (b) and

near δ = d = 10 in Figure 5 (b) confirm this analysis.
Note that there are curves in Figures 5 (b) and 6 (b) which do not bifurcate from δ = 0 and

δ = d = 10 but still bifurcate from the band edge ω = ωn. Bifurcations of these curves cannot
be confirmed from the analytical theory above, unless the values of G1,2(δ; 0) for 0 < δ < d
are approximated numerically.

5. Conclusion. We have employed methods of bifurcation theory for the existence problem
of SGSs supported by the nonlinearity interface and the periodic potential. Two bifurcation
problems are considered numerically. The first bifurcation takes place from the standard gap
solitons existing at the zero jump of the nonlinearity coefficient. The second bifurcation takes
place from the bound state consisting of parts of two standard gap solitons glued together
in a continuously differentiable SGS. Three asymptotic results are described in the article.
We show that the standard gap solitons can be continued generally for small jumps in the
nonlinearity coefficient. On the contrary, no SGSs for nonzero jump of the nonlinearity co-
efficient exist in the NLS approximation which is valid near the band edges. In addition, we
analytically study bifurcations of eigenvalues of the Schrödinger operator with a nonsmooth
potential from band edges of the Hill equation.
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One can argue that the SGSs bifurcating from a standard gap soliton or a gluing com-
bination of two gap solitons inherit stability properties of gap solitons in the neighborhood
of the local bifurcation points. Stability of standard gap solitons was considered analytically
and numerically in [13]. The stability properties can change far from the bifurcation points.
Detailed computations of stability of the SGSs will be the subject of a forthcoming work.
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