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1. Introduction

We consider the nonlinear Schrödinger (NLS) equation with a focusing power nonlinearity and an
external potential (also known as the Gross–Pitaevskii equation),

iΨt = −Ψxx + V (x)Ψ − |Ψ |2pΨ, (1.1)

where Ψ (x, t) :R×R→C is the wave function, p ∈ N is the nonlinearity power, and V (x) :R → R is
the external, symmetric, double-well potential satisfying the following conditions:

(H1) V (x) ∈ L∞(R) and xV ′(x) ∈ L∞(R);
(H2) lim|x|→∞ V (x) = 0;
(H3) V (−x) = V (x) for all x ∈ R;
(H4) L0 = −∂2

x + V (x) has the lowest eigenvalue −E0 < 0;
(H5) V (x) has a non-degenerate local maximum at x = 0 and two minima at x = ±x0 for some x0 > 0.
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The easiest way to think about the double-well potential V (x) is to consider the sum of two
single-well potentials centered at two symmetric points,

V (x) = 1

2

[
V 0(s − x) + V 0(s + x)

]
, s � 0, (1.2)

where the single-well potential V 0(x) satisfies (H1)–(H4) and has a global minimum at x = 0 and no
other extremum points. For sufficiently large s > s∗ , where s∗ is the inflection point of V 0, that is,
V ′′

0 (s∗) = 0, the sum of two single-well potentials (1.2) becomes a double-well potential we would
like to consider. We note, however, that not every double-well potential V satisfying (H1)–(H5) can
be represented by the sum (1.2).

The symmetric double-well potentials are used in the atomic physics of Bose–Einstein condensa-
tion [1] through a combination of parabolic and periodic (optical lattice) potentials. Similar potentials
were also examined in the context of nonlinear optics, e.g. in optically induced photo-refractive crys-
tals [8] and in a structured annular core of an optical fiber [13]. Physical relevance and simplicity
of the model make the topic fascinating for a mathematical research. We note that the defocussing
NLS equation is also relevant both for Bose–Einstein condensation and nonlinear optics. We take the
focusing NLS equation for simplicity to be precise in mathematical statements throughout our work.

Bifurcations of stationary states and their stability in the NLS equation (1.1) under the assumptions
(H1)–(H5) on the potential V (x) were recently considered by Kirr et al. [10].

Let Ψ (x, t) = eiEtφ(x; E) be a stationary state and φ(x; E) be a solution of the stationary nonlinear
Schrödinger equation

(−∂2
x + V

)
φ − φ2p+1 + Eφ = 0. (1.3)

Via standard regularity theory, if V ∈ L∞(R), then any weak solution φ(·; E) ∈ H1(R) of the stationary
equation (1.3) belongs to H2(R). Moreover, if −E /∈ σ(L0), then the solution φ(·; E) ∈ H2(R) decays
exponentially fast to zero as |x| → ∞.

Existence of symmetric stationary states φ for any E > E0 bifurcating from the lowest eigenvalue
−E0 of the operator L0 = −∂2

x + V (x) was first considered by Jeanjean and Stuart [6]. Kirr et al. [10]
continued this research theme and obtained the following bifurcation theorem.

Theorem 1. (See [10].) Consider the stationary NLS equation (1.3) with p � 1
2 and V (x) satisfying (H1)–(H5).

(i) There exists a C1 curve (E0,∞) � E �→ φ(·; E) ∈ H2(R) of positive symmetric states bifurcating from the
zero solution at E = E0 . This curve undertakes the symmetry-breaking (pitchfork) bifurcation at a finite
E∗ ∈ (E0,∞), for which the second eigenvalue λ(E) of the operator

L+(E) = −∂2
x + V (x) − (2p + 1)φ2p(x; E) + E (1.4)

passes from positive values for E < E∗ to negative values for E > E∗ with λ(E∗) = 0.
(ii) Let φ∗(x) = φ(x; E∗) be the positive symmetric state at the bifurcation point and ψ∗ ∈ H2(R) be the

anti-symmetric eigenvector of L+(E∗) corresponding to the second eigenvalue λ(E∗) = 0. Assume that
λ′(E∗) 	= 0, hence λ′(E∗) < 0. The C1 curve (E0,∞) � E �→ φ(·; E) ∈ H2(R) intersects transversely at
E = E∗ with the C1 curve of positive asymmetric states E �→ ϕ±(·; E) ∈ H2(R) that extends to E > E∗ if
Q< 0 and to E < E∗ if Q> 0, where

Q = 2p2(2p + 1)2〈φ2p−1∗ ψ2∗ , L−1+ (E∗)φ2p−1∗ ψ2∗
〉
L2

+ 1

3
p(2p + 1)(2p − 1)

〈
ψ2∗ , φ

2p−2∗ ψ2∗
〉
L2 . (1.5)

The asymmetric states ϕ+ and ϕ− are centered at the left and the right well of V , respectively.
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Orbital stability of the stationary state φ(x; E) in the NLS equation (1.1) depends on the number
of negative eigenvalues of L+(E) and L−(E), where

L−(E) = −∂2
x + V (x) − φ2p(x; E) + E. (1.6)

Since L−(E)φ(E) = 0 and φ(x; E) > 0 for all x ∈R and E > E0, the spectrum of L−(E) is non-negative
for any E > E0. This fact simplifies the stability analysis of the stationary states [5,4].

Let us denote Ns(E) = ‖φ(·; E)‖2
L2 and Na(E) = ‖ϕ+(·; E)‖2

L2 = ‖ϕ−(·; E)‖2
L2 . In what follows, we

always assume that

N ′
s(E∗) = 2〈∂Eφ∗, φ∗〉L2 > 0, where ∂Eφ∗(x) = ∂Eφ(x; E∗), (1.7)

that is, Ns(E) is increasing near the bifurcation point E = E∗ . The following stability theorem was also
proven by Kirr et al. [10].

Theorem 2. (See [10].) Assume N ′
s(E∗) > 0 in addition to conditions of Theorem 1. Then the symmetric state

φ is orbitally stable for E � E∗ and unstable for E > E∗ . If in addition, Q < 0, then Na(E) is an increasing
function of E > E∗ if S > 0 and it is a decreasing function of E > E∗ if S < 0, where

S = N ′
s(E∗) +Q−1(λ′(E∗)‖ψ∗‖2

L2

)2
. (1.8)

Consequently, the asymmetric states ϕ± near E = E∗ are orbitally stable for S > 0 and unstable for S < 0.

For any potential V (x) represented by (1.2) with a sufficiently large s, we show in Appendix A
that λ′(E∗) < 0, N ′

s(E∗) > 0, and Q< 0 for any p � 1
2 , hence, the stable symmetric state φ for E < E∗

becomes unstable for E > E∗ and the asymmetric states ϕ± exist for E > E∗ . In the limit s → ∞, the
boundary S = 0 is equivalent to p = p∗ , where

p∗ = 3 + √
13

2
≈ 3.3028. (1.9)

If p < p∗ , the asymmetric states ϕ± are stable for E > E∗ . If p > p∗ , both symmetric and asymmetric
states are unstable for E > E∗ . Therefore, we can classify the symmetry-breaking bifurcation at E = E∗
as the supercritical (if S > 0) or the subcritical (if S < 0) pitchfork bifurcations with respect to the
squared L2-norm, which is a conserved quantity of the NLS equation (1.1) in time. The functions Ns(E)

and Na(E) in the two different cases are shown schematically on Fig. 1, where stable branches are
depicted by solid line and the unstable branches are depicted by dotted lines.

The classification into the supercritical and subcritical pitchfork bifurcations is usually based on
the analysis of the normal form equations obtained from the center manifold reductions and the near
identity transformations. It is the goal of this paper to derive and to justify the normal form equations
for time-dependent perturbations to stationary states. We shall look at the long but finite temporal
dynamics of the normal form equations, avoiding the complexity of the time evolution at infinite time
intervals. To enable near identity transformations up to any polynomial order, we shall only consider
the integer values of p. Our main result is the following normal form equation, which is nothing but
the classical Duffing oscillator:

N ′
s(E∗) Ä + λ′(E∗)‖ψ∗‖2

L2

(
N0 − Ns(E∗)

)
A −QS A3 = 0, (1.10)

where A(t) is a real-valued amplitude, N0 = ‖Ψ0‖2
L2 is given by the initial condition of the NLS

equation, and all other coefficients are the same as in Theorems 1 and 2.
Trajectories of the Duffing equation (1.10) with λ′(E∗) < 0 and N ′

s(E∗) > 0 on the phase
plane (A, B), where B = Ȧ, are shown on Fig. 2 for four distinct cases of different values of
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Fig. 1. Schematic representation of the supercritical (top) and subcritical (bottom) pitchfork bifurcations. Unstable stationary
states are shown by dotted curves.

	N :=N0 − Ns(E∗) and QS . Two left panels show a typical supercritical pitchfork bifurcation, where
a zero equilibrium state is stable for 	N < 0 (bottom) and unstable for 	N > 0 (top), whereas a pair
of stable nonzero equilibrium states bifurcates for 	N > 0 (top). Two right panels show a typical sub-
critical pitchfork bifurcation, where a pair of unstable nonzero equilibrium states exists for 	N < 0
(bottom) and disappears for 	N > 0 (top) resulting in the change of stability of the zero equilibrium
state.

The normal form equations have been considered previously in a similar context with different
mathematical techniques. In the limit of large separation of the two potential wells, Kirr et al. [9]
derived a two-mode reduction of the NLS equation. Persistence of this reduction for periodic small-
amplitude oscillations near stable stationary states was addressed by Marzuola and Weinstein [11].
These authors only considered small-amplitude periodic solutions of the normal form equations aris-
ing in the large separation limit. They used sophisticated analysis based on Strichartz estimates and
wave operators for the linear Schrödinger equations.
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Fig. 2. Trajectories of the second-order system (1.11) on the phase plane (A, B) for 	N > 0 and QS < 0 (top left); 	N > 0 and
QS > 0 (top right); 	N < 0 and QS < 0 (bottom left); 	N < 0 and QS > 0 (bottom right).

Similar but more formal reduction to the two-mode equations was developed by Sacchetti [14]
using the semi-classical analysis. In comparison with [9,11], Sacchetti [14] considered the defo-
cussing version of the NLS equation, where the anti-symmetric stationary state undertakes a similar
symmetry-breaking bifurcation. Based on the two-mode reduction, Sacchetti [15] also reported the
same threshold p∗ as in (1.9) that separates the supercritical and subcritical pitchfork bifurcations. Re-
cently, Fukuizumi and Sacchetti [3] justified the two-mode reduction rigorously in the semi-classical
limit, up to an exponentially small error term.

Compared to these previous works, we shall deal with a general symmetry-breaking bifurcation of
the symmetric states. We develop simple but robust analysis, which justifies a general normal form
equation for the pitchfork bifurcation. Our analysis is based on the spectral decompositions and Gron-
wall inequalities. Arbitrary bounded solutions of the normal form equation are proved to shadow
dynamics of time-dependent solutions of the NLS equation (1.1) near the stationary bound states
for long but finite time intervals. Thus, we show how basic analytical methods can be used to treat
time-dependent normal form equations for bifurcations in the nonlinear Schrödinger equations.

Our main result is formulated in the following theorem.

Theorem 3. Let E∗ ∈ (E0,∞) be defined as in Theorem 1. Assume that λ′(E∗) < 0, N ′
s(E∗) > 0, and Q < 0.

Fix N0 and define 	N = N0 − Ns(E∗). There exists a sufficiently small, positive ε such that for all Ψ0 ∈ H1
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with N0 = ‖Ψ0‖2
L2 and |	N| < ε, there exist T > 0 and functions (θ, E, A, B) ∈ C1([0, T ];R4) such that the

NLS equation (1.1) admits a solution Ψ ∈ C([0, T ]; H1(R)) with Ψ (x,0) = Ψ0(x) in the form

Ψ (x, t) = eiθ(t)[φ(
x; E(t)

) + A(t)ψ
(
x; E(t)

) + iB(t)χ
(
x; E(t)

)] + Ψ̃ (x, t),

where ψ(x; E) and χ(x; E) satisfy

L+(E)ψ = −Λ2(E)χ, L−(E)χ = ψ,

subject to the normalization 〈χ,ψ〉L2 = 1, and Λ2(E) admits the asymptotic expansion

Λ2(E) = −λ′(E∗)‖ψ∗‖2
L2(E − E∗) +O(E − E∗)2 as E → E∗.

Moreover, there are positive constants α0 , α1 , α2 , α3 , and α4 such that T � α0|	N|−1/2 ,

∣∣θ̇ (t) − E∗
∣∣� α1|	N|, ∣∣E(t) − E∗

∣∣ � α2|	N|, ∥∥Ψ̃ (·, t)
∥∥

H1 � α3|	N|, for all t ∈ [0, T ],
and the trajectories of (A, B) in the ellipsoidal domain,

D = {
(A, B) ∈R

2: A2 + |	N|−1 B2 � α4|	N|},
are homeomorphic to those of the truncated system,

{
Ȧ = B,

Ḃ = (−λ′(E∗)‖ψ∗‖2
L2(	N)A +QS A3

)
/N ′

s(E∗).
(1.11)

Remark 1. The upper bound on T is generally sufficient to contain many oscillations of the Duffing
equation (1.10) that follows from the system of two equations (1.11) because the characteristic time
of this system is O(|	N|−1/2) as |	N| → 0. As we show in Appendix A, all other coefficients of the
Duffing equation (1.10) remain bounded as s → ∞, therefore, the result of Theorem 3 is sufficient
to contain many oscillations of the Duffing equation even in the case of large well separation of the
potential V in (1.2).

The article is organized as follows. In Section 2, we derive modulation equations for dynamics
of time-dependent solutions of the NLS equation near the stationary bound states at the onset of
the symmetry-breaking (pitchfork) bifurcation. In Section 3, we justify the dynamics of the time-
dependent modulation equations and give a proof of Theorem 3. Appendix A presents computations
of quantities Q and S in the limit of large s in order to justify the main assumptions of Theorem 3.
Appendix B shows how to recover results on the existence and stability of stationary states from the
system of modulation equations used in the proof of Theorem 3.

2. Modulation equations for dynamics of bound states

We derive a set of modulation equations which describe temporal dynamics of solutions of the
NLS equation (1.1) near the stationary bound states at the onset of the symmetry-breaking bifurcation.
From the results in [10], we only use the statement of Theorem 1(i) on the existence of the symmetry-
breaking bifurcation for the symmetric stationary state of the NLS equation (1.1) under assumptions
(H1)–(H5). Compared to the result of Theorem 1(i), we restrict our work to integer values of p in
order to deal with power series expansions without technical limitations.

Furthermore, we use the decomposition of the solution Ψ to the NLS equation (1.1) into a sum of
the stationary state eiθφ(·; E) with slowly varying parameters (θ, E) and the remainder terms, which
satisfies certain symplectic orthogonality conditions. Existence and uniqueness of this decomposition



2802 D.E. Pelinovsky, T.V. Phan / J. Differential Equations 253 (2012) 2796–2824
for small remainder terms follow from standard arguments based on the Implicit Function Theorem
(see, e.g., [2,12]). Note that we are using these decompositions for large but finite time intervals of
the NLS equation (1.1), therefore, we are not using asymptotic stability results for solitary waves of
the NLS equations.

2.1. Primary decomposition near the symmetric stationary state

Let φ(x; E) be a solution of the stationary NLS equation (1.3) with properties

φ(·; E) ∈ H2(R): φ(−x; E) = φ(x; E) > 0 for all x ∈R.

As stated in Theorem 1(i), there exists a C1 curve E �→ φ(·; E) ∈ H2(R) for all E ∈ (E0,∞). If p ∈ N,
this curve is actually C∞ by the bootstrapping arguments.

We decompose a solution of the NLS equation (1.1) as a sum of the symmetric stationary state
with slowly varying parameters and the remainder terms,

Ψ (x, t) = eiθ(t)[φ(
x; E(t)

) + u(x, t) + iw(x, t)
]
, (2.1)

where (E, θ) are coordinates of the stationary state and (u, w) are the remainder terms. Direct sub-
stitution of (2.1) into (1.1) shows that the real functions (u, w) satisfy the system of time evolution
equations,

ut = L−(E)w + N−(u, w) + (θ̇ − E)w − Ė∂Eφ, (2.2)

−wt = L+(E)u + N+(u, w) + (θ̇ − E)(φ + u), (2.3)

where L+(E) and L−(E) are defined by (1.4) and (1.6) and the nonlinear terms are given explicitly by

N+(u, w) = −(φ + u)
(
φ2 + 2φu + u2 + w2)p + φ2p(

φ + (2p + 1)u
)
,

N−(u, w) = −w
[(

φ2 + 2φu + u2 + w2)p − φ2p]
.

For any p ∈ N, we can use the Taylor series expansions

N+(u, w) = −p(2p + 1)φ2p−1u2 − pφ2p−1 w2 − 1

3
p(2p + 1)(2p − 1)φ2p−2u3

− p(2p − 1)φ2p−2uw2 +O
(
u2 + w2)2

, (2.4)

N−(u, w) = −2pφ2p−1uw − p(2p − 1)φ2p−2u2 w − pφ2p−2 w3 +O
(
u2 + w2)2

. (2.5)

The linearized system associated with the time evolution equations (2.2) and (2.3) is determined
by the spectrum of the linearized operator

L(E) =
[

0 L−(E)

−L+(E) 0

]
. (2.6)

The generalized kernel of L(E) is at least two-dimensional, thanks to the exact eigenvectors

L−(E)φ = 0, L+(E)∂Eφ = −φ. (2.7)

To determine (E, θ) uniquely in the neighborhood of the stationary state (for small u and w), we
add the standard conditions of symplectic orthogonality [2,12],
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〈φ, u〉L2 = 0, 〈∂Eφ, w〉L2 = 0. (2.8)

These conditions ensure that the remainder terms are orthogonal to the generalized eigenvectors (2.7)
with the account of the symplectic structure of the time evolution equations (2.2) and (2.3).

Under symplectic orthogonality conditions (2.8), the rate of changes of (E, θ) are uniquely deter-
mined from the projection equations

[ 〈∂Eφ,φ − u〉L2 −〈φ, w〉L2

−〈∂2
Eφ, w〉L2 〈∂Eφ,φ + u〉L2

][
Ė

θ̇ − E

]
=

[ 〈φ, N−(u, w)〉L2

−〈∂Eφ, N+(u, w)〉L2

]
. (2.9)

We shall now study eigenvectors at the onset of the symmetry-breaking bifurcation at E = E∗
in order to build a frame for the secondary decomposition of the perturbations (u, w) near these
eigenvectors.

2.2. Linear eigenvectors

As stated in Theorem 1(i), there exists a bifurcation value E∗ ∈ (E0,∞) such that the second
eigenvalue λ(E) of L+(E) satisfies λ(E∗) = 0. We shall denote φ∗(x) = φ(x; E∗) at the bifurcation
value E = E∗ . In many cases, we will suppress the x-argument in the function φ(x; E) to emphasize
the E-dependence of this function. In this setting, we have the following result.

Lemma 1. There exist odd functions ψ∗,χ∗ ∈ H2(R) such that

L+(E∗)ψ∗ = 0, L−(E∗)χ∗ = ψ∗, 〈χ∗,ψ∗〉L2 = 1. (2.10)

Moreover,

λ′(E∗) = 1 − 2p(2p + 1)
〈∂Eφ∗, φ2p−1∗ ψ2∗ 〉L2

‖ψ∗‖2
L2

. (2.11)

Proof. Let g(x; E) be an eigenfunction of L+(E) for the eigenvalue λ(E). By Sturm’s Theorem, g(x; E)

is odd in x because λ(E) is the second eigenvalue of L+(E). Because the second eigenvalue of L+(E)

is simple and L+(E) is C1 in E near E = E∗ , asymptotic perturbation theory for simple eigenvalues of
closed operators [7, Section 8.2.3] guarantees that λ(E) and g(E) are C1 near E = E∗ .

Let ψ∗(x) = g(x; E∗). It follows that ψ∗ is an odd function in x and L+(E∗)ψ∗ = λ(E∗)ψ∗ = 0. Since
φ∗(x) = φ(x; E∗) is even, positive and L−(E∗)φ∗ = 0, we see that zero is the lowest eigenvalue of
L−(E∗). Therefore, it is a simple eigenvalue. Because ψ∗ is odd, there is an odd function χ∗ ∈ H2(R)

such that L−(E∗)χ∗ = ψ∗ . On the other hand, we have

〈χ∗,ψ∗〉L2 = 〈
L−1− (E∗)ψ∗,ψ∗

〉
L2 > 0.

By rescaling ψ∗ and χ∗ , we get 〈χ∗,ψ∗〉L2 = 1. This completes the proof of the first part of the lemma.
To prove (2.11), we compute explicitly

L′+(E∗) = 1 − 2p(2p + 1)φ
2p−1∗ ∂Eφ∗, L′−(E∗) = 1 − 2pφ

2p−1∗ ∂Eφ∗. (2.12)

By differentiating the relation L+(E)g(E) = λ(E)g(E) at E = E∗ , we get

L′+(E∗)ψ∗ + L+(E∗)∂Eψ∗ = λ′(E∗)ψ∗.
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Taking the inner product of this equation with ψ∗ , we get

λ′(E∗) = 〈L′+(E∗)ψ∗,ψ∗〉L2

‖ψ∗‖2
L2

= 1 − 2p(2p + 1)
〈∂Eφ∗, φ2p−1∗ ψ2∗ 〉L2

‖ψ∗‖2
L2

.

This completes the proof of the lemma. �
We would like now to extend the functions (ψ∗,χ∗) as the eigenvectors of the linearized system

associated with the linearized operator L(E) in (2.6) near E = E∗ . Note that the eigenvectors of the
linearized (non-self-adjoint) system are different from the eigenvector g(E) of the (self-adjoint) oper-
ator L+(E) introduced in the proof of Lemma 1. The following lemma gives the extension of (ψ∗,χ∗)
near E = E∗ .

Lemma 2. There exists a sufficiently small, positive ε such that for all |E − E∗| < ε , the linearized system

L+(E)ψ(E) = −Λ2(E)χ(E), L−(E)χ(E) = ψ(E) (2.13)

admits a small eigenvalue Λ2(E) with an eigenvector (ψ(E),χ(E)), which are C1 functions near E = E∗ such
that

ψ(E) = ψ∗ +OH2(E − E∗), χ(E) = χ∗ +OH2(E − E∗),
〈
χ(E),ψ(E)

〉
L2 = 1, (2.14)

and

d

dE
Λ2(E∗) = −λ′(E∗)‖ψ∗‖2

L2 . (2.15)

Consequently, if λ′(E∗) < 0, the eigenvalue Λ(E) is real for E > E∗ and purely imaginary for E < E∗ .

Proof. Recall that L−(E∗)φ∗ = 0, L+(E∗)ψ∗ = 0 and L−(E∗)χ∗ = ψ∗ , where both ψ∗ and χ∗ are odd
in x and φ∗ is even in x. Let Po be an orthogonal projection to the space of odd functions. Because the
spectrum of Po L−(E)Po is bounded away from zero, the self-adjoint operator Po L−(E)Po is invertible
for any E . Let us consider the following generalized eigenvalue problem,

Po L+(E)Poψ = −γ
(

Po L−(E)Po
)−1

ψ,

where γ is a new spectral parameter, ψ is an eigenfunction, and Po L±(E)Po are C1 functions near
E = E∗ . γ = 0 is a simple eigenvalue of the generalized eigenvalue problem at E = E∗ . By the same
asymptotic perturbation theory for simple eigenvalues of closed operators [7, Section 8.2.3], there
exists a solution for γ = Λ2(E), ψ = ψ(E), and χ(E) = (Po L−(E)Po)

−1ψ(E) in the linearized system
(2.13) such that Λ2(E), ψ(E), and χ(E) are C1 functions near E = E∗ and the eigenvectors ψ(E), and
χ(E) satisfy the expansion (2.14).

By differentiating the problem L+(E)ψ(E) = −Λ2(E)χ(E) at E = E∗ , taking the inner product
with ψ∗ , and using (2.11), (2.12), and (2.14), we get (2.15). Thus, it follows that if λ′(E∗) < 0 the
eigenvalue Λ(E) is real for E > E∗ and purely imaginary for E < E∗ .

On the other hand, for small |E − E∗|, we have

〈
χ(E),ψ(E)

〉
L2 = 〈χ∗,ψ∗〉L2 +O(E − E∗) = 1 +O(E − E∗) > 0.

We can hence normalize ψ(E) and χ(E) such that 〈χ(E),ψ(E)〉L2 = 1. This completes the proof of
the lemma. �
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Remark 2. Under the normalization 〈χ(E),ψ(E)〉L2 = 1, the L2-norms of ψ and χ are no longer
normalized to unity, in comparison with the normalization used in [10].

Remark 3. In what follows, we assume that λ′(E∗) 	= 0. As stated in Theorem 1(i), this necessarily
implies that λ′(E∗) < 0.

Remark 4. Since eigenvalues of L+(E) are simple by the Sturm–Liouville theory, the geometric kernel
of L(E∗) is exactly two-dimensional. The generalized kernel of L(E∗) is at least four-dimensional and
includes the subspace

U(E∗) = span

{[
0
φ∗

]
,

[
∂Eφ(E∗)

0

]
,

[
ψ∗
0

]
,

[
0
χ∗

]}
. (2.16)

2.3. Secondary decomposition near the linear eigenvectors

Let us now decompose the perturbation terms into

u(x, t) = A(t)ψ(x; E) + U (x, t), w(x, t) = B(t)χ(x; E) + W (x, t), (2.17)

where (A, B) are coordinates of the decomposition and (U , W ) are the remainder terms. The linear
eigenvectors (ψ,χ) are solutions of the linearized system (2.13) for E near E∗ . The remainder terms
(U , W ) are required to satisfy the conditions of symplectic orthogonality

〈φ, U 〉L2 = 0, 〈∂Eφ, W 〉L2 = 0, 〈χ, U 〉L2 = 0, 〈ψ, W 〉L2 = 0. (2.18)

These conditions ensure that the remainder terms (U , W ) are orthogonal to four generalized eigen-
vectors of operator L(E) with respect to the symplectic structure of the time evolution equations
(2.2) and (2.3).

Substitution of (2.17) into (2.2)–(2.3) shows that (U , W ) satisfy the time evolution equations

Ut = L−(E)W + N−(Aψ + U , Bχ + W )

+ (θ̇ − E)(Bχ + W ) − Ė(∂Eφ + A∂Eψ) − ( Ȧ − B)ψ, (2.19)

−Wt = L+(E)U + N+(Aψ + U , Bχ + W )

+ (θ̇ − E)(φ + Aψ + U ) + B Ė∂Eχ + (
Ḃ − Λ2 A

)
χ. (2.20)

Under the orthogonality conditions (2.18), the rate of changes of (θ, E, A, B) are uniquely deter-
mined from the projection equations

M
[

θ̇ − E
Ė

]
=

[−〈∂Eφ, N+(Aψ + U , Bχ + W )〉L2

〈φ, N−(Aψ + U , Bχ + W )〉L2

]
, (2.21)

where

M =
[ 〈∂Eφ,φ + U 〉L2 −〈∂2

Eφ, W 〉L2

−〈φ, W 〉L2 〈∂Eφ,φ − U 〉L2

]
, (2.22)

and
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Ȧ − B = 〈
χ, N−(Aψ + U , Bχ + W )

〉
L2 + Ė

(〈∂Eχ, U 〉L2 − A〈∂Eψ,χ〉L2

)
+ (θ̇ − E)

(
B‖χ‖2

L2 + 〈χ, W 〉L2

)
, (2.23)

Ḃ − Λ2 A = −〈
ψ, N+(Aψ + U , Bχ + W )

〉
L2 + Ė

(〈∂Eψ, W 〉L2 − B〈∂Eχ,ψ〉L2

)
− (θ̇ − E)

(
A‖ψ‖2

L2 + 〈ψ, U 〉L2

)
. (2.24)

To prove Theorem 3, we shall control the dynamics of small (U , W ), (E − E∗, θ̇ − E∗), and (A, B) in
the system (2.19)–(2.24) on long but finite time intervals. Appendix B shows how to use the system
(2.19)–(2.24) for analysis of existence and stability of stationary states near the bifurcation point E∗ .

2.4. Conserved quantities

The NLS equation (1.1) admits two conserved quantities given by

N [Ψ ] =
∫
R

∣∣Ψ (x, t)
∣∣2

dx (2.25)

and

H[Ψ ] =
∫
R

[∣∣Ψx(x, t)
∣∣2 + V (x)

∣∣Ψ (x, t)
∣∣2 − 1

p + 1

∣∣Ψ (x, t)
∣∣2p+2

]
dx. (2.26)

They are referred to as the energy N and the Hamiltonian H , respectively.
Let Ns(E) = N [φ(·; E)] and Hs(E) = H[φ(·; E)]. If Ψ0 is an initial condition for the solution Ψ of

the NLS equation (1.1), we define

N0 = N [Ψ0] and H0 = H[Ψ0].

Substitution of (2.1) and (2.17) into (2.25) and (2.26) gives

N0 = Ns(E) +
∫
R

[
(Aψ + U )2 + (Bχ + W )2]dx

and

H0 = Hs(E) +
∫
R

[
(Aψx + Ux)

2 + (Bχx + W x)
2 + V (Aψ + U )2 + V (Bχ + W )2]dx

− 1

p + 1

∫
R

[(
(φ + Aψ + U )2 + (Bχ + W )2)p+1 − φ2p+2 − 2(p + 1)φ2p+1(Aψ + U )

]
dx,

where we have used the stationary equation (1.3) and the symplectic orthogonality (2.18).
By direct computation, we can verify that

H ′
s(E) + E N ′

s(E) = 0, (2.27)

for any E , for which φ(·; E) ∈ H2(R) exists.



D.E. Pelinovsky, T.V. Phan / J. Differential Equations 253 (2012) 2796–2824 2807
Remark 5. In what follows, we assume that N ′
s(E∗) 	= 0 (and, more precisely, N ′

s(E∗) > 0). Under this
condition, the generalized kernel of operator L(E∗) is exactly the four-dimensional subspace U(E∗) in
(2.16) because 〈φ∗, ∂Eφ(E∗)〉L2 	= 0 and 〈χ∗,ψ∗〉L2 = 1 	= 0.

3. Time-dependent normal form equations

Our goal is to prove the main result, Theorem 3, by using the decompositions developed in Sec-
tion 2. We start by rewriting the main equations in the abstract form. In particular, we rewrite the
modulation equations (2.21)–(2.24) for (θ, E, A, B) as

⎧⎪⎨
⎪⎩

θ̇ − E = Rθ (E, A, B, U , W ),

Ė = R E(E, A, B, U , W ),

Ȧ − B = R A(E, A, B, U , W ),

Ḃ − Λ2(E)A = R B(E, A, B, U , W ),

(3.1)

and the system (2.19)–(2.20) for the remainder terms (U , W ) as

{
Ut = L−(E)W + RU (E, A, B, U , W ),

−Wt = L+(E)U + RW (E, A, B, U , W ),
(3.2)

where Rθ , R E , R A , R B , RU and RW are some functionals on the solution. These functionals can be
computed explicitly. Indeed, it follows from (2.21) that

[
Rθ

R E

]
= M−1

[−〈∂Eφ, N+(Aψ + U , Bχ + W )〉L2

〈φ, N−(Aψ + U , Bχ + W )〉L2

]
, (3.3)

where matrix M is given by (2.22). If ‖U‖L2 ,‖W ‖L2 � 1 and N ′
s(E∗) 	= 0, then M is invertible and

M−1 = 〈∂Eφ,φ〉−1
L2

[
1 0
0 1

]
+O

(‖U‖L2 + ‖W ‖L2

)
. (3.4)

On the other hand, Eqs. (2.23) and (2.24) yield

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R A = 〈
χ, N−(Aψ + U , Bχ + W )

〉
L2 + R E

(〈∂Eχ, U 〉L2 − A〈∂Eψ,χ〉L2

)
+ Rθ

(
B‖χ‖2

L2 + 〈χ, W 〉L2

)
,

R B = −〈
ψ, N+(Aψ + U , Bχ + W )

〉
L2 + R E

(〈∂Eψ, W 〉L2 − B〈∂Eχ,ψ〉L2

)
− Rθ

(
A‖ψ‖2

L2 + 〈ψ, U 〉L2

)
.

(3.5)

When the modulation equations (3.1) are substituted into the system (2.19)–(2.20), we obtain

{
RU = N−(Aψ + U , Bχ + W ) + Rθ (Bχ + W ) − R E(∂Eφ + A∂Eψ) − R Aψ,

RW = N+(Aψ + U , Bχ + W ) + Rθ (φ + Aψ + U ) + B R E∂Eχ + R Bχ.
(3.6)

Remark 6. If A = B = 0, then U = W = 0 is an invariant solution of the system (3.2), which gives zero
values of Rθ , R E , R A , and R B in the system (3.1) for any E .

The above remark inspires us to consider the power series expansions for solutions of the systems
(3.1) and (3.2). Taking into account the spatial symmetry of eigenfunctions, we can see that Rθ and R E

are quadratic with respect to (A, B), whereas R A and R B are cubic with respect to (A, B). Moreover,
we write
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⎧⎪⎨
⎪⎩

θ̇ − E = C1(E)A2 + C2(E)B2 + R̃θ (E, A, B, Ũ , W̃ ),

Ė = C3(E)AB + R̃ E(E, A, B, Ũ , W̃ ),

Ȧ − B = C4(E)A2 B + C5(E)B3 + R̃ A(E, A, B, Ũ , W̃ ),

Ḃ − Λ2(E)A = C6(E)A3 + C7(E)AB2 + R̃ B(E, A, B, Ũ , W̃ ),

(3.7)

and

{
U = A2Θ(x; E) + B2	(x; E) + A3U1(x; E) + AB2U2(x; E) + Ũ (x, t),
W = ABΓ (x; E) + A2 BW1(x; E) + B3W2(x; E) + W̃ (x, t),

(3.8)

where R̃θ , R̃ E , R̃ A , and R̃ B are new error terms, whereas Ũ and W̃ are new remainder terms. Because
all quadratic and cubic terms in (A, B) are taken into account in (3.7)–(3.8), the error and remainder
terms are quartic with respect to (A, B).

Let us first explicitly compute the coefficients C1, C2, . . . , C7 and determine the functions
Θ,	, . . . , W2. We shall then estimate the error and remainder terms in (3.7) and (3.8) as quartic
with respect to (A, B). Working in a small neighborhood of (0,0) on the phase plane (A, B) and
using |	N| as a small parameter, we consider an ellipsoidal region on the (A, B)-plane defined by

∃α > 0: A2 + |	N|−1 B2 � α|	N|. (3.9)

Let T > 0 be the maximal time until which we consider solutions of the modulation equations
(3.7) in the domain (3.9). We assume (and prove in Section 3.4) that there are positive constants α0,
α1, and α2 such that

T � α0|	N|−1/2, (3.10)

and

|θ̇ − E∗| � α1|	N|, |E − E∗|� α2|	N|. (3.11)

The following theorem provides the control of the error terms of the system (3.7) and the remainder
terms of the decomposition (3.8).

Lemma 3. Assume (3.9)–(3.11). There exists a sufficiently small positive ε such that for any |	N| < ε, there
are positive constants c1 and c2 such that

sup
t∈[0,T ]

(∥∥Ũ (·, t)
∥∥

H1 + ∥∥W̃ (·, t)
∥∥

H1

)
� c1(	N)2 (3.12)

and

sup
t∈[0,T ]

(|R̃θ | + |R̃ E | + |R̃ A | + |R̃ B |) � c2(	N)2. (3.13)

The proof of Lemma 3 is given in Sections 3.1 and 3.2.

3.1. Power series expansions

For explicit computations, we use the power series expansions (2.4)–(2.5) and the decompositions
(2.17) and (3.8) to expand
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N+ = −p(2p + 1)φ2p−1ψ2 A2 − pφ2p−1χ2 B2 − p(2p + 1)

(
2p − 1

3
φ2p−2ψ3 + 2φ2p−1ψΘ

)
A3

− p
(
(2p − 1)φ2p−2ψχ2 + 2(2p + 1)φ2p−1ψ	 + 2φ2p−1χΓ

)
AB2 + Ñ+,

N− = −2pφ2p−1ψχ AB − p
(
φ2p−2χ3 + 2φ2p−1χ	

)
B3

− p
(
(2p − 1)φ2p−2χψ2 + 2φ2p−1ψΓ + 2φ2p−1χ	

)
A2 B + Ñ−,

where Ñ+ and Ñ− are of the form

Ñ+, Ñ− = O
((

A2 + B2)2 + (A + B)(Ũ + W̃ ) + Ũ 2 + W̃ 2). (3.14)

From Eqs. (3.6)–(3.8) we have

{
RU = f1,1(E)AB + f2,1(E)A2 B + f0,3(E)B3 + F̃U (E, A, B, Ũ , W̃ ),

RW = g2,0(E)A2 + g0,2(E)B2 + g3,0(E)A3 + g1,2(E)AB2 + F̃ W (E, A, B, Ũ , W̃ ),
(3.15)

where

f1,1 = −2pφ2p−1ψχ − C3∂Eφ,

g2,0 = −p(2p + 1)φ2p−1ψ2 + C1φ,

g0,2 = −pφ2p−1χ2 + C2φ,

f2,1 = C1χ − C3∂Eψ − C4ψ − p(2p − 1)φ2p−2χψ2 − 2pφ2p−1ψΓ − 2pφ2p−1χΘ,

f0,3 = C2χ − C5ψ − pφ2p−2χ3 − 2pφ2p−1χ	,

g1,2 = C2ψ + C3∂Eχ + C7χ − p
(
(2p − 1)φ2p−2ψχ2 + 2(2p + 1)φ2p−1ψ	 + 2φ2p−1χΓ

)
,

g3,0 = C1ψ + C6χ − p(2p + 1)

(
1

3
(2p − 1)φ2p−2ψ3 + 2φ2p−1ψΘ

)
,

and

F̃U = (
C1 A2 + C2 B2)W + (Bχ + W )Rθ − (∂Eφ + A∂Eψ)R E − R Aψ

− 2pφ2p−1(Aψ
(

A3U1 + AB2U2 + Ũ
) + Bχ

(
A2 BW1 + B3W2 + W̃

))
− 2pφ2p−1U W − p(2p − 1)φ2p−1((2AUψ + U 2)(Bχ + W ) + A2ψ2W

)
− pφ2p−2(3B2χ2W + 3Bχ W 2 + W 3) + Ñ−,

F̃ W = Rθ (φ + Aψ + U ) + (
C1 A2 + C2 B2)U + R Bχ + R E∂Eχ + Ñ+.

Substituting (3.8) and (3.15) into the time evolution equations (3.2) and computing the time
derivative of (E, A, B) using the modulation equations (3.7), we obtain

⎧⎨
⎩

L+(E)Θ + Λ2(E)Γ + g2,0(E) = 0,

L+(E)	 + Γ + g0,2(E) = 0,

L (E)Γ − 2Θ − 2Λ2(E)	 + f (E) = 0,

(3.16)
− 1,1
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⎧⎪⎪⎨
⎪⎪⎩

L+(E)U1 + Λ2(E)W1 + g3,0(E) = 0,

L+(E)U2 + 2W1 + 3Λ2(E)W2 + g1,2(E) = 0,

L−(E)W1 − 3U1 − 2Λ2(E)U2 − f2,1(E) = 0,

L−(E)W2 − U2 − f0,3(E) = 0,

(3.17)

and

{
Ũt = L−(E)W̃ + R̃U (E, A, B, Ũ , W̃ ),

−W̃t = L+(E)Ũ + R̃W (E, A, B, Ũ , W̃ ),
(3.18)

where

R̃U = F̃U − (
A2∂EΘ + B2∂E	 + A3∂E U1 + AB2∂E U2

)
(C3 AB + R E)

− (
2AΘ + 3AU1 + B2U2

)(
C4 A2 B + C5 B3 + R̃ A

)
− (2B	 + 2ABU2)

(
C6 A3 + C7 AB2 + R̃ B

)
,

R̃W = F̃ W + (
AB∂EΓ + A2 B∂E W1 + B3∂E W2

)
(C3 AB + R E)

+ (BΓ + 2ABW1)
(
C4 A2 B + C5 B3 + R̃ A

)
+ (

AΓ + A2W1 + 3B2W2
)(

C6 A3 + C7 AB2 + R̃ B
)
.

We shall now introduce two constrained L2-spaces by

L2+(R) = {
U ∈ L2(R): 〈φ, U 〉L2 = 〈χ, U 〉L2 = 0

}
, (3.19)

L2−(R) = {
W ∈ L2(R): 〈∂Eφ, W 〉L2 = 〈ψ, W 〉L2 = 0

}
. (3.20)

Note that the orthogonal projections depend on E but we omit this dependence for the notational
convenience. We can also define Hs±(R) as constrained Hs-spaces for any s � 0.

The following two lemmas describe solutions of the linear inhomogeneous systems (3.16) and
(3.17).

Lemma 4. There exists a sufficiently small, positive ε such that for all |E − E∗| < ε , the linear inhomogeneous
system (3.16) admits a unique solution Θ,	 ∈ H2+(R) and Γ ∈ H2−(R). Moreover, these solutions are even
in x, C1 in E, and satisfy

∃C > 0:
∥∥∂α

E Θ
∥∥

H2 + ∥∥∂α
E 	

∥∥
H2 + ∥∥∂α

E Γ
∥∥

H2 � C, α = 0,1. (3.21)

Proof. To solve the linear inhomogeneous system (3.16) near E = E∗ , we recall that operators L+(E∗)
and L−(E∗) are not invertible. Hence we set g2,0, g0,2 ∈ L2−(R) and f1,1 ∈ L2+(R), according to (3.19)
and (3.20). These constraints set up uniquely the coefficients C1, C2, and C3,

C1 = p(2p + 1)
〈∂Eφ,φ2p−1ψ2〉L2

〈∂Eφ,φ〉L2
, C2 = p

〈∂Eφ,φ2p−1χ2〉L2

〈∂Eφ,φ〉L2
, C3 = −2p

〈ψ,φ2pχ〉L2

〈∂Eφ,φ〉L2
. (3.22)

For E close to E∗ , the existence and uniqueness of the solution Θ,	 ∈ H2+(R) and Γ ∈ H2−(R) of the
system (3.16) follow from the gap between zero (or small) eigenvalues of L±(E) and the rest of the
spectrum of L±(E) by using the following arguments.
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For any fixed E such that |E − E∗| is sufficiently small, for any Γ ∈ L2−(R), there exists a unique
solution ΘΓ ,	Γ ∈ H2+(R) of the system

L+(E)ΘΓ + Λ2(E)Γ = −g2,0(E), L+(E)	Γ + Γ = −g0,2(E). (3.23)

Then, for any two Γ1,Γ2 ∈ L2−(R), we have

L+(E)(ΘΓ1 − ΘΓ2) = Λ2(E)(Γ2 − Γ1), L+(E)(	Γ1 − 	Γ2) = Γ2 − Γ1.

The standard regularity theorem for elliptic equations implies that there is a positive constant C(E)

such that

‖ΘΓ1 − ΘΓ2‖H2 � C(E)
∣∣Λ(E)

∣∣2‖Γ2 − Γ1‖L2 , ‖	Γ1 − 	Γ2‖H2 � C(E)‖Γ2 − Γ1‖L2 .

We recall that Λ2(E) → 0 as E → E∗ . From these estimates, we apply the fixed-point arguments and
obtain the existence of Γ ∈ H2−(R) which solves the equation

L−(E)Γ − 2ΘΓ − 2Λ2(E)	Γ = − f1,1(E). (3.24)

To estimate the H2-norm of the three solutions, we write Eqs. (3.23) as

L+(E∗)ΘΓ = −g2,0(E) − (
L+(E) − L+(E∗)

)
ΘΓ − Λ2(E)Γ

and

L+(E∗)	Γ = −g0,2(E) − (
L+(E) − L+(E∗)

)
	Γ − Γ.

Because ‖L+(E) − L+(E∗)‖L∞ = O(E − E∗) and Λ2(E) = O(E − E∗) are sufficiently small for |E −
E∗| < ε , the standard regularity theorem for elliptic equations implies again that there exists an E-
independent constant C > 0 such that

‖ΘΓ ‖H2 � C
(
1 + ε‖Γ ‖H2

)
, ‖	Γ ‖H2 � C

(
1 + ‖Γ ‖H2

)
. (3.25)

From these estimates and Eq. (3.24), we get for some constants C, C̃ > 0,

‖Γ ‖H2 � C
(
1 + ‖ΘΓ ‖H2 + ε‖	Γ ‖H2

)
� C̃

(
1 + ε‖Γ ‖H2

)
.

Hence, if |E − E∗| < ε is small enough, such that C̃ε < 1, there is an E-independent constant C > 0
such that ‖Γ ‖H2 � C . From this estimate and estimate (3.25), we also obtain the H2-estimates of Θ

and 	.
Because L±(E), g2,0(E), g0,2(E), and f1,1(E) are all C1 in E , we see that Θ , 	, and Γ are all C1

in E . By differentiating the system (3.16) and using the same method as the one we just used, we
also obtain the H2 estimates for ∂EΘ , ∂E	, and ∂EΓ . �
Lemma 5. There exists a sufficiently small, positive ε such that for all |E − E∗| < ε , the linear inhomogeneous
system (3.17) admits a unique solution U1, U2 ∈ H2+(R) and W1, W2 ∈ H2−(R). Moreover, these solutions are
odd in x, C1 in E, and satisfy

∃C > 0:
∥∥∂α

E U j
∥∥

H2 + ∥∥∂α
E W j

∥∥
H2 � C, j = 1,2, α = 0,1. (3.26)
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Proof. To solve the linear inhomogeneous system (3.17) near E = E∗ , we set g3,0, g1,2 ∈ L2−(R) and
f2,1, f0,3 ∈ L2+(R) according to (3.19) and (3.20). These constraints set up uniquely the coefficients C4,
C5, C6, and C7,

C4 = −C3〈∂Eψ,χ〉L2 + C1‖χ‖2
L2 − 2p

〈
χ2, φ2p−1Θ

〉
L2 − p(2p − 1)

〈
χ2, φ2p−2ψ2〉

L2

− 2p
〈
χψ,φ2p−1Γ

〉
L2 ,

C5 = C2‖χ‖2
L2 − 2p

〈
χ2, φ2p−1	

〉
L2 − p

〈
χ2, φ2p−2χ2〉

L2 ,

C6 = −C1‖ψ‖2
L2 + 2p(2p + 1)

〈
ψ2, φ2p−1Θ

〉
L2 + 1

3
p(2p + 1)(2p − 1)

〈
ψ2, φ2p−2ψ2〉

L2 ,

C7 = −C3〈∂Eχ,ψ〉L2 − C2‖ψ‖2
L2 + 2p(2p + 1)

〈
ψ2, φ2p−1	

〉
L2 + 2p

〈
ψχ,φ2p−1Γ

〉
L2

+ p(2p − 1)
〈
ψ2, φ2p−2χ2〉

L2 . (3.27)

The rest of the proof is similar to that of Lemma 4. �
Finally, we estimate the error terms R̃θ , R̃ E , R̃ A , and R̃ B in the modulation equations (3.7).

Lemma 6. There is C > 0 such that

|R̃θ,E,A,B | � C
((

A2 + B2)2 + (A + B)
(‖Ũ‖L2 + ‖W̃ ‖L2

) + ‖Ũ‖2
L2 + ‖W̃ ‖2

L2

)
. (3.28)

Proof. We recall from (3.3) and (3.4) that

[
Rθ

R E

]
= (〈∂Eφ,φ〉−1

L2 +O
(‖U‖L2 + ‖W ‖L2

))[−〈∂Eφ, N+(Aψ + U , Bχ + W )〉L2

〈φ, N−(Aψ + U , Bχ + W )〉L2

]
. (3.29)

By using the symmetry properties of φ, ψ , and χ , as well as Lemmas 4 and 5, we get

〈
φ, N−(Aψ + U , Bχ + W )

〉
L2 = 〈∂Eφ,φ〉L2 C3 AB + 〈φ, Ñ−〉L2 ,

−〈
∂Eφ, N+(Aψ + U , Bχ + W )

〉
L2 = 〈∂Eφ,φ〉L2

[
C1 A2 + C2 B2] − 〈∂Eφ, Ñ+〉, (3.30)

where C1(E), C2(E), and C3(E) are defined in (3.22). It then follows from (3.7), (3.14), (3.29), and
(3.30) that R̃ E and R̃θ satisfy (3.28).

The computation of the terms R̃ A and R̃ B can be done exactly the same way using (3.5) and the
above estimates on R̃ E and R̃θ . �
3.2. Analysis of the remainder terms

We consider the remainder terms Ũ and W̃ satisfying the time evolution equations (3.18). Let us
denote Z̃ = (Ũ , W̃ ), R̃ = (R̃U ,−R̃W ), and rewrite this system in the matrix-vector notations as

∂t Z̃ = L(E)Z̃ + R̃(E, A, B, Z̃), (3.31)

where operator L(E) is defined by (2.6).
Let Pc(E) be the projection operator associated to the complement of the four-dimensional sub-

space spanned by

W(E) := span

{[
φ(E)

0

]
,

[
0

∂ φ(E)

]
,

[
0

ψ(E)

]
,

[
χ(E)

0

]}
. (3.32)
E
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Compared to U(E∗) in (2.16), the subspace W(E∗) in (3.32) is associated with the generalized ker-
nel of the adjoint linearization operator L∗(E∗). The remainder terms (U , W ) are required to satisfy
the conditions of symplectic orthogonality (2.18), which imply that (U , W ) belong to the orthogonal
complement of W(E).

We shall single out quartic terms in (A, B) from the nonlinear term of the system (3.31). To do so,
we expand

R̃ =
∑

i+ j=4

fi j(E)Ai B j + F̂(E, A, B, Z̃), (3.33)

where the C1 functions fi j(E) = P∗
c (E)fi j(E) ∈ H2(R) can be computed explicitly near E = E∗ , whereas

the function F̂(E, A, B, Z̃) satisfies the bounds

∃Cs > 0: ‖F̂‖Hs � Cs
(|A|5 + |B|5 + (|A| + |B|)‖Z̃‖Hs + ‖Z̃‖2

Hs

)
, (3.34)

for any s > 1
2 , recalling that Hs(R) is a Banach algebra for any s > 1

2 . Without loss of generality, we
can work for s = 1.

Now, we mirror the decomposition (3.33) and expand Z̃ as

Z̃ =
∑

i+ j=4

zi j(E)Ai B j + Ẑ(E, A, B), (3.35)

where the C1 functions zi j(E) = Pc(E)zi j(E) ∈ H2(R) can be computed explicitly near E = E∗ . The
new variable satisfies

∂t Ẑ = L(E)Ẑ + R̂(E, A, B, Ẑ), (3.36)

where the residual term R̂ is computed from F̂ similar to how R̃ is computed from F̃. Therefore, the
residual term satisfies the bound

∃C > 0: ‖R̂‖H1 � C
(|A|5 + |B|5 + (|A| + |B|)‖Ẑ‖H1 + ‖Ẑ‖2

H1

)
. (3.37)

Because E depends on t , the spectral projections associated to the linearized operator L(E) are
time-dependent. Since E is close to E∗ , we can fix the value E∗ before writing the time evolution
problem (3.36) in the Duhamel form. In other words, we first rewrite (3.36) as

∂t Ẑ = P∗
c (E∗)L(E∗)Pc(E∗)Ẑ + H R(E)Ẑ + R̂(E, A, B, Ẑ), (3.38)

where H R(E) = P∗
c (E)L(E)Pc(E) − P∗

c (E∗)L(E∗)Pc(E∗) is a 2 × 2 matrix-valued function. Thanks to
C1 smoothness of this function in E and x, it enjoys the bound

∃C > 0:
∥∥H R(E)

∥∥
C1 � C |E − E∗|. (3.39)

Then we use the Duhamel principle and write

Ẑ(t) = P∗
c (E∗)etL(E∗) Pc(E∗)Ẑ(0)

+ P∗
c (E∗)

t∫
0

e(t−τ )L(E∗) Pc(E∗)
[

H R
(

E(τ )
)
Ẑ(τ ) + R̂

(
E(τ ), A(τ ), B(τ ), Ẑ(τ )

)]
dτ .

(3.40)
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Under assumptions λ′(E∗) 	= 0 and N ′
s(E∗) 	= 0, the linearized operator L(E∗) has zero eigenvalue

of algebraic multiplicity four and the rest of the spectrum is purely imaginary and bounded away
from zero. Therefore, operator P∗

c (E∗)etL(E∗) Pc(E∗) forms a semi-group from Hs(R) to Hs(R) for any
s � 0 and there is Cs > 0 such that

∥∥P∗
c (E∗)etL(E∗) Pc(E∗)

∥∥
Hs→Hs � Cs. (3.41)

Local existence and uniqueness of solutions Ẑ(t) of the integral equation (3.40) follows for any t ∈
[0, t0], where t0 > 0 is sufficiently small for fixed-point arguments. The solution can be continued over
the maximal existence interval using standard continuation methods. We shall now use Gronwall’s
inequality to control ‖Ẑ(t)‖H1 over t ∈ [0, T ], where T is bounded by (3.10) and (A, B) belong to the
domain (3.9).

Using (3.37), (3.39), (3.40), and (3.41), we obtain that for any t ∈ [0, T ], there is a positive constant
C such that

∥∥Ẑ(t)
∥∥

H1 � C
∥∥Ẑ(0)

∥∥
H1 + C

t∫
0

∣∣E(τ ) − E∗
∣∣∥∥Ẑ(τ )

∥∥
H1 dτ + C

t∫
0

∣∣A(τ )
∣∣∥∥Ẑ(τ )

∥∥
H1 dτ

+ C T |	N|5/2 + C

t∫
0

∥∥Ẑ(τ )
∥∥2

H1 dτ .

By Gronwall’s inequality, we have

sup
t∈[0,T ]

∥∥Ẑ(t)
∥∥

H1 � C
(∥∥Ẑ(0)

∥∥
H1 + T |	N|5/2 + T sup

t∈[0,T ]
∥∥Ẑ(t)

∥∥2
H1

)
eC

∫ T
0 (|E(τ )−E∗|+|A(τ )|)dτ .

If A, T , and E are estimated by (3.9), (3.10), and (3.11) respectively, the last exponential term is
bounded as |	N| → 0. Elementary continuation arguments give that if ‖Ẑ(0)‖H1 � C0(	N)2, then
there is C > 0 such that

sup
t∈[0,T ]

∥∥Ẑ(t)
∥∥

H1 � C(	N)2, t ∈ [0, T ],

or, by virtue of Eqs. (3.9) and (3.35), there is C > 0 such that

sup
t∈[0,T ]

∥∥Z̃(t)
∥∥

H1 � C(	N)2, t ∈ [0, T ]. (3.42)

Bound (3.42) provides the proof of the estimate (3.12). The estimate (3.13) follows from (3.28)
and (3.42). All together, the proof of Lemma 3 is complete.

3.3. Conserved quantities

To complete the proof of Theorem 3, we need to show that the trajectories of the system (3.7)
remain in the domain (3.9) for t ∈ [0, T ] and satisfy the estimates (3.10) and (3.11).

Estimates (3.11) follow from the first two equations of the system (3.7) in the domain (3.9) under
the estimate (3.13) on the error terms and the estimate (3.10) on the maximal time T . Therefore, we
shall only prove the estimates (3.9) and (3.10). To do so, we work with the last two equations of the
system (3.7) and employ the conserved quantities (2.25) and (2.26).

Expanded at the quadratic terms in (A, B), the conserved quantity for N0 becomes
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N0 = Ns(E) + A2‖ψ‖2
L2 + B2‖χ‖2

L2

+O
((

A2 + B2)2 + (A + B)
(‖Ũ‖L2 + ‖W̃ ‖L2

) + ‖Ũ‖2
L2 + ‖W̃ ‖2

L2

)
,

where (A, B) are defined in the domain (3.9) and the terms involving (Ũ , W̃ ) are controlled by the
bound (3.12) to be of the higher order than the terms involving (A, B). To simplify our notations, we
shall then rewrite N0 simply as

N0 = Ns(E) + A2‖ψ‖2
L2 + B2‖χ‖2

L2 +O
(

A2 + B2)2
. (3.43)

Computing the derivative of (3.43) in time and using system (3.7) up to the quadratic order, we
obtain

N ′
s(E)C3(E) + 2

(∥∥ψ(E)
∥∥2

L2 + Λ2(E)
∥∥χ(E)

∥∥2
L2

) = 0,

which is identically satisfied thanks to the identity

‖ψ‖2
L2 + Λ2‖χ‖2

L2 = 〈ψ, L−χ〉L2 − 〈χ, L+ψ〉L2 = 〈
ψ, (L− − L+)χ

〉
L2

= 2p
〈
ψ,φ2pχ

〉
L2 = −1

2
N ′

s(E)C3(E). (3.44)

Expanded at the quadratic terms in (A, B), the conserved quantity for H0 becomes

H0 = Hs(E) + A2
∫
R

(
ψ2

x + V ψ2 − (2p + 1)φ2pψ2)dx

+ B2
∫
R

(
χ2

x + V χ2 − φ2pχ2)dx +O
(

A2 + B2)2
. (3.45)

Using the system (2.13) and the normalization 〈ψ,χ 〉L2 = 1, we obtain

∫
R

(
ψ2

x + V ψ2 − (2p + 1)φ2pψ2)dx = −Λ2(E) − E‖ψ‖2
L2 ,

∫
R

(
χ2

x + V χ2 − φ2pχ2)dx = 1 − E‖χ‖2
L2 .

Using (3.43), we can further simplify (3.45) to the form

H0 = Hs(E) + E
(
Ns(E) −N0

) − Λ2(E)A2 + B2 +O
(

A2 + B2)2
. (3.46)

We can now extend the conserved quantity H0 up to the quartic terms and write it abstractly as

H0 = Hs(E) + E
(
Ns(E) −N0

) − Λ2(E)A2 + B2

+ 1

2
D1(E)A4 + D2(E)A2 B2 + 1

2
D3(E)B4 +O

(
A2 + B2)3

, (3.47)

where D1, D2, and D3 are some coefficients, which can be computed explicitly. To avoid lengthy
computations, we shall compute these coefficients from the derivative of (3.47) in time and using
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the identity (2.27) and the system (3.7) up to the quartic order. This procedure yields two relations
between three coefficients D1, D2, and D3,

D1 + Λ2 D2 = 1

2
C3

(‖ψ‖2
L2 + ∂EΛ2) + C4Λ

2 − C6,

D2 + Λ2 D3 = 1

2
C3‖χ‖2

L2 + C5Λ
2 − C7.

Since Λ2(E∗) = 0, coefficients D1(E∗) and D2(E∗) are determined uniquely from this system. In par-
ticular, using (2.11), (2.15), (3.22), and (3.44), we compute

D1(E∗) = −2p2(2p + 1)
〈∂Eφ∗, φ2p−1∗ ψ2∗ 〉L2〈ψ∗, φ2p∗ χ∗〉L2

〈∂Eφ∗, φ∗〉L2
− C6(E∗)

= −p(2p + 1)
〈∂Eφ∗, φ2p−1∗ ψ2∗ 〉L2‖ψ∗‖2

L2

〈∂Eφ∗, φ∗〉L2
− C6(E∗). (3.48)

We have now all the ingredients to complete the proof of Theorem 3.

3.4. Analysis of dynamics as E → E∗

Hamiltonian system (3.7) equipped with conserved quantities (3.43) and (3.47) is integrable in the
sense of the Liouville up to the error terms controlled by Lemma 3. Using the conserved quantity
(3.43) and the assumption that N ′

s(E∗) 	= 0, we can exclude the variable E near E = E∗ . Then, using
the conserved quantity (3.47), we can plot the trajectories of the system (3.7) on the phase plane
(A, B) and show the topological equivalence of the phase portraits of the system (3.7) to those of the
second-order system (1.11).

We now proceed with the phase plane analysis for the system (3.7). We denote 	N =N0 − Ns(E∗)
and 	H = H0 − Hs(E∗). Assuming that 	N is small, we work in the domain (3.9) and use the ex-
pansions (3.43) and (3.47) to obtain

	N = N ′
s(E∗)(E − E∗) + A2‖ψ∗‖2

L2 + B2‖χ∗‖2
L2 +O

(
(E − E∗)2, (E − E∗)

(
A2 + B2), (A2 + B2)2)

and

	H = Hs(E) − Hs(E∗) + E
(
Ns(E) − Ns(E∗) − 	N

)

− Λ2(E)A2 + B2 + 1

2
D1(E)A4 + D2(E)A2 B2 + 1

2
D3(E)B4 +O

((
A2 + B2)6)

= −E	N + 1

2
N ′

s(E∗)(E − E∗)2 + λ′(E∗)‖ψ∗‖2
L2(E − E∗)A2 + B2 + 1

2
D1(E∗)A4 + D2(E∗)A2 B2

+ 1

2
D3(E∗)B4 +O

(
(E − E∗)3, (E − E∗)2(A2 + B2), (E − E∗)

(
A2 + B2)2

,
(

A2 + B2)3)
,

where we have used (2.15) and (2.27). Note that for clarity of writing, we require in the two expan-
sions above that all functions be C2 near E = E∗ . This property holds by the bootstrapping arguments
for analytic nonlinearities with p ∈N.

The first conserved quantity for 	N is useful to eliminate E in the domain (3.9) by

N ′
s(E∗)(E − E∗) = 	N − A2‖ψ∗‖2

2 − B2‖χ∗‖2
2 +O(	N)2. (3.49)
L L
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The second conserved quantity for 	H can now be written in the form

G = (	N)

N ′
s(E∗)

λ′(E∗)‖ψ∗‖2
L2 A2 + B2 + 1

2
F1 A4 + F2 A2 B2 + 1

2
F3 B4 +O(	N)3, (3.50)

where

G = 	H + E∗	N + (	N)2

2N ′
s(E∗)

,

F1 = ‖ψ∗‖4
L2(1 − 2λ′(E∗))

N ′
s(E∗)

+ D1(E∗),

F2 = ‖ψ∗‖2
L2‖χ∗‖2

L2(1 − λ′(E∗))
N ′

s(E∗)
+ D2(E∗),

F3 = ‖χ∗‖4
L2

N ′
s(E∗)

+ D3(E∗).

Using (1.5), (1.8), (2.15), and (3.48), we obtain

F1 = − QS
N ′

s(E∗)
.

In the domain (3.9), where A2 =O(|	N|) and B2 =O(|	N|2), G can be rewritten in the form

G = (	N)

N ′
s(E∗)

λ′(E∗)‖ψ∗‖2
L2 A2 + B2 − QS

2N ′
s(E∗)

A4 +O
(|	N|3). (3.51)

This quantity is time-preserving for any t ∈ [0, T ]. Dropping the error term O(|	N|3) in (3.51) pro-
duces the truncated system (1.11). We can now look at four different cases in the dynamics of the
truncated system (1.11) for any t ∈ [0, T ]. Recall that λ′(E∗) < 0, N ′

s(E∗) > 0, and Q < 0 by the as-
sumptions of Theorem 3 (see also Appendix A).

3.4.1. Case 	N > 0 and S > 0
It follows from (3.51) that the critical point (A, B) = (0,0) is a saddle point of G if 	N > 0 (recall

that λ′(E∗) < 0). The level set G = 0 gives a curve on the phase plane (A, B) given by

B2 = (	N)

N ′
s(E∗)

∣∣λ′(E∗)
∣∣‖ψ∗‖2

L2 A2 + QS
N ′

s(E∗)
A4 +O

(|	N|3). (3.52)

This curve contains the point (0,0) up to the terms of O(|	N|3).
If Q < 0 and S > 0, the curve G = 0 consists of two symmetric loops on the plane (A, B) that

enclose the points (±A∗,0), where G is minimal. An elementary computation shows that

A2∗ = λ′(E∗)‖ψ∗‖2
L2

QS
(	N) +O

(|	N|2). (3.53)

The points (±A∗,0) correspond to the stable asymmetric states ϕ± , whereas the point (0,0) corre-
sponds to the unstable symmetric state φ. Appendix B reviews the results of the stationary normal
form equation that recovers the critical points (0,0) and (±A∗,0).
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The critical points (±A∗,0) are minima of G (center points). Therefore, they are surrounded by
continuous families of periodic orbits on the phase plane (A, B). Periodic orbits fill the domain en-
closed by the two loops of the level G = 0. There are also periodic orbits for G > 0 that surround all
three critical points (±A∗,0) and (0,0). Thus, the phase portrait of the full system (3.7) is topologi-
cally equivalent to the one on Fig. 2 (top left) for the truncated system (1.11).

3.4.2. Case 	N > 0 and S < 0
The critical point (A, B) = (0,0) is again a saddle point of G if 	N > 0. It corresponds to the un-

stable symmetric state φ. No other critical points of G for small A and B = 0 exist if S < 0. Therefore,
trajectories on the phase plane (A, B) near (0,0) are all hyperbolic and they leave the neighborhood
of (0,0) in a finite time, except for the stable manifolds. The phase portrait of the full system (3.7) is
topologically equivalent to the one on Fig. 2 (top right) for the truncated system (1.11).

3.4.3. Case 	N < 0 and S > 0
It follows from (3.51) that the critical point (A, B) = (0,0) is a minimum of G if 	N < 0. It

corresponds to the stable symmetric state φ. No other critical points of G for small A and B = 0 exist
if S > 0. Therefore, (0,0) is a center point, which is surrounded by a continuous family of periodic
orbits on the phase plane (A, B). The phase portrait of the full system (3.7) is topologically equivalent
to the one on Fig. 2 (bottom left) for the truncated system (1.11).

3.4.4. Case 	N < 0 and S < 0
The critical point (A, B) = (0,0) is again a minimum of G if 	N < 0. If S < 0, there exist two

symmetric maxima of G at the points (±A∗,0), where A2∗ is given by (3.53). The points (±A∗,0)

correspond to the unstable asymmetric states ϕ± , whereas the point (0,0) corresponds to the stable
symmetric state φ. Because the points (±A∗,0) are saddle points, the level curve of G at A = A∗
and B = 0 prescribes a pair of heteroclinic orbits connecting (±A∗,0). The pair of heteroclinic or-
bits encloses a continuous family of closed curves surrounding the center point (0,0) on the phase
plane and corresponding to periodic orbits. The phase portrait of the full system (3.7) is topologically
equivalent to the one on Fig. 2 (bottom right) for the truncated system (1.11).

3.5. The end of the proof of Theorem 3

All nontrivial solutions of the system of modulation equations (3.7) in the domain (3.9) are topo-
logically equivalent to the ones given by the truncated system (1.11). Bound (3.10) on the maximal
time T > 0, during which the solutions remain in the domain (3.9), follows directly from the integra-
tion of the system (1.11) over the time t ∈ [0, T ]. Other bounds of Theorem 3 follow from Lemma 3.
The proof of Theorem 3 is now complete.

Appendix A. Large separation of potential wells

The case of large separation of potential wells, when parameter s in the double-well potential (1.2)
is large, gives a good example of explicit computations of numerical coefficients Q and S . Knowing
these numerical coefficients enables the explicit classification of the stationary states in Theorem 1
and 2 and verifies the conditions of Theorem 3. The following lemma gives the asymptotic result
when s → ∞.

Lemma 7. Let V be given by (1.2). There exists a sufficiently large, positive s0 such that for all s > s0 , we have
N ′

s(E∗) > 0, λ′(E∗) < 0, Q< 0, and

S > 0 if p < p∗, and S < 0 if p > p∗,

where p∗ is the positive root of the equation 1 + 3p − p2 = 0.



D.E. Pelinovsky, T.V. Phan / J. Differential Equations 253 (2012) 2796–2824 2819
Proof. We recall from [10] that

E∗ → E0 and ψ2∗ → C∗φ2∗ in L∞(R) as s → ∞,

where C∗ > 0 is a normalization constant. Using the exact identity

L−1+ (E)φ2p+1 = − 1

2p
φ,

we can hence simplify the expression (1.5) to the form

Q → −4

3
p(p + 1)(2p + 1)C2∗‖φ∗‖2p+2

L2p+2 as s → ∞. (A.1)

Therefore, Q< 0 for any p ∈ N if s is sufficiently large.
Because E∗ → E0, we can approximate φ∗ and ∂Eφ∗ using the small-amplitude expansion for the

symmetric states of the stationary equation (1.3),

φ(x; E) = aφ0(x) +O
(
a1+2p)

, E = E0 + a2p
‖φ0‖2p+2

L2p+2

‖φ0‖2
L2

+O
(
a4p)

,

where φ0 ∈ H2(R) is the eigenfunction of the operator L0 = −∂2
x + V (x) for the lowest eigenvalue

−E0 and a ∈ R is a small parameter of the expansion. As a result, we obtain

〈
∂Eφ∗, φ2p+1∗

〉
L2 → 1

2p
‖φ∗‖2

L2 , as s → ∞, (A.2)

and

N ′
s(E∗) = 2〈∂Eφ∗, φ∗〉L2 → 1

p

‖φ∗‖4
L2

‖φ∗‖2p+2
L2p+2

, as s → ∞. (A.3)

In addition, it follows from (2.11) and (A.2) that

λ′(E∗) → −2p as s → ∞. (A.4)

Therefore, N ′
s(E∗) > 0 and λ′(E∗) < 0 as s → ∞.

Substituting (A.1)–(A.4) into the expression (1.8), we obtain

S → (1 + 3p − p2)‖φ∗‖4
L2

p(1 + p)(1 + 2p)‖φ∗‖2p+2
L2p+2

as s → ∞. (A.5)

Therefore, S > 0 for p < p∗ and S < 0 for p > p∗ , where p∗ is given by the positive root of 1 + 3p −
p2 = 0, that is, by (1.9). �



2820 D.E. Pelinovsky, T.V. Phan / J. Differential Equations 253 (2012) 2796–2824
Appendix B. Stationary normal form equation

Recall that in Section 2, we have only used the statement of Theorem 1(i) from the results of Kirr
et al. [10]. We show here how to recover the results of Theorems 1(ii) and 2 on the existence and
stability of stationary states from the system of time evolution equations (2.19)–(2.24).

Theorems 1 and 2 were originally proved in [10] with the Lyapunov–Schmidt decomposition
method that relies on an orthogonal decomposition with respect to the self-adjoint operator L+(E).
On the other hand, the decomposition used in the derivation of the system of time evolution equa-
tions (2.19)–(2.24) relies on the symplectic orthogonality conditions (2.18). Therefore, it is important
to establish that the system of modulation equations considered in our paper provides the same con-
clusions as Theorems 1(ii) and 2 do.

We start with the simplification of the system (2.19)–(2.24) for stationary solutions of the NLS
equation (1.1). Because of the symplectic orthogonality conditions (2.18), we define the constrained
H2-space

H2
E = {

U ∈ H2(R):
〈
φ(E), U

〉
L2 = 〈

χ(E), U
〉
L2 = 0

}
, (B.1)

where the subscript indicates that the orthogonal projections are E-dependent. The stationary solu-
tions of the system (2.19)–(2.24) near E = E∗ are described by the following lemma.

Lemma 8. Assume that N ′
s(E∗) 	= 0. There exists a sufficiently small, positive ε such that for all |E − E∗| < ε ,

the nonlinear Schrödinger equation (1.1) admits a stationary solution

Ψ = eitE[
φ(x; E) + Aψ(x; E) + U

]
, (B.2)

where

E = E − 〈∂Eφ, N+(Aψ + U ,0)〉L2

〈∂Eφ,φ + U 〉L2
, (B.3)

while U ∈ H2
E and A ∈ R are uniquely defined from the implicit equations

L+(E)U = G(A, E, U ),
〈
ψ(E), G(A, E, U )

〉
L2 = 0 (B.4)

with

G(A, E, U ) = Λ2 Aχ + 〈∂Eφ, N+(Aψ + U ,0)〉L2

〈∂Eφ,φ + U 〉L2
(φ + Aψ + U ) − N+(Aψ + U ,0). (B.5)

Moreover, U and A2 are C1 functions near E = E∗ and there exist positive constants C1 and C2 such that

‖U‖H2 � C1|E − E∗|, A2 � C2|E − E∗|. (B.6)

Proof. For real-valued stationary solutions, we can set B = 0 and W = 0 in the system (2.19)–(2.24),
which give w = 0 and N−(Aψ +U ,0) = 0. The modulation equations (2.21)–(2.24) become degenerate
and can be rewritten in the form

〈∂Eφ,φ − U 〉L2 Ė = 0,

〈∂Eφ,φ + U 〉L2(θ̇ − E) = −〈
∂Eφ, N+(Aψ + U ,0)

〉
L2 ,

Ȧ + Ė
(−〈∂Eχ, U 〉L2 + A〈∂Eψ,χ〉L2

) = 0,

−Λ2 A + (θ̇ − E)
(

A‖ψ‖2
2 + 〈ψ, U 〉L2

) = −〈
ψ, N+(Aψ + U ,0)

〉
2 .
L L
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Assuming N ′
s(E∗) 	= 0 and the smallness of ‖U‖L2 for small |E − E∗|, we get 〈∂Eφ,φ − U 〉L2 	= 0 for

small |E − E∗|. Hence, from the first equation, it follows that Ė = 0. Then, from the third equation, we
infer that Ȧ = 0. The second equation gives (B.3) with the correspondence θ̇ = E . The fourth equation
gives 〈ψ(E), G(A, E, U )〉L2 = 0, where G is defined by (B.5) and the normalization 〈ψ(E),χ(E)〉L2 = 1
is used.

The time evolution system (2.19)–(2.20) implies that U becomes time-independent and satisfies
the stationary equation L+(E)U = G(A, E, U ). Thus, the system (B.4) is verified. It remains to prove
the existence and uniqueness of small C1 solutions U and A2 of this system satisfying the estimates
(B.6) for small |E − E∗|.

Since L+(E∗)ψ∗ = 0 and ψ(E) → ψ∗ in L2(R) as E → E∗ , the Implicit Function Theorem gives the
existence of a unique local map

R
2 � (A, E) �→ U ∈ H2(R) near (A, E) = (0, E∗), (B.7)

such that U satisfies equation L+(E)U = G(A, E, U ) subject to the constraint 〈χ(E), U 〉L2 = 0, pro-
vided that 〈ψ(E), G(A, E, U )〉L2 = 0. Let U A,E denote this map for small A and |E − E∗|. The map is
C∞ if p ∈N.

In addition, it follows from equation

L+(E)∂Eφ(E) = −φ(E) (B.8)

that U A,E satisfies 〈φ(E), U A,E 〉L2 = 0 under the constraint 〈∂Eφ(E), G(A, E, U )〉L2 = 0, which is iden-
tically satisfied. Therefore, U A,E ∈ H2

E , according to the definition (B.1).
We note that G(A, E, U ) is quadratic in A as A → 0. Therefore, we proceed with a near identity

transformation for the map (B.7),

U A,E = A2Θ(x; E) +OH2

(
A3), (B.9)

where Θ ∈ H2
E is a unique solution of the inhomogeneous equation

L+(E)Θ = p(2p + 1)φ2p−1ψ2 − p(2p + 1)
〈∂Eφ,φ2p−1ψ2〉L2

〈∂Eφ,φ〉L2
φ. (B.10)

It remains to control the value of A in terms of the small value of |E − E∗|. Substituting (2.15) and
(B.9) to equation 〈ψ(E), G(A, E, U )〉L2 = 0, we obtain

λ′(E∗)‖ψ∗‖2
L2(E − E∗)A − Q A3 +O

(
A4, A2(E − E∗), (E − E∗)2) = 0, (B.11)

where

Q = 1

3
p(2p + 1)(2p − 1)

〈
ψ2∗ , φ

2p−2∗ ψ2∗
〉
L2 + 2p(2p + 1)

〈
ψ2∗ , φ

2p−1∗ Θ∗
〉
L2

− p(2p + 1)
〈∂Eφ∗, φ2p−1∗ ψ2∗ 〉L2

〈∂Eφ∗, φ∗〉L2
‖ψ∗‖2

L2 .

Therefore, either A = 0 (and U A,E ≡ 0) or A is a nonzero root of Eq. (B.11) such that A2 is C1 near
E = E∗ satisfying the second estimate (B.6). Thanks to the expansion (B.9), the first estimate (B.6) is
also satisfied. This concludes the proof of the lemma. �
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We will now show that the results following from the normal form equation (B.11) are equivalent
to the results of Theorems 1(ii) and 2. Using (B.8), we let

Θ = θ + p(2p + 1)
〈∂Eφ,φ2p−1ψ2〉L2

〈∂Eφ,φ〉L2
∂Eφ, θ = p(2p + 1)L−1+ (E)φ2p−1ψ2.

On the other hand, expanding (B.3) gives

E = E + p(2p + 1)A2 〈∂Eφ,φ2p−1ψ2〉L2

〈∂Eφ,φ〉L2
+O

(
A3). (B.12)

Using (2.11), we conclude that the normal form equation (B.11) is equivalent to equation

λ′(E∗)‖ψ∗‖2
L2(E − E∗)A −QA3 +O

(
A4, A2(E − E∗), (E − E∗)2) = 0, (B.13)

where Q is given by (1.5) and E is a renormalized parameter of the stationary state φ.
We can see from (B.13) that besides zero solution A = 0 that corresponds to the symmetric state

φ(x; E), there are two nonzero solutions that correspond to the asymmetric states,

ϕ±(x;E) = φ(x; E) ± Aψ(x; E) + A2Θ(x; E) +OH2

(
A3), (B.14)

where E is related to E by the expansion (B.12) and A is a positive root of the stationary normal
form equation (B.13) provided that sign((E − E∗)Q) = −1 if λ′(E∗) < 0. If Q < 0, the asymmetric
states exist for E > E∗ . If Q > 0, the asymmetric states exist for E < E∗ . We have recovered the
statement of Theorem 1(ii).

To consider the statement of Theorem 2, we need the following result.

Lemma 9. Let ϕ± be the asymmetric states (B.14) that exist for sign((E − E∗)Q) = −1 near E = E∗ and
define

L+(A) = −∂2
x + V (x) − (2p + 1)ϕ

2p
+ + E(A),

where E(A) is given by the expansion (B.13). Then, the second eigenvalue of L+(A) is positive for Q < 0 and
negative for Q> 0.

Proof. Using (B.11) and (B.14), we expand ϕ± for small A by

ϕ± = φ∗ ± Aψ∗ + A2
(

Θ∗ + Q

λ′(E∗)‖ψ∗‖2
L2

∂Eφ∗
)

+OH2

(
A3). (B.15)

Let h(A) be the eigenfunction of L+(A) for the second eigenvalue μ(A). We have h(0) = ψ∗ and
μ(0) = 0 is a simple eigenvalue, so that the asymptotic perturbation theory for simple eigenvalues of
closed operators [7, Section 8.2.3] applies. Using (B.13) and (B.15), we compute

L′+(0) = −2p(2p + 1)φ
2p−1∗ ψ∗
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and

L′′+(0) = −2p(2p + 1)(2p − 1)φ
2p−2∗ ψ2∗ − 4p(2p + 1)φ

2p−1∗ ψ∗
(

Θ∗ + Q

λ′(E∗)‖ψ∗‖2
L2

∂Eφ∗
)

+ 2Q
λ′(E∗)‖ψ∗‖2

L2

.

Algorithmic computations yield h′(0) = 2θ∗ , μ′(0) = 0, and, after tedious computations,

μ′′(0) = 〈L′′+(0)ψ∗ + 4L′+(0)θ∗,ψ∗〉L2

‖ψ∗‖2
L2

= − 4Q
‖ψ∗‖2

L2

.

Therefore, μ(A) > 0 for small A if Q< 0 and μ(A) < 0 for small A if Q> 0. �
Let Ns(E) = ‖φ(·; E)‖2

L2 and Na(E) = ‖ϕ±(·;E)‖2
L2 . Using Eqs. (B.12) and (B.13), we expand Na(E)

in the power series,

Na(E) = Ns(E) + A2‖ψ‖2
L2 +O

(
A4)

= Ns(E∗) + N ′
s(E∗)(E − E∗) + A2‖ψ∗‖2

L2 +O
(
(E − E∗)2, (E − E∗)A2, A4)

= Ns(E∗) + S(E − E∗) +O(E − E∗)2,

where S is given by (1.8). Assuming that Q< 0, the asymmetric states exist for E > E∗ . If S > 0, then
Na(E) increases with E , whereas if S < 0, then Na(E) decreases with E .

Orbital stability and instability of asymmetric stationary states follow from the classical theorem
of Grillakis, Shatah, and Strauss [5] because Lemma 9 shows that the operator L+(A) linearized at
ϕ±(E) has one negative eigenvalue if Q < 0 and E > E∗ . On the other hand, the symmetric state
φ(E) is unstable for E > E∗ by a theorem of Grillakis [4] because Theorem 1(i) shows that L+(E)

linearized at φ(E) has two negative eigenvalues for E > E∗ . We have recovered the statement of
Theorem 2.
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