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Abstract
Excited states of Bose–Einstein condensates are considered in the large density
limit of the Gross–Pitaevskii equation with repulsive inter-atomic interactions
and a harmonic potential. The relative dynamics of dark solitons (density dips
on the localized condensate) with respect to the harmonic potential and to each
other is approximated using the averaged Lagrangian method. This permits a
complete characterization of the equilibrium positions of the dark solitons as
a function of the chemical potential. It also yields an analytical handle on the
oscillation frequencies of dark solitons around such equilibria. The asymptotic
predictions are generalized for an arbitrary number of dark solitons and are
corroborated by numerical computations for 2- and 3-soliton configurations.
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1. Introduction

The defocusing nonlinear Schrödinger equation is a prototypical model for a variety of different
settings including nonlinear optics, liquids, mechanical systems and magnetic films, among
others. In one spatial dimension, its prototypical excitation is the dark soliton, i.e. a localized
density dip on a continuous-wave background (carrying also a phase jump).

One of the major areas of application where the description of dark solitons with a
mean-field model (also known as the Gross–Pitaevskii equation) has been relevant is the
physics of atomic Bose–Einstein condensates (BECs) [16, 17]. There, the repulsive inter-
atomic interactions can be accurately captured by an effective nonlinear self-action [6]. A
considerable volume of experimental work has conclusively demonstrated the relevance of such
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nonlinear waveforms within harmonically confined condensates. Although in earlier works,
such coherent structures were dynamically or thermally unstable [4, 5], more recent work has
overcome such limitations [9, 18–20]. This has been achieved by working at sufficiently low
temperatures (of the order of 10 nK) and for strongly confined in the transverse directions,
cigar-shaped BECs. Furthermore, in these recent experiments, the nature of the generation
process (e.g. by interference of two independent BECs [18, 20, 21] or through interaction of
the BEC with an appropriate light pulse [19]), makes it possible to produce two or more dark
solitons on the background of a localized condensate. In principle, the resulting number of
dark solitons can be chosen at will, as indicated in [20].

These recent developments prompt us to examine the dynamics of dark solitons which are
harmonically confined within localized repulsive BECs. These can be thought of as density dips
that arise in nonlinear variants of the excited states of the quantum harmonic oscillator [3, 12].
The study of the equilibrium positions and near-equilibrium dynamics of these density dips is
the principal theme of the present contribution. In particular, using a Lagrangian (variational)
approach, we compute the asymptotic dependence on the chemical potential parameter both
for equilibrium positions of dark solitons and for their oscillation frequencies around such
equilibria.

We note that the Lagrangian approach was developed for the defocusing NLS equation
without potentials in [14]. It was used for computations of stationary configurations of dark
(and bright) solitary waves in single and multiple well potentials [1, 2].

This paper is organized as follows. In section 2, we present the general mathematical setup
of the problem. Section 3 examines the single soliton case, section 4 extends considerations
to 2-solitons and section 5 generalizes the results to an arbitrary number of m-solitons for
m � 2. Section 6 compares our asymptotic predictions with numerical computations and
suggests some interesting directions for further study.

2. Mathematical setup

Let us start with the Gross–Pitaevskii equation with a harmonic potential and repulsive
nonlinear interactions

ivτ = − 1
2vξξ + 1

2ξ 2v + |v|2v − µv, (1)

where v(ξ, τ ) : R × R → C is the wave function and µ ∈ R represents the chemical potential
(and is physically associated with the number of atoms in the condensate). We are interested in
localized modes of the Gross–Pitaevskii equation in the large density limit µ → ∞, which is
associated with the semi-classical or Thomas–Fermi limit. Using the scaling transformation,

v(ξ, t) = µ1/2u(x, t), ξ = (2µ)1/2x, τ = 2t, (2)

the Gross–Pitaevskii equation (1) is transformed to the semi-classical form

iεut + ε2uxx + (1 − x2 − |u|2)u = 0, (3)

where u(x, t) : R × R → C is a new wave function and ε = (2µ)−1 is a small parameter.
We note that the large density limit in the realm of the Gross–Pitaevskii equation (1) is

of mathematical interest, yet of somewhat limited physical importance. The one-dimensional
reduction of the three-dimensional condensates fails prior to the density reaching this limit.
Nevertheless, all the structural features that will be observed herein will be independent
of the precise form of the model and are relevant also to more elaborate non-polynomial
models [20, 21] to account for the experimental observations of dark solitons in BECs.

Let ηε be the positive solution of the stationary problem

ε2η′′
ε (x) + (1 − x2 − η2

ε (x))ηε(x) = 0, x ∈ R. (4)
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According to the previous (rigorous) results [8, 10, 11], for any sufficiently small ε > 0 there
exists a smooth solution ηε ∈ C∞(R) that decays to zero as |x| → ∞ faster than any exponential
function. The ground state converges pointwise as ε → 0 to the compact Thomas–Fermi cloud

η0(x) := lim
ε→0

ηε(x) =
{
(1 − x2)1/2, for |x| � 1,

0, for |x| > 1.
(5)

Moreover, it is proved in [8] that there is C > 0 such that

‖ηε − η0‖L∞ � Cε1/3. (6)

We shall consider excited states of the Gross–Pitaevskii equation (3), which are non-
positive solutions of the stationary problem

ε2u′′
ε (x) + (1 − x2 − u2

ε(x))uε(x) = 0, x ∈ R. (7)

The excited states can be classified by the number m of zeros of uε(x) on R. A unique solution
with m zeros exists near ε = εm by the local bifurcation theory [15], where εm = 1/(1 + 2m),
m ∈ N. Because of the symmetry of the harmonic potential, the mth excited state uε(x) is
even on R for even m ∈ N and odd on R for odd m ∈ N. The mth excited state is continued for
ε < εm numerically [22], based on the technique of numerical continuations from the linear
states [3, 12].

In our work we shall apply variational approximations [14] to study relative dynamics of
dark solitons (localized solutions with nonzero boundary conditions on the background of the
positive ground state ηε) with respect to the harmonic potential and to each other. In particular,
we obtain results on the existence and spectral stability of the excited states from analysis of
equilibrium positions of dark solitons and their oscillation frequencies near such equilibrium.
To enable this formalism, we use the well-known product representation for vortices on the
ground state [10, 11] and substitute

u(x, t) = ηε(x)v(x, t)

to the Gross–Pitaevskii equation (3) and find an equivalent equation

iεη2
εvt + ε2

(
η2

εvx

)
x

+ η4
ε (1 − |v|2)v = 0. (8)

Excited states are solutions of the stationary equation

ε2 d

dx

(
η2

ε (x)V ′
m(x)

)
+ η4

ε (x)(1 − V 2
m(x))Vm(x) = 0, x ∈ R, (9)

which have exactly m zeros on R and satisfy the boundary conditions

lim
x→±∞ Vm(x) = (±1)m, m ∈ N.

Solutions of the stationary Gross–Pitaevskii equation (9) are critical points of the energy
functional

�(v) = ε2
∫

R

η2
ε (x)|vx |2dx +

1

2

∫
R

η4
ε (x)(1 − |v|2)2dx. (10)

in the sense of δ�/δv̄|v=Vm
= 0. The time-dependent Gross–Pitaevskii equation (8) follows

from the Lagrangian function L(v) = K(v) + �(v), where

K(v) = i

2
ε

∫
R

η2
ε (x)(vv̄t − v̄vt )dx, (11)

by means of the Euler–Lagrange equations
δL

δv̄
− d

dt

δL

δv̄t

= 0.

In what follows, we obtain variational approximations for time-dependent solutions near the
excited states Vm(x) for m = 1, m = 2, and in the general case m � 2. We also compare these
approximations with numerical results for m = 2 and m = 3.
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3. 1-soliton (m = 1)

Let us consider the dark soliton

v1(x, t) = A(t) tanh
(
ε−1B(t)(x − a(t))

)
+ ib(t), A > 0, B > 0, a ∈ R, b ∈ R,

(12)

as an ansatz for the Lagrangian L(v). The motivation for this choice originates from the fact
that (12) is an exact solution of (8) if ηε = 1 under the constraints

A =
√

1 − b2, B = 1√
2

√
1 − b2, a = a0 +

√
2bt, b = b0,

where a0 ∈ R and b0 ∈ (−1, 1) are arbitrary t-independent parameters. In view of the relation

|v1|2 = A2 + b2 − A2sech2(ε−1B(t)(x − a(t))),

it is clear that a is a centre of the dark soliton, b is its speed, A determines its amplitude and
B determines its width. If the dark soliton is placed inside the confinement of the compact
Thomas–Fermi cloud (5), then the constraint a ∈ (−1, 1) has to be added.

When ηε �= 1, the trial function (12) is no longer an exact solution of (8) but it
becomes the best approximate solution in the corresponding class of functions if parameters
(A, B, a, b) are chosen from the Euler–Lagrange equations of the averaged Lagrangian
L1(A, B, a, b) = L(v1). This variational method provides a useful qualitative approximation
to physicists for understanding the dynamics of dark solitons under perturbations [14]. Unlike
the work of [14], we do not need to renormalize the Lagrangian function L(v) thanks to the
rapidly decaying weight function η2

ε (x) under the integration sign in (10) and (11).
Let us choose A = √

1 − b2 and b ∈ (−1, 1) to satisfy the boundary conditions

lim
x→±∞ |v1(x, t)| = 1 for all t ∈ R.

Substitution of ansatz (12) to L(v) and integration in R results in the effective Lagrangian

L(v1) = εḃ√
1 − b2

∫
R

η2
ε (x) tanh(z)dx + b

√
1 − b2Bȧ

∫
R

η2
ε (x)sech2(z)dx

− εb
√

1 − b2ḂB−1
∫

R

η2
ε (x)zsech2(z)dx + (1 − b2)B2

∫
R

η2
ε (x)sech4(z)dx

+
1

2
(1 − b2)2

∫
R

η4
ε (x)sech4(z)dx, (13)

where z = ε−1B(x − a). Note the pointwise limits

lim
ε→0

tanh(z) = sign(x − a), lim
ε→0

sech2(z) = 0, x ∈ R\{0}, (14)

which show that limε→0 L(v1) = 0. The asymptotic behaviour of L(v1) as ε → 0 is computed
in the following lemma.

Lemma 1. Assume that B > 0, a ∈ (−1, 1), and b ∈ (−1, 1). Then,

L1 := lim
ε→0

L(v1)

2ε
= − ḃ√

1 − b2

(
a − 1

3
a3

)
+ b

√
1 − b2(1 − a2)ȧ

+
2

3
(1 − a2)(1 − b2)B +

1

3B
(1 − a2)2(1 − b2)2.
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Proof. Thanks to the limit (5), the pointwise bound (14) and the dominated convergence
theorem, we have

lim
ε→0

∫
R

η2
ε (x) tanh(z)dx =

∫ 1

−1
(1 − x2)sign(x − a)dx = −2a +

2

3
a3,

To compute the remaining four integrals in (13), we use the change of variables x → z, so that

ε−1B

∫
R

η2
ε (x)sech2(z)dx =

∫
R

η2
ε

(
a + εzB−1

)
sech2(z)dz

=
∫ z+

z−
η2

0

(
a + εzB−1

)
sech2(z)dz + ε1/3

∫
R

Rε,B,a(z)sech2(z)dz,

where z± = ε−1B(±1−a) and the remainder term satisfies the uniform bound ‖Rε,B,a‖L∞ � C

for some C > 0, thanks to the bound (6). As a result, the second term does not contribute to
the limit ε → 0. To deal with the first term, we decompose the integral into three parts

(1 − a2)

∫ z+

z−
sech2(z)dz − 2εaB−1

∫ z+

z−
zsech2(z)dz − ε2B−2

∫ z+

z−
z2sech2(z)dz.

We recall that the integral∫ ∞

αε−1
zksech2(z)dz, k � 0

is exponentially small in ε if α > 0 is ε-independent. As a result, the second and third terms
do not contribute to the limit ε → 0, while the first term gives

lim
ε→0

ε−1B

∫
R

η2
ε (x)sech2(z)dx = (1 − a2)

∫
R

sech2(z)dz = 2(1 − a2).

The remaining three integrals in (13) are computed similarly to the second integral in (13) and
give

lim
ε→0

ε−1B

∫
R

η2
ε (x)zsech2(z)dx = (1 − a2)

∫
R

zsech2(z)dz = 0,

lim
ε→0

ε−1B

∫
R

η2
ε (x)sech4(z)dx = (1 − a2)

∫
R

sech4(z)dz = 4

3
(1 − a2),

lim
ε→0

ε−1B

∫
R

η4
ε (x)sech4(z)dx = (1 − a2)2

∫
R

sech4(z)dz = 4

3
(1 − a2)2.

Combining all individual computations gives the result for L1.

Since Ḃ is absent in L1 := L1(a, b, B), variation of L1 with respect to B gives an algebraic
equation on B with the exact solution for a ∈ (−1, 1):

B = 1√
2

√
1 − a2

√
1 − b2.

Eliminating B from L1(a, b, B), we simplify the effective Lagrangian to the form

L1(a, b) = 2
√

2

3
(1 − a2)3/2(1 − b2)3/2 − 2

√
1 − b2ḃ

(
a − 1

3
a3

)

+
d

dt

[(
a − 1

3
a3

)
b
√

1 − b2

]
,

where the last term is the full derivative. Since adding a full derivative does not change the
Euler–Lagrange equations, the last term can be dropped from L1. Variation with respect to a

and b gives the following system of equations

ȧ =
√

2
√

1 − a2b, ḃ = −
√

2a(1 − b2)√
1 − a2

,
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which is equivalent to the linear oscillator equation

ä + 2a = 0.

The critical point (a, b) = (0, 0) corresponds to the solution V1 of the stationary equation
(9). Oscillations near the critical point with frequency

√
2 correspond to the oscillations of

the dark soliton V1 relative to the positive ground state ηε in the limit ε → 0; see, e.g., [13]
and references therein. This frequency was found to be the smallest nonzero frequency in the
spectrum of the spectral stability problem associated with the first excited state, see figure 2
in [15].

4. 2-solitons (m = 2)

Let us now consider a superposition of two dark solitons

v2(x, t) = [
A1(t) tanh

(
ε−1B1(t)(x − a1(t))

)
+ ib1(t)

]
× [

A2(t) tanh
(
ε−1B2(t)(x − a2(t))

)
+ ib2(t)

]
, (15)

where we shall use the relations for the individual dark solitons

Aj =
√

1 − b2
j , Bj = 1√

2

√
1 − a2

j

√
1 − b2

j , j = 1, 2,

for aj ∈ (−1, 1) and bj ∈ (−1, 1).
Although the exact solution for two dark solitons exists for the defocusing NLS equation

without potentials, the variational approximations become computationally more difficult when
the exact solution is used. Instead, we will use the product solution (15), which is only an
approximate solution of the defocusing NLS equation if the separation distance between the
dark solitons is large. Therefore, we shall later add the assumption (equation (16)) that the
two dark solitons are located far away from each other compared with their widths as ε → 0,
although both of them are located close to the centre x = 0 of the harmonic potential.

In-phase oscillations of two dark solitons are very similar to the oscillations of one dark
soliton and have the same frequency

√
2 [20] (this point is shown in section 5 for a general

case of m � 2 dark solitons). Therefore, we shall consider the out-of-phase oscillations of
two dark solitons and choose

a1 = −a, a2 = a, b1 = −b, b2 = b,

with a ∈ [0, 1) and b ∈ (−1, 1). Substitution of v2 to �(v) gives

�(v2) = A2B2
∫

R

η2
ε (x)

[
sech4(z+) + sech4(z−) − 2b2sech2(z+)sech2(z−)

−A2sech2(z+)sech2(z−)
(
sech2(z+) + sech2(z−) − 2 tanh(z+) tanh(z−)

)]
dx

+
1

2
A4

∫
R

η4
ε (x)

[
sech4(z+) + sech4(z−) + 2sech2(z+)sech2(z−)

−2A2sech2(z+)sech2(z−)
(
sech2(z+) + sech2(z−)

)
+ A4sech4(z+)sech4(z−)

]
dx,

where z± = ε−1B(x ± a). The integrals that only depend on z+ or z− are computed similarly
to the case of 1-soliton in section 3. The overlapping integrals that depend on both z+ and
z− are computed under the a priori assumption

a � C1ε
1/6, e−4Baε−1 � C2ε

2| log(ε)|, (16)

for some C1, C2 > 0 and sufficiently small ε > 0. As we will see later, the a priori assumption
allows us to recover the equilibrium state of two dark solitons and to study perturbations near
the equilibrium.
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After simplifications, one can write

�2 := �(v2)

2ε
= �+ + �− + �overlap,

where

�± := A2B2

2ε

∫
R

η2
ε (x)sech4(z±)dx +

A4

4ε

∫
R

η4
ε (x)sech4(z±)dx

and

�overlap = − A2B2

2ε

∫
R

η2
ε (x)sech2(z+)sech2(z−)

× [
2b2 + A2

(
sech2(z+) + sech2(z−) − 2 tanh(z+) tanh(z−)

)]
dx

+
A4

4ε

∫
R

η4
ε (x)sech2(z+)sech2(z−)

× [
2 − 2A2

(
sech2(z+) + sech2(z−)

)
+ A4sech2(z+)sech2(z−)

]
dx.

The terms �± are the potential energies of the individual dark solitons and the term �overlap

contains overlapping integrals. By lemma 1, we have

�± = 2
√

2
3 (1 − a2)3/2(1 − b2)3/2 + O(ε1/3).

The overlapping integrals for small ε are computed in the following lemma.

Lemma 2. Assume that a ∈ (0, 1) satisfies (16), b ∈ (−1, 1), and

A =
√

1 − b2, B = 1√
2

√
1 − a2

√
1 − b2.

Then,

�overlap = −8
√

2(1 − a2)3/2(1 − b2)5/2 e−4Baε−1 (
1 + O(ε1/3)

)
.

Proof. To compute the overlapping integrals, we use the symmetry of the integrand and the
change of variables x → z−. The first overlapping integral in �overlap is given by

ε−1B

∫
R

η2
ε (x)sech2(z+)sech2(z−)dx

= 2
∫ ∞

−Baε−1
η2

ε

(
a + εzB−1

)
sech2(z)sech2(z + 2Baε−1)dz,

where z ≡ z−. Similarly to the proof of lemma 1, we break the integral into four parts

2(1 − a2)

∫ B(1−a)ε−1

−Baε−1
sech2(z)sech2(z + 2Baε−1)dz

−4aεB−1
∫ B(1−a)ε−1

−Baε−1
zsech2(z)sech2(z + 2Baε−1)dz

−2ε2B−2
∫ B(1−a)ε−1

−Baε−1
z2sech2(z)sech2(z + 2Baε−1)dz

+2ε1/3
∫ ∞

−Baε−1
Rε,B,a(z)sech2(z)sech2(z + 2Baε−1)dz,
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where the remainder term satisfies the bound ‖Rε,B,a‖L∞ � C for some C > 0, thanks to
the bound (6). The first part gives the leading order of the integral according to the explicit
calculation

I1 =
∫ B(1−a)ε−1

−Baε−1
sech2(z)sech2(z + 2Baε−1)dz

= 16

(∫ Baε−1

−Baε−1
+

∫ B(1−a)ε−1

Baε−1

)
e−4z−4Baε−1

(1 + e−2z)2(1 + e−2z−4Baε−1
)2

dz

We have

0 � e−2z−4Baε−1 � e−2Baε−1
, z � −Baε−1

and

e−B(1−a)ε−1 	 e−Baε−1
, a � Cε1/6,

so that

I1 = 16e−4Baε−1

(∫ Baε−1

−Baε−1

e−4z

(1 + e−2z)2
dz

) (
1 + O

(
e−2Baε−1

))
+ O

(
e−8Baε−1

)

= 8e−4Baε−1 (
2Baε−1 − 1

) (
1 + O

(
e−2Baε−1

))
.

The second part of the overlapping integral is computed from the explicit computation

I2 = aε

∫ B(1−a)ε−1

−Baε−1
zsech2(z)sech2(z + 2Baε−1)dz

= aε

(∫ Baε−1

−Baε−1
+

∫ B(1−a)ε−1

Baε−1

)
zsech2(z)sech2(z + 2Baε−1)dz

= O(a2I1) + O
(

e−6Baε−1
)

= O(a2I1).

The last two parts of the overlapping integrals are computed similarly and yield

I3 = ε2
∫ B(1−a)ε−1

−Baε−1
z2sech2(z)sech2(z + 2Baε−1)dz = O(a2I1),

I4 = ε1/3
∫ ∞

−Baε−1
Rε,B,a(z)sech2(z)sech2(z + 2Baε−1)dz = O(ε1/3I1).

Under assumption (16), we have

e−2Baε−1 = O(ε| log(ε)|1/2) and a2 = O(ε1/3),

so that we finally obtain

ε−1B

∫
R

η2
ε (x)sech2(z+)sech2(z−)dx = 16(1 − a2)e−4Baε−1 (

2Baε−1 − 1
) (

1 + O(ε1/3)
)
.

Similarly, we compute the other overlapping integrals in �overlap as follows:

ε−1B

∫
R

η2
ε (x)sech2(z+)sech2(z−)

(
sech2(z+) + sech2(z−)

)
dx

= 64

3
(1 − a2)e−4Baε−1 (

1 + O(ε1/3)
)
,

ε−1B

∫
R

η2
ε (x)sech2(z+)sech2(z−)tanh(z+)tanh(z−)dx

= 32(1 − a2)e−4Baε−1 (−Baε−1 + 1
) (

1 + O(ε1/3)
)
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and

ε−1B

∫
R

η4
ε (x)sech4(z+)sech4(z−)dx = 512(1 − a2)2e−8Baε−1

(
Baε−1 − 11

12

) (
1 + O(ε1/3)

)
.

Combining these computations together, we obtain the expression for �overlap.

Variations of �2(a, b) define critical points that correspond to the solution V2(x) of the
stationary equation (9). Since �2 is even in b, the set of critical points includes the points with
b = 0. Note that v2(x, t) in (15) is real if b = 0, which agrees with V2(x) being real-valued.

Since �+ + �− is even in a and the overlapping integral is small under assumption (16),
variation of �2(a, 0) in a gives a root finding problem

− 4
√

2εa
(
1 + O(ε1/3)

)
+ 32e−2

√
2aε−1 (

1 + O(ε1/3)
) = 0, (17)

where we recall that a2 = O(ε1/3). The asymptotic analysis of the roots of the nonlinear
equation (17) in the following lemma shows that the a priori assumption (16) is indeed satisfied.

Lemma 3. For sufficiently small ε > 0, there exists a simple root of the nonlinear equation
(17) in the neighbourhood of 0, which is expanded by

a = ε√
2

(
− log(ε) − 1

2
log | log(ε)| +

3

2
log(2) + o(1)

)
as ε → 0. (18)

Proof. Taking a natural logarithm of the nonlinear equation (17), we obtain

2
√

2a + ε log(a) = −ε log(ε) + 5
2ε log(2) + O(ε4/3).

Let a = − 1√
2
ε log(ε)U and rewrite the problem for U :

U − log(U)

2 log(ε)
= 1 +

log | log(ε)|
2 log(ε)

− 3 log(2)

2 log(ε)

(
1 + O(ε1/3)

)
. (19)

By the implicit function theorem applied to equation (19), existence of a unique root U(ε)

in a one-sided neighbourhood of ε > 0 is proved, where U(ε) is continuous in ε > 0 and
limε↓0 U(ε) = 1. To estimate the remainder term for |U(ε) − 1|, one can further decompose

U = 1 +
log | log(ε)|

2 log(ε)
(1 + V )

and rewrite the problem for V :

V − log (1 + (log | log(ε)|/2 log(ε))(1 + V ))

log | log(ε)| = − 3 log(2)

log | log(ε)|
(
1 + O(ε1/3)

)
. (20)

By the implicit function theorem applied again to equation (20), existence of a unique root
V (ε) in a one-sided neighbourhood of ε > 0 is proved, where V (ε) is continuous in ε > 0 and

lim
ε↓0

log | log(ε)|
(

V (ε) +
3 log(2)

log | log(ε)|
)

= 0.

Substitution of U and V back to formula for a gives (18).

By lemma 3, we can study temporal dynamics of two dark solitons near the bound state
that corresponds to a small root of the nonlinear equation (17).

To proceed with time-derivative terms, we substitute (15) to the kinetic part K(v) in (11)
and find that

K2 := K(v2)

2ε
= K+ + K− + Koverlap,
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where

K± = ∓ ḃ

2
√

1 − b2

∫
R

η2
ε (x) tanh(z±)dx +

b
√

1 − b2Bȧ

2ε

∫
R

η2
ε (x)sech2(z±)dx

± b
√

1 − b2Ḃ

2B

∫
R

η2
ε (x)z±sech2(z±)dx

and

Koverlap = 1

2
ḃ(1 − b2)1/2

∫
R

η2
ε (x)

(
tanh(z+)sech2(z−) − tanh(z−)sech2(z+)

)
dx

− ε−1b(1 − b2)3/2(Bȧ + Ḃa)

∫
R

η2
ε (x)sech2(z+)sech2(z−)dx.

The terms K± are the kinetic energies of the individual dark solitons and the term Koverlap

contains overlapping integrals. By lemma 1, we have

lim
ε→0

(K+ + K−) = −4
√

1 − b2ḃ

(
a − 1

3
a3

)
+ 2

d

dt

[(
a − 1

3
a3

)
b
√

1 − b2

]
.

The overlapping integrals for small ε are estimated in the following lemma.

Lemma 4. Assume that a ∈ (0, 1) satisfies (16), b ∈ (−1, 1), and

A =
√

1 − b2, B =
√

1 − a2
√

1 − b2

√
2

.

Then,

Koverlap = 2εḃ(1 − b2)1/2B−1(1 − a2)
(
1 + O(ε1/3)

)
− 16b(1 − b2)3/2(ȧ + B−1Ḃa)(1 − a2)e−4Baε−1 (

2Baε−1 − 1
) (

1 + O(ε1/3)
)
.

Proof. Both terms in Koverlap are estimated similarly to the proof of lemma 2.

To obtain effective dynamical equations on (a, b) valid in the domain specified by
assumption (16), we expand L2(a, b) = L(v2)/2ε in the quadratic form in (a, b) and apply the
limit ε → 0 to all but the overlapping integrals. As a result, the reduced effective Lagrangian
L2(a, b) takes the form

L2(a, b) ∼ 4
√

2
3

(
1 − 3

2 (b2 + a2) + O(b2 + a2)2
) − 4aḃ

(
1 + O(b2 + a2)

)
− 8

√
2e−2

√
2aε−1(1+O(b2+a2))

(
1 + O(b2 + a2)

)
.

In variables (a, b), the Euler–Lagrange equations at the leading order become

ȧ =
√

2b, ḃ = −
√

2a + 8ε−1e−2
√

2aε−1

or, equivalently, recover the nonlinear oscillator equation

ä + 2a = 8
√

2ε−1e−2
√

2a/ε.

The equilibrium state is given by the root a0(ε), which satisfies the asymptotic expansion (18).
This equilibrium state is a centre and linear oscillations near the centre satisfy

δ̈ + ω2
0δ = 0,

where δ = a − a0(ε) and

ω2
0(ε) = 2 +

32

ε2
e−2

√
2a0(ε)ε

−1 = 2 +
4
√

2a0(ε)

ε
= − 4 log(ε) − 2 log | log(ε)| + 2 + 6 log(2) + o(1), as ε → 0, (21)

thanks to lemma 3. We note that the frequency ω0(ε) of the out-of-phase oscillations of two
dark solitons grows in the limit ε → 0. This property will be further discussed in section 6.
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5. m-solitons with m � 2

We extrapolate the results of section 4 to the case of m-solitons with m � 2. The general
superposition of m dark solitons is substituted in the form

vm(x, t) =
m∏

j=1

(
Aj(t) tanh

(
ε−1Bj(t)(x − aj (t))

)
+ ibj (t)

)
, (22)

where

Aj =
√

1 − b2
j , Bj = 1√

2

√
1 − a2

j

√
1 − b2

j , j ∈ {1, 2, . . . , m}
for aj ∈ (−1, 1) and bj ∈ (−1, 1). Under the same assumptions of

|aj | � C1ε
1/6, j ∈ {1, 2, . . . , m}

and

e−√
2(aj+1−aj )ε

−1 � C2ε
2 log(ε), j ∈ {1, 2, . . . , m − 1},

for some C1, C2 > 0, we reduce the effective Lagrangian Lm := L(vm)/2ε to the leading
order

Lm ∼ −
√

2
m∑

j=1

(
a2

j + b2
j

) − 2
m∑

j=1

aj ḃj − 8
√

2
m−1∑
j=1

e−√
2(aj+1−aj )ε

−1
,

where only the quadratic terms in (aj , bj ) and only the pairwise interaction potentials are taken
into account. Using the Euler–Lagrange equations, we obtain

ȧj =
√

2bj , ḃj = −
√

2aj − 8ε−1(e−√
2(aj+1−aj )ε

−1 − e−√
2(aj −aj−1)ε

−1
), j ∈ {1, 2, . . . , m},

(23)

where boundary conditions a0 = −∞ and am+1 = ∞ are assumed. The centre of mass
〈a〉 = 1

m

∑m
j=1 aj satisfies the linear oscillator equation

¨〈a〉 + 2〈a〉 = 0, (24)

which recovers the frequency
√

2 of oscillations of one dark soliton in section 3. This frequency
corresponds to the in-phase oscillations of m-solitons.

Let us introduce the set of normal coordinates

xj =
√

2(aj+1 − aj )ε
−1, j ∈ {1, 2, . . . , m − 1},

and rewrite system (23) in the scalar form

ẍj + 2xj + 16ε−2
(
e−xj+1 − 2e−xj + e−xj−1

) = 0, j ∈ {1, 2, . . . , m − 1}, (25)

where the boundary conditions are now x0 = xm = ∞. System (25) is known as the Toda
lattice with nonzero masses, which is not integrable by inverse scattering (unlike its counterpart
with zero masses). We are only interested in existence of critical points in the Toda lattice and
in the distribution of eigenvalues in the linearization around the critical points.

Critical points of the Toda lattice (25) are defined by solutions of the system of algebraic
equations

2xj + 16ε−2
(
e−xj+1 − 2e−xj + e−xj−1

) = 0, j ∈ {1, 2, . . . , m − 1}. (26)
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Let the (m − 1) × (m − 1) matrix A be given by

A =




2 −1 0 0 · · · 0 0
−1 2 −1 0 · · · 0 0

0 −1 2 −1 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . −1 2


 .

Matrix A arises in the central-difference approximation of the second derivative subject to
the Dirichlet boundary conditions. It is strictly positive and thus invertible. The system of
algebraic equations (26) can be written in the matrix–vector form

Ae−x = ε2

8
x ⇒ e−x = ε2

8
A−1x. (27)

Solutions of system (27) in the limit ε → 0 are analysed in the following lemma.

Lemma 5. For sufficiently small ε > 0, there exists a unique solution of system (27) in the
neighbourhood of ∞, which is expanded by

x = −2 log(ε)1 − log | log(ε)|1 + 2 log(2)1 − log(A−11) + o(1), as ε → 0, (28)

where 1 = [1, 1, . . . , 1]T ∈ R
m−1.

Proof. Applying the natural logarithm to system (27), we rewrite the system as follows:

x = −2 log(ε)1 + 3 log(2)1 − log(A−1x).

Repeating the proof of lemma 3, we find the desired expansion (28).

Back to the physical variables (a1, . . . , am), the result of lemma 5 implies that the
coordinates of dark solitons are centred at 〈a〉 = 0 and distributed with nearly equal spacing
as ε → 0. Linearizing the Toda lattice (25) about the root of system (26), we obtain the linear
eigenvalue problem

(2 − ω2)ξj − 16ε−2
(
e−xj+1ξj+1 − 2e−xj ξj + e−xj−1ξj−1

) = 0, j ∈ {1, 2, . . . , m − 1},
(29)

where ξ0 and ξm are not determined because the coefficients in front of ξ0 and ξm are zero.
Using the equivalent representation (27), we rewrite the linear eigenvalue problem in the form

(2 − ω2)ξj − 2
(
(A−1x)j+1ξj+1 − 2(A−1x)j ξj + (A−1x)j−1ξj−1

) = 0,

j ∈ {1, 2, . . . , m − 1}. (30)

Squared frequencies ω2 of oscillations of m-solitons are analysed in the limit ε → 0 in the
following lemma.

Lemma 6. For sufficiently small ε > 0, (m − 1) eigenvalues of the linear problem (30) are
expanded by

ω2 = 2 + (−4 log(ε) − 2 log | log(ε)| + 4 log(2)) 	2 + O(1), (31)

where 	2 ∈ {1, 3, 6, . . . , m(m − 1)/2} and m � 2.

Proof. The matrix eigenvalue problem (30) with the asymptotic expansion (28) can be written
in the form

(2 − ω2)ξj + (4 log(ε) + 2 log | log(ε)| − 4 log(2))(vj+1ξj+1 − 2vj ξj + vj−1ξj−1)

+2(wj+1ξj+1 − 2wjξj + wj−1ξj−1) + o(1) = 0, as ε → 0, (32)

where v = A−11 ∈ R
m−1 and w = A−1 log(v) ∈ R

m−1.
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Let 	2 be eigenvalues of the reduced eigenvalue problem

	2ξj + vj+1ξj+1 − 2vj ξj + vj−1ξj−1 = 0, j ∈ {1, 2, . . . , m − 1}. (33)

We will show that all eigenvalues of the reduced eigenvalue problem (33) are simple and given
explicitly by 	2 ∈ {1, 3, 6, . . . , m(m − 1)/2}. If this is the case, the regular perturbation
theory for the perturbed eigenvalue problem (32) implies that∣∣ω2 − 2 + (4 log(ε) + 2 log | log(ε)| − 4 log(2)) 	2

∣∣ = O(1), as ε → 0,

for each eigenvalue 	2.
To obtain the exact distribution of eigenvalues of the reduced eigenvalue problem (33),

we will find the vector v explicitly. The components of v satisfy the Dirichlet problem for
second-order difference equations

2vj − vj+1 − vj−1 = 1, j ∈ {1, 2, . . . , m − 1},
subject to v0 = vm = 0. The exact solution of this problem is obtained by substitution

vj = 1
2j (m − j), j ∈ {1, 2, . . . , m − 1}.

Let k = j − (m/2), so that k ∈ Im := {−(m/2) + 1, −(m/2) + 2, . . . , (m/2) − 1}. Note that
Im includes integer values for even m and half-integer values for odd m. Denote ζk = ξj and
λ = 2	2 and rewrite the reduced eigenvalue problem (33) in the following explicit form:

λζk =
(

m2

4
− k2

)
(2ζk − ζk+1 − ζk−1) + 2k (ζk+1 − ζk−1) + (ζk+1 + ζk−1) , k ∈ Im.

(34)

First, we consider problem (34) for all k ∈ Z with a fixed m � 2 and prove that there exists
a basis of eigenvectors ζ ∈ {Pn}n∈N0 in the space of analytic functions on Z for an infinite
set of eigenvalues λ ∈ {(n + 1)(n + 2)}n∈N0 , where N0 := {0, 1, 2, . . .}. The corresponding
eigenvector ζ = Pn for each eigenvalue λ = (n + 1)(n + 2) is given by the polynomial Pn(k)

in the form

ζk = Pn(k) := kn + c1k
n−1 + c2k

n−2 + · · · + cn, k ∈ Z, (35)

with uniquely determined coefficients (c1, c2, . . . , cn). To show this, we note that if ζ ∈ Pn,
where Pn is the vector space of polynomials of degree n, then the vector field of the eigenvalue
problem (34) belongs to Pn. This follows from the fact that if ζ ∈ Pn, then

(2ζk − ζk+1 − ζk−1) ∈ Pn−2, (ζk+1 − ζk−1) ∈ Pn−1, (ζk+1 + ζk−1) ∈ Pn. (36)

Substituting representation (35) to the linear eigenvalue problem (34), we collect coefficients
in front of kn to find that λ = (n + 1)(n + 2) and the coefficients in front of kn−1, kn−2, . . . , k0

to find a lower triangular system of linear equations for c1, c2, . . . , cn. The lower triangular
coefficient matrix is invertible (non-singular) because, if this is not the case, a homogeneous
solution would exist to give a polynomial of a lower degree for the same eigenvalue λ. This
contradicts the fact that the set {(n+1)(n+2)}n∈N0 includes only simple eigenvalues. Therefore,
a unique value for (c1, c2, . . . , cn) exists for a given n. All eigenvectors are linearly independent
since polynomials of different degrees defined on Z are linearly independent. The set of all
eigenvectors gives a basis of eigenvectors in the space of analytic functions on Z.

Next, we will prove that the basis of eigenvectors for the linear eigenvalue problem (34)
on Im with m � 2 is given by {P0, P1, . . . , Pm−2}, which corresponds to the first (m − 1)

eigenvalues λ ∈ {2, 6, 12, . . . , m(m − 1)}. This follows from the fact that each polynomial
Pj is nonzero on Im for j ∈ {0, 1, . . . , m − 2} in the sense of∑

k∈Im

|Pj (k)| �= 0, j ∈ {0, 1, . . . , m − 2}. (37)
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Suppose for a contradiction that condition (37) is false, that is Pj (k) has (m − 1) roots on R.
However, j < (m − 1) and by the fundamental theorem of algebra, Pj (k) ≡ 0 for all k ∈ Z,
which gives us the contradiction. Therefore, condition (37) is satisfied. Furthermore, since
polynomials {P0, P1, . . . , Pm−2} correspond to distinct eigenvalues, these eigenvectors are
linearly independent and form a basis of eigenvectors on Im. This implies that all other
polynomials in the set {Pj }j�m−1 are linearly dependent from {P0, P1, . . . , Pm−2} on Im,
which means, in view of different degrees and distinct eigenvalues, that Pj are identically zero
on Im for all j � m−1. Therefore, the basis of eigenvectors for the linear eigenvalue problem
(34) on Im with m � 2 is given by {P0, P1, . . . , Pm−2}.

We note that the polynomial Pn(k) in (35) is even in k ∈ Z for even n and odd in k ∈ Z

for odd n. This follows from the parity transformations of operators in (36) and the explicit
form of the linear eigenvalue problem (34). For example, let m = 4 so that I4 = {−1, 0, 1}
and compute eigenvectors and eigenvalues of (34) explicitly:

λ = 2 : ζk = P0(k) = 1,

λ = 6 : ζk = P1(k) = k,

λ = 12 : ζk = P2(k) = k2 − 3
5 .

For the same case m = 4, P3(k) = k(k2 − 1) so that P3(k) = 0 for all k ∈ I4. This example
illustrates the general case in the proof of lemma 6.

We finish this section with the explicit asymptotic approximations for 3-solitons (m = 3).
By the symmetry of system (26) with m = 3, we understand that

x1 = x2 =
√

2aε−1 ⇔ a1 = −a, a2 = 0, a3 = a,

where a is a root of equation

a − 4
√

2ε−1e−√
2aε−1 = 0,

which is expanded asymptotically as

a = ε√
2

(−2 log(ε) − log | log(ε)| + 2 log(2) + o(1)) , as ε → 0. (38)

Comparison with the asymptotic expansion (28) shows that v = 1 and w = A−1 log(v) = 0.
Therefore, the perturbed eigenvalue problem (32) for m = 3 has no O(1) term related to w and
the asymptotic distribution (31) becomes accurate with O(1) replaced by o(1). As a result,
we find the explicit asymptotic expansions of the two squared frequencies of the out-of-phase
oscillations of 3-solitons:{

ω2 = 2 + (−4 log(ε) − 2 log | log(ε)| + 4 log(2)) + o(1),

ω2 = 2 + 3 (−4 log(ε) − 2 log | log(ε)| + 4 log(2)) + o(1).
(39)

These asymptotic results will be tested numerically in section 6.

6. Numerical results

We now compare the asymptotic results with direct numerical results for the existence and
spectral stability of 2- and 3-soliton configurations. We identify the relevant branches of
stationary solutions by solving the ordinary differential equation

− 1
2v′′(ξ) + 1

2ξ 2v(ξ) + v3(ξ) − µv(ξ) = 0, ξ ∈ R. (40)

A fixed point method (Newton–Raphson iteration) is used to solve a discretized boundary-
value problem, after a centred-difference scheme is applied to the second-order derivatives
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Figure 1. Left: the equilibrium position of the two dark solitons versus the chemical potential µ.
The solid line shows the direct numerical result and the dashed–dotted line represents the asymptotic
approximation (18). Right: the solid line shows the numerical solution v(ξ) for µ = 17, while the
dashed line represents the corresponding variational ansatz.

with a typical spacing of �ξ = 0.025. The resulting solutions v(ξ) are obtained starting from
the corresponding linear eigenfunction (with 2- or 3-nodes at the linear limit) and continuation
over the values of the chemical potential parameter µ is used in order to extend the branch
to the large values of µ. Similar numerical techniques were used in [12, 22]. Note that the
existence and spectral stability of the 1-soliton configuration were examined in our earlier
work in [15].

Once the stationary solution is obtained for each value of µ, we linearize around it, using
an ansatz of the form

v(ξ, τ ) = v(ξ) + δ
(
a(ξ)eλτ + b̄(ξ)eλ̄τ

)
, (41)

where δ denotes a formal (small) parameter. The admissible values of λ (eigenvalues) are
found from the condition that (a, b) ∈ L2(R) is a solution of the linear eigenvalue problem{

− 1
2a′′(ξ) + 1

2ξ 2a(ξ) − µa(ξ) + v2(ξ)(2a(ξ) + b(ξ)) = iλa(ξ),

− 1
2b′′(ξ) + 1

2ξ 2b(ξ) − µb(ξ) + v2(ξ)(a(ξ) + 2b(ξ)) = −iλb(ξ).
(42)

Using again a discretization of the differential operators on the same grid, we reduce (42) to
a matrix eigenvalue problem which can be solved through standard numerical linear algebra
routines.

Our main results are summarized in figures 1 and 2 for the 2-soliton configuration and
figures 3 and 4 for the 3-soliton case.

Figure 1 compares the numerical result (solid line) for the location of zeros of v(ξ) with
the asymptotic expansion (18) (dashed–dotted line), where the scaling transformation (2) has
been taken into account to translate the results from ε to µ by ε = (2µ)−1. One can see that
the asymptotic expansion yields a highly accurate approximation of the numerical result. This
is also evidenced by the right panel of the figure comparing the numerical solution v(ξ) for
µ = 17 (solid line) with the variational ansatz (dashed line).

Figure 2 shows the smallest eigenvalues of the linear eigenvalue problem (42) obtained
numerically (solid line). The resulting eigenvalues can be classified into two groups. The first
one consists of a countable set of pairs of purely imaginary eigenvalues that give frequencies
of oscillations of the ground state. The frequencies of oscillations of the ground state ηε are
found in the limit ε → 0 as follows [7]:

lim
ε→0

ωn(ε) =
√

2n(n + 1), n � 1.

Note that ω1(ε) = 2 is preserved for any ε > 0 thanks to the symmetry of the Gross–Pitaevskii
equation with a harmonic potential [15]. Using the scaling transformation (2), we conclude
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Figure 2. Left: solid lines indicate the frequencies of linearization around a 2-soliton solution as
a function of the chemical potential µ. The dashed lines show the asymptotic limits (43) for the
frequencies around the ground state. The dashed–dotted lines indicate the asymptotic predictions for
the in-phase (lower frequency) and out-of-phase (higher frequency) oscillations of 2 dark solitons.
Right: real part of the unstable eigenvalue in a finite instability band near the linear limit.

that these frequencies satisfy the asymptotic limit

lim
µ→∞ Im(λ) =

√
n(n + 1)√

2
, n � 1. (43)

The asymptotic limits (43) are shown in figure 2 by dashed lines.
The second group of eigenvalues consists of only two pairs of eigenvalues and is associated

with the relative motions of the dark solitons [20]. One pair of eigenvalues corresponds to
the in-phase oscillations with frequencies Im(λ) ∼ 1√

2
as µ → ∞ (or ω ∼ √

2 as ε → 0
in notations of the linear oscillator equation (24)). The other pair of eigenvalues corresponds
to out-of-phase oscillations and it is characterized by the asymptotic expansion (21). The
asymptotic predictions for these frequencies are shown by the dashed–dotted lines.

The right panel of figure 2 shows the real part of the eigenvalues close to the limit of local
bifurcation at µ = 5

2 . The instability, which was studied in [22], is caused by the resonance
between the out-of-phase 2-soliton oscillations and the quadrupolar oscillation mode of the
ground state. However, the instability interval is finite and the 2-soliton excited state is linearly
stable for sufficiently large values of the chemical potential µ (only small values of µ were
considered in [22]).

We note, however, that the frequency ω0(ε) of the out-of-phase oscillations of two dark
solitons given by the asymptotic expansion (21) grows as ε → 0. As a result, this frequency will
coalesce with other frequencies ωn(ε), n � 3 associated with oscillations of the ground state as
ε → 0. Coalescence with the frequency ω3(ε) does not produce an instability, because of the
different parity of the corresponding eigenfunctions. However, coalescence with the frequency
ω4(ε) will produce the instability again and it will happen roughly at ε ∼ e−10. This value of
ε is too small to be confirmed by our numerical results in figure 2. This secondary instability
of the 2-soliton excited state is anticipated in a tiny interval near ε ∼ e−10, after which the
neutrally stable frequency ω0(ε) will reappear until further such coalescence occurrences arise
with frequencies ω6(ε), ω8(ε), etc.

Figures 3 and 4 illustrate similar characteristics but for the 3-soliton state. Once again
the variational prediction given by the asymptotic expansion (38) provides a highly accurate
estimate of the numerical inter-soliton distance a = a3 − a2 = a2 − a1.

On the other hand, in this case, there exist three frequencies associated with the relative
motions of three dark solitons, whose values can be seen to be in very good agreement with the
asymptotic expansion (39). Close to the linear limit µ = 7

2 , there exist two resonances between
out-of-phase motion of three dark solitons and the corresponding frequencies of oscillations
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Figure 3. Similar to figure 1 but for the 3-soliton case. The left panel again shows the equilibrium
inter-soliton distance (solid: numerical results; dashed–dotted: asymptotic approximation), while
the right panel shows the numerical prediction (solid) and variational ansatz (dashed) of the 3-soliton
state v(ξ) for µ = 17.
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Figure 4. Same as figure 2, but for the 3-soliton case. The left panel shows the numerical
frequencies (imaginary parts of the relevant eigenvalues) by solid line, the asymptotic limits for
the frequencies of the ground state by dashed line and the frequencies of oscillations of three dark
solitons by dashed–dotted line. The right panel illustrates the real part of the unstable eigenmodes
arising close to the linear limit.

of the ground state. The two resonances induce instabilities of the 3-soliton excited states with
two finite instability bands.

A general summary of the bifurcations observed in this system could be given as follows:
the bound state of m dark solitons possesses m frequencies associated with the ‘normal modes’
of the mth excited state. Of these, the lowest one always corresponds to the in-phase oscillations
of the dark solitons and is always below the unit frequency associated with the µ-independent
oscillation of the ground state. Hence, this frequency does not lead to any resonances or
collisions with other frequencies. However, generically all remaining m − 1 frequencies
associated with the mth excited state lead to resonances with other frequencies in the vicinity
of the linear limit. These resonances will cease to exist at some critical µ; however, for larger
values of µ, further such resonances arise, because the frequencies grow logarithmically with
larger values of µ.

The above results provide a relatively complete understanding of the statics and near-
equilibrium dynamics of multi-soliton states within BECs at least within the large density limit.
This characterization is especially relevant presently given the recent experiments of [20, 21]
enabling the observation and robust time-following for large timescales (of the order of hundred
milliseconds or more) of such states. However, there would be a multitude of directions in
which it would be relevant to generalize these results, if possible. On the one hand, extending
them (analytically) to non-polynomial variants of the Gross–Pitaevskii equation accounting
for the confinement of the condensate across tranvserse directions would be a challenging
theoretical task. Another equally interesting direction would involve attempting to generalize
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relevant notions in trying to characterize the dynamics of vortex solitons in higher dimensional
settings. These directions are presently under consideration and new results will be reported
in future publications.
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