
SIAM J. APPLIED DYNAMICAL SYSTEMS © 2025 Society for Industrial and Applied Mathematics
Vol. 24, No. 1, pp. 894--928

On the Existence of Generalized Breathers and Transition Fronts in
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Abstract. We prove the existence of a class of time-localized and space-periodic breathers (called q-gap breathers)
in nonlinear lattices with time-periodic coefficients. These q-gap breathers are the counterparts to
the classical space-localized and time-periodic breathers found in space-periodic systems. Using
normal form transformations, we establish rigorously the existence of such solutions with oscillating
tails (in the time domain) that can be made arbitrarily small but finite. Due to the presence of
the oscillating tails, these solutions are coined generalized q-gap breathers. Using a multiple-scale
analysis, we also derive a tractable amplitude equation that describes the dynamics of breathers in
the limit of small amplitude. In the presence of damping, we demonstrate the existence of transition
fronts that connect the trivial state to the time-periodic ones. The analytical results are corroborated
by systematic numerical simulations.
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1. Introduction. The classical discrete breather is a fundamental coherent structure of
nonlinear lattices. They can be found in many fields, ranging from photonics, electrical cir-
cuits, condensed matter physics, molecular biology, and chemistry [12]. Breathers are relevant
for applications, such as information storage and transfer in the context of photonic crystals
[4], but are also rich mathematically and have inspired countless numerical and analytical
studies [23, 9]. The discrete breather is localized in space and periodic in time with temporal
frequency lying within a frequency gap [12]. Spatially periodic media can have frequency gaps,
and hence discrete breathers are possible in such systems [21].

If breathers can be found in the frequency gap of spatially periodic media, what can be
found in the wavenumber gap of temporally periodic media? While this question is a natural
one to ask, it has only been very recently addressed. In the context of a photonic time crystal,
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GENERALIZED BREATHERS IN TIME-PERIODIC LATTICES 895

it was formally shown in [33] that structures that are localized in time and periodic in space can
be found in the wavenumber bandgap of temporally periodic media. The structure reported
on had the same defining features as the classic breather but with the role of space and time
switched. Such solutions are called q-gap breathers, where q stands for the wavenumber.

In the presence of damping, so-called transition fronts are possible in a q-gap, which
connect the trivial state to time-periodic ones. q-gap breathers and transition fronts were
studied numerically and experimentally in the context of a nonlinear phononic lattice in [7].
The experimental platform therein was based on the one developed in [24], where bifurcations
of time-periodic solutions were studied.

It is the purpose of this paper to establish rigorously the existence of q-gap breathers and
transition fronts and to provide a tractable analytical approximation of their dynamics. q-gap
breathers are a new type of structure, and are distinct from q-breathers, which are localized
in wavenumber and periodic in time [13]. Temporal localization can also be achieved via
other mechanisms, including zero-wavenumber gain modulation instability [28] and nonlinear
resonances [5, 46]. Integrable equations admit such solutions explicitly, e.g., the Akhmediev
breathers of the nonlinear Schr\"odinger (NLS) equation [1] and its discrete counterpart, the
Ablowitz--Ladik lattice [2]. A feature that distinguishes q-gap breathers from other temporally
localized structures, like the ones just described, is the fact that the underlying wavenumber
lies in a q-gap.

Wavenumber bandgaps for the (possible) existence of q-gap breathers can be found in a
wide class of temporally periodic lattices. Indeed, there have been many recent advances in
experimental platforms for time-varying systems, including photonic [41, 44, 45, 31], electric
[34, 26, 35], and phononic examples [37, 42, 30, 32, 24]. Recent studies of DNA models with
time-dependent parameters [38] suggest that q-gap breathers may even be possible in such
biological systems, too. Controllable temporal localization has potential applications in the
creation of phononic frequency combs [16] (see also [5, 46]), energy harvesting [27, 39], or
acoustic signal processing [19].

1.1. Model equations and physical motivation. The mathematical model for the present
study is a time-periodic nonlinear lattice

m\"un + c \.un + k(t)un = F (un+1  - un) - F (un  - un - 1)(1.1)

with mass m, damping parameter c\geq 0, the time-periodic modulation of the spring parameter
k(t) = k(t+T ) for a period T > 0, and the interparticle force F . Assuming Dirichlet boundary
conditions u0(t) = uN+1(t) = 0 for some integer N , we have a 2N -dimensional dynamical
system obtained from (1.1) at n = 1,2, . . . ,N . We use U := (u1, u2, . . . , uN ) for further
references in the main results.

We will consider a polynomial form of the interparticle force

F (w) =K2w - K3w
2 +K4w

3, K2 > 0,(1.2)

in which (1.1) corresponds to the classical Fermi--Pasta--Ulam--Tsingou (FPUT) lattice if
k(t) = 0 and c = 0 [11, 15]. The FPUT lattice is a central equation in the study of non-
linear waves [43], partly due to its relevance as a model in phononic, electrical, and biological
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896 CHRISTOPHER CHONG, DMITRY E. PELINOVSKY, AND GUIDO SCHNEIDER

systems (among others), its mathematical richness [3], and its place in history as the first
test-bed for numerical simulations [8].

One concrete motivation for studying system (1.1) with a time-periodic stiffness term
k(t) = k(t+T ) is that it describes an array of repelling magnets surrounded by time modulated
coils. It was in this setting that q-gap breathers were observed experimentally [7]. In this
case, F (w) models the repulsive force of the magnets and is given by

F (w) = - a1
(d+w)a2

,(1.3)

where d,a1, a2 > 0 are material parameters. Using the Taylor expansion of (1.3) at w= 0 gives
a correspondence to the FPUT model with F given by (1.2) with

K2 =
a2a1
da2+1

, K3 =
a2(a2 + 1)a1

2da2+2
, K4 =

a2(a2 + 1)(a2 + 2)a1
6da2+3

.(1.4)

For k(t) = k(t + T ), we will use a specific choice for illustrations that is also motivated by
the experimental setup of [7]. In particular, we consider a piecewise constant time-periodic
parameter function k(t) in the form

k(t) =

\biggl\{ 
ka, t\in [0, \tau dT ),
kb, t\in [\tau dT,T ),

(1.5)

for a \tau d \in [0,1] and where ka, kb are the so-called modulation amplitude parameters and \tau d is
the duty-cycle. Using the rescaling

un(t)\rightarrow 
K2

K3
un

\Biggl( \sqrt{} 
K2

m
t

\Biggr) 
leads to the normalized parameter values with m,K2,K3 \rightarrow 1.

1.2. Summary of main results. We will develop rigorous proofs of the existence of os-
cillating homoclinic solutions for c = 0 and heteroclinic solutions for small damping c > 0 of
(1.1) with time-periodic stiffness k(t). Since the tails of the homoclinic solutions have small
oscillations that do not vanish at infinity, the solutions can also be thought of as general-
ized q-gap breathers. Similar nomenclature has been adopted in the description of classical
breathers with nonzero tails in space-time continuous systems [17] and with spatially periodic
coefficients [10]. See [14] for discussion of how the interchange of time and space variables
affects derivation and justification of the homoclinic solutions.

Before stating the main theorems of the paper, let us describe intuitively the generalized
q-gap breathers for c = 0. In the presence of time-periodic stiffness k(t), some wavenumbers
may fit into the gap in the dispersion relationship, as seen in Figure 1.1(a). The corresponding
Floquet multipliers are shown in panel (b) (details on the Floquet theory follow in section 2).
Unlike the situation for frequency gaps in (linear) spatially periodic media, exponential growth
of Fourier modes occurs if the wavenumber is inside the gap of the dispersion relation since
the Floquet exponent in the gap has positive real part, or equivalently the Floquet multiplier
has modulus exceeding unity. Due to this (parametric) instability, initializing (1.1) with
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GENERALIZED BREATHERS IN TIME-PERIODIC LATTICES 897
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Figure 1.1. (a) The real (red) and imaginary (blue) parts of the Floquet exponent \gamma as a function of Fourier
wavenumber q \in [0, \pi ] in the infinite lattice. The gray shaded region corresponds to the wavenumber bandgap.
The gray markers correspond to the Floquet exponents with a lattice size of N = 10. The m0 = 3 exponents lie in
wavenumber bandgap (larger black markers). The parameter values are m=K2 = 1, c= 0, T = 1/0.37, \tau d = 0.5,
ka = 0.6, and kb = 0.8. (b) Floquet multipliers corresponding to panel (a). One of the m0 = 3 multipliers (larger
black markers) has modulus exceeding unity. (c) Illustration of a generalized q-gap breather with scales shown
schematically in powers of \varepsilon . Only one component of U+

\mathrm{h}\mathrm{o}\mathrm{m} = (u1, u2, . . . , uN ) is shown. (d) Illustration of the
analytical approximation given by \scrU +. Only one component of \scrU + = (u1, u2, . . . , uN ) is shown.

such a Fourier mode will initially lead to growth. However, as the amplitude increases, the
nonlinearity of the system comes into play and, as we shall prove later, has a localizing affect
on the dynamics; see Figure 1.1(c). This solution, however, cannot decay to zero. This
is due to the presence of neutrally stable modes (i.e., the Floquet multipliers lying on the
unit circle). During the dynamic evolution, all of the Fourier modes will couple (due to
the nonlinearity). The presence of the neutrally stable modes causes the small oscillations,
as seen in the tails of Figure 1.1(c). From a dynamical systems point of view, the trivial
state has one unstable direction, one stable direction, and 2N  - 2 neutral directions. While
genuine homoclinic solutions arise in the intersection of the associated one-dimensional stable
and unstable manifolds, it cannot be expected that such an intersection exists in a 2N -
dimensional phase space. Thus, only homoclinic solutions with small oscillating ripples for
| t| \rightarrow \infty exist. These solutions lie in the intersection of the (2N - 1)-dimensional center-stable
manifold with the (2N  - 1)-dimensional center-unstable manifold of the origin, for which we
use the time-reversibility of the system (1.1) with k(t) given by (1.5). The distance between

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/2

8/
25

 to
 1

30
.1

13
.1

09
.6

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



898 CHRISTOPHER CHONG, DMITRY E. PELINOVSKY, AND GUIDO SCHNEIDER

the wavenumber of the unstable Fourier mode and the edge of the gap is proportional to a
small parameter \varepsilon > 0.

To be precise on the definition of the small parameter \varepsilon > 0, we define k0(t) as the
periodic coefficient for which all Floquet multipliers are on the unit circle and includes the
double multiplier at  - 1. Then we take k(t) in the form

k(t) = k0(t) + \delta \varepsilon 2,(1.6)

where \delta is either +1 or  - 1 with the sign selected by the condition that the double Floquet
multiplier at  - 1 splits along the real axis for \varepsilon > 0. The exact definition of \delta can be found in
section 2. With normal form transformations for time-periodic systems (details in sections 3--
6) it can be shown that the oscillating ripples can be made arbitrarily small, i.e., of order
\scrO (\varepsilon M - 1) at the time scale of \scrO (\varepsilon  - M+2) with some M \in \BbbN arbitrarily large but fixed; see
Figure 1.1(c). Using a multiple-scale analysis (details in section 7), one can derive an explicit
approximation of a genuine homoclinic orbit (see Figure 1.1(d)), which agrees with the leading
order of the generalized breather's profile.

We are now ready to present the main theorem on the existence of two homoclinic or-
bits with oscillating ripples, i.e., generalized q-gap breathers. The assumptions (Spec) and
(Coeff)--(Rev) are described in sections 2 and 5, respectively.

Theorem 1.1. Assume the spectral condition (Spec), the normal form coefficient condition
(Coeff), and the reversibility condition (Rev) are satisfied. Then for every M \in \BbbN with M \geq 
3 there exists an \varepsilon 0 > 0 and C0 > 0 such that for all \varepsilon \in (0, \varepsilon 0) the system (1.1) with (1.2), (1.6),
and c = 0 possesses two generalized homoclinic solutions U\pm 

\mathrm{h}\mathrm{o}\mathrm{m} \in C1([ - \varepsilon  - M+2, \varepsilon  - M+2],\BbbR N )
satisfying

sup
t\in [ - \varepsilon  - M+2,\varepsilon  - M+2]

\| U\pm 
\mathrm{h}\mathrm{o}\mathrm{m}(t) - \scrU \pm (t)\| + \| (U\pm 

\mathrm{h}\mathrm{o}\mathrm{m})
\prime (t) - (\scrU \pm )\prime (t)\| \leq C0\varepsilon 

M - 1,

where \scrU \pm (t) :\BbbR \rightarrow \BbbR N satisfy lim| t| \rightarrow \infty \| \scrU \pm (t)\| + \| (\scrU \pm )\prime (t)\| = 0 and can be approximated as

(\scrU \pm )n(t) =\pm \varepsilon A(\varepsilon t)g(t) sin(qm0
n) +\scrO (\varepsilon 2),

where g(t+ T ) = - g(t) and A(\tau ) = \alpha sech(\beta \tau ) are uniquely defined, real-valued functions with
some \alpha ,\beta > 0; see (8.1) below.

Remark 1.2. The reversibility condition (Rev) is satisfied for k(t) defined in (1.5), which
is an even T -periodic function relative to either t0 =

1
2\tau dT or t0 =

1
2(\tau d + 1)T . Theorem 1.1

can be extended to more general time-periodic coefficients k(t) = k(t + T ) (e.g., to a finite
superposition of cosines or sines) and to lattices with Kj(t) = Kj(t + T ) for j = 2,3, . . ..
However, the reversibility condition with the same t0 must be satisfied by each of the time-
periodic functions.

In case of small damping with c = \scrO (\varepsilon ), where \varepsilon is the same small parameter defined
in (1.6), each of the two homoclinic orbits U\pm 

\mathrm{h}\mathrm{o}\mathrm{m} of Theorem 1.1 breaks up. There exist two
nonzero antiperiodic solutions \scrU \pm 

\mathrm{p}\mathrm{e}\mathrm{r}(t+ T ) = - \scrU \pm 
\mathrm{p}\mathrm{e}\mathrm{r}(t) with a 2N -dimensional stable manifold

for c > 0. Therefore, as can be seen by counting the dimensions, the one-dimensional unstable
manifold from the zero equilibrium intersects the 2N -dimensional stable manifolds of one the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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GENERALIZED BREATHERS IN TIME-PERIODIC LATTICES 899

Figure 1.2. Numerical approximation of the transition front U+
\mathrm{h}\mathrm{e}\mathrm{t} = (u1, u2, . . . , uN ), where the first compo-

nent is shown. The first component of the antiperiodic solution \scrU +
\mathrm{p}\mathrm{e}\mathrm{r} is also shown as the light gray line.

two nonzero antiperiodic solutions \scrU \pm 
\mathrm{p}\mathrm{e}\mathrm{r} transversally. In contrast to the oscillating homoclinic

orbits, the heteroclinic orbits have no oscillating ripples as t\rightarrow  - \infty and converge to the orbits
of the antiperiodic solutions \scrU \pm 

\mathrm{p}\mathrm{e}\mathrm{r} as t\rightarrow +\infty ; see Figure 1.2.
Existence of the antiperiodic solutions \scrU \pm 

\mathrm{p}\mathrm{e}\mathrm{r} is guaranteed by the following theorem.

Theorem 1.3. Assume the spectral condition (Spec) and the normal form coefficient con-
dition (Coeff). Fix \widetilde c > 0. Then there exists an \varepsilon 0 > 0 and C0 > 0 such that for all \varepsilon \in (0, \varepsilon 0)
the system (1.1) with (1.2), (1.6), and c = \widetilde c\varepsilon > 0 possesses antiperiodic solutions \scrU \pm 

\mathrm{p}\mathrm{e}\mathrm{r} such
that \scrU \pm 

\mathrm{p}\mathrm{e}\mathrm{r}(t+ T ) = - \scrU \mathrm{p}\mathrm{e}\mathrm{r}(t) and

sup
t\in \BbbR 

\| \scrU \pm 
\mathrm{p}\mathrm{e}\mathrm{r}(t)\| + \| (\scrU \pm 

\mathrm{p}\mathrm{e}\mathrm{r})
\prime (t)\| \leq C0\varepsilon .

The following theorem presents the main result on the existence of the heteroclinic orbits
(transition fronts) between the trivial solution 0 and the antiperiodic solutions \scrU \pm 

\mathrm{p}\mathrm{e}\mathrm{r}.

Theorem 1.4. Assume the spectral condition (Spec) and the normal form coefficient con-
dition (Coeff). Fix \widetilde c > 0. Then there exists an \varepsilon 0 > 0 such that for all \varepsilon \in (0, \varepsilon 0) the system
(1.1) with (1.2), (1.6), and c = \widetilde c\varepsilon > 0 possesses two heteroclinic solutions U\pm 

\mathrm{h}\mathrm{e}\mathrm{t} \in C1(\BbbR ,\BbbR N )
such that

lim
t\rightarrow  - \infty 

U\pm 
\mathrm{h}\mathrm{e}\mathrm{t}(t) = 0, lim

t\rightarrow  - \infty 
(U\pm 

\mathrm{h}\mathrm{e}\mathrm{t})
\prime (t) = 0

and

lim
t\rightarrow +\infty 

inf
t0\in [0,T ]

\| U\pm 
\mathrm{h}\mathrm{e}\mathrm{t}(t) - \scrU \pm 

\mathrm{p}\mathrm{e}\mathrm{r}(t+ t0)\| + \| (U\pm 
\mathrm{h}\mathrm{e}\mathrm{t})

\prime (t) - (\scrU \pm 
\mathrm{p}\mathrm{e}\mathrm{r})

\prime (t+ t0)\| = 0,

where \scrU \pm 
\mathrm{p}\mathrm{e}\mathrm{r} are the antiperiodic solutions of (1.1) from Theorem 1.3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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900 CHRISTOPHER CHONG, DMITRY E. PELINOVSKY, AND GUIDO SCHNEIDER

Remark 1.5. The reversibility condition (Rev) is not used in the proofs of Theorems 1.3
and 1.4.

Remark 1.6. Because of the quadratic nonlinearity in the FPUT system (1.1) with (1.2),
the homoclinic, antiperiodic, and heteroclinic orbits in Theorems 1.1, 1.3, and 1.4 are not
related by the sign reflection, even though the leading orders obtained from the cubic normal
form are related by the sign reflection; see (7.18). However, if K3 = 0, these orbits are related
by the sign reflection up to any orders due to the symmetry of the FPUT system (1.1).

The article is organized as follows. Section 2 presents the Floquet and spectral analysis
of the linearized FPUT system and introduces assumption (Spec). Preparations for the
normal form transformations are described in section 3. Normal form transformations are
described in section 4. The proof of Theorem 1.1 is given in section 5, where assumptions
(Coeff) and (Rev) are introduced. Section 6 contains the proofs of Theorems 1.3 and 1.4. A
multiple-scale analysis is carried out in section 7, which provides tractable approximations for
both breathers and fronts. It also allows verification of (Coeff) through direct computation.
Numerical illustrations of the main results are described in section 8. Section 9 concludes the
paper with a summary and brief discussions.

2. The linearized system. The linearized FPUT system at the trivial (zero) equilibrium
is given by

m\"un + c \.un + k(t)un =K2(un+1  - 2un + un - 1)(2.1)

for n = 1,2, . . . ,N with Dirichlet boundary conditions u0(t) = uN+1(t) = 0. The linearized
system (2.1) is solved by a linear superposition of the discrete Fourier sine modes:

un(t) =

N\sum 
m=1

\widehat um(t) sin(qmn), qm :=
\pi m

N + 1
, 1\leq m\leq N.

The mth Fourier mode has the amplitude \widehat um(t) for which the linear FPUT equation (2.1)
transforms to the linear Schr\"odinger equation

\scrL \widehat um =K2\omega 
2(qm)\widehat um,(2.2)

where

\scrL := - m\partial 2
t  - c\partial t  - k(t), k(t+ T ) = k(t)

and

\omega 2(q) := 4 sin2
\Bigl( q
2

\Bigr) 
, q \in [0, \pi ].

We will review solutions of the spectral problem (2.2) by using the Floquet theory and the
spectral theory of the Schr\"odinger operators.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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GENERALIZED BREATHERS IN TIME-PERIODIC LATTICES 901

2.1. Floquet theory. To obtain the monodromy matrix associated to (2.2) for general
time-periodic coefficients k(t), one may resort to numerical computation or perturbation analy-
sis [25]. However, in the case of piecewise constant k(t) as in (1.5), this can be done explicitly
[6, 36] (see also [7]). For the convenience of the readers, we summarize the relevant results.

Let \lambda m :=K2\omega 
2(qm) for each 1\leq m\leq N , and define sa, sb > 0 by

sa,b :=

\sqrt{} 
\lambda m + ka,b

m
 - c2

4m2
.(2.3)

Note that sa, sb also depend on m = 1,2, . . . ,N but the index m is dropped from the
notation for simplicity. We obtain the exact solution of (2.2):

\widehat um(t) =

\Biggl\{ 
e
 - ct

2m [A0 cos(sat) +B0 sin(sat)] , t\in [0, \tau dT ),

e
 - ct

2m [C0 cos(sb(t - \tau dT )) +D0 sin(sb(t - \tau dT ))] , t\in [\tau dT,T ),
(2.4)

with some constants A0,B0,C0,D0. By C1-continuity across t= \tau dT , we obtain\biggl[ 
C0

D0

\biggr] 
=

\biggl[ 
cos(sa\tau dT ) sin(sa\tau dT )

 - sa
sb
sin(sa\tau dT )

sa
sb
cos(sa\tau dT )

\biggr] \biggl[ 
A0

B0

\biggr] 
.(2.5)

The monodromy matrix J is obtained as a mapping\biggl\{ \widehat um(0) =A0,\widehat u\prime m(0) = saB0  - c
2mA0

\Rightarrow 

\Biggl\{ \widehat um(T ) = e
 - cT

2mA1,\widehat u\prime m(T ) = e
 - cT

2m

\Bigl[ 
saB1  - c

2mA1

\Bigr] (2.6)

with \biggl[ 
A1

B1

\biggr] 
=

\biggl[ 
cos(sb(1 - \tau d)T ) sin(sb(1 - \tau d)T )

 - sb
sa

sin(sb(1 - \tau d)T )
sb
sa

cos(sb(1 - \tau d)T )

\biggr] \biggl[ 
C0

D0

\biggr] 
=: J

\biggl[ 
A0

B0

\biggr] 
.(2.7)

Since det(J) = 1 and

trace(J) = 2cos(sa\tau dT ) cos(sb(1 - \tau d)T ) - 
s2a + s2b
sasb

sin(sa\tau dT ) sin(sb(1 - \tau d)T ),(2.8)

the eigenvalues \rho 1 and \rho 2 of J satisfy

\rho 1\rho 2 = 1, \rho 1 + \rho 2 = trace(J),

with only three possibilities:
\bullet trace(J)> 2 implies 0<\rho 1 < 1<\rho 2 = \rho  - 1

1 ;
\bullet  - 2\leq trace(J)\leq 2 implies \rho 1 = \rho 2 \in \BbbC with | \rho 1,2| = 1;
\bullet trace(J)< - 2 implies \rho 2 = \rho  - 1

1 < - 1<\rho 1 < 0.
The Floquet exponents of the mapping (2.6) are given by \gamma 1,2 = \upsilon 1,2 - c

2m , where the following
hold:

\bullet trace(J)> 2 implies \upsilon 1,2 =\pm log(\rho 2)/T ;
\bullet  - 2\leq trace(J)\leq 2 implies \upsilon 1,2 =\pm iarg(\rho 1)/T ;
\bullet trace(J)< - 2 implies \upsilon 1,2 = i\pi /T \pm log(| \rho 2| )/T .

If c = 0, the trivial solution U = 0 is spectrally stable if all Floquet exponents are purely
imaginary. This corresponds to the case with  - 2 \leq trace(J) \leq 2. Figure 2.1(a) shows the
Floquet multipliers \rho in the critical case where trace(J) = - 2 with m= 3. The corresponding
Floquet exponents \gamma = \upsilon are shown in Figure 2.1(b).
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902 CHRISTOPHER CHONG, DMITRY E. PELINOVSKY, AND GUIDO SCHNEIDER

(a)

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(b) (c)

Figure 2.1. Bifurcation scenario for the parameter set m=K2 = 1, c= 0, T = 1/0.37, and \tau d = 0.5. With
the critical modulation amplitude parameters k0

a = 0.5 and k0
b = 0.79, the critical Fourier mode is m0 = 3. (a)

Plot of the Floquet multipliers, \rho , in the complex plane (the unit circle is shown for visual aid). The m0 = 3
multiplier lies exactly at --1 on the unit circle (larger black marker). (b) The real (red) and imaginary (blue)
parts of the Floquet exponent \gamma as a function of Fourier wavenumber q \in [0, \pi ] in the infinite lattice. The gray
shaded region corresponds to the wavenumber bandgap. The gray markers correspond to the Floquet exponents
with a lattice size of N = 10. The m0 = 3 exponent lies exactly at the left edge of the wavenumber bandgap
(larger black marker). (c) Spectral bands (blue curves) of the Schr\"odinger operator as a function of \ell = imag(\gamma ),
the imaginary part of the Floquet exponent. The gray dots show the corresponding values in the finite lattice
with N = 10. The eigenvalues \mu 1 and \mu 2 define the edges of the band gap, shown as the gray shaded region.
The m0 = 3 mode lies exactly at the top of the first spectral band (larger black marker).

2.2. Spectral theory. Let us review the spectral properties of the Schr\"odinger operator

\scrL :H2(\BbbR )\subset L2(\BbbR )\rightarrow L2(\BbbR )

with a T -periodic coefficient k(t) = k(t+ T ) in the particular case of c= 0. The spectrum of
\scrL is purely continuous and consists of bands disjoint from each other by some gaps:

\sigma (\scrL ) = [\nu 0, \mu 1]\cup [\mu 2, \nu 1]\cup [\nu 2, \mu 3]\cup [\mu 4, \nu 3]\cup \cdot \cdot \cdot ,(2.9)

where \{ \nu j\} \infty j=0 are eigenvalues of \scrL f = \nu f with periodic boundary conditions f(t+ T ) = f(t)
and \{ \mu j\} \infty j=1 are eigenvalues of \scrL g= \mu g with antiperiodic boundary conditions g(t+T ) = - g(t).
Eigenvalues \{ \nu j\} \infty j=0 correspond to trace(J) = 2 of the Floquet theory, whereas eigenvalues
\{ \mu j\} \infty j=0 correspond to trace(J) = - 2 and the spectral bands correspond to  - 2\leq trace(J)\leq 2.

Remark 2.1. Note that \lambda is parameterized by the wavenumber q in \lambda = K2\omega 
2(q), which

in turn determines the Floquet exponent \gamma . Within the spectral bands, the corresponding
Floquet exponents are purely imaginary and are of the form \gamma = i\ell . An example plot showing
the dependence of \lambda on \ell is shown in Figure 2.1(c). For this example, there is one band gap,
which is the shaded region in the figure. The band gap edges are given by \mu 1 (the bottom of
the gap) and \mu 2 (the top of the gap). This representation of the spectrum will be useful later
when we derive an amplitude equation for the description of the envelope of the breather in
section 7. In particular, the concavity of \lambda (\ell ) will play a key role.

We define the bifurcation for a particular stiffness k(t)\equiv k0(t), for which \scrL \equiv \scrL 0, if there
exists an integer 1 \leq m0 \leq N such that \lambda m0

= K2\omega 
2(qm0

) coincides with the end point of
\sigma (\scrL 0) and \lambda m =K2\omega 

2(qm) for m \not =m0 are located inside \sigma (\scrL 0). For the bifurcation shown in
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GENERALIZED BREATHERS IN TIME-PERIODIC LATTICES 903

Figure 2.1, \lambda m0
coincides with \mu 1, for which the two bifurcating Floquet exponents are given

by \gamma 0 = i \pi T with \ell 0 :=
\pi 
T . This bifurcation corresponds to \lambda \prime \prime 

1(\ell 0)< 0 and

[0,4K]\subset [\nu 0, \nu 1], K2\omega 
2(qm0

) = \mu 1.(2.10)

Equivalently, we can obtain a bifurcation when \lambda m0
coincides with \mu 2 with \lambda \prime \prime 

2(\ell 0)> 0 and

[0,4K]\subset [\nu 0, \nu 1], K2\omega 
2(qm0

) = \mu 2.(2.11)

The two bifurcating Floquet exponents \gamma 0 correspond to the Floquet multiplier \rho at  - 1. All
other Floquet exponents \gamma are assumed to be on the imaginary axis bounded away from 0
and \gamma 0. The corresponding Floquet multipliers \rho are on the unit circle bounded away from
+1 and  - 1.

The bifurcation in terms of Floquet multipliers is shown in Figure 2.1(a), whereas Fig-
ure 2.1(b) shows the bifurcation in terms of Floquet exponents. The spectral bands of the
Schr\"odinger operator \scrL 0 are shown in Figure 2.1(c). Notice that the discrete mode m0 = 3
lies exactly at (\ell ,\lambda ) = (\ell 0, \mu 1), where \ell 0 =

\pi 
T .

2.3. Spectral assumption and defining the small parameter \bfitvarepsilon . With the linear theory
in hand, we can now specify the spectral assumption as follows.

(Spec) There exists a periodic coefficient k0(t+T ) = k0(t), for which all Floquet exponents
lie on the imaginary axis. With the exception of two exponents at i\pi 

T , they are assumed to be
simple and nonzero. For small \varepsilon > 0, we assume that the two Floquet exponents at i\pi 

T split
symmetrically from the imaginary axis along the real axis to the order of \scrO (\varepsilon ).

We can define \varepsilon more explicitly by using the decomposition (1.6) rewritten again as

k(t) = k0(t) + \delta \varepsilon 2,(2.12)

where \delta is a proper sign factor. For c= 0, the small parameter \varepsilon is related to the distance of
the critical Floquet exponent \gamma = \upsilon from the imaginary axis in the following way. The real
part of the Floquet exponent \gamma which depends on \varepsilon is given by

Re(\gamma ) =
1

T
cosh - 1

\biggl( 
 - 1

2
trace(J)

\biggr) 
.

Since we know from (Spec) that trace(J) = - 2 with \varepsilon = 0 (for k(t) = k0(t)), a series expansion
of the real part of the Floquet exponent about \varepsilon = 0 yields Re(\gamma ) =\scrO (\varepsilon ), where we used the
fact that cosh - 1(1 +w)\approx 

\surd 
2w and trace(J) = - 2 +\scrO (\varepsilon 2). In section 7.2, we will show that

Re(\gamma ) = \varepsilon 

\surd 
2\sqrt{} 

| \lambda \prime \prime (\ell 0)| 
+\scrO (\varepsilon 2),(2.13)

where \lambda (\ell ) is the corresponding band of \scrL 0 at \ell 0 =
\pi 
T and the sign of \delta is selected to be the

opposite of the sign of \lambda \prime \prime (\ell 0).

Remark 2.2. One can relate the small parameter \varepsilon to the distance of the bifurcating
wavenumber qm0

to the band edge in the following way. For a fixed \varepsilon , suppose the wavenumber
bandgap is [q\ell , qr], where the left edge q\ell and right edge qr depend on \varepsilon and can be found
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904 CHRISTOPHER CHONG, DMITRY E. PELINOVSKY, AND GUIDO SCHNEIDER

by solving trace(J)=  - 2 with \lambda = K2\omega 
2(q). Suppose that the critical wavenumber qm0

coincides with the left band edge at the bifurcation point, (i.e., qm0
= q\ell when \varepsilon = 0). Then,

for \varepsilon > 0, the distance to the band edge is \Delta q = q\ell  - qm0
. By inspection of (2.3) and

(2.8), if one knows the critical values of k0a and k0b , then \Delta q can be determined by solving
\lambda (\ell (qm0

)) = \lambda (\ell (qm0
+\Delta q)) + \delta \varepsilon 2, which yields

\Delta q= qm0
 - 2 sin - 1

\left(  \sqrt{} sin2(qm0
/2) - \delta \varepsilon 2

4K2

\right)  =
\delta \varepsilon 2

\partial q\lambda (\ell (qm0
))

+\scrO (\varepsilon 4).(2.14)

Thus, \Delta q=\scrO (\varepsilon 2).

3. Normal form transformations. The FPUT system (1.1) consists of N oscillators with
Dirichlet boundary conditions. By augmenting the vector U(t) \in \BbbR N with U \prime (t) \in \BbbR N as the
vector V (t)\in \BbbR 2N , we rewrite the 2N -dimensional time-periodic system in the abstract form

\.V (t) =Q(t)V (t) +N(V (t))(3.1)

with the time-periodic coefficient matrixQ(t) =Q(t+T )\in \BbbR 2N\times 2N being piecewise continuous
on [0, T ] for a period T > 0 and the nonlinear function N(V ) : \BbbR 2N \rightarrow \BbbR 2N being smooth at
V = 0 with N(0) = 0 and DV N(0) = 0. The solutions of the linear system

\.V (t) =Q(t)V (t)(3.2)

are, according to Floquet's theorem, of the form

V (t) = P (t)e\Lambda tV (0)(3.3)

with a T -time-periodic matrix function P (t) = P (t + T ) \in \BbbR 2N\times 2N and a time-independent
matrix \Lambda \in \BbbR 2N\times 2N , eigenvalues of which coincide with Floquet exponents in section 2.

Remark 3.1. Eigenvalues \gamma of the matrix \Lambda are uniquely defined in the strip:

 - \pi 

T
< Imag(\gamma )\leq \pi 

T
.(3.4)

Eigenvalues of \Lambda are generally complex-valued, but we use the presentation (3.3) with real
P (t) and real \Lambda for convenience of the normal form transformations. For example, if \gamma = \alpha \pm i\beta 
are two complex-conjugate eigenvalues of \Lambda , then the canonical form for the corresponding
block of \Lambda \in \BbbR 2N\times 2N is \biggl[ 

\alpha \beta 
 - \beta \alpha 

\biggr] 
.

Remark 3.2. As preparations for the normal form transformation, we can consider the
time-periodic system (3.1) on the double period 2T . The advantage of this approach is that
the bifurcating Floquet exponents in the stripe (3.4) correspond to zero Floquet exponents in
the 2T -periodic system. The solution (3.3) of the linear system (3.2) can be rewritten in the
form

V (t) = \widetilde P (t)e
\widetilde \Lambda tV (0)(3.5)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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GENERALIZED BREATHERS IN TIME-PERIODIC LATTICES 905

with the time-periodic matrix function \widetilde P (t) = \widetilde P (t+2T )\in \BbbR 2N\times 2N and the time-independent
matrix \widetilde \Lambda \in \BbbR 2N\times 2N . According to the assumption (Spec) at the bifurcation point, \widetilde \Lambda has
a double zero eigenvalue and all other (purely imaginary) eigenvalues of \widetilde \Lambda are simple and
bounded away from 0.

Remark 3.3. For the normal form transformation in section 4, we need the following
property of \widetilde P (t). Comparing the two representations of the fundamental matrix solution

\Phi (t) = P (t)e\Lambda t = \widetilde P (t)e
\widetilde \Lambda t,

we obtain \widetilde P (t) = P (t)e\pi it/T =
\sum 
m\in \BbbZ 

Pme2\pi imt/T e\pi it/T ,(3.6)

with Pm being constant 2N \times 2N -matrices.

We now transform the system (3.1) on the double period to a convenient form for which
the linear part is autonomous in t. Let V (t) = \widetilde P (t)W (t); then W (t) \in \BbbR 2N satisfies the
time-periodic system:

\.W (t) = \widetilde \Lambda W (t) + \widetilde P (t) - 1N( \widetilde P (t)W (t)).(3.7)

We define the projection \Pi 0 on the subspace associated with the double zero eigenvalue of \widetilde \Lambda 
by

\Pi 0 =
1

2\pi i

\int 
\Gamma 0

(\lambda I  - \widetilde \Lambda ) - 1d\lambda ,(3.8)

where \Gamma 0 is a closed curve surrounding the origin in the \lambda plane counterclockwise. The
projection on the two other (2N  - 2) eigenvalues of \widetilde \Lambda on the imaginary axis is defined by
\Pi h = I - \Pi 0. The range of \Pi 0 is two-dimensional, and the range of \Pi h is (2N - 2)-dimensional.

We apply these projections on system (3.7) and find for W0 =\Pi 0W and Wh =\Pi hW that

\.W0(t) = \Lambda 0W0(t) +N0(W0,Wh),(3.9)

\.Wh(t) = \Lambda hWh(t) +Nh(W0,Wh) +H(W0),(3.10)

where we have introduced \Pi 0
\widetilde \Lambda =\Lambda 0\Pi 0, \Pi h

\widetilde \Lambda =\Lambda h\Pi h,

N0(W0,Wh) :=\Pi 0
\widetilde P (t) - 1N( \widetilde P (t)W (t)),

Nh(W0,Wh) +H(W0) :=\Pi h
\widetilde P (t) - 1N( \widetilde P (t)W (t)).

The splitting into Nh(W0,Wh) +H(W0) is justified with Nh(W0,0) = 0. System (3.9)--(3.10)
is extended by the additional equation \.\varepsilon = 0, where \varepsilon is the bifurcation parameter in (Spec).

Remark 3.4. The coefficients of N0(W0,Wh), Nh(W0,Wh), and H(W0) depend also on t,
but we do not write this dependence explicitly.

Remark 3.5. In the context of the time-periodic system (3.7) on the double period, we
recall that W0 represents the modes associated to the two Floquet exponents which split from

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/2

8/
25

 to
 1

30
.1

13
.1

09
.6

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



906 CHRISTOPHER CHONG, DMITRY E. PELINOVSKY, AND GUIDO SCHNEIDER

the double zero and leave the imaginary axis and that Wh represents the modes associated to
the other (2N  - 2) Floquet exponents which stay on the imaginary axis for small bifurcation
parameter \varepsilon .

We use the normal form transformations to reduce the order of H(W0) in terms of powers
of \| W0\| .

Lemma 3.6. For every M \geq 2, there exists an \varepsilon 0 > 0 such that for all \varepsilon \in (0, \varepsilon 0) there exists
a change of coordinates

W0,M =W0, Wh,M =Wh +G(W0)

such that system (3.9)--(3.10) transforms into

\.W0 =\Lambda 0W0 +N0,M (W0,Wh,M ),(3.11)

\.Wh,M =\Lambda hWh,M +Nh,M (W0,Wh,M ) +HM (W0),(3.12)

with Nh,M (W0,0) = 0 and HM (W0) =\scrO (\| W0\| M ).

Proof. We set Wh,2 =Wh, and then inductively

Wh,n+1 =Wh,n +Gn(W0),

with Gn(W0) being a n-linear mapping in W0. After the transformations, we have a system
of the form

\.W0 =\Lambda 0W0 +N0,n+1(W0,Wh,n+1),(3.13)

\.Wh,n+1 =\Lambda hWh,n+1 +Nh,n+1(W0,Wh,n+1) +Hn+1(W0),(3.14)

with

N0,n+1(W0,Wh,n+1) =N0,n(W0,Wh,n+1  - Gn(W0)),

Nh,n+1(W0,Wh,n+1) =Nh,n(W0,Wh,n+1  - Gn(W0))

 - (DW0
Gn(W0))(N0,n(W0,Wh,n) - N0,n(W0,0)),

Hn+1(W0) =Hn(W0) - \Lambda hGn(W0) - (DW0
Gn(W0))(\Lambda 0W0 +N0,n(W0,0)),

and so Nh,n+1(W0,0) = 0. In order to have Hn+1(W0) =\scrO (\| W0\| n+1), if Hn(W0) =\scrO (\| W0\| n),
we have to choose Gn such that

Hn,n(W0) - \Lambda hGn(W0) - (DW0
Gn(W0))\Lambda 0W0 = 0,(3.15)

where Hn,n(W0) is the n-linear part of Hn(W0), i.e., Hn(W0)  - Hn,n(W0) = \scrO (\| W0\| n+1).
Since

Hn,n(W0)(t) =Hn,n(W0)(t+ 2T ),
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GENERALIZED BREATHERS IN TIME-PERIODIC LATTICES 907

we also have Gn(W0)(t) = Gn(W0)(t + 2T ) so that we can obtain Gn(W0) by using Fourier
series

Gn(W0)(t) =
\sum 
m\in \BbbZ 

Gn(W0)[m]e\pi imt/T .

Due to the assumption (Spec), none of the eigenvalues \lambda j of \Lambda h is located at 0 and \Lambda 0 has a
double zero eigenvalue. By the normal form theorem [18, 22], equation (3.15) can be solved
w.r.t. Gn under the nonresonance conditions

\lambda j \not = 2\pi is, s\in \BbbZ ,

which are satisfied. As a result, the term H(W0) can be made arbitrarily small in terms of
powers of \| W0\| .

Remark 3.7. The sequence of normal form transformations is not convergent, and so
we stop after M  - 1 transformations with some large but fixed M \in \BbbN , for which we have
HM (W0) =\scrO (\| W0\| M ). Note that the minimum of HM (W0) is attained for M =\scrO (1/\| W0\| )-
many transformations, after which HM is exponentially small in terms of \| W0\| ; cf. [29].

4. Normal form transformations for the reduced system. If we ignore the termsHM (W0)
in (3.11)--(3.12), then \{ Wh,M = 0\} is an invariant subspace in the second equation. In this
two-dimensional subspace, the reduced system is obtained by setting Wh,M = 0 in the first
equation. So we consider the two-dimensional ODE

\.W0 =\Lambda 0W0 +N0,M (W0,0).(4.1)

At the bifurcation point, \Lambda 0 possesses a double eigenvalue \lambda = 0 with algebraic multiplicity
two and geometric multiplicity one. Thus, we have a Jordan-block of size two. The eigenvector
of \widetilde \Lambda is denoted with \varphi 1 and the generalized eigenvector with \varphi 2, i.e., \widetilde \Lambda \varphi 1 = 0 and \widetilde \Lambda \varphi 2 =\varphi 1.
If we introduce coordinates A, B by

W0 =A\varphi 1 +B\varphi 2,(4.2)

we can rewrite (4.1) as the following two-dimensional system:

\.A=B + fA(A,B),(4.3a)

\.B = \widetilde \varepsilon 2A+ fB(A,B),(4.3b)

where fA and fB stand for real-valued nonlinear terms which are of the form

fA(A,B) =

\infty \sum 
n=2

n\sum 
j=0

\sum 
m\in \BbbZ 

fA,n,j,mAjBn - je2im\pi t/T ei(n - 1)\pi t/T ,

and similarly for fB, where fA,n,j,m and fB,n,j,m are independent of time.

Remark 4.1. To derive the expansions for fA and fB, we apply (3.6) to the nonlinear terms
in N0,M (W0,0) of (4.1). We have also included in (4.3b) the normalized small parameter \widetilde \varepsilon 
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908 CHRISTOPHER CHONG, DMITRY E. PELINOVSKY, AND GUIDO SCHNEIDER

for the distance of the two Floquet exponents from the imaginary axis. According to the
expansion (2.13), we have

\widetilde \varepsilon = \varepsilon 

\surd 
2\sqrt{} 

| \lambda \prime \prime (\ell 0)| 
+\scrO (\varepsilon 2).(4.4)

For analyzing system (4.3), we use the normal form transformation in the following lemma
in order to eliminate the quadratic terms.

Lemma 4.2. There exists an \~\varepsilon 0 > 0 such that for all \~\varepsilon \in (0, \~\varepsilon 0) there exists a change of
coordinates

A=A3 + FA(A3,B3), B =B3 + FB(A3,B3),

with FA and FB polynomials not containing linear terms, such that system (4.3a)--(4.3b) trans-
forms into

\.A3 =B3 + fA,3,3, - 1,2A
3
3 + fA,3,2, - 1,2A

2
3B3 + fA,3,1, - 1,2A3B

2
3 + fA,3,0, - 1,2B

3
3

+ \scrO (| A3| 4 + | B3| 4),
\.B3 = \widetilde \varepsilon 2A3 + fB,3,3, - 1,2A

3
3 + fB,3,2, - 1,2A

2
3B3 + fB,3,1, - 1,2A3B

2
3 + fB,3,0, - 1,2B

3
3

+ \scrO (| A3| 4 + | B3| 4)

with real-valued coefficients fA,n,j,m,2 and fB,n,j,m,2.

Proof. It is well known that all terms which have a prefactor which is oscillating in time
can be eliminated by a normal form transform or equivalently by averaging; cf. [18, 40]. The
technique is elaborated in the Normal Form Theorem III of [22, Theorem III.13]. For the
quadratic terms, there is no term which has a prefactor which is constant in time, and so all
quadratic terms can be eliminated by a transformation

A=A2 +

2\sum 
j=0

\sum 
m\in \BbbZ 

gA,2,j,m,1A
j
2B

2 - j
2 e2im\pi t/T ei\pi t/T ,

B =B2 +

2\sum 
j=0

\sum 
m\in \BbbZ 

gB,2,j,m,1A
j
2B

2 - j
2 e2im\pi t/T ei\pi t/T .

By suitably choosing the coefficients gA,2,j,m,1 and gB,2,j,m,1, we find that

\.A2 =B2 +

\infty \sum 
n=3

n\sum 
j=0

\sum 
m\in \BbbZ 

fA,n,j,m,1A
j
2B

n - j
2 e2im\pi t/T ei(n - 1)\pi t/T ,

\.B2 = \widetilde \varepsilon 2A2 +

\infty \sum 
n=3

n\sum 
j=0

\sum 
m\in \BbbZ 

fB,n,j,m,1A
j
2B

n - j
2 e2im\pi t/T ei(n - 1)\pi t/T
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GENERALIZED BREATHERS IN TIME-PERIODIC LATTICES 909

with new time-independent coefficients fA,n,j,m,1 and fB,n,j,m,1. For simplifying the cubic
terms, we make a near identity transformation

A2 =A3 +

3\sum 
j=0

\sum 
m\in \BbbZ 

gA,3,j,m,2A
j
3B

3 - j
3 e2im\pi t/T ,

B2 =B3 +

3\sum 
j=0

\sum 
m\in \BbbZ 

gB,3,j,m,2A
j
3B

3 - j
3 e2im\pi t/T .

Again by suitably choosing the coefficients gA,3,j,m,2 and gB,3,j,m,2 we find that

\.A3 =B3 + fA,3,3, - 1,2A
3
3 + fA,3,2, - 1,2A

2
3B3 + fA,3,1, - 1,2A3B

2
3 + fA,3,0, - 1,2B

3
3

+

\infty \sum 
n=4

n\sum 
j=0

\sum 
m\in \BbbZ 

fA,n,j,m,2A
j
3B

n - j
3 e2im\pi t/T ei(n - 1)\pi t/T ,

\.B3 = \widetilde \varepsilon 2A3 + fB,3,3, - 1,2A
3
3 + fB,3,2, - 1,2A

2
3B3 + fB,3,1, - 1,2A3B

2
3 + fB,3,0, - 1,2B

3
3

+

\infty \sum 
n=4

n\sum 
j=0

\sum 
m\in \BbbZ 

fB,n,j,m,2A
j
3B

n - j
3 e2im\pi t/T ei(n - 1)\pi t/T

with new coefficients fA,n,j,m,2 and fB,n,j,m,2.

5. Proof of Theorem 1.1. Here we obtain the oscillating homoclinic solutions with small
tails for c = 0. The bifurcating solutions scale as A3(t) = \widetilde \varepsilon \widetilde A(\tau ) and B3(t) = \widetilde \varepsilon 2 \widetilde B(\tau ), with
\tau = \widetilde \varepsilon t. For the rescaled variables, we find that

\partial \tau \widetilde A= \widetilde B +\scrO (\widetilde \varepsilon ),(5.1a)

\partial \tau \widetilde B = \widetilde A+ fB,3,3, - 1,2
\widetilde A3 +\scrO (\widetilde \varepsilon ).(5.1b)

Ignoring the terms of order \scrO (\widetilde \varepsilon ), we find two homoclinic solutions to the origin (see the left
panel of Figure 5.1) if the following sign condition holds.

(Coeff) Assume that

fB,3,3, - 1,2 < 0.

Remark 5.1. It is shown in section 7 that (Coeff) can generally be satisfied either at the
bifurcation (2.10) or (2.11).

Remark 5.2. The truncated system (5.1), with \scrO (\widetilde \varepsilon ) terms neglected, admits an explicit
solution \Biggl\{ \widetilde A\mathrm{h}\mathrm{o}\mathrm{m},0(\tau ) =

\sqrt{} 
2| fB,3,3, - 1,2|  - 1sech(\tau  - \tau 0),\widetilde B\mathrm{h}\mathrm{o}\mathrm{m},0(\tau ) = - 
\sqrt{} 

2| fB,3,3, - 1,2|  - 1tanh(\tau  - \tau 0)sech(\tau  - \tau 0),
(5.2)

where fB,3,3, - 1,2 < 0 and \tau 0 \in \BbbR is at our disposal.

In the invariant subspace \{ Wh,M = 0\} , the homoclinic orbits persist in the reduced system
(4.1) if the following reversibility condition holds.
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910 CHRISTOPHER CHONG, DMITRY E. PELINOVSKY, AND GUIDO SCHNEIDER

(a) (b)

Figure 5.1. (a) Two homoclinic solutions of (5.1) with \scrO (\widetilde \varepsilon ) terms neglected. (b) A sketch of the transversal
intersection of the unstable manifold with the fixed space of reversibility.

(Rev) Assume that there exists t0 \in [0, T ] such that k(t - t0) = k(t0  - t).
As a consequence of the reversibility, if t \mapsto \rightarrow ( \widetilde A(t), \widetilde B(t)) is a solution, so is

t \mapsto \rightarrow ( \widetilde A(2t0  - t), - \widetilde B(2t0  - t)).

Hence, the one-dimensional unstable manifold of the origin of the time 2T -mapping trans-
versely intersects the fixed space of reversibility \{ ( \widetilde A, \widetilde B) : \widetilde B = 0\} and continues from the
upper half to the lower half of the phase plane; see the right panel of Figure 5.1. Hence, by
extending ( \widetilde A(t), \widetilde B(t))t\leq t0 by its mirror picture ( \widetilde A(2t0 - t), - \widetilde B(2t0 - t))t\geq t0 at the fixed space
of reversibility we constructed a homoclinic orbit

(A,B)(t) = (\widetilde \varepsilon \widetilde A\mathrm{h}\mathrm{o}\mathrm{m}(\varepsilon t), \widetilde \varepsilon 2 \widetilde B\mathrm{h}\mathrm{o}\mathrm{m}(\widetilde \varepsilon t))
for the reduced system (4.3), where \widetilde A\mathrm{h}\mathrm{o}\mathrm{m} = \widetilde A\mathrm{h}\mathrm{o}\mathrm{m},0+\scrO (\widetilde \varepsilon ) and \widetilde B\mathrm{h}\mathrm{o}\mathrm{m} = \widetilde B\mathrm{h}\mathrm{o}\mathrm{m},0+\scrO (\widetilde \varepsilon ) with the
leading-order solution given by (5.2). In the original variables, the homoclinic orbit is denoted
with \scrW and corresponds to the truncation Wh,M = 0 for a given M \in \BbbN .

The rest of this section contains the proof of Theorem 1.1, which we rewrite in the notations
of sections 3 and 4 as follows.

Theorem 5.3. Assume the validity of (Spec), (Coeff), and (Rev). Then there exists
an \widetilde \varepsilon 0 > 0 and C0 > 0 such that for all \widetilde \varepsilon \in (0, \widetilde \varepsilon 0) and every M \in \BbbN with M \geq 3 the system
(3.9)--(3.10) possesses a generalized homoclinic solution W\mathrm{h}\mathrm{o}\mathrm{m} : [ - \widetilde \varepsilon  - M+2, \widetilde \varepsilon  - M+2]\rightarrow \BbbR 2N with

sup
t\in [ - \widetilde \varepsilon  - M+2,\widetilde \varepsilon  - M+2]

\| W\mathrm{h}\mathrm{o}\mathrm{m}(t) - \scrW (t)\| \leq C0\widetilde \varepsilon M - 1

with lim| t| \rightarrow \infty \scrW (t) = 0. Moreover, for \scrW (t) = (\scrW 0(t),\scrW h(t)) we have

sup
t\in [ - \widetilde \varepsilon  - M+2,\widetilde \varepsilon  - M+2]

\| \scrW h(t)\| \leq C0\widetilde \varepsilon 2
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GENERALIZED BREATHERS IN TIME-PERIODIC LATTICES 911

and

sup
t\in [ - \widetilde \varepsilon  - M+2,\widetilde \varepsilon  - M+2]

\| \scrW 0(t) - \widetilde \varepsilon A\mathrm{h}\mathrm{o}\mathrm{m},0(\widetilde \varepsilon 2t)\varphi 1\| \leq C0\widetilde \varepsilon 2
with A\mathrm{h}\mathrm{o}\mathrm{m},0 given by (5.2).

Proof. To prove persistence of \scrW if the terms HM (W0) = \scrO (\| W0\| M ) are taken into ac-
count, we again use the reversibility. Obviously, it is impossible that the one-dimensional
unstable manifold transversally intersects the N -dimensional fixed space of reversibility for
the full system (3.11)--(3.12). Therefore, it can only be expected that the homoclinic solutions
persist as solutions with small tails for | t| \rightarrow \infty . This can rigorously be shown by intersect-
ing the (2N  - 1)-dimensional center-unstable manifold with the fixed space of reversibility.
Obviously, this intersection is a transversal intersection.

On the center-unstable manifold, the solutions converge towards the center manifold for
t\rightarrow  - \infty with some exponential rate. However, the solutions on the center manifold can grow
slowly, and hence it remains to obtain bounds for such solutions. In a first step, we apply
another normal form transformation

W0,M =\widetilde W0,M +Q0(W0,Wh,M ), Wh,M =\widetilde Wh,M +Qh(W0,Wh,M )

to eliminate the bilinear terms which are linear in W0 and linear in Wh,M from the full system
(3.11)--(3.12), where the

Q0,h(W0,Wh,M ) =
\sum 
m\in \BbbZ 

Q0,h(W0,Wh,M )[m]e2im\pi t/T ei\pi t/T

are bilinear mappings in their arguments. With some slight abuse of notation, we skip the
tildes and reconsider the system (3.11)--(3.12) but now with N0,M and Nh,M additionally
satisfying

\| N0,M (W0,Wh,M )\| \leq C(\| W0\| 3 + \| W0\| 2\| Wh,M\| + \| Wh,M\| 2),
\| Nh,M (W0,Wh,M )\| \leq C(\| W0\| 2\| Wh,M\| + \| Wh,M\| 2).

The transformations are possible due to the spectral assumption (Spec).

In a second step, we introduce the deviation \widetilde W0 from the homoclinic orbit \scrW 0 by W0 =
\scrW 0 +\widetilde W0. The subsequent estimates on the deviation \widetilde W0 have already been carried out in
a number of papers; cf. [17, 10]. We use the cutoff functions to estimate the solutions on
[ - \xi 0, \xi 0] with a suitable chosen large \xi 0 as \~\varepsilon \rightarrow 0.

The homoclinic orbit can be estimated pointwise by \| \scrW 0(t)\| \leq \widetilde \varepsilon q(\widetilde \varepsilon t) with a smooth

q \in L1(\BbbR ). We denote the stable part of \widetilde W0 by \widetilde W0,s and the projection on the stable part by
\Pi s. We find for a large \xi 0 determined below that

\| \widetilde W0,s(t)\| =
\bigm\| \bigm\| \bigm\| \bigm\| \int t

 - \xi 0

e\Lambda 0(t - \tau )\Pi 0

\Bigl[ 
N0,M (\scrW 0 +\widetilde W0,Wh,M ) - N0,M (\scrW 0,0)

\Bigr] 
(\tau )d\tau 

\bigm\| \bigm\| \bigm\| \bigm\| 
\leq CY (t)

\int t

 - \infty 
e - \widetilde \varepsilon (t - \tau )\widetilde \varepsilon 2q2(\widetilde \varepsilon \tau )d\tau +CY (t)2

\int t

 - \infty 
e - \widetilde \varepsilon (t - \tau )d\tau 

\leq C\widetilde \varepsilon Y (t) +C\widetilde \varepsilon  - 1Y (t)2,
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912 CHRISTOPHER CHONG, DMITRY E. PELINOVSKY, AND GUIDO SCHNEIDER

where

Y (t) := sup
\tau \in [ - \xi 0,t]

(\| \widetilde W0(\tau )\| + \| Wh,M (\tau )\| ).

If the solution is in the fixed space of reversibility at t= 0, we find that

\| Wh,M (t)\| =
\bigm\| \bigm\| \bigm\| \bigm\| \int t

0
e\Lambda h(t - \tau )(Nh,M (W0,Wh,M )(\tau ) +HM (W0)(\tau ))d\tau 

\bigm\| \bigm\| \bigm\| \bigm\| 
\leq CY (t)

\int t

0
\widetilde \varepsilon 2q2(\widetilde \varepsilon \tau )d\tau +C| t| Y (t)2 +C

\int t

0
\widetilde \varepsilon MqM (\widetilde \varepsilon \tau )d\tau 

\leq C\widetilde \varepsilon Y (t) +C| t| Y (t)2 +C\widetilde \varepsilon M - 1.

Summarizing the estimates yields

Y (\xi 0)\leq C\widetilde \varepsilon Y (\xi 0) +C\widetilde \varepsilon  - 1Y (\xi 0)
2 +C| \xi 0| Y (\xi 0)

2 +C\widetilde \varepsilon M - 1,

and so Y (\xi 0)\leq C\varepsilon M - 1 for \xi 0 \leq \widetilde C\varepsilon  - M+2 and M \geq 3. This completes the proof of the theorem
in view of the normal form transformations.

6. Proofs of Theorems 1.3 and 1.4. Here we consider the case of small damping c > 0
where reversibility no longer holds. For consistency of our analysis, we assume that c= \widetilde c\widetilde \varepsilon with\widetilde c =\scrO (1) > 0 fixed. With the same analysis as for (4.3) and (5.1), we end up in \{ Wh,M = 0\} 
at the reduced system for the rescaled variables, which is now given by

\partial \tau \widetilde A= \widetilde B +\scrO (\widetilde \varepsilon ),(6.1a)

\partial \tau \widetilde B = \widetilde A - \widetilde c
m
\widetilde B + fB,3,3, - 1,2

\widetilde A3 +\scrO (\widetilde \varepsilon ),(6.1b)

where we used the expression \gamma = \upsilon  - c
2m for the Floquet exponents of the mapping (2.6)

in section 2.1. Ignoring the terms of order \scrO (\widetilde \varepsilon ), we first find two fixed points ( \widetilde A, \widetilde B)\pm =
(\pm 1/

\sqrt{} 
| fB,3,3, - 1,2| ,0) if fB,3,3, - 1,2 < 0. Since the fixed points are hyperbolic, they persist as

fixed points of the time-2T -mapping, even if the terms of order \scrO (\widetilde \varepsilon ) are included. This proves
Theorem 1.3.

Next, we find two heteroclinic solutions connecting the origin with the two fixed points
( \widetilde A, \widetilde B)\pm in the reduced system (6.1). In order to prove the persistence of these heteroclinic
solutions, we use that the one-dimensional unstable manifold of the origin transversely inter-
sects the two-dimensional stable manifold of the two other fixed points of the reduced system.
These heteroclinic solutions are shown in Figure 6.1.

To prove the persistence of heteroclinic solutions in system (3.11)--(3.12) if the terms
HM (W0) =\scrO (| W0| M ) are taken into account, we use that the stable manifold of the two other
fixed points is 2N -dimensional, and so the one-dimensional unstable manifold of the origin
transversally intersects the 2N -dimensional stable manifold of the two antiperiodic solutions
from Theorem 1.3. Theorem 1.4 is proven by using the transformations of sections 3 and 4
with the decomposition W = (W0,Wh).
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GENERALIZED BREATHERS IN TIME-PERIODIC LATTICES 913

(a) (b)

Figure 6.1. (a) Two heteroclinic solutions for small c > 0 of the reduced system (6.1) with \scrO (\widetilde \varepsilon ) terms
neglected. (b) The heteroclinic solution of (6.1) in the intersection of the one-dimensional unstable manifold
from the zero equilibrium point (in black) and the stable manifold from the positive fixed point (in gray).

7. Multiple-scale analysis and checking the assumption (Coeff). For the system (1.1)
with (1.2), we already checked the spectral condition (Spec) used in Theorems 1.1, 1.3,
and 1.4. Here we establish the validity of the normal form coefficient condition (Coeff).

We do so by formally deriving the reduced systems (5.1) and (6.1) via a multiple-scale
analysis, which will yield an explicit and convenient formula for fB,3,3, - 1,2 after adjusting the
notations. Truncating (6.1) with \scrO (\widetilde \varepsilon ) terms neglected yields the scalar equation

\partial 2
\tau 
\widetilde A+

\widetilde c
m
\partial \tau \widetilde A= \widetilde A+ fB,3,3, - 1,2

\widetilde A3.(7.1)

Remark 7.1. The scalar equation (7.1) is recovered in (7.18) below with the correspondence
between \varepsilon and \widetilde \varepsilon given by (4.4). Note that the definition A = \~\varepsilon \widetilde A(\~\varepsilon t) (see (4.2)) is different
from the definition A(\varepsilon t); see (7.13) below. For (7.1), the amplitude \widetilde A is introduced based on
the Floquet theorem, the decomposition into subspaces, and the normal form transformations.
For (7.18), the amplitude A is introduced directly by the perturbation expansions in powers
of \varepsilon ; see (7.12).

We define as in (2.12)

k(t) = k0(t) + \delta \varepsilon 2,(7.2)

where k0(t) is the potential for the bifurcation (2.10) or (2.11), \varepsilon is a small parameter for the
asymptotic expansion, and \delta is a proper sign factor.

7.1. Bloch modes of the unperturbed linear problem. We start with the linear problem
for c = 0. In order to construct the asymptotic expansion, we define the Bloch function
v(t) = ei\ell tfj(\ell , t) for the jth spectral band \lambda j(\ell ) of \scrL 0v= \lambda v, where fj(\ell , t + T ) = fj(\ell , t). The
parameter \ell is defined in the Brillouin zone [0, 2\pi T ) with \ell = 0 and \ell = \pi 

T being at the ends of
each spectral band corresponding to periodic and antiperiodic solutions, respectively.
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914 CHRISTOPHER CHONG, DMITRY E. PELINOVSKY, AND GUIDO SCHNEIDER

Let L2
\mathrm{p}\mathrm{e}\mathrm{r} be the Hilbert space of 2\pi -periodic functions with the inner product \langle \cdot , \cdot \rangle and the

induced norm \| \cdot \| L2
\mathrm{p}\mathrm{e}\mathrm{r}
. The L2

\mathrm{p}\mathrm{e}\mathrm{r}-normalized Bloch function fj(\ell , t) is a T -periodic solution of
the spectral problem \bigl[ 

 - m(\partial t + i\ell )2  - k0(t)
\bigr] 
fj(\ell , t) = \lambda j(\ell )fj(\ell , t),(7.3)

which can be differentiated in \ell as\bigl[ 
 - m(\partial t + i\ell )2  - k0(t) - \lambda j(\ell )

\bigr] 
\partial \ell fj(\ell , t) = 2im(\partial t + i\ell )fj(\ell , t) + \lambda \prime 

j(\ell )fj(\ell , t)(7.4)

and \bigl[ 
 - m(\partial t + i\ell )2  - k0(t) - \lambda j(\ell )

\bigr] 
\partial 2
\ell fj(\ell , t) = 4im(\partial t + i\ell )\partial \ell fj(\ell , t)

+ 2\lambda \prime 
j(\ell )\partial \ell fj(\ell , t) +

\bigl[ 
\lambda \prime \prime 
j (\ell ) - 2m

\bigr] 
fj(\ell , t).(7.5)

Projecting to f(\ell , t) in L2
\mathrm{p}\mathrm{e}\mathrm{r} yields from (7.4) and (7.5)

\lambda \prime 
j(\ell ) = - 2m\langle fj(\ell , \cdot ), i\partial tfj(\ell , \cdot )\rangle + 2m\ell (7.6)

and

\lambda \prime \prime 
j (\ell ) + 2\lambda \prime 

j(\ell )\langle fj(\ell , \cdot ), \partial \ell fj(\ell , \cdot )\rangle = - 4m\langle fj(\ell , \cdot ), i\partial t\partial \ell fj(\ell , \cdot )\rangle 
+ 4m\langle fj(\ell , \cdot ), \partial \ell fj(\ell , \cdot )\rangle \langle fj(\ell , \cdot ), i\partial tfj(\ell , \cdot )\rangle + 2m,(7.7)

where the normalization condition \| fj(\ell , \cdot )\| L2
\mathrm{p}\mathrm{e}\mathrm{r}

= 1 has been used.

Remark 7.2. If \ell 0 =
\pi 
T for the bifurcating mode and the band gap (\mu 1, \mu 2) has a nonzero

width, then necessarily \lambda \prime 
j(\ell 0) = 0. If the bifurcation (2.10) occurs at \mu 1, then j = 1 and

\lambda \prime \prime 
1(\ell 0)< 0. See Figure 2.1(c) for an example. If the bifurcation (2.11) occurs at \mu 2, then j = 2

and \lambda \prime \prime 
2(\ell 0)> 0. See Figure 8.3(a).

7.2. Perturbation of the linear problem. Let us consider asymptotic solutions of the
linear equation

(\scrL 0  - K2\omega 
2(qm0

) - \delta \varepsilon 2)\widehat u(t) = 0,(7.8)

which follows from (2.2) and (7.2) at m = m0. As in (2.10), we take \mu 1 = K2\omega 
2(qm0

), for
which \ell 0 =

\pi 
T is selected in the first spectral band \{ \lambda 1(\ell )\} \ell \in [0, 2\pi 

T
). The setup for the second

spectral band \{ \lambda 2(\ell )\} \ell \in [0, 2\pi 
T
) when \mu 2 = K2\omega 

2(qm0
) as in (2.11) is essentially identical (see

Remark 7.3). Expanding

\widehat u(t) =A(\varepsilon t)ei\ell 0tf1(\ell 0, t) + \varepsilon B(\varepsilon t)ei\ell 0tg1(\ell 0, t) + \varepsilon 2ei\ell 0tC(\varepsilon t)h1(\ell 0, t) +\scrO (\varepsilon 3),

with A,B,C and g1, h1 to be determined, we obtain for \mu 1 =K2\omega 
2(qm0

) at the order of \scrO (\varepsilon )
that

B
\bigl[ 
 - m(\partial t + i\ell 0)

2  - k0(t) - \mu 1

\bigr] 
g1(\ell 0, t) = 2mA\prime (\partial t + i\ell 0)f1(\ell 0, t).
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GENERALIZED BREATHERS IN TIME-PERIODIC LATTICES 915

Since \lambda 1(\ell 0) = \mu 1 and \lambda \prime 
1(\ell 0) = 0, comparing with (7.4) yields

g1(t) = \partial \ell f1(\ell 0, t) and B(\varepsilon t) = - iA\prime (\varepsilon t).

At the order of \scrO (\varepsilon 2), we obtain the linear inhomogeneous equation

C
\bigl[ 
 - m(\partial t + i\ell 0)

2  - k0(t) - \mu 1

\bigr] 
h1(t) = - 2miA\prime \prime (\partial t + i\ell 0)\partial \ell f1(\ell 0, t)

+mA\prime \prime f1(\ell 0, t) + \delta Af1(\ell 0, t).(7.9)

Comparing (7.9) with (7.5) yields h1(t) = \partial 2
\ell f1(\ell 0, t) and C(\varepsilon t) = - 1

2A
\prime \prime (\varepsilon t) if and only if A(\tau ),

\tau := \varepsilon t, satisfies the amplitude equation

1

2
\lambda \prime \prime 
1(\ell 0)A

\prime \prime (\tau ) + \delta A(\tau ) = 0.(7.10)

Alternatively, the amplitude equation (7.10) can be obtained by projecting the linear inho-
mogeneous equation (7.9) to f1(\ell 0, t) in L2

\mathrm{p}\mathrm{e}\mathrm{r} and using (7.6) and (7.7) with \lambda \prime 
1(\ell 0) = 0.

Since \delta and \lambda \prime \prime 
1(\ell 0) have opposite signs, A(\tau ) of (7.10) will experience exponential growth

with rate

\varepsilon 

\surd 
2\sqrt{} 

| \lambda \prime \prime 
1(\ell 0)| 

,(7.11)

which is the leading order for (4.4). This is an approximation of the real part of the Floquet
exponent associated to the m0-th mode of the linear problem with k(t) = k0(t) + \delta \varepsilon 2; see
(2.13) and Figure 8.1(c), for example.

Remark 7.3. If \lambda \prime \prime 
1(\ell 0)< 0 for the bifurcating mode (2.10), then \delta =+1 is selected from the

condition that \mu 1 =K2\omega 
2(qm0

) is inside the band gap of the perturbed operator \scrL =\scrL 0 - \delta \varepsilon 2.
On the other hand, if \lambda \prime \prime 

2(\ell 0)> 0 for the bifurcating mode (2.11), then \delta = - 1 is selected from
the condition that \mu 2 =K2\omega 

2(qm0
) is inside the band gap of \scrL .

7.3. Perturbation of the nonlinear problem. Let us now consider asymptotic solutions of
the nonlinear equation (1.1) with (7.2) and c= \varepsilon \~c, where \~c\geq 0 is fixed and \delta = - sign(\lambda \prime \prime 

1(\ell 0)).
As in (2.10), we take \mu 1 =K2\omega 

2(qm0
), for which \ell 0 =

\pi 
T is selected in the first spectral band

\{ \lambda 1(\ell )\} \ell \in [0, 2\pi 
T
). Since solutions of (1.1) are real, it is natural to use expansions in terms of

real-valued functions and avoid extending them to complex-valued functions. Expanding

un(t) = \varepsilon U (1)
n (t) + \varepsilon 2U (2)

n (t) + \varepsilon 3U (3)
n (t) +\scrO (\varepsilon 4),(7.12)

we select the leading order in the form

U (1)
n (t) =A(\varepsilon t)g1(t) sin(qm0

n),(7.13)

where the amplitude A(\varepsilon t) is real and the eigenfunction

g1(t) :=
\Bigl[ 
ei\ell 0tf1(\ell 0, t) + e - i\ell 0t \=f1(\ell 0, t)

\Bigr] 
(7.14)
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916 CHRISTOPHER CHONG, DMITRY E. PELINOVSKY, AND GUIDO SCHNEIDER

is a real-valued, T -antiperiodic solution of \scrL 0g1 = \mu 1g1 satisfying g1(t+ T ) = - g1(t). At the
order of \scrO (\varepsilon 2), we obtain

\scrL 0U
(2)
n +K2(U

(2)
n+1  - 2U (2)

n +U
(2)
n - 1) =H(2)

n ,

with

H(2)
n = 2m\partial \tau \partial tU

(1)
n + \~c\partial tU

(1)
n +K3

\Bigl[ 
(U

(1)
n+1  - U (1)

n )2  - (U (1)
n  - U

(1)
n - 1)

2
\Bigr] 
,

where \tau = \varepsilon t and K3 is the coefficient of the quadratic term in (1.1). In the explicit form, we
obtain

H(2)
n = [2mA\prime (\tau ) + \~cA(\tau )]g\prime 1(t) sin(qm0

n) +K3A(\tau )
2g1(t)

2F (2)
n ,

with

F (2)
n = [sin(qm0

(n+ 1)) - sin(qm0
n)]2  - [sin(qm0

n) - sin(qm0
(n - 1))]2

= - 2 sin(qm0
)(1 - cos(qm0

)) sin(2qm0
n).

The solution for U
(2)
n (t) can be written in the form

U (2)
n (t) =

\biggl[ 
A\prime (\tau ) +

\~c

2m

\biggr] 
h1(t) sin(qm0

n) +K3A(\tau )2h2(t) sin(2qm0
n),

where h1 and h2 are solutions of the linear inhomogeneous equations

(\scrL 0  - K2\omega 
2(qm0

))h1 = 2mg\prime 1(t),(7.15)

(\scrL 0  - K2\omega 
2(2qm0

))h2 = - 2 sin(qm0
)(1 - cos(qm0

))g1(t)
2.(7.16)

It follows from the linear theory that the real, T -antiperiodic solution for h1(t) exists in
the form

h1(t) = - iei\ell 0t\partial \ell f1(\ell 0, t) + ie - i\ell 0t\partial \ell \=f1(\ell 0, t).

There exists a unique, real, T -periodic solution for h2(t) if and only if the nonresonance
condition is met:

K2\omega 
2(2qm0

) /\in \cup \infty 
j=1\lambda j(0).(7.17)

This nonresonance condition is satisfied if the spectral assumption (Spec) is satisfied.
At the order of \scrO (\varepsilon 3), we obtain

\scrL 0U
(3)
n +K2(U

(3)
n+1  - 2U (3)

n +U
(3)
n - 1) =H(3)

n ,

with

H(3)
n = \delta U (1)

n + 2m\partial \tau \partial tU
(2)
n +m\partial 2

\tau U
(1)
n + \~c\partial tU

(2)
n + \~c\partial \tau U

(1)
n

+ 2K3

\Bigl[ 
(U

(1)
n+1  - U (1)

n )(U
(2)
n+1  - U (2)

n ) - (U (1)
n  - U

(1)
n - 1)(U

(2)
n  - U

(2)
n - 1)

\Bigr] 
 - K4

\Bigl[ 
(U

(1)
n+1  - U (1)

n )3  - (U (1)
n  - U

(1)
n - 1)

3
\Bigr] 
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/2

8/
25

 to
 1

30
.1

13
.1

09
.6

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



GENERALIZED BREATHERS IN TIME-PERIODIC LATTICES 917

where K4 is the coefficient of the cubic term in (1.1).
By using Euler's formulas, we obtain

[sin(qm0
(n+ 1)) - sin(qm0

n)]3  - [sin(qm0
n) - sin(qm0

(n - 1))]3

= - 3(1 - cos(qm0
))2 sin(qm0

n)

+
1

2
[1 - 3cos(qm0

) + 3cos(2qm0
) - cos(3qm0

)] sin(3qm0
n)

and

[sin(qm0
(n+ 1)) - sin(qm0

n)] [sin(2qm0
(n+ 1)) - sin(2qm0

n)]

 - [sin(qm0
n) - sin(qm0

(n - 1))] [sin(2qm0
n) - sin(2qm0

(n - 1))]

= - [2 sin(qm0
) - sin(2qm0

)] sin(qm0
n)

 - [sin(qm0
) + sin(2qm0

) - sin(3qm0
)] sin(3qm0

n).

Hence, we obtain

H(3)
n =D1(t) sin(qm0

n) +D2(t) sin(2qm0
n) +D3(t) sin(3qm0

n),

where we are only interested in writing explicitly the coefficient for the bifurcating mode:

D1(t) = \delta A(\tau )g1(t) +mA\prime \prime (\tau )g1(t) + 2mA\prime \prime (\tau )h\prime 1(t)

+\~c
\bigl[ 
A\prime (\tau )g1(t) + 2A\prime (\tau )h\prime 1(t)

\bigr] 
+

\~c2

2m
A(\tau )h\prime 1(t)

+ 3K4(1 - cos(qm0
))2A(\tau )3g1(t)

3  - 2K2
3 [2 sin(qm0

) - sin(2qm0
)]A(\tau )3g1(t)h2(t).

Projecting D1(t) to g1(t) gives the amplitude equation for A(\tau ):

1

2
\lambda \prime \prime 
1(\ell 0)

\biggl[ 
A\prime \prime (\tau ) +

\~c

m
A\prime (\tau ) +

\~c2

4m2
A(\tau )

\biggr] 
+

\biggl[ 
\delta  - \~c2

4m

\biggr] 
A(\tau ) + \chi A(\tau )3 = 0,(7.18)

where

\lambda \prime \prime 
1(\ell 0) = 2m+ 4m

\langle g1, h\prime 1\rangle 
\| g1\| 2

(7.19)

and

\chi = 3K4(1 - cos(qm0
))2

\langle g21, g21\rangle 
\| g1\| 2

 - 2K2
3 [2 sin(qm0

) - sin(2qm0
)]
\langle g21, h2\rangle 
\| g1\| 2

.(7.20)

Since the linear part of (7.18) should be identical to the linear amplitude equation (7.10), the
new formula for \lambda \prime \prime 

1(\ell 0) must be identical to the previous equation (7.7) with \lambda \prime 
1(\ell 0) = 0. The

expression for \chi is defined in terms of real quantities only.

Remark 7.4. Equation (7.18) for \~c = 0 is analogous to the stationary NLS equation that
can be derived in the context of spatially periodic media for the description of breathers [21].
A similar equation was derived in [33] for a (space-time continuous) photonic time crystal.
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918 CHRISTOPHER CHONG, DMITRY E. PELINOVSKY, AND GUIDO SCHNEIDER

Equation (7.18) is equivalent to (7.1) with the correspondence (4.4) and the appropriate
definitions of amplitudes A and \widetilde A. The coefficient fB,3,3, - 1,2 is constant proportional to
\chi /\lambda \prime \prime 

1(\ell 0).

Remark 7.5. The coefficient in front of the second derivative in the amplitude equation
(7.18) comes from an expansion of the imaginary parts of the spectral curves at the spectral
gaps; see Figure 2.1(c). The coefficient in front of the second derivative changes sign at every
spectral boundary. Since the coefficient in front of the cubic coefficient in (7.18) does not
change sign, the homoclinic and heteroclinic solutions exist as bifurcating solutions at every
spectral gap associated with the antiperiodic eigenfunctions. In other words, if \chi < 0, then
we pick the bifurcating mode at (2.10) with \lambda \prime \prime 

1(\ell 0)< 0 and \delta =+1. If \chi > 0, then we pick the
bifurcating mode at (2.11) with \lambda \prime \prime 

2(\ell 0)> 0 and \delta = - 1.

8. Comparison with numerical simulations. We now conduct a number of numerical
simulations to illustrate the main results of the paper. We start with the simplest case and
work our way up in complexity.

Equation (7.18) with \~c= 0 and \delta = - sign(\lambda \prime \prime 
1(\ell 0)) = - sign(\chi ) has the following homoclinic

solution:

A(\tau ) =

\sqrt{} 
2

| \chi | 
sech

\Biggl( \sqrt{} 
2

| \lambda \prime \prime 
1(\ell 0)| 

\tau 

\Biggr) 
.(8.1)

See Figure 5.1(a) for an example plot of this solution in the (A,A\prime ) phase plane. Returning
to ansatz equaion (7.12), we have the following leading order approximation in terms of the
original lattice variable:

un(t) = \varepsilon 

\sqrt{} 
2

| \chi | 
sech

\Biggl( \sqrt{} 
2

| \lambda \prime \prime 
1(\ell 0)| 

\varepsilon t

\Biggr) 
g1(t) sin(qm0

n).(8.2)

To make practical use of this approximation, the first step is to identify the bifurcation
value k0 (namely the critical modulation amplitude values k0a and k0b ) and critical mode num-
ber m0 such that trace(J) =  - 2, where J is the monodromy matrix defined in (2.7). This
corresponds to the bifurcation scenario shown in Figure 2.1. In this case, the Floquet exponent
corresponding to m0 will be purely imaginary and will be of the form i\ell 0 = i\pi 

T . The corre-
sponding Bloch mode ei\ell 0tf1(\ell 0, t) is obtained by solving (7.3). This can be done explicitly;
see section 2.1 or the appendix of [7] for details. Next, we compute \lambda \prime \prime 

1(\ell 0) using (7.7) with
j = 1 which depends only on f1 and its derivatives, which can also be computed explicitly.
Equivalently, one can determine \lambda \prime \prime 

1(\ell 0) using (7.19).

8.1. Examples with \bfitc = 0 and \bfitK \bfthree = 0. The nonlinear coefficient \chi can be computed
from g1 if K3 = 0, i.e., if there is no quadratic nonlinearity (the case of K3 \not = 0 is discussed
below). To compute \chi in this case, we substitute g1(t) = 2Re

\bigl( 
ei\ell 0tf1(\ell 0, t)

\bigr) 
into (7.20) and

evaluate.
As our first example, we chose parameters that correspond to the spectral picture in

Figure 2.1 and K3 = 0 and K4 =  - 0.8. In this case, the critical mode m0 = 3 lies at the
top of the first spectral band, namely (\ell ,\lambda ) = (\pi /T,\mu 1). This demonstrates that the spectral
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GENERALIZED BREATHERS IN TIME-PERIODIC LATTICES 919

condition (Spec) is satisfied, and we choose \delta = +1. It can be seen from Figure 2.1(c), or
via direct calculation, that \lambda \prime \prime (\ell 0) < 0. By choosing K4 < 0, we have that \chi < 0, and thus
(Coeff) is satisfied.

To generate the generalized q-gap breather, we keep all parameters fixed but select \varepsilon = 0.1
and ka = k0a + \varepsilon 2 = 0.06, kb = k0b + \varepsilon 2 = 0.8. With these parameter values, the m0 = 3 mode
lies in the spectral gap. The corresponding Floquet multipliers and exponents and are shown
in Figures 1.1(a)--(b). We initialize the numerical simulation with

un(0) = 10 - 4 sin(q3n) and \.un = 0.

For initial data with such small amplitude, the dynamics will initially be nearly linear, and
hence the solution will grow exponentially with rate given by Re(\gamma ), which is the real part of
the Floquet exponent associated to mode m = 3 (see the larger black dot in Figure 1.1(a)).
According to (7.10), an approximation of this growth rate is given by (7.11) with \varepsilon = 0.1. As
the amplitude increases in the dynamic evolution, the effect of the nonlinearity comes into
play, which will cause the solution to experience decay, such that the resulting waveform is
localized in time. The time series of the u6(t) node is shown in Figure 8.1(a). The choice of
the n= 6 node used in the figure, and subsequent ones, is arbitrary. The plots for other nodes
are qualitatively similar. The temporal localization occurs uniformly throughout the lattice,
as seen in the intensity plot of Figure 8.1(b). By construction, the wavenumber q3 lies in a
wavenumber bandgap. Thus, the solution shown in Figures 8.1(a)--(b) is a generalized q-gap
breather. The analytical prediction based on (8.2) is shown as the dashed line in panel (a).

(a)
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Figure 8.1. A generalized q-gap breather bifurcating from \mu 1. The parameter values are c= 0, T = 1/0.37,
K3 = 0, K4 = - 0.8, and K2 =m= 1. The critical modulation amplitude parameters are k0

a = 0.5 and k0
b = 0.79.

The critical mode number ism0 = 3, which lies at the top of the first spectral band, namely \lambda (q3) = \mu 1 (see Figure
2.1(a)). (a) Numerical simulation with initial value un(0) = 10 - 4 sin(q3n) and \varepsilon = 0.1. The displacement of the
6th particle is shown as a function of time. The modulation amplitude is ka = k0

a+\varepsilon 2 = 0.06, kb = k0
b +\varepsilon 2 = 0.8.

The dashed line shows an approximation of the envelope given by (8.2) with \chi = - 0.6530, \lambda \prime \prime (\ell 0) = - 21.0222,
and \varepsilon = 0.1. For this value of \varepsilon , the distance of the wavenumber to the edge of the gap is \Delta q= q3  - q\ell = 0.007.
(b) Intensity plot of the solution shown in panel (a). Color intensity corresponds to | un| . (c) Plot of the
amplitude of the breather (maxtu6(t)) for the numerical simulation (blue dots) and prediction based on (8.2)
(blue line) as a function of \Delta q. The real part of the Floquet exponent corresponding to q3 (solid red squares)
and asymptotic approximation (7.11) (red line) are also shown, which indicate the growth (decay) rate of the
breather.
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920 CHRISTOPHER CHONG, DMITRY E. PELINOVSKY, AND GUIDO SCHNEIDER

For the sake of clarity, only the envelope of the approximation is shown, which is simply a
plot of the local maximums (and minimums) of (8.2).

For \varepsilon = 0.1, the distance of the wavenumber to the edge of the gap is \Delta q= q\ell  - q3 = 0.007,
where q\ell is the wavenumber at the (left) edge of the gap. Recall from (2.14) that \Delta q=\scrO (\varepsilon 2).
Since the amplitude of the breather is \scrO (\varepsilon ) (see (8.2)), the amplitude grows like \scrO (

\surd 
\Delta q).

This observation was made numerically and experimentally in [7], which we have now proved.
This amplitude trend is consistent with the trend found for discrete breathers in space-periodic
systems where it is well known that the breather amplitude grows like \scrO (

\surd 
\Delta \omega ), where \Delta \omega 

is the difference between the breather frequency and the edge of the frequency spectrum [12].
Using (2.14) and (8.2) allows us to obtain an analytical prediction of the breather amplitude
dependence of the distance to the band edge; see Figure 8.1(c). For small values of \Delta q (and
hence \varepsilon ), the agreement is very good both for the envelope and for the carrier wave defined
by the Floquet theory. The growth parameter gives an indication of how wide or narrow
the breather will be, with larger growth parameters corresponding to narrower solutions.
The prediction from the linear theory is given by the real part of the Floquet exponent
corresponding to mode m0, and the approximation from the perturbation analysis is (7.11).
A comparison of these two quantities are shown as the red markers and lines, respectively,
of Figure 8.1(c). The trends in Figure 8.1(c) demonstrate that the q-gap breathers become
larger in amplitude and more narrow as the wavenumber goes deeper into the gap.

In Figure 8.1(c) the q-gap breathers are generated up until \Delta q= 0.042 (which corresponds
to \varepsilon = 0.25). For \Delta q = 0, the width of the wavenumber bandgap is qr  - q\ell \approx 0.28 (where qr,
q\ell are the right and left edges of the bandgap, respectively). Thus, the branch of solutions
shown in Figure 8.1(c) extends to roughly 15\% of the width of the bandgap. For \Delta q >
0.042, we did not observe a coherent temporal localization. Indeed, for all the breathers
observed numerically, the localization is obtained for a finite interval of time. For longer time
simulations, the amplitude of the breather can grow again (leading to a repeated appearance
of breathers); see Figure 8.2(a). Similar observations have been made for k-gap solitons in
photonic systems [33]. While Theorem 1.1 guarantees that temporally localized structures
exist over a finite temporal interval, there is no statement about the dynamics beyond this
interval. The numerical simulations suggest the tail of the breather can experience repeated
growth. We observed that as \Delta q becomes larger, the time between consecutive peaks of the
pulses becomes smaller. In other words, the emergence of the ``second"" breather occurs faster
as \Delta q becomes larger. Thus, for sufficiently large \Delta q the structure is not temporally localized
since the second breather emerges ``too soon""; see Figure 8.2(b). This is the reason why we
only show \Delta q\leq 0.042 in Figure 8.1(c).

Next, we consider an example where the breathers bifurcate from \mu 2. The spectral bands
corresponding to c = 0, T = 1/0.37, K2 = m = 1, k0a = 0.5, and k0b = 0.7487 are shown in
Figure 8.3(a). For these parameter values, the mode m0 = 4 lies at the bottom of the second
spectral band, namely \lambda (q4) = \mu 2. Notice that the concavity of the second spectral band is
opposite of the first band, namely \lambda \prime \prime 

2(\ell 0)> 0. Thus, in order to satisfy the (Coeff) condition,
we require \chi > 0. If K3 = 0, this implies that K4 > 0 and the sign parameter is now \delta = - 1.
Thus, for the next numerical simulations, we fix K3 = 0 and K4 = 0.8. The approximation
given in (8.2) is identical in this case, but we replace \lambda \prime \prime 

1(\ell ) with \lambda \prime \prime 
2(\ell ), and likewise for the

underlying Bloch modes (where f1 should be replaced by f2, etc.).
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Figure 8.2. Numerical simulation with all parameters as in Figure 8.1 but larger values of \varepsilon . (a) With
\Delta q = 0.032 (\varepsilon = 0.22), a temporally localized structure is initially observed, but over a longer time interval
a recurrence of breathing patterns emerges. The dashed line shows an approximation of the envelope given
by (8.2). (b) With \Delta q = 0.046 (\varepsilon = 0.26), the second breather-like structure emerges before the temporal
localization of the first pulse can be achieved. The envelope approximation given by (8.2) is still quite good
until the breakdown of the temporal localization.
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Figure 8.3. (a) Spectral bands (blue curves) of the Schr\"odinger operator as a function of \ell , the imaginary
part of the Floquet exponent. The gray dots shown the corresponding values in the finite lattice with N = 10.
The parameter values are c= 0, T = 1/0.37, and K2 =m= 1. The critical modulation amplitude parameters are
k0
a = 0.5 and k0

b = 0.7487. The critical mode number is m0 = 4, which lies at the bottom of the second spectral
band, namely \lambda (\ell (q4)) = \mu 2 (see larger black marker). The eigenvalues \mu 1 and \mu 2 define the edges of the band
gap, shown as the gray shaded region. (b) Example q-gap breather bifurcating from \mu 2 with nonlinear coefficients
K3 = 0 and K4 = 0.8. The initial value is un(0) = 10 - 4 sin(q4n) and \varepsilon = 0.1. The displacement of the 6th
particle is shown as a function of time. The modulation amplitude is ka = k0

a+\varepsilon 2 = 0.06, kb = k0
b +\varepsilon 2 = 0.7587.

The dashed line shows an approximation of the envelope given by (8.2) with \chi = 1.7707, \lambda \prime \prime (\ell 0) = 26.3821, and
\varepsilon = 0.1. For this value of \varepsilon , the distance of the wavenumber to the edge of the gap is \Delta q = q4  - qr =  - 0.005.
(c) Plot of the amplitude of the breather (maxtu6(t)) for the numerical simulation (blue dots) and prediction
based on (8.2) (blue line) as a function of \Delta q. The real part of the Floquet exponent corresponding to q4 (solid
red squares) and asymptotic approximation \varepsilon 

\sqrt{} 
\delta \lambda \prime \prime (\ell 0)/2 (red line) are also shown, which indicate the growth

(decay) rate of the q-gap breather.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/2

8/
25

 to
 1

30
.1

13
.1

09
.6

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



922 CHRISTOPHER CHONG, DMITRY E. PELINOVSKY, AND GUIDO SCHNEIDER

Figure 8.3(b) shows an example of the generalized q-gap breather with \varepsilon = 0.1, with
corresponding envelope prediction given by (8.2). Qualitatively, the results are similar to
the example shown in Figure 8.1(a). Figure 8.3(c) shows the dependence of the breather
amplitude and growth rate on the parameter \Delta q = qr  - qm0

. Note that since the breather is
bifurcating from the right edge of the wavenumber bandgap, the quantity \Delta q will be negative.
The breather amplitude grows like \scrO (

\sqrt{} 
| \Delta q| ).

8.2. Examples with \bfitc = 0 and \bfitK \bfthree \not = 0. Here we will consider K3 \not = 0. In particular,
we will choose values of the nonlinear coefficients in (1.4) that correspond to the modulated
magnetic lattice described in section 1.1 so that the results obtained here are directly relevant
for the experimental setup described in [7]. In the rescaled variables, the interaction coefficients
are K2 =K3 = 1 and K4 = 0.8. Since K3 \not = 0, the sign of \chi must be computed directly to see if
the relevant eigenvalue from which to bifurcate is \mu 1 or \mu 2. \chi will depend on the function h2(t),
which we can obtain by solving (7.16). It will be convenient to estimate h2(t) numerically
under the constraint that h2(t) is T periodic, which we achieve using a shooting method.
In particular, we apply Newton iterations on the map F (h0) = h2(0;h

0)  - h2(T ;h
0), where

h2(t;h
0) is the solution of (7.16) with initial condition h0 = (h2(0), \.h2(0))

T . The Jacobian of
the map F is simply I  - V (T ), where I is the 2x2 identity matrix and V (T ) is the solution
to the variational equation \.V = df

dhV with initial value V (0) = I, where df
dh is the Jacobian

corresponding to (7.16) (see [20]).
In this example, we consider the spectral situation as shown in Figure 8.3(a), such that

m0 = 4 is the critical mode bifurcating from \mu 2. In this case, \lambda \prime \prime (\ell 0)> 0, so we chose \delta = - 1
and we must have \chi > 0 to satisfy (Coeff). Upon computing h2(t) with the shooting method
and substituting into (7.20) with K3 = 1 and K4 = 0.8 we find that \chi = 1.997> 0, as desired.

Figure 8.4(a) shows a numerical simulation of the lattice with initial displacement un(0) =
10 - 4 sin(q4n) and \varepsilon = 0.1, and panel (b) shows a simulation with \varepsilon = 0.22. By comparing
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Figure 8.4. (a) A generalized q-gap breather bifurcating from \mu 2 with nonlinear coefficients corresponding to
a magnetic lattice, namely K3 = 1 and K4 = 0.8. The other parameter values and spectral picture are identical
to Figure 8.3(a). The initial value is un(0) = 10 - 4 sin(q4n) and \varepsilon = 0.1. The displacement of the 6th particle
is shown as a function of time. The modulation amplitude is ka = k0

a + \varepsilon 2 = 0.06, kb = k0
b + \varepsilon 2 = 0.7587. The

dashed line shows an approximation of the envelope given by (8.2) with \chi = 1.997, \lambda \prime \prime (\ell 0) = 26.3821, and \varepsilon = 0.1.
For this value of \varepsilon , the distance of the wavenumber to the edge of the gap is \Delta q = q4  - qr = - 0.005. (b) Same
as panel (a) with \varepsilon = 0.22. (c) Plot of the amplitude of the breather (maxtu6(t)) for the numerical simulation
(blue dots) and prediction based on (8.2) (blue line) as a function of \Delta q. The real part of the Floquet exponent
corresponding to q4 (solid red squares) and asymptotic approximation (7.11) (red line) are also shown, which
indicate the growth (decay) rate of the breather.
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GENERALIZED BREATHERS IN TIME-PERIODIC LATTICES 923

panels (a) and (b), we see once again that the q-gap breather becomes more narrow and larger
in amplitude as \Delta q (and thus \varepsilon ) increases in magnitude. What is also apparent, especially
in panel (b), is that the numerical simulation is asymmetric, namely that the maximum is
not simply the minimum reflected about the u = 0 line. Evidently, the asymmetric nature
of the FPUT potential with K3 \not = 0 is manifested through a lack of reflection symmetry in
the q-gap breather profile. Asymmetric breathing profiles are well known in space-periodic
FPUT systems with quadratic nonlinearities [21]. The approximation given by (8.2) remains
symmetric, however, and thus one would expect the approximation not to do as well as in
the K3 = 0 case. Indeed, inspection of Figure 8.3(c) confirms this, where the difference
in amplitude between simulation and theory is larger than in the K3 = 0 case (see, e.g.,
Figure 8.3(c)). Nonetheless, the asymptotic behavior as \Delta q \rightarrow 0 is correct, and in particular
the breather amplitude grows like \scrO (

\sqrt{} 
| \Delta q| ).

8.3. Examples with \bfitc \not = 0 and \bfitK \bfthree \not = 0. In our final example, we include the effect of
damping and select \~c = 0.1. By definition, c = \varepsilon \~c, so the critical parameter set (when \varepsilon = 0)
will have c= 0, like before. Thus, we consider once again the parameter set that corresponds
to Figure 8.4(a). However, the numerical solutions and asymptotic approximations will have
nonzero damping effect for \varepsilon > 0. Since the bifurcation scenario is the same as in Figure 8.4(a),
the initial condition for simulations will be of the same form, namely un(0) = 10 - 4 sin(q4n).
An example lattice simulation with \varepsilon = 0.1 is shown in Figure 8.5(a), where the underlying
damping constant is c = \varepsilon \~c = 0.01. The solution experiences an initial growth, with growth
rate given by the real part of the m0 = 4 Floquet exponent, but rather then decaying to a
near zero amplitude, like in all the previous examples with c = 0, the solution approaches
steady periodic motion with period 2T . A longer time evolution of the same solution is shown
in Figure 8.6. In particular, panel (b) shows that the dynamics are essentially periodic for t
sufficiently larger.

In terms of the Poincar\'e map Fj =U(2Tj), the trivial solution U(t) = 0 is clearly a fixed
point. The 2T -periodic solution that is approached in the dynamic simulation is another fixed
point. Thus, the solution shown in Figure 8.5(a) is a transition front, since it connects two
different fixed points.

Another example of the transition front for a larger value of \varepsilon is shown in Figure 8.5(b).
Despite the fact that the structure is not temporally localized, the initial dynamics still re-
semble the ``left"" side of the q-gap breather. Indeed, the homoclinic approximation from (8.2)
is quite close to the initial front dynamics (see the solid gray line of Figure 8.5(a)). For this
reason, it is still reasonable to measure the amplitude of the front in the same way we mea-
sured the amplitude for the q-gap breathers. A plot of the front amplitude and real part of
the m0 = 4 Floquet exponent is shown in Figure 8.5(c). The amplitude trend is similar to the
nondamped case, but the magnitude of the amplitude is smaller, as expected (compare panel
(c) of Figures 8.4 and 8.5).

The amplitude equation (7.18) can be used to approximate the front dynamics. However,
the equation does not yield an explicit solution in the presence of damping, and so we will
employ a qualitative and numerical analysis of (7.18). A straightforward phase plane analysis
shows that the trivial fixed point (A,A\prime ) = (0,0) is a saddle with corresponding eigenvalues
r\pm 0 = ( - s3 \pm 

\sqrt{} 
s23 + 4s1)/2 and the fixed points (A,A\prime ) = (\pm 

\sqrt{} 
s1/s2,0) are spiral-sinks with
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Figure 8.5. (a) A transition front bifurcating from \mu 2 with nonlinear coefficients corresponding to a damped
magnetic lattice, namely K3 = 1, K4 = 0.8, and \~c = 0.1. The other parameter values and spectral picture are
identical to Figure 8.3(a). The initial value is un(0) = 10 - 4 sin(q4n) and \varepsilon = 0.1. The displacement of the 6th
particle is shown as a function of time. The modulation amplitude is ka = k0

a + \varepsilon 2 = 0.06, kb = k0
b + \varepsilon 2 = 0.7587

and the damping constant is c = \varepsilon \~c = 0.01. The dashed line shows an approximation of the envelope given by
(7.12) with \chi = 1.997, \lambda \prime \prime (\ell 0) = 26.3821, and \varepsilon = 0.1. For this value of \varepsilon , the distance of the wavenumber to the
edge of the gap is \Delta q = q4  - qr =  - 0.005. (b) Same as panel (a) with \varepsilon = 0.22. (c) Plot of the amplitude of
the front (maxtu6(t)) for the numerical simulation (blue dots) and prediction based on (7.12) (blue line) as a
function of \Delta q. The real part of the Floquet exponent corresponding to q4 (solid red squares) and asymptotic
approximation r+0 \varepsilon (red line) are also shown, which indicates the initial growth rate.
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Figure 8.6. (a) Same as Figure 8.5(a) but over a longer time interval. The dashed line shows an approxi-
mation of the envelope given by (7.12), which accounts for damping. The solid gray line shows the homoclinic
approximation (i.e., with no damping) of the envelope given by (8.2). (b) A zoom of panel (a) for large values
of t. Here it can be seen that the dynamics are very close to periodic.

corresponding eigenvalues r\pm 1 = ( - s3 \pm i
\sqrt{} 

8s1  - s23)/2, where the sj are the coefficients of
(7.18), namely

s1 =

\biggl( 
\~c2

4m
 - \delta 

\biggr) 
2

\lambda \prime \prime (\ell 0)
+

\~c2

4m2
> 0, s2 =

2\chi 

\lambda \prime \prime (\ell 0)
> 0, s3 =

\~c

m
> 0.

In the phase plane, there is a heteroclinic orbit that leaves the trivial fixed point along the
unstable eigenvector (1, r0+)

T and approaches the (
\sqrt{} 

s1/s2,0) fixed point. There is another
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GENERALIZED BREATHERS IN TIME-PERIODIC LATTICES 925

heteroclinic orbit that leaves the trivial fixed point along the unstable eigenvector ( - 1, - r0+)
T

and approaches the ( - 
\sqrt{} 

s1/s2,0) fixed point; see Figure 6.1. To approximate the heteroclinic
orbit, we numerically solve (7.18) with initial condition A(0) = 10 - 4,A\prime (0) = 10 - 4 r0+. The
resulting solution A(\tau ) is then used in (7.12) to generate the approximation of the lattice
dynamics.

Examples are shown in Figures 8.5(a)--(b), where the envelopes are shown for \varepsilon = 0.1 and
\varepsilon = 0.22, respectively. Once again, the envelope dynamics are well captured by (7.12), es-
pecially for small \varepsilon . The periodic oscillation of the envelope can be approximated by the
imaginary part of the eigenvalue associated to the nontrivial fixed point, namely \tau \mathrm{e}\mathrm{n}\mathrm{v} =
2\pi /(

\sqrt{} 
8s1  - s23/2). In terms of the original lattice variables, this translates to \tau \mathrm{e}\mathrm{n}\mathrm{v}/\varepsilon . For

the example shown in Figure 8.6(a) with \varepsilon = 0.1, the average peak-to-peak time of the enve-
lope is 165.3 time units, whereas \tau \mathrm{e}\mathrm{n}\mathrm{v}/\varepsilon = 159.3, which is quite close.

The front amplitude as a function of \Delta q is shown as the solid blue line in Figure 8.5(c)
and an approximation of the initial growth rate r0+\varepsilon is shown as the red line. Once again,
the asymptotic behavior as \Delta q \rightarrow 0 is correct. Despite the presence of damping, the front
amplitude grows like \scrO (

\sqrt{} 
| \Delta q| ).

9. Conclusions. Generalized q-gap breathers are coherent structures that are localized in
time and periodic in space and have wavenumber in a q-gap. They are the natural counterparts
of the discrete breathers of spatially periodic lattices, which themselves are of fundamental
importance in a diverse range of fields.

In the absence of damping, we proved rigorously the existence of generalized q-gap breathers
in a time-periodic FPUT lattice using normal form theory. In particular, we proved the ex-
istence of oscillating homoclinic solutions over a finite time interval with tails that can be
made arbitrarily small but finite. These solutions bifurcate from one edge of the q-gap, which
is determined by the nonlinear coefficients K3,K4 and the concavity of the spectral band.
The amplitude of the q-gap breather grows like \scrO (

\surd 
\Delta q), where \Delta q is the distance of the

underlying wavenumber to the band edge. This result makes rigorous the numerical and ex-
perimental observations of such q-gap breathers in [7]. We also provided a tractable analytical
approximation of such solutions using a multiple-scale analysis and corroborated results with
direct numerical simulations.

In the presence of damping, we proved the existence of solutions that connect the zero
state to a time-periodic one, which we called the transition fronts. The multiple-scale analysis
also provided an accurate description of the front solutions, although the underlying amplitude
equation needed to be solved numerically. The initial stages of the front dynamics were well
described by the undamped q-gap breather approximations.

Generalized q-gap breathers and transition fronts represent new types of nonlinear wave
structures. This work provided the first rigorous results in their study, complementing earlier
experimental and numerical work. Nonetheless, there are still many open questions regarding
q-gap breathers and transition fronts. This includes the possible existence of genuine q-gap
breathers (i.e., with both tails decaying to zero), numerically exact computation of q-gap
breathers (i.e., numerical roots of the appropriate map up to a user-prescribed tolerance), and
the study of their stability and (possible) connection to the energy of the breather (which in
general in not conserved). The exploration of such structures in higher spatial dimensions
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926 CHRISTOPHER CHONG, DMITRY E. PELINOVSKY, AND GUIDO SCHNEIDER

or in settings beyond the FPUT realm is also a noteworthy future direction. Indeed, any
system that is already described by a nonlinear wave equation that could be adapted to be
time-varying (in order to induce a q-gap) would be a candidate for the implementation of
q-gap breathers. This suggests that q-gap breathers' relevance, and hence the results of this
work, could extend to a wide range of fields.
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