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Abstract

Properties of the linear eigenvalue problem associated to a hyperbolic non-linear Schrödinger equation are re-
viewed. The instability band of a deep-water soliton is shown to merge to the continuous spectrum of a linear
Schrödinger operator. A new analytical approximation of the instability growth near a threshold is derived by means
of a bifurcation theory of weakly localized wave functions. © 2001 Published by Elsevier Science B.V. on behalf
of IMACS.
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1. Introduction

This paper presents a solution of a challenging problem arising for the hyperbolic non-linear Schrödinger
(NLS) equation

iΨt + Ψxx − Ψyy + 2|Ψ |2Ψ = 0. (1)

The hyperbolic NLS equation has been widely used in physical literature as a governing model for
surface gravity-capillary waves in a deep fluid [1,2] and for lower hybrid resonant cones in a magnetically
confined electrostatic plasma [3]. Problems related to existence and stability of a plane envelope-wave
soliton were particularly important for further applications. One of such corner-stone problems was
to study the dynamical behavior of a planar soliton initially disturbed by a small periodic transverse
perturbation. Transverse instability of planar solitons was discovered for a finite instability band with
respect to long transverse perturbations (see previous extensive reviews [4,5] and a recent contribution
[6]). However, the existence and properties of the short-wave instability cut-off remained unclear. Several
hypotheses were formulated on basis of numerical data [4,5] but a systematical mathematical solution of
the problem has not yet been developed. In this paper, we present an asymptotic solution of Eq. (1) for
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the transverse instability of solitons near the instability threshold. Surprisingly, the new solution does not
fit to any of several contradictory numerical data presented earlier.

The paper is organized as follows. Section 2 reviews the basic results devoted to the linear analysis of
the transverse instability of a deep-water soliton. A linear decomposition method is developed in Section
3. Then, in Section 4, a new analytical solution of the problem on the instability threshold is presented.
Other related results are described in Section 5 as consequences of the main method.

2. Formulation of the problem

It is straightforward to reduce the hyperbolic NLS Equation (1) to a linear eigenvalue problem for
transverse instability of a plane soliton

(L1 − p2)U = −λW, (L0 − p2)W = λU. (2)

The reduction is described by the following expansion at the plane soliton core

Ψ = [Φ(x)+ (U(x)+ iW(x))eipy+λt + (Ū(x)− iW̄ (x))e−ipy+λ̄t ] eiωt . (3)

HereΦ(x) = √
ω sech

(√
ωx

)
is a plane soliton,U(x) andW(x) are perturbations at the plane soliton,λ

is an instability growth rate, andp is the transverse wave number. The linear operatorsL0 andL1 are

L0 = −∂2
x + ω − 2ω sech2

(√
ωx

)
, L1 = −∂2

x + ω − 6ω sech2
(√
ωx

)
. (4)

The spectrum of the operatorL0φ = µφ consists of a single discrete mode

φ0 = sech
(√
ωx

)
atµ = 0

and a continuous spectrum for

µ = ω + k2, φ(x, k) = k + i
√
ω tanh

(√
ωx

)
k + i

√
ω

eikx.

The spectrum of the operatorL1ψ = µψ consists of two isolated discrete modes:

ψ−1 = sech2
(√
ωx

)
atµ = −3ω,

ψ0 = tanh
(√
ωx

)
sinh

(√
ωx

)
atµ = 0,

and a continuous spectrum for

µ = ω + k2, ψ(x, k) = k2 − 2ω + 3ik
√
ω tanh

(√
ωx

) + 3ω sech2
(√
ωx

)
(
k + i

√
ω

) (
k + 2i

√
ω

) eikx.

The spectra of the operatorsL0 andL1 are shown schematically in Fig. 1. The continuous spectrum of
the coupled linear eigenvalue problem (2) has a gap forp2 < ω, which is located for|Im(λ)| < ω− p2.
In the opposite case, whenp2 > ω, the continuous spectrum of (2) has no gap for imaginary values
of λ. Neutral modes exist forλ = p = 0 while the other localized eigenstates of Eq. (2) are unknown
analytically since the linear problem (2) is non-integrable.
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Fig. 1. The spectra of operatorsL0 andL1. The dotted lines display the connections of spectral data in the asymptotic solutions
(14–15).

Zakharov and Rubenchik were the first who discovered the transverse instability of plane solitons [7] by
perturbing the zero spectrum of the operatorsL0 andL1 due to small termsp2 andλ in the linear eigenvalue
problem (2). They found that the instability appears from the odd eigenstateψ0(x) of the operatorL1

if the transverse perturbation is long enough, i.e.p → 0. The instability growth rateλ = λ(p) was
approximated according to the expansion

λ2 = 4ω

3
p2 − 4

9

(
π2

3
− 1

)
p4 + O(p6). (5)

A historical comment: the original paper [7] contains an arithmetic error in the second term of the
approximation (5). This error was corrected implicitly in further papers [12,14], where the numerical
constant was computed asλ2 ≈ 4/3ωp2 − 1.02p4.

Two consequences follow from the asymptotic result of Zakharov and Rubenchik (see also similar
results derived by Yajima [8]): (i) the focusing instability of a plane soliton is of bending type and (ii)
the instability band is truncated at an instability cut-off,p = pc, with the following approximation for
pc ≈ 1.15

√
ω. However, the limitp → pc cannot be clarified with the sane method.

Numerical computations of the curveλ = λ(p) for the wholep-axis were first done by Cohen et al. [9]
who solved a linear time-dependent problem associated to Eq. (1). We reproduce their result in Fig. 2(a)
for γ τBF ∼ λandQ1/2 = p/

√
ω. The curve clearly displays a jump of the non-zero instability growth rate

asp → √
ω to zero asp >

√
ω, where the (stable) continuous spectrum of Eq. (2) is located everywhere

for imaginary part ofλ. Thus, a first conjecture was formulated (see also the review [4]) that the instability
disappears stepwise for the transverse wave number approaching the edge of the continuous spectrum at
p → √

ω.
Another numerical solution was developed by Saffman and Yuen [10] who solved the linear eigenvalue

problem (2). Their results display a continuous graph ofλ = λ(p) up to the cut-off wave number
pc ≈ 1.09

√
ω. The graph is reproduced in Fig. 2(b) (curve 1) forΩ2/γ 4 ∼ −λ2 andκ2/γ 2 = p/

√
ω.

The instability is supported by odd eigenfunctions of Eq. (2). According to this conjecture (see also the
book [2]), the instability band extends into the region of the continuous spectrum of the linear problem (2).
Further development of the numerical method enabled one to compute the traveling transverse instability
of even eigenstates of a plane soliton. The latter instability corresponds to the complex eigenvalues,
λ = λr + iλi for λr > 0 andλi 6= 0 [11].
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Fig. 2. The graph of the instability growth rate vs. the transverse wave number reproduced from [9] (a), [10] (b), and [12] (c).
The correlation between the variables at the graphs and the variablesλ andp is described in the text.

Revision of these numerical data and first analytical approximation for the instability cut-off were
presented by Anderson et al. [12]. The growth rate was computed numerically by solving a linear
time-dependent NLS Equation (1). No link between the odd eigenstateψ0(x) of the operatorL1 and
the delocalized odd eigenstateφ(x, 0) of the operatorL0 was found. Instead, the instability band was
shown to extend to the regionp >

√
ω, where the instability growth rate bifurcated to the complex plane

at p ≈ 1.08
√
ω. This feature resulted in a slope jump of the continuous graphλ = λ(p) reproduced

in Fig. 2(c) (curve 1) forΓ ∼ λ andk = p/
√
ω. The authors developed a variational Ritz method
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for a weakly localized trial function,f ∼ e−κ|x| tanh(x), to explain the picture and conjectured that
the graph has an intersection with Re(λ) = 0 for larger value ofp >

√
ω. This conjecture appears to

be the third hypothesis for the instability cut-off in the hyperbolic NLS equation (see also the review
[5]).

The variational estimates were later improved by Laedke and Spatschek [13] who extended the vari-
ational method to the non-positively definite linear operators. Numerical evaluation of the variational
principle applied to weakly localized trial functions revealed a good agreement with the second conjec-
ture and the cut-offpc was evaluated aspc ≈ 1.08

√
ω. No complex eigenvalues were discovered by this

method.
Numerical simulations of the non-linear model (1) were performed by Pereira et al. [14]. The plane

envelope solitons were found to split into two-dimensional clusters during a bending (focusing) stage
of the transverse instability. Isolated clusters were then seen to spread out and gradually decay during a
dispersive (defocusing) stage. Indeed, no fully localized solitons exist for the hyperbolic NLS Equation
(1) [15,16]. As a result, the break-up of a planar soliton leads to its disappearance.

The same behavior for non-linear dynamics of a bending soliton in the hyperbolic NLS equation was
recently reproduced by Kivshar and Pelinovsky [6] (Chapter 5.4.2). The authors developed an analytical
method based on modulation equations for transverse instability and found no stabilization of the insta-
bility at the self-focusing stage. Thus, the conclusion that a plane soliton is destroyed by the bending
transverse instability was reconfirmed, while the linear properties of the instability were left contradictory.
Here, we attend the linear instability problem and show that the graphλ = λ(p) connects the cut-off root
atp = pc = √

ω.

3. Linear decomposition

OperatorsL0 andL1 are standard Sturm–Liuville operators and, therefore, their spectra are complete
with respect to the inner product defined by

〈f |g〉 =
∫ ∞

−∞
dx f ∗(x)g(x).

The linear space of the coupled eigenvalue problem (2) can be spanned in many ways. For example, the
L2(R) eigenfunctions of Eq. (2) can be decomposed through eigenfunctions of the linearized Schrödinger
problem forp = 0 to follow deformations of the spectrum atp 6= 0 [17]. Here, we develop an alternative
decomposition, through eigenfunctions of the uncoupled operatorsL0 andL1. This trick is motivated by
the consideration of the asymptotic limitλ → 0 at the instability threshold.

ProvidedU(x), W(x) ∈ L2(R), solution of Eq. (2) can be expanded into the generalized Fourier
decomposition

U(x) = α−1ψ−1(x)+ α0ψ0(x)+
∫ ∞

−∞

α(k)ψ(x, k)dk

p2 − (ω + k2)
, (6)

W(x) = β0φ0(x)+
∫ ∞

−∞

β(k)φ(x, k)dk

p2 − (ω + k2)
, (7)

whereα−1, α0, β0, α(k), andβ(k) are Fourier coefficients to be found. The differential system (2) can be
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equivalently rewritten in an integral representation

2πα(k) = λ

[
β0K0(k)+

∫ ∞

−∞

β(k′)K(k, k′)dk′

p2 − (ω + k′2)

]
, (8)

−2πβ(k) = λ

[
α−1P−1(k)+ α0P0(k)+

∫ ∞

−∞

α(k′)K̄(k′, k)dk′

p2 − (ω + k′2)

]
, (9)

4(p2 + 3ω)α−1

3
√
ω

= λ

[
πβ0

2
√
ω

+
∫ ∞

−∞

β(k)P̄−1(k)dk

p2 − (ω + k2)

]
, (10)

2p2α0

3
√
ω

= λ

∫ ∞

−∞

β(k)P̄0(k)dk

p2 − (ω + k2)
, (11)

−2p2β0√
ω

= λ

[
πα−1

2
√
ω

+
∫ ∞

−∞

α(k)K̄0(k)dk

p2 − (ω + k2)

]
. (12)

Here the integral elements are given explicitly

K0(k) = − π
(
k + i

√
ω

)
2
√
ω

(
k − 2i

√
ω

) sech

(
πk

2
√
ω

)
,

P0(k) = −π i
(
k + i

√
ω

)
2ω

sech

(
πk

2
√
ω

)
,

P−1(k) = πk2

2ω
(
k − i

√
ω

) cosech

(
πk

2
√
ω

)
,

and

K(k, k′) = 2πk

k − 2i
√
ω
δ(k − k′)− π(k2 + 3k′2 + 4ω)

2
(
k′ + i

√
ω

) (
k − i

√
ω

) (
k − 2i

√
ω

) cosech

(
π(k − k′

2
√
ω

)
.

The system (8)–(12) is valid generally for anyλ. However, it is particularly important that the case
λ = 0 decouples the system with the spectrum given in Fig. 1. This fact enables us to simplify the system
(8)–(12) in the asymptotic limitλ → 0 and study the deformation of the spectra in the two important cases:
(i) p → pc = √

ω (Section 4) and (ii)p → 0 (Section 5). The following formulas will be especially
useful for the next section:

lim
k→0

K0(k) = π

4
√
ω
, lim

k→0
P0(k) = π

2
√
ω
, lim

k→0
P−1(k) = lim

k→0
lim
k′→0

K(k, k′) = 0. (13)

4. Asymptotic approximation for the instability cut-off

We present here the derivation of an asymptotic reduction of Eqs. (8)–(12) in the limitλ → 0 and
p → pc = √

ω. It includes two asymptotic results: (i) the cut-off of the graphλ = λ(p) for odd
eigenfunctions and (ii) the cut-off of the graphλ = λ(p) for even eigenfunctions. The first result is
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associated to the transverse instability of a planar soliton described in Section 2. The second result
connects with the traveling (oscillatory) instabilities found in [11]. These two results are formulated in
Proposition 1 and proved below.

4.1. Main results

Proposition 1.

1. The linear eigenvalue problem(2) has a localized odd solution asp → pc = √
ω and the eigenvalue

λ is given asymptotically as

λ2 = 16ωpc

3π2

√
p2

c − p2 + O(pc − p). (14)

2. The linear eigenvalne problem(2) has a localized even solution asp → pc = √
ω and the eigenvalue

λ is given asymptotically as

λ2 = 64ωpc

π2

√
p2

c − p2 + O(pc − p). (15)

Proof. The integral kernels in Eqs. (8)–(12) have a resonance forp2 ≥ ω. It was shown in [17] that
bifurcations of new eigenvalues may occur near edges of the continuous spectrum at the resonance.
Therefore, we can assume thatp2 = ω − κ2 andλ2 ∼ O(κ), whereκ � √

ω. Computing the sin-
gular contribution of the integrals in the limitκ → 0, the system (8)–(12) reduces to the algebraic
equations

2πα(0) = λK0(0)β0, −2πβ(0) = λP0(0)α0,

16

3

√
ωα−1 = πλ

2
√
ω
β0,

2

3

√
ωα0 = −πλP̄0(0)

|κ| β(0),

−2
√
ωβ0 = λ

[
π

2
√
ω
α−1 − πK̄0(0)

|κ| a(0)

]
.

In the limit λ → 0, this system decouples into two subsystems: for odd eigenfunctions described by the
coefficientsα0 andβ(0) and for even eigenfunctions described byα(0) andβ0 (see doted lines in Fig. 1).
The coefficientα−1 jumps beyond the leading order of the system. As a result, the algebraic equations
above reduces with the help of Eq. (13) to Eqs. (14) and (15). �

4.2. Discussions

The transverse instability described in Section 2 is the instability with respect to odd eigenfunctions.
Therefore, the first result (14) corresponds to the asymptotic behavior of the graphλ = λ(p) previously
shown in Fig. 2(a)–(c). It is final, therefore, to conclude that the graph links two odd eigenstates atp =
0[U = ψ0(x),W = 0] andp = pc = √

ω[U = 0, W = φ(x,0)], where the short-wave cut-off wave
numberpc coincides with the edge of the continuous spectrum (so that the corresponding eigenfunction
φ(x, 0) is delocalized). As a result, the asymptotic approximation of the instability growth rate beyond the



592 D.E. Pelinovsky / Mathematics and Computers in Simulation 55 (2001) 585–594

cut-off is unusually steep,λ ∼ (pc−p)1/4. If the cut-off eigenfunction would be localized, the asymptotic
approximation would be smoother,λ ∼ (pc −p)1/2 as shown for other examples (see [6]). The steepness
of the instability growth rate and the delocalization of the corresponding eigenfunction explain why the
problem of constructing the graphλ = λ(p) was difficult numerically. Either a jump of the graph at
p → √

ω (see Fig. 2(a)) or a continuation of the graph to the regionp >
√
ω (see Fig. 2(b) and (c))

were found by numerical routines. Thus, our analytical studies based on direct asymptotic decomposition
complete the problem and improve the inaccurate numerical results.

Additional (complex or oscillatory) transverse instability of a planar soliton was also detected numer-
ically for p <

√
ω [11], where the instability eigenvalueλ = λr + iλi is shown in Figs. 3 and 4 in

[11]. The other asymptotic result (15) is connected to this instability in the limitp → pc = √
ω. Com-

bining numerical data and the asymptotic result, one can recover the whole pattern for the oscillatory
instability.

At p > 0, two even localized eigenstates appear in the linear problem (2) withλr = 0 andλi > 0,
one detaches from the continuous spectrum at Im(λ) = ω and the other is a perturbed even eigenstate
φ0(x) (see Fig. 2(b) for even mode). These two eigenvalues move toward each other as the transverse
wave numberp grows. After coalescence atp = posc ≈ 0.1

√
ω, they split off the imaginary axis, which

is a typical Hamiltonian–Hopf bifurcation leading to an oscillatory instability. Then, the imaginary part
λi disappears somehow atp ≈ 0.7

√
ω, while the real partλr survives and matches the asymptotic result

(15) asp → √
ω. Further details in the intermediate range ofp are difficult to find both from analytical

and numerical treatments.

5. Related results

In this section, we use the system (8)–(12) for developing a standard perturbation theory of localized
eigenstates. In particular, the perturbation series for the even and odd neutral eigenstatesφ0(x) andψ0(x)
enables us to recover the results of Zakharov and Rubenchik [7] in the limitp → 0 while the perturbation
series of the even eigenstateψ−1(x) reproduces the result of Janssen and Rasmussen [18] in the limit
p2 + 3ω → 0. The latter expansion describes a short-wave asymptotic approximation for the instability
growth rate of the transverse instability of a plane envelope soliton in the elliptic NLS equation. The
corresponding linear eigenvalue problem differs from Eq. (2) by a simple replacementp2 → −p2. As a
result, the eigenstateU = ψ−1(x), W = 0 corresponds to an instability band cut-off atp = √

3ω. By
comparing the known results of direct asymptotic expansions [7,18] and the perturbation theory within
the system (8)–(12), we deduce the exact numerical values of two auxiliary integrals (see Proposition 2),
which are not included in the reference table of integrals [19]. Direct computation of these integrals is
also provided.

Proposition 2. The following integrals have exact numerical values
∫ ∞

0

dx

(1 + x2)
sech2(πx) = π2 − 8

2π
, (16)

∫ ∞

0

x4dx

(1 + x2)(4 + x2)
cosech2

(πx
2

)
= 5π2 − 48

18π
. (17)
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Proof. The perturbation series for the eigenstateψ0(x) is derived from Eqs. (9) and (11) at the leading
order asp → 0

β(k) = −λP0(k)

2π
α0, α0 = −3λ

√
ω

2p2

∫ ∞

−∞

β(k)P̄0(k)dk

(ω + k2)
.

Using a simple result,
∫ ∞
−∞sech2(x)dx = 2, one can reduce the closed system to the expression,

λ2 = 4/3ωp2 + O(p4), which is in agreement with Eq. (5).
The perturbation series for the eigenstateφ0(x) is derived from Eqs. (8), (10), and (12) at the leading

order asp → 0

α(k) = λK0(k)

2π
β0, α−1 = πλ

8ω
β0,

and

−2p2β0√
ω

= λ

[
πα−1

2
√
ω

−
∫ ∞

−∞

α(k)K̄0(k)dk

(ω + k2)

]
.

This closed system reduces to the known asymptotic approximation [7],λ2 = −4ωp2 + O(p4), provided
the integral (16) is valid.

The perturbation series for the eigenstateψ−1(x) is derived from Eqs. (9), (10) and (12) at the leading
order asp2 + 3ω → 0

β(k) = −λP−1(k)

2π
α−1, β0 = πλ

12ω
α−1,

and

4(p2 + 3ω)α−1

3
√
ω

= λ

[
πβ0

2
√
ω

−
∫ ∞

−∞

β(k)P̄−1(k)dk

(4ω + k2)

]
.

Again, this closed system reduces to the known asymptotic approximation [18],λ2 = 12ω(p2 + 3ω)/
(π2 − 6), provided the integral (17) is valid.

Thus, the integrals (16) and (17) provide a missing link between the perturbation theory based on the
system (8)–(12) and the known results of [7,18]. We prove Eqs. (16) and (17) by a direct method. First,
the integrals can be rewritten equivalently as

∫ ∞

0

dx

(1 + x2)
sech2(π, x) = 1

π

(
1 − 1

π
I ′′

1(1)

)
,

∫ ∞

0

x4dx

(1 + x2)(4 + x2)
cosech2

(πx
2

)
= π2

3

(
I ′′

2

(
1

2

)
− 8I ′′

2(1)

)
,

whereI ′′
j (a) = d2Ij (a)/da2, andI1(a)andI2(a) are given by

I1(a) =
∫ ∞

0

dx

1 + x2
ln(1 + e−2πax) = −π

[
lnΓ (2a)− Γ ln(a)+ a(1 − ln a)+

(
1

2
− 2a

)
ln 2

]
.
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I2(a) =
∫ ∞

0

dx

1 + x2
ln(1 − e−2πax) = π

[
1

2
ln(2πa)+ a(ln a − 1)− lnΓ (a + 1)

]
.

Here we have used the integrals (4.319) from [19]. Evaluating the second derivative with respect to the
implicit parametera, one can derive exact expressions∫ ∞

0

dx

(1 + x2)
sech2(πx) = 1

π
(4ψ ′(2)− ψ ′(1)),

∫ ∞

0

x4 dx

(1 + x2)(4 + x2)
cosech2

(πx
2

)
= 1

3π

(
8ψ ′(1)− ψ ′

(
1

2

)
− 8

)
,

whereψ(a) = d
da lnΓ (a) is theψ function defined in Chapter 8.36 of [19]. By using particular values of

ψ(a) from Eq. (8.366) of [19], one can reduce the exact expressions above to Eqs. (16) and (17).�
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