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Abstract Working in the context of localized modes in periodic potentials, we con-
sider two systems of the massive Dirac equations in two spatial dimensions. The first
system, a generalized massive Thirring model, is derived for the periodic stripe poten-
tials. The second one, a generalized massive Gross–Neveu equation, is derived for
the hexagonal potentials. In both cases, we prove analytically that the line solitary
waves are spectrally unstable with respect to periodic transverse perturbations of large
periods. The spectral instability is induced by the spatial translation for the general-
ized massive Thirring model and by the gauge rotation for the generalized massive
Gross–Neveu model. We also observe numerically that the spectral instability holds
for the transverse perturbations of any period in the generalized massive Thirring
model and exhibits a finite threshold on the period of the transverse perturbations in
the generalized massive Gross–Neveu model.

Keywords Massive Thirring model · Massive Gross-Neveu equation · Line solitary
waves · Transverse instability · Lyapunov-Schmidt reduction method · Chebyshev
interpolation method

Mathematics Subject Classification 35Q41 · 37K40 · 37K45

Communicated by Michael I. Weinstein.

B Dmitry Pelinovsky
dmpeli@math.mcmaster.ca

1 Department ofMathematics and Statistics, McMaster University, Hamilton, ON L8S 4K1, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00332-015-9278-1&domain=pdf


366 J Nonlinear Sci (2016) 26:365–403

1 Introduction

Starting with pioneer contributions of V.E. Zakharov and his school (Zakharov and
Rubenchik 1974), studies of transverse instabilities of line solitary waves in various
nonlinear evolution equations have been developed in many different contexts. With
the exception of the Kadomtsev–Petviashvili-II (KP-II) equation, line solitary waves
in many evolution equations are spectrally unstable with respect to transverse periodic
perturbations (Kivshar and Pelinovsky 2000).

More recently, it was proved for the prototypical model of the KP-I equation that
the line solitary waves under the transverse perturbations of sufficiently small periods
remain spectrally and orbitally stable (Rousset and Tzvetkov 2012). Similar thresholds
on the period of transverse instability exist in othermodels such as the elliptic nonlinear
Schrödinger (NLS) equation (Yamazaki 2015) and the Zakharov–Kuznetsov (ZK)
equation (Pelinovsky et al. 2015). Nevertheless, this conclusion is not universal and
the line solitary waves can be spectrally unstable for all periods of the transverse
perturbations, as it happens for the hyperbolic NLS equation (Pelinovsky et al. 2014).

Conclusions on the transverse stability or instability of line solitary waves may
change in the presence of the periodic potentials. In the two-dimensional problemswith
square periodic potentials, it was found numerically in Hoq et al. (2009), Kevrekidis
et al. (2007), Yang (2011) that line solitary waves are spectrally stable with respect to
periodic transverse perturbations if they bifurcate from the so-called X point of the
Brillouin zone. Line solitary waves remain spectrally unstable if they bifurcate from
the � point of the Brillouin zone. These numerical results are rigorously justified in
Pelinovsky and Yang (2014) from the analysis of the two-dimensional discrete NLS
equation, which models the tight-binding limit of the periodic potentials (Pelinovsky
and Schneider 2010).

For the one-dimensional periodic (stripe) potentials, similar stabilization of the line
solitary waves was observed numerically in Yang et al. (2012). In the contrast to these
results, it was proven within the tight-binding limit in Pelinovsky and Yang (2014) that
transverse instabilities of line solitary waves persist for any parameter configurations
of the discrete NLS equation. One of the motivations for our present work is to inspect
whether the line solitary waves become spectrally stable with respect to the periodic
transverse perturbations in periodic stripe potentials far away from the tight-binding
limit.

In particular, we employ the massive Dirac equations also known as the coupled-
mode equations, which have been derived and justified in the reduction of the
Gross–Pitaevskii equationwith small periodic potentials (Schneider andUecker 2001).
Similar models were also introduced in the context of the periodic stripe potentials in
Dohnal and Aceves (2005), where the primary focus was on the existence and stability
of fully localized two-dimensional solitary waves. From the class of massive Dirac
models, we will be particularly interested in a generalization of the massive Thirring
model (Thirring 1958), for which orbital stability of one-dimensional solitons was
proved in our previous work with the help of conserved quantities (Pelinovsky and
Shimabukuro 2014) and auto-Bäcklund transformation (Contreras et al. 2013). In the
present work, we prove analytically that the line solitary waves of themassive Thirring
model in two spatial dimensions are spectrally unstable with respect to the periodic
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transverse perturbations of large periods. The spectral instability is induced by the spa-
tial translation of the line solitary waves. We also show numerically that the instability
persists for smaller periods of transverse perturbations.

In the context of numerical results in Yang et al. (2012), we now confirm that line
solitarywaves in the periodic stripe potential remain spectrally unstable with respect to
periodic transverse perturbations both in the tight-binding and small-potential limits.
The numerical results in Yang et al. (2012) are observed apparently in a narrow interval
of the existence domain for the line solitary waves supported by the periodic stripe
potential.

Different versions of the massive Dirac equations were derived recently in the
context of hexagonal potentials. The corresponding systems generalize the massive
Gross–Neveu model [also known as the Soler model in (1 + 1) dimensions] (Gross
and Neveu 1974). These equations are derived formally in Ablowitz and Zhu (2012,
2013) and are justified recently in Fefferman andWeinstein (2012a, 2014). Extending
the scope of our work, we prove analytically that the line solitary waves of the massive
Gross–Neveumodel in two spatial dimensions are also spectrally unstable with respect
to the periodic perturbations of large periods. The spectral instability is induced by the
gauge rotation. Numerical results indicate that the instability exhibits a finite threshold
on the period of the transverse perturbations.

The method we employ in our work is relatively old (Zakharov and Rubenchik
1974) [see review in Kivshar and Pelinovsky (2000)], although it has not been applied
to the class of massive Dirac equations even at the formal level. We develop analysis
at the rigorous level of arguments. Our work relies on the resolvent estimates for the
spectral stability problem in (1+ 1) dimensions, where the zero eigenvalue is disjoint
from the continuous spectrum, whereas the eigenfunctions for the zero eigenvalue are
known from the translational and gauge symmetries of the massive Dirac equations.
When the transverse wave number is nonzero but small, the multiple zero eigen-
value splits and one can rigorously justify whether this splitting induces the spectral
instability or not. It becomes notoriously more difficult to prove persistence of insta-
bilities for large transverse wave numbers (small periods); hence, we have to retreat
to numerical computations for such studies of the corresponding transverse stability
problem.

The approach we undertake in this paper is complementary to the computations
based on the Evans function method (Johnson 2010; Johnson and Zumbrun 2010).
Although both approaches stand on rigorous theory based on the implicit function
theorem, we believe that the perturbative computations are shorter and provide the
binary answer on the spectral stability or instability of the line solitary wave with
respect to periodic transverse perturbations in a simple and concise way.

The structure of this paper is as follows. Section 2 introduces two systems of
the massive Dirac equations and their line solitary waves in the context of stripe
and hexagonal potentials. Section 3 presents the analytical results and gives details
of algorithmic computations of the perturbation theory for the massive Thirring and
Gross–Neveu models in two spatial dimensions. Section 4 contains numerical approx-
imations of eigenvalues of the spectral stability problem. Transverse instabilities of
small-amplitude line solitary waves in more general massive Dirac models are dis-
cussed in Sect. 5.
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2 Massive Dirac Equations

The class ofmassive Dirac equations on the line can bewritten in the following general
form (Chugunova and Pelinovsky 2006; Pelinovsky 2011),

{
i(ut + ux ) + v = ∂ūW (u, v, ū, v̄),

i(vt − vx ) + u = ∂v̄W (u, v, ū, v̄),
x ∈ R, (2.1)

where the subscripts denote partial differentiation, (u, v) are complex-valued ampli-
tudes in spatial x and temporal t variables, and W is the real function of (u, v, ū, v̄),
which is symmetric with respect to u and v and satisfies the gauge invariance

W (eiαu, eiαv, e−iα ū, e−iαv̄) = W (u, v, ū, v̄) for every α ∈ R.

As it is shown in Chugunova and Pelinovsky (2006), under the constraints on W , it
can be expressed in terms of variables (|u|2 + |v|2), |u|2|v|2, and (ūv + uū). For the
cubic Dirac equations, W is a homogeneous quartic polynomial in u and v, which is
written in the most general form as

W = c1(|u|2 + |v|2)2 + c2|u|2|v|2 + c3(|u|2 + |v|2)(ūv + uv̄) + c4(ūv + uv̄)2,

where c1, c2, c3, and c4 are real coefficients. In this case, a family of stationary solitary
waves of the massive Dirac equations can be found in the explicit form (Chugunova
and Pelinovsky 2006) [see also Mertens et al. (2012)].

Among various nonlinear Dirac equations, the following particular cases have pro-
found significance in relativity theory:

• W = |u|2|v|2—the massive Thirring model (Thirring 1958);
• W = 1

2 (ūv + uv̄)2—the massive Gross–Neveu model (Gross and Neveu 1974).

Global well-posedness of the massive Thirring model was proved both in Hs(R) for
s > 1

2 (Selberg and Tesfahun 2010) and in L2(R) (Candy 2011). Recently, global
well-posedness of the massive Gross–Neveu equations was proved both in Hs(R) for
s > 1

2 (Huh 2013) and in L2(R) (Zhang and Zhao 2015).
When the massive Dirac equations are used in modeling of the Gross–Pitaevskii

equation with small periodic potentials, the realistic nonlinear terms are typically
different from the two particular cases of the massive Thirring and Gross–Neveu
models. (In this context, the nonlinear Dirac equations are also known as the coupled-
mode equations.) In the following two subsections, we describe the connection of
the generalized massive Thirring and Gross–Neveu models in two spatial dimensions
to physics of nonlinear states of the Gross–Pitaevskii equation trapped in periodic
potentials.
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2.1 Periodic Stripe Potentials

In the context of one-dimensional periodic (stripe) potentials, the massive Dirac equa-
tions (2.1) can be derived in the following form (Dohnal and Aceves 2005),

{
i(ut + ux ) + v + uyy = (α1|u|2 + α2|v|2)u,

i(vt − vx ) + u + vyy = (α2|u|2 + α1|v|2)v,
(x, y) ∈ R

2, (2.2)

where y is a new coordinate in the transverse direction to the stripe potential, the
complex-valued amplitudes (u, v) correspond to two counter-propagating resonant
Fourier modes interacting with the small periodic potential, and (α1, α2) are real-
valued parameters. For the stripe potentials, the parameters satisfy the constraint α2 =
2α1.

To illustrate the derivation of the massive Dirac equations (2.2), we can consider a
two-dimensional Gross–Pitaevskii equation with a small periodic potential

iψt = −ψxx − ψyy + 2ε cos(x)ψ + |ψ |2ψ, (2.3)

and apply the Fourier decomposition

ψ(x, y, t) = √
ε
[
u(εx,

√
εy, εt)e

i
2 x− i

4 t + v(εx,
√

εy, εt)e− i
2 x− i

4 t + εR(x, y, t)
]
,

(2.4)

where ε is a small parameter and R is the remainder term. From the condition that
R is bounded in variables (x, y, t), it can be obtained from (2.3) and (2.4) that (u, v)

satisfy the nonlinear Dirac equations (2.2) with α1 = 1 and α2 = 2. Justification of the
Fourier decomposition (2.4) and the nonlinear Dirac equations (2.2) in the context of
the Gross–Pitaevskii equation (2.3) has been reported for y-independent perturbations
in Schneider and Uecker (2001). Transverse modulations can be taken into account
in the same justification procedure, since the error R is bounded in the supremum
norm, whereas the solution of the massive Dirac equations (2.2) and the solution of
the Gross–Pitaevskii equation (2.3) can be defined in Sobolev spaces of sufficiently
high regularity [see Chapter 2.2 in Pelinovsky (2011)].

The stationary y-independent solitary waves of the massive Dirac equations (2.2)
are referred to as the line solitary waves. According to the analysis in Chugunova
and Pelinovsky (2006), Mertens et al. (2012), the corresponding solutions can be
represented in the form

u(x, t) = Uω(x)eiωt , v(x, t) = Ūω(x)eiωt , (2.5)

where ω ∈ (−1, 1) is taken in the gap between two branches of the linear wave
spectrum of the massive Dirac equations (2.2). The complex-valued amplitude Uω

satisfies the first-order differential equation

iU ′
ω − ωUω +Uω = (α1 + α2)|Uω|2Uω. (2.6)
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In terms of physical applications, the line solitary wave (2.5) of the massive Dirac
equations (2.2) corresponds to a localized mode (the so-called gap soliton) trapped by
the periodic stripe potential (Pelinovsky 2011).

In our work, we perform transverse spectral stability analysis of the line solitary
waves (2.5) for the particular configuration α1 = 0 and α2 = 1, which correspond to
the massive Thirring model on the line (Thirring 1958). If α1 = 0 and α2 = 1, the
solitary wave solution of the differential equation (2.6) exists for every ω ∈ (−1, 1)
in the explicit form

Uω(x) = √
2μ

√
1 + ω cosh(μx) − i

√
1 − ω sinh(μx)

ω + cosh(2μx)
, (2.7)

where μ = √
1 − ω2. The solitary wave solution of the differential equation (2.6)

is unique up to the translational and gauge transformation. As ω → 1, the family
of solitary waves (2.7) approaches the NLS profile Uω→1(x) → μsech(μx). As
ω → −1, it degenerates into the algebraic profile

Uω=−1(x) = 2(1 − 2i x)

1 + 4x2
.

When y-independent perturbations are considered, solitary waves (2.5) and (2.7)
are orbitally stable in the time evolution of the massive Thirring model on the line
for every ω ∈ (−1, 1). The corresponding results were obtained in our previous
works (Pelinovsky and Shimabukuro 2014) in H1(R) and (Contreras et al. 2013) in a
weighted subspace of L2(R). Note that the solitary waves in more general nonlinear
Dirac equations (2.2) are spectrally unstable for y-independent perturbations if α1 �=
0, but the instability region and the number of unstable eigenvalues depend on the
parameter ω (Chugunova and Pelinovsky 2006).

We will show (see Theorem 3.3 below) that the line solitary waves (2.5) and (2.7)
for α1 = 0 and α2 = 1 are spectrally unstable with respect to long periodic transverse
perturbations for every ω ∈ (−1, 1). In the more general massive Dirac equations
(2.2), we also show (see Sect. 5.1 below) that the instability conclusion remains true
at least in the small-amplitude limit (when either ω → 1 or ω → −1) if α1 + α2 �= 0.

2.2 Hexagonal Potentials

In the context of the hexagonal potentials in two spatial dimensions, the massive Dirac
equations can be derived in a different form (Fefferman and Weinstein 2012b),

{
i∂tϕ1 + i∂xϕ2 − ∂yϕ2 + ϕ1 = (β1|ϕ1|2 + β2|ϕ2|2)ϕ1,

i∂tϕ2 + i∂xϕ1 + ∂yϕ1 − ϕ2 = (β2|ϕ1|2 + β1|ϕ2|2)ϕ2,
(x, y) ∈ R

2, (2.8)

where (ϕ1, ϕ2) are complex-valued amplitudes for two resonant Floquet–Blochmodes
in the hexagonal lattice and (β1, β2) are real-valued positive parameters. The nonlinear
Dirac equations (2.8) correspond to equations (4.4)–(4.5) in Fefferman and Weinstein
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(2012b). Derivation of these equations can also be found in Ablowitz and Zhu (2012,
2013). Justification of the linear part of these equations is performed by Fefferman
and Weinstein (2014).

To transform the nonlinear Dirac equations (2.8) to the form (2.1), we use the
change of variables,

(
u
v

)
= 1

2

(
1 1
1 −1

)(
ϕ1
ϕ2

)
,

and obtain
{
i(ut + ux ) + v + vy = β1(u|u|2 + uv2 + 2u|v|2) + β2u(u2 − v2),

i(vt − vx ) + u − uy = β1(v|v|2 + vu2 + 2v|u|2) + β2v(v2 − u2).
(2.9)

In comparison with the nonlinear Dirac equations (2.2), we note that both the cubic
nonlinearities and the y-derivative diffractive terms are different.

For the family of line solitary waves (2.5), the complex-valued amplitude Uω sat-
isfies the first-order differential equation

iU ′
ω − ωUω +Uω = (3β1 + β2)Uω|Uω|2 + (β1 − β2)U

3
ω. (2.10)

In terms of physical applications, the line solitary wave (2.5) of the massive Dirac
equations (2.9) corresponds to a localized mode trapped by the deformed hexagonal
potential with broken Dirac points (Ablowitz and Zhu 2013; Fefferman andWeinstein
2012b).

In what follows, we perform the transverse spectral stability analysis of the line
solitarywaves (2.5) for the particular configurationβ1 = −β2 = 1

2 ,which corresponds
to the massive Gross–Neveu model on the line (Gross and Neveu 1974). If β1 =
−β2 = 1

2 , the solitary wave solution of the differential equation (2.10) exists for every
ω ∈ (0, 1) in the explicit form

Uω(x) = μ

√
1 + ω cosh(μx) − i

√
1 − ω sinh(μx)

1 + ω cosh(2μx)
, (2.11)

where μ = √
1 − ω2. Again the solitary wave solution of the differential equation

(2.10) is unique up to the translational and gauge transformation. The family of
solitary waves (2.11) diverges at infinity as ω → 0 and cannot be continued for
ω ∈ (−1, 0) (Berkolaiko et al. 2015). As ω → 1, the family approaches the NLS
profile Uω→1(x) → 2−1/2μsech(μx).

When y-independent perturbations are considered, solitary waves (2.5) and (2.11)
are orbitally stable in H1(R) in the time evolution of the massive Gross–Neveu model
for ω ≈ 1 (Boussaid and Comech 2012). Regarding spectral stability, two numerical
studies exist, which show contradictory results to each other. A numerical approach
based on the Evans function computation leads to the conclusion on the spectral
stability of solitary waves for all ω ∈ (0, 1) (Berkolaiko et al. 2015; Berkolaiko and
Comech2012).However, another approach based on thefinite difference discretization
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indicates existence of ωc ≈ 0.6 such that the family of solitary waves is spectrally
stable for ω ∈ (ωc, 1) and unstable for ω ∈ (0, ωc) (Mertens et al. 2012; Shao et al.
2014). The presence of additional unstable eigenvalues in the case of y-independent
perturbations, if they exist, is not an obstacle in our analysis of transverse stability of
line solitary waves.

Our work concerns both y-independent and y-dependent perturbations. In the case
of y-independent perturbations, we show numerically (see Sect. 4.2 below) that the
solitary waves of the massive Gross–Neveu model are spectrally stable for every ω ∈
(0, 1), thus supporting the numerical results of Berkolaiko et al. (2015), Berkolaiko
and Comech (2012) with an independent numerical method based on the Chebyshev
interpolationmethod. In the case of y-periodic perturbations,we showanalytically (see
Theorem 3.3 below) that the line solitary waves (2.5) and (2.11) for β1 = −β2 = 1

2
are spectrally unstable with respect to long periodic transverse perturbations for every
ω ∈ (0, 1). In the more general massive Dirac equations (2.9), we also show (see
Sect. 5.2 below) that the instability conclusion remains true at least in the small-
amplitude limit (when either ω → 1 or ω → −1) if β1 �= 0.

3 Transverse Spectral Stability of Line Solitary Waves

We consider two versions (2.2) and (2.9) of the nonlinear Dirac equations for spatial
variables (x, y) in the domain R × T, where T = R/(LZ) is the one-dimensional
torus and L ∈ R is the period of the transverse perturbation. To study stability of the
line solitary wave (2.5) under periodic transverse perturbations, we use the Fourier
series and write

u(x, y, t) = eiωt
[
Uω(x) +

∑
n∈Z

f̂n(x, t)e
2πniy

L

]
. (3.1)

In the setting of the spectral stability theory,we are going to use the linear superposition
principle and consider just one Fourier mode with continuous parameter p ∈ R. In the
context of the Fourier series (3.1), the parameter p takes the countable set of values
{ 2πnL }n∈Z. The limit p → 0 corresponds to the limit of long periodic perturbations
with L → ∞.

For each p ∈ R, we separate the time evolution of the linearized system and
introduce the spectral parameter λ in the decomposition f̂n(x, t) = F̂n(x)eλt . This
decomposition reduces the linearized equations for f̂n to the eigenvalue problem for
F̂n and λ. Performing similar manipulations with four components of the nonlinear
Dirac equations, we set the transverse perturbation in the form

u(x, y, t) = eiωt [Uω(x) + u1(x)e
λt+i py], u(x, y, t) = e−iωt [Uω(x) + u2(x)e

λt+i py],
v(x, y, t) = eiωt [Uω(x) + v1(x)e

λt+i py], v(x, y, t) = e−iωt [Uω(x) + v2(x)e
λt+i py].

Remark 1 Since the perturbation to the line solitary wave is just one linear mode,
the component (u2, v2) is not the complex conjugate of (u1, v1). However, given a
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solution (u1, u2, v1, v2) of the eigenvalue problem for λ and p, there exists another
solution (ū2, ū1, v̄2, v̄1) of the same eigenvalue problem for λ̄ and −p.

Let F = (u1, u2, v1, v2)t . The eigenvalue problem for F and λ can be written in the
form

iλσF = (Dω + Ep + Wω)F, (3.2)

where

Dω =

⎡
⎢⎢⎣

−i∂x + ω 0 −1 0
0 i∂x + ω 0 −1

−1 0 i∂x + ω 0
0 −1 0 −i∂x + ω

⎤
⎥⎥⎦ , σ =

⎡
⎢⎢⎣
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎤
⎥⎥⎦ ,

whereas matrices Ep and Wω depend on the particular form of the nonlinear Dirac
equations. For the model (2.2) with α1 = 0 and α2 = 1, we obtain Ep = p2 I with

I =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ and Wω =

⎡
⎢⎢⎢⎣

|Uω|2 0 U 2
ω |Uω|2

0 |Uω|2 |Uω|2 U
2
ω

U
2
ω |Uω|2 |Uω|2 0

|Uω|2 U 2
ω 0 |Uω|2

⎤
⎥⎥⎥⎦ , (3.3)

where Uω is given by (2.7). For the model (2.9) with β1 = −β2 = 1
2 , we obtain

Ep = −i pJ with

J =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎤
⎥⎥⎦ and

Wω =

⎡
⎢⎢⎢⎣

|Uω|2 Ū 2
ω U 2

ω + 2U
2
ω |Uω|2

U 2
ω |Uω|2 |Uω|2 2U 2

ω +U
2
ω

2U 2
ω +U

2
ω |Uω|2 |Uω|2 U 2

ω

|Uω|2 U 2
ω + 2U

2
ω U

2
ω |Uω|2

⎤
⎥⎥⎥⎦ , (3.4)

where Uω is now given by (2.11).

Remark 2 Let us denote the existence interval for the line solitary wave (2.5) of the
nonlinear Dirac equations (2.1) by  ⊂ (−1, 1). For the model (2.2) with α1 = 0 and
α2 = 1, we have  = (−1, 1). For the model (2.9) with β1 = −β2 = 1

2 , we have
 = (0, 1).

The linear operator Dω + Ep + Wω is self-adjoint in L2(R,C4) with the domain
in H1(R,C4) thanks to the boundness of the potential term Wω. We shall use the
notation 〈·, ·〉L2 for the inner product in L2(R,C4) and the notation ‖ · ‖L2 for the
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induced norm. Our convention is to apply complex conjugation to the element at the
first position of the inner product 〈·, ·〉L2 .

The next elementary result shows that the zero eigenvalue is isolated from the
continuous spectrum of the spectral stability problem (3.2) both for Ep = p2 I and
Ep = −i pJ if the real parameter p is sufficiently small.

Proposition 3.1 Assume that Wω(x) → 0 as |x | → ∞ according to an exponential
rate. For every ω ∈  and every p ∈ R, the continuous spectrum of the stability
problem (3.2) is located along the segments ±i�1 and ±i�2, where for Ep = p2 I ,

�1 :=
{√

1 + k2 + ω + p2, k ∈ R

}
, �2 :=

{√
1 + k2 − ω − p2, k ∈ R

}
,

(3.5)

whereas for Ep = −i pJ ,

�1 :=
{√

1 + p2 + k2 + ω, k ∈ R

}
, �2 :=

{√
1 + p2 + k2 − ω, k ∈ R

}
.

(3.6)

Proof ByWeyl’s lemma, the continuous spectrum of the stability problem (3.2) coin-
cides with the purely continuous spectrum of the same problem with Wω ≡ 0, thanks
to the exponential decay of the potential terms Wω to zero as |x | → ∞. If Wω ≡ 0,
we solve the spectral stability problem (3.2) with the Fourier transform in x , which
means that we simply replace ∂x in the operator Dω with ik for k ∈ R and denote the
resulting matrix by Dω,k . As a result, we obtain the matrix eigenvalue problem

(Dω,k + Ep − iλσ)F = 0.

After elementary algebraic manipulations, the characteristic equation for this linear
system yields four solutions for λ given by±i�1 and±i�2, where the explicit expres-
sions for �1 and �2 are given by (3.5) and (3.6) for Ep = p2 I and Ep = −i pJ ,
respectively. ��
Remark 3 We note the different role of the matrix Ep in the location of the continuous
spectrum for larger values of the real parameter p. If Ep = p2 I , then the two bands
±i�2 touch each other for |p| = pω := √

1 − ω and overlap for |p| > pω. If
Ep = −i pJ , all the four bands do not overlap for all values of p ∈ R and the zero
point λ = 0 is always in the gap between the branches of the continuous spectrum.

The next result shows that if p = 0, then the spectral stability problem (3.2) admits
the zero eigenvalue of quadruple multiplicity. The zero eigenvalue is determined by
the symmetries of the nonlinear Dirac equations with respect to the spatial translation
and the gauge rotation.

Proposition 3.2 For every ω ∈  and p = 0, the stability problem (3.2) admits
exactly two eigenvectors in H1(R) for the eigenvalue λ = 0 given by

Ft = ∂xUω, Fg = iσUω, (3.7)
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whereUω = (Uω, Ūω, Ūω,Uω)t . For each eigenvector Ft,g, there exists a generalized
eigenvector F̃t,g in H1(R) from solutions of the inhomogeneous problem

(Dω + Wω)F = iσFt,g, (3.8)

in fact, in the explicit form,

F̃t = iωxσUω − 1

2
σ̃Uω, F̃g = ∂ωUω, (3.9)

where σ̃ = diag(1, 1,−1,−1). Moreover, if 〈Ft,g, σ F̃t,g〉L2 �= 0, no solutions of the
inhomogeneous problem

(Dω + Wω)F = iσ F̃t,g (3.10)

exist in H1(R).

Proof Existence of the eigenvectors (3.7) follows from the two symmetries of themas-
sive Dirac equations and is checked by elementary substitution as (Dω+Wω)Ft,g = 0.
Because (Dω + Wω) is a self-adjoint operator of the fourth order and solutions of
(Dω + Wω)F = 0 have constant Wronskian determinant in x , there exist at most two
spatially decaying solutions of these homogeneous equations, which means that the
stability problem (3.2) with p = 0 admits exactly two eigenvectors in H1(R) for
λ = 0. Since

〈Ft,g, σFt,g〉L2 = 〈Ft,g, σFg,t 〉L2 = 0

there exist solutions of the inhomogeneous problem (3.8) in H1(R). Existence of the
generalized eigenvectors (3.9) is checked by elementary substitution. Finally, under
the condition 〈Ft,g, σ F̃t,g〉L2 �= 0, no solutions of the inhomogeneous problem (3.10)
exist in H1(R) by Fredholm’s alternative. ��

Our main result is formulated in the following theorem. The theorem guarantees
spectral instability of the line solitarywaveswith respect to the transverse perturbations
of sufficiently large period both for themassive Thirringmodel and themassiveGross–
Neveu model in two spatial dimensions.

Theorem 3.3 For everyω ∈ , there exists p0 > 0 such that for every p in 0 < |p| <

p0, the spectral stability problem (3.2) with either (3.3) or (3.4) admits at least one
eigenvalue λ with Re(λ) > 0. Moreover, up to a suitable normalization, as p → 0,
the corresponding eigenvector F converges in L2(R) to Ft for (3.2) and (3.3) and to
Fg for (3.2) and (3.4).

Simultaneously, there exists at least one pair of purely imaginary eigenvalues λ of
the spectral stability problem (3.2), and the corresponding eigenvector F converges
as p → 0 to the other eigenvector of Proposition 3.2.

123



376 J Nonlinear Sci (2016) 26:365–403

The proof of Theorem 3.3 is based on the perturbation theory for the Jordan block
associated with the zero eigenvalue of the spectral problem (3.2) existing for p = 0,
according to Proposition 3.2. The zero eigenvalue is isolated from the continuous
spectrum, according to Proposition 3.1. Consequently, we do not have to deal with
bifurcations from the continuous spectrum (unlike the difficult tasks of the recent work
Boussaid and Comech 2012), but can develop straightforward perturbation expansions
based on a modification of the Lyapunov–Schmidt reduction method.

A useful technical approach to the perturbation theory for the spectral stability
problem (3.2) is based on the block diagonalization of the 4 × 4 matrix operator into
two 2 × 2 Dirac operators. This block diagonalization technique was introduced in
Chugunova and Pelinovsky (2006) and used for numerical approximations of eigen-
values of the spectral stability problem for themassiveDirac equations. After the block
diagonalization, each Dirac operator has a one-dimensional kernel space induced by
either translational or gauge symmetries. It enables us to uncouple the invariant sub-
spaces associated with the Jordan block for the zero eigenvalue of the spectral stability
problem (3.2) with p = 0.

Using the self-similarity transformation matrix

T = 1√
2

⎡
⎢⎢⎣
1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

⎤
⎥⎥⎦ , T−1 = 1√

2

⎡
⎢⎢⎣
1 0 0 1
0 1 1 0
1 0 0 −1
0 1 −1 0

⎤
⎥⎥⎦ ,

and settingF = TV, we can rewrite the spectral stability problem (3.2) in the following
form:

iλT−1σTV = T−1(Dω + Ep + Wω)TV, (3.11)

where

T−1DωT =

⎡
⎢⎢⎣

−i∂x + ω −1 0 0
−1 i∂x + ω 0 0
0 0 −i∂x + ω 1
0 0 1 i∂x + ω

⎤
⎥⎥⎦ , T−1σT =

⎡
⎢⎢⎣
0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎤
⎥⎥⎦ ,

(3.12)

whereas the transformation of matrices Ep and Wω depend on the particular form of
the nonlinear Dirac equations. For the model (2.2) with α1 = 0 and α2 = 1, we obtain

T−1EpT = p2

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , T−1WωT =

⎡
⎢⎢⎢⎣
2|Uω|2 U 2

ω 0 0

U
2
ω 2|Uω|2 0 0
0 0 0 −U 2

ω

0 0 −U
2
ω 0

⎤
⎥⎥⎥⎦ .

(3.13)
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For the model (2.9) with β1 = −β2 = 1
2 , we obtain

T−1EpT = i p

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

⎤
⎥⎥⎦ ,

T−1WωT =

⎡
⎢⎢⎣

2|Uω|2 U 2
ω + 3Ū 2

ω 0 0
3U 2

ω + Ū 2
ω 2|Uω|2 0 0

0 0 0 −U 2
ω − Ū 2

ω

0 0 −U 2
ω − Ū 2

ω 0

⎤
⎥⎥⎦ . (3.14)

Let us apply the self-similarity transformation to the eigenvectors and generalized
eigenvectors of Proposition 3.2. Using F = TV, the eigenvectors (3.7) become

Vt =

⎛
⎜⎜⎝
U ′

ω

U
′
ω

0
0

⎞
⎟⎟⎠ and Vg = i

⎛
⎜⎜⎝

0
0
Uω

−Uω

⎞
⎟⎟⎠ , (3.15)

whereas the generalized eigenvectors (3.9) become

Ṽt = iωx

⎛
⎜⎜⎝

0
0
Uω

−Uω

⎞
⎟⎟⎠− 1

2

⎛
⎜⎜⎝

0
0
Uω

Uω

⎞
⎟⎟⎠ and Ṽg = ∂ω

⎛
⎜⎜⎝
Uω

Uω

0
0

⎞
⎟⎟⎠ . (3.16)

Setting �V = [Vt ,Vg, Ṽt , Ṽg] and denoting S = T−1σT , we compute elements
of the matrix of skew-symmetric inner products between eigenvectors and generalized
eigenvectors:

〈�V ,S�V 〉L2 =

⎡
⎢⎢⎣

0 0 〈Vt ,SṼt 〉L2 0
0 0 0 〈Vg,SṼg〉L2

〈Ṽt ,SVt 〉L2 0 0 0
0 〈Ṽg,SVg〉L2 0 0

⎤
⎥⎥⎦ ,

(3.17)

where only nonzero elements are included. Verification of (3.17) is straightforward
except for the term

〈Ṽt ,SṼg〉L2 = −iω
∫
R

x∂ω|Uω|2dx − 1

2

∫
R

(
Ūω∂ωUω −Uω∂ωŪω

)
dx = 0.

(3.18)
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Both integrals in (3.18) are zero because x∂ω|Uω|2 and Im(Ūω∂ωUω) are odd functions
of x . As for the nonzero elements, we compute them explicitly from (3.15) and (3.16):

〈Vt ,SṼt 〉L2 = −iω
∫
R

|Uω|2dx + 1

2

∫
R

(
ŪωU

′
ω −UωŪ

′
ω

)
dx (3.19)

and

〈Vg,SṼg〉L2 = −i
d

dω

∫
R

|Uω|2dx . (3.20)

Remark 4 In further analysis, we obtain explicit expressions for (3.19) and (3.20)
and show that they are nonzero for every ω ∈ . Consequently, the assumption
〈Ft,g, σ F̃t,g〉L2 �= 0 in Proposition 3.2 is verified for either (3.3) or (3.4) in the spectral
stability problem (3.2).

We shall now proceed separately with the proof of Theorem 3.3 for the massive
Thirring and Gross–Neveu models in two spatial dimensions. Moreover, we derive
explicit asymptotic expressions for the eigenvalues mentioned in Theorem 3.3.

3.1 Perturbation Theory for the Massive Thirring Model

The block-diagonalized system (3.11) with (3.12) and (3.13) can be rewritten in the
explicit form

(
H+ 0
0 H−

)
V + p2

(
σ0 0
0 σ0

)
V = iλ

(
0 σ3
σ3 0

)
V, (3.21)

where

H+ =
(

−i∂x + ω + 2|Uω|2 −1 +U2
ω

−1 +U
2
ω i∂x + ω + 2|Uω|2

)
, H− =

(
−i∂x + ω 1 −U2

ω

1 −U
2
ω i∂x + ω

)
,

(3.22)

and the following Pauli matrices are used throughout our work:

σ0 =
(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
. (3.23)

Note that H+ and H− are self-adjoint operators in L2(R,C2) with the domain in
H1(R,C2). The operators H± satisfy the symmetry

σ1H± = H̄±σ1, (3.24)

whereas the Pauli matrices satisfy the relation

σ1σ1 = σ3σ3 = σ0, σ1σ3 + σ3σ1 = 0, (3.25)
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Before proving the main result of the perturbation theory for the massive Thirring
model in two spatial dimensions, we note the following elementary result.

Proposition 3.4 For everyω ∈ (−1, 1) and every p ∈ R, eigenvaluesλ of the spectral
problem (3.21) are symmetric about the real and imaginary axes in the complex plane.

Proof It follows from symmetries (3.24) and (3.25) that if λ is an eigenvalue of the
spectral problem (3.21) with the eigenvector V = (v1, v2, v3, v4)

t , then λ̄, −λ, and
−λ̄ are also eigenvalues of the same problem with the eigenvectors (v̄2, v̄1, v̄4, v̄3)

t ,
(v1, v2,−v3,−v4)

t , and (v̄2, v̄1,−v̄4,−v̄3)
t . Consequently, we have the following:

• if λ is a simple real nonzero eigenvalue, then the eigenvector V can be chosen to
satisfy the reduction v1 = v̄2, v3 = v̄4, whereas −λ is also an eigenvalue with the
eigenvector (v1, v2,−v3,−v4)

t = (v̄2, v̄1,−v̄4,−v̄3)
t ;

• if λ is a simple purely imaginary nonzero eigenvalue, then the eigenvectorV can be
chosen to satisfy the reduction v1 = v̄2, v3 = −v̄4, whereas λ̄ is also an eigenvalue
with the eigenvector (v̄2, v̄1, v̄4, v̄3)

t = (v1, v2,−v3,−v4)
t ;

• if a simple eigenvalue λ occurs in the first quadrant, then the symmetry gener-
ates eigenvalues in all other quadrants and all four eigenvectors generated by the
symmetry are linearly independent.

The symmetry between eigenvalues also applies to multiple nonzero eigenvalues and
the corresponding eigenvectors of the associated Jordan blocks. ��

For the sake of simplicity, we denote

H =
(
H+ 0
0 H−

)
, I =

(
σ0 0
0 σ0

)
, S =

(
0 σ3
σ3 0

)
.

It follows from Proposition 3.2 and the explicit expressions (3.15) and (3.16) that

HVt,g = 0, HṼt,g = iSVt,g. (3.26)

Setting �V = [Vt ,Vg, Ṽt , Ṽg] as earlier, we note that

〈�V , I�V 〉L2 =

⎡
⎢⎢⎢⎣

‖Vt‖2L2 0 0 0
0 ‖Vg‖2L2 0 0
0 0 ‖Ṽt‖2L2 0
0 0 0 ‖Ṽg‖2L2

⎤
⎥⎥⎥⎦ , (3.27)

where only nonzero terms are included. Again, it is straightforward to verify (3.27)
from (3.15) and (3.16), except for the elements

〈Vt , Ṽg〉L2 =
∫
R

(
Ū ′

ω∂ωUω +U ′
ω∂ωŪω

)
dx = 0

and

〈Vg, Ṽt 〉L2 = 2ω
∫
R

x |Uω|2dx = 0.
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Fig. 1 Asymptotic expressions �r (solid line) and �i (dashed line) versus parameter ω for the massive
Thirring (left) and Gross–Neveu (right) models

These elements are zero because x |Uω|2 and Re(Ū ′
ω∂ωUω) are odd functions of x .

The following result gives the outcomeof the perturbation theory associatedwith the
generalized null space of the spectral stability problem (3.21). The result is equivalent
to the part of Theorem 3.3 corresponding to the spectral stability problem (3.2) with
(3.3). The asymptotic expressions �r and �i of the real and imaginary eigenvalues λ

at the leading order in p versus parameter ω are shown in Fig. 1a.

Lemma 3.5 For every ω ∈ (−1, 1), there exists p0 > 0 such that for every p with
0 < |p| < p0, the spectral stability problem (3.21) admits a pair of real eigenvalues
λ with the eigenvectors V ∈ H1(R) such that

λ = ±p�r (ω) + O(p3), V = Vt ± p�r (ω)Ṽt + OH1(p2) as p → 0,

(3.28)

where �r = (1 − ω2)−1/4‖U ′
ω‖L2 > 0. Simultaneously, it admits a pair of purely

imaginary eigenvalues λ with the eigenvector V ∈ H1(R) such that

λ = ±i p�i (ω) + O(p3), V = Vg ± i p�i (ω)Ṽg + OH1(p2) as p → 0,

(3.29)

where �i = √
2(1 − ω2)1/4‖Uω‖L2 > 0.

Before provingLemma3.5,we give formal computations of the perturbation theory,
which recover expansions (3.28) and (3.29) with explicit expressions for �r (ω) and
�i (ω). Consider the following formal expansions

λ = p�1 + p2�2 + O(p3), V = V0 + p�1V1 + p2V2 + OH1(p3), (3.30)
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where V0 is spanned by the eigenvectors (3.15), V1 is spanned by the generalized
eigenvectors (3.16), and V2 satisfies the linear inhomogeneous equation

HV2 = −IV0 + i�2
1SV1 + i�2SV0. (3.31)

By Fredholm’s alternative, there exists a solution V2 ∈ H1(R) of the linear inhomo-
geneous equation (3.31) if and only if �1 is found from the quadratic equation

i�2
1〈W0,SV1〉L2 = 〈W0,V0〉L2 , (3.32)

where W0 is spanned by the eigenvectors (3.15) independently of V0. Because of
the block diagonalization of the projection matrices in (3.17) and (3.27), the 2-by-
2 matrix eigenvalue problem (3.32) is diagonal and we can proceed separately with
precise computations for each eigenvector in V0.

SelectingV0 = W0 = Vt andV1 = Ṽt , we rewrite the solvability condition (3.32)
as the following quadratic equation

�2
1

∫
R

(
ω|Uω|2 + i

2

(
ŪωU

′
ω −UωŪ

′
ω

))
dx = 2

∫
R

|U ′
ω|2dx,

where we have used relation (3.19). Substituting the exact expression (2.7), we obtain

∫
R

(
ω|Uω|2 + i

2

(
ŪωU

′
ω −UωŪ

′
ω

))
dx = 2

√
1 − ω2 (3.33)

and

∫
R

|U ′
ω|2dx = −4ω

√
1 − ω2 + 4(1 + ω2) arctan

(√
1 − ω

1 + ω

)
,

which yields the expression �2
1 = (1 − ω2)−1/2‖U ′

ω‖2
L2 = �r (ω)2.

Selecting now V0 = W0 = Vg and V1 = Ṽg , we rewrite the solvability condition
(3.32) as the following quadratic equation

�2
1
d

dω

∫
R

|Uω|2dx = 2
∫
R

|Uω|2dx,

where we have used relation (3.20). Substituting the exact expression (2.7), we obtain

∫
R

|Uω|2dx = 4 arctan

(√
1 − ω

1 + ω

)

and

d

dω

∫
R

|Uω|2dx = − 1√
1 − ω2

, (3.34)
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which yields the expression for �2
1 = −2(1 − ω2)1/2‖Uω‖2

L2 = −�i (ω)2. Note
that the nonzero values in (3.33) and (3.34) verify the nonzero values in (3.19) and
(3.20), and hence, the assumption 〈Ft,g, σ F̃t,g〉L2 �= 0 in Proposition 3.2, according
to Remark 4.

We shall now justify the asymptotic expansions (3.28) and (3.29) to give the proof
of Lemma 3.5. Note that �2 in (3.30) is not determined in the linear equation (3.31).
Nevertheless, we will show in the proof of Lemma 3.5 that �2 = 0, see (3.36), (3.44),
and (3.46) below.

Proof of Lemma 3.5 Consider the linearized operator for the spectral problem (3.21):

Aλ,p = H + p2I − iλS : H1(R) → L2(R).

This operator is self-adjoint if λ ∈ iR and non-self-adjoint if λ /∈ iR.
SinceSS = I, it follows fromProposition 3.2 and the computations (3.26) thatSH

has the four-dimensional generalized null space X0 ⊂ L2(R) spanned by the vectors
in �V . By Propositions 3.1, the rest of spectrum of SH is bounded away from zero.
By Fredholm’s theory, the range of SH is orthogonal with respect to the generalized
null space Y0 ⊂ L2(R) of the adjoint operator HS, which is spanned by the vectors
in S�V .

The inhomogeneous equation (H− iλS)g = f for f ∈ L2(R) is equivalent to the
inhomogeneous equation (SH − iλ)g = S f . By Fredholm’s alternative, for λ = 0,
a solution g ∈ H1(R) exists if and only if S f is orthogonal to the generalized kernel
of HS, which means that S f ∈ Y⊥

0 or equivalently, f ∈ X⊥
0 . For λ �= 0 but small, it

is natural to define the solution g ∈ H1(R) uniquely by the constraint g ∈ Y⊥
0 .

Consequently, there is λ0 > 0 sufficiently small such that Aλ,0 with |λ| < λ0
is invertible on X⊥

0 with a bounded inverse in Y⊥
0 . Since p2I is a bounded self-

adjoint perturbation to H, there exist positive constants λ0, p0, and C0 such that for
all |λ| < λ0, |p| < p0, and all f ∈ X⊥

0 ⊂ L2(R), there exists a unique A−1
λ,pf ∈ Y⊥

0
satisfying

‖A−1
λ,pf‖L2 ≤ C0‖f‖L2 . (3.35)

Moreover, A−1
λ,pf ∈ H1(R).

Let us now use the method of the Lyapunov–Schmidt reduction. We apply the
partition of �V as �

(0)
V = [Vt ,Vg] and �

(1)
V = [Ṽt , Ṽg]. Given the computations

above, we consider the decomposition of the solution of the spectral problem (3.21)
in the form

{
λ = p(� + μp),

V = �
(0)
V α p + p�(1)

V ((� + μp)α p + γ p) + Vp,
(3.36)

where � ∈ C is p-independent, whereas μp ∈ C, α p ∈ C
2, γ p ∈ C

2, and Vp ∈
H1(R) may depend on p. For uniqueness of the decomposition, we use the Fredholm
theory and require that the correction term Vp satisfies the orthogonality conditions:
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〈�V ,SVp〉L2 = 0, (3.37)

which ensures thatVp ∈ H1(R)∩Y⊥
0 . Substituting expansions (3.36) into the spectral

problem (3.21), we obtain

(
H + p2I − i p(� + μp)S

)
Vp + p2

(
�

(0)
V α p + p�(1)

V ((� + μp)α p + γ p)
)

= i p2(� + μp)S�
(1)
V ((� + μp)α p + γ p) − i pS�

(0)
V γ p. (3.38)

In order to solve Eq. (3.38) for Vp in H1(R) ∩ Y⊥
0 , we project the equation to X⊥

0 .

It makes sense to do so separately for �
(0)
V and �

(1)
V . Using the projection matrices

(3.17) and (3.27) as well as the orthogonality conditions (3.37), we obtain

p2
〈
�

(0)
V ,Vp

〉
L2

+ p2
〈
�

(0)
V ,�

(0)
V

〉
L2

α p

= i p2(� + μp)
〈
�

(0)
V ,S�

(1)
V

〉
L2

((� + μp)α p + γ p) (3.39)

and

p2
〈
�

(1)
V ,Vp

〉
L2

+ p3
〈
�

(1)
V ,�

(1)
V

〉
L2

((� + μp)α p + γ p)

= −i p
〈
�

(1)
V ,S�

(0)
V

〉
L2

γ p. (3.40)

Under the constraints (3.39) and (3.40), the right-hand side of Eq. (3.38) belongs to
X⊥
0 . The resolvent estimate (3.35) implies that the operator Aλ,p can be inverted with

a bounded inverse in Y⊥
0 . By the inverse function theorem, there are positive numbers

p1 ≤ p0, μ1, and C1 such that for every |p| < p1 and |μp| < μ1, there exists a
unique solution of Eq. (3.38) for Vp in H1(R) ∩ Y⊥

0 satisfying the estimate

‖Vp‖L2 ≤ C1

(
p2‖α p‖ + |p|‖γ p‖)

)
. (3.41)

Substituting this solution to the projection equations (3.39) and (3.40), we shall be
looking for values of �, μp, α p, and γ p for |p| < p1 sufficiently small. Using the
estimate (3.41), we realize that the leading order of Eq. (3.39) is

〈
�

(0)
V ,�

(0)
V

〉
L2

c = i�2
〈
�

(0)
V ,S�

(1)
V

〉
L2

c, c ∈ C
2. (3.42)

This equation is diagonal and admits two eigenvalues for �2 given by �r (ω)2 and
−�i (ω)2, so that

‖Vt‖2L2 = i�r (ω)2〈Vt ,SṼt 〉L2 , ‖Vg‖2L2 = −i�i (ω)2〈Vg,SṼg〉L2 .

Choosing�2 being equal to one of the two eigenvalues (which are distinct), we obtain
a rank-one coefficient matrix for Eq. (3.39) at the leading order. In what follows, we
omit the argument ω from �r and �i .
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For simplicity, let us choose �2 = �2
r (the other case is considered similarly) and

represent α p = (αp, βp)
t and γ p = (γp, δp)

t . In this case, αp can be normalized
to unity independently of p, after which Eq. (3.39) divided by p2 is rewritten in the
following explicit form

[ ‖Vt‖2L2 0
0 ‖Vg‖2L2

]⎡⎢⎣
(
1 + μp

�r

)2 − 1 + �r+μp

�2
r

γp

−�2
r

�2
i

(
1 + μp

�r

)2
βp − βp − �r+μp

�2
i

δp

⎤
⎥⎦ =

〈
�

(0)
V ,Vp

〉
L2

.

(3.43)

We invoke the implicit function theorem for vector functions. It follows from the
estimate (3.41) that there are positive numbers p2 ≤ p1 and C2 such that for every
|p| < p2, there exists a unique solution of Eq. (3.43) for μp and βp satisfying the
estimate

|μp| + |βp| ≤ C2
(‖γ p‖ + ‖Vp‖L2

) ≤ C2

(
‖γ p‖ + p2

)
, (3.44)

where the last inequality with a modified value of constant C2 is due to the estimate
(3.41).

Finally, we divide Eq. (3.40) by p and rewrite it in the form

− i
〈
�

(1)
V ,S�

(0)
V

〉
L2

γ p = p
〈
�

(1)
V ,Vp

〉
L2

+ p2
〈
�

(1)
V ,�

(1)
V

〉
L2

((� + μp)α p + γ p).

(3.45)

Thanks to the estimates (3.41) and (3.44), Eq. (3.45) canbe solved forγ p by the implicit
function theorem, if p is sufficiently small and Vp, μp, and α p are substituted from
solutions of the previous equations. As a result, there are positive numbers p3 ≤ p2
and C3 such that for every |p| < p3, there exists a unique solution of Eq. (3.45) for
γ p satisfying the estimate

‖γ p‖ ≤ C3

(
p2 + p‖Vp‖L2

)
≤ C3 p

2, (3.46)

where the last inequality with a modified value of constant C3 is due to the estimate
(3.41).

Decomposition (3.36) and estimates (3.41), (3.44), and (3.46) justify the asymptotic
expansion (3.28). It remains to prove that the eigenvalue λ = p(�r + μp) is purely
real. Since �r is real, the result holds if μp is real. Assume that μp has a nonzero
imaginary part. By Proposition 3.4, there exists another distinct eigenvalue of the
spectral problem (3.21) given by λ = (p�r + μ̄p) such that μ̄p = O(p2) as p →
0. However, the existence of this distinct eigenvalue contradicts the uniqueness of
constructing of μp and all terms in the decomposition (3.36). Therefore, μ̄p = μp,
so that λ = p(�r + μp) is real.
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The asymptotic expansion (3.29) is proved similarly with the normalization βp = 1
and the choice �2 = −�2

i among eigenvalues of the reduced eigenvalue problem
(3.42). ��

3.2 Perturbation Theory for the Massive Gross–Neveu Model

The block-diagonalized system (3.11) with (3.12) and (3.14) can be rewritten in the
explicit form

(
H+ 0
0 H−

)
V + i p

(
0 σ1

−σ1 0

)
V = iλ

(
0 σ3
σ3 0

)
V, (3.47)

where σ1 and σ3 are the Pauli matrices, whereas

H+ =
(

−i∂x + ω + 2|Uω|2 −1 +U 2
ω + 3U

2
ω

−1 +U
2
ω + 3U 2

ω i∂x + ω + 2|Uω|2
)

and

H− =
(

−i∂x + ω 1 −U 2
ω −U

2
ω

1 −U 2
ω −U

2
ω i∂x + ω

)
.

We note again the symmetry relation (3.24), which applies to the Dirac operators H±
for the massive Gross–Neveu model as well. From this symmetry, we derive the result,
which is similar to Proposition 3.4 and is proved directly.

Proposition 3.6 For every ω ∈ (0, 1), if λ is an eigenvalue of the spectral problem
(3.47) with p ∈ R and the eigenvector V = (v1, v2, v3, v4)

t , then −λ̄ is also an
eigenvalue of the same problem with the eigenvector (v̄2, v̄1,−v̄4,−v̄3)

t , whereas
λ̄ and −λ are eigenvalues of the spectral problem (3.47) with −p ∈ R and the
eigenvectors (v̄2, v̄1, v̄4, v̄3)

t and (v1, v2,−v3,−v4)
t , respectively. Consequently, for

every p ∈ R, eigenvalues λ of the spectral problem (3.47) are symmetric about the
imaginary axis.

For the sake of simplicity, we use again the notations

H =
(
H+ 0
0 H−

)
, P = i

(
0 σ1

−σ1 0

)
, S =

(
0 σ3
σ3 0

)
.

The relations (3.26) hold true for this case as well. Besides the eigenvectors (3.15) and
the generalized eigenvectors (3.16), we need solutions of the linear inhomogeneous
equations

HV = −PVt,g, (3.48)
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which are given by

V̌t = −1

2

⎛
⎜⎜⎝

0
0
Uω

−Uω

⎞
⎟⎟⎠ and V̌g = − 1

2ω

⎛
⎜⎜⎝

Uω

−Uω

0
0

⎞
⎟⎟⎠ . (3.49)

The existence of these explicit expressions is checked by elementary substitution.
We apply again the partition of �V as �

(0)
V = [Vt ,Vg] and �

(1)
V = [Ṽt , Ṽg]. In

addition, we augment the matrix �V with �
(2)
V = [V̌t , V̌g] and compute the missing

entries in the projection matrices:

〈
�

(0)
V ,S�

(2)
V

〉
L2

=
〈
�

(2)
V ,S�

(2)
V

〉
L2

=
[
0 0
0 0

]
, (3.50)

and

〈
�

(1)
V ,S�

(2)
V

〉
L2

=
[

0 0
〈Ṽg,SV̌t 〉L2 0

]
. (3.51)

Indeed, in addition to the matrix elements, which are trivially zero, we check that

〈Vg,SV̌g〉L2 = i

2ω

∫
R

(
Ū 2

ω −U 2
ω

)
dx = 0, (3.52)

because Im(U 2
ω) is an odd function of x , and

〈Ṽt ,SV̌g〉L2 = i

2

∫
R

x
(
Ū 2

ω −U 2
ω

)
dx + 1

4ω

∫
R

(Ū 2
ω +U 2

ω)dx = 0, (3.53)

where the exact expression (2.11) is used. On the other hand, we have

〈Ṽg,SV̌t 〉L2 = −1

4

d

dω

∫
R

(
Ū 2

ω +U 2
ω

)
dx

= −1

2

d

dω
log

(
1 + ω + √

1 − ω2

1 + ω − √
1 − ω2

)
= 1

2ω
√
1 − ω2

, (3.54)

which is nonzero.
Similarly, we compute the zero projection matrices

〈
�

(0)
V ,P�

(0)
V

〉
L2

=
〈
�

(0)
V ,P�

(1)
V

〉
L2

=
〈
�

(1)
V ,P�

(2)
V

〉
L2

=
[
0 0
0 0

]
(3.55)
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and the nonzero projection matrices

〈
�

(1)
V ,P�

(1)
V

〉
L2

=
[

0 〈Ṽt ,PṼg〉L2

〈Ṽg,PṼt 〉L2 0

]
, (3.56)

〈
�

(0)
V ,P�

(2)
V

〉
L2

=
[ 〈Vt ,PV̌t 〉L2 0

0 〈Vg,PV̌g〉L2

]
, (3.57)

and

〈
�

(2)
V ,P�

(2)
V

〉
L2

=
[

0 〈V̌t ,PV̌g〉L2

〈V̌g,PV̌t 〉L2 0

]
. (3.58)

Indeed, the first matrix in (3.55) is zero because the Fredholm conditions for the
inhomogeneous linear systems (3.48) are satisfied. The second matrix in (3.55) is zero
because

〈Vt ,PṼt 〉L2 = ω

2

∫
R

(
U 2

ω − Ū 2
ω

)
dx = 0 (3.59)

and

〈Vg,PṼg〉L2 = 1

2

d

dω

∫
R

(
U 2

ω − Ū 2
ω

)
dx = 0. (3.60)

The third matrix in (3.55) is zero because

〈Ṽt ,PV̌g〉L2 = −
∫
R

x |Uω|2dx = 0 (3.61)

and

〈Ṽg,PV̌t 〉L2 = i

2

∫
R

(
Uω∂ωŪω − Ūω∂ωUω

)
dx = 0. (3.62)

For the projection matrices (3.56), (3.57), and (3.58), we compute the nonzero
elements explicitly:

〈Ṽt ,PṼg〉L2 = i

4

d

dω

∫
R

(
U 2

ω + Ū 2
ω

)
dx + ω

2

d

dω

∫
R

x
(
U 2

ω − Ū 2
ω

)
dx, (3.63)

〈Vt ,PV̌t 〉L2 = i

2

∫
R

(
UωŪ

′
ω − ŪωU

′
ω

)
dx, (3.64)

〈Vg,PV̌g〉L2 = − 1

ω

∫
R

|Uω|2dx, (3.65)

〈V̌t ,PV̌g〉L2 = i

4ω

∫
R

(
U 2

ω + Ū 2
ω

)
dx . (3.66)
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The following result gives the outcomeof the perturbation theory associatedwith the
generalized null space of the spectral stability problem (3.47). The result is equivalent
to the part of Theorem 3.3 corresponding to the spectral stability problem (3.2) with
(3.4). The asymptotic expressions �r and �i for the corresponding eigenvalues λ at
the leading order in p versus parameter ω are shown in Fig. 1b.

Lemma 3.7 For every ω ∈ (0, 1), there exists p0 > 0 such that for every p with
0 < |p| < p0, the spectral stability problem (3.47) admits a pair of purely imaginary
eigenvalues λ with the eigenvectors V ∈ H1(R) such that

λ = ±i p�i (ω) + O(p3), V = Vt ± i p�i (ω)Ṽt + pV̌t + pβVg + OH1(p2)

as p → 0, (3.67)

where �i (ω) =
√

I (ω)
1+I (ω)

> 0 with I (ω) > 0 given by the explicit expression (3.76)
below and β is uniquely defined in (3.83) below.

Simultaneously, the spectral stability problem (3.47) admits a pair of eigenvalues λ

with Re(λ) �= 0 symmetric about the imaginary axis, and the eigenvector V ∈ H1(R)

such that

λ = ±p�r (ω) + O(p3), V = Vg ± p�r (ω)Ṽg + pV̌g + pαVt + OH1(p2)

as p → 0, (3.68)

where �r = (1 − ω2)1/2 > 0 and α is uniquely defined in (3.82) below.

We proceed with formal expansions, which are similar to the expansions (3.30).
However, because the O(p) terms appear explicitly in the spectral stability problem
(3.47), we introduce the modified expansions as follows,

λ = p�1 + p2�2 + O(p3),

V = V0 + p(�1V1 + V̌1 + V′
0) + p2V2 + OH1(p3), (3.69)

whereV0 andV′
0 are spanned independently by the eigenvectors (3.15),V1 is spanned

by the generalized eigenvectors (3.16), V̌1 is spanned by the vectors (3.49), and V2
satisfies the linear inhomogeneous equation

HV2 = (i�1S − P)(�1V1 + V̌1 + V′
0) + i�2SV0. (3.70)

By Fredholm’s alternative, there exists a solution V2 ∈ H1(R) of the linear inhomo-
geneous equation (3.70) if and only if �1 is found from the quadratic equation

〈W0, (i�1S − P)(�1V1 + V̌1 + V′
0)〉L2 = 0, (3.71)

where W0 is again spanned by the eigenvectors (3.15) independently of V0. Similar
to (3.32), the matrix eigenvalue problem (3.71) is diagonal with respect to the transla-
tional and gauge symmetries. As a result, subsequent computations can be constructed
independently for the two corresponding eigenvectors.
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Selecting V0 = W0 = Vg , V1 = Ṽg , V̌1 = V̌g , and V′
0 = αVt , we use (3.17),

(3.20), (3.50), (3.55), (3.57), and (3.65) in the solvability condition (3.71) and obtain
the quadratic equation for �1 in the explicit form

�2
1
d

dω

∫
R

|Uω|2dx + 1

ω

∫
R

|Uω|2dx = 0. (3.72)

Using the explicit expression (2.11), we obtain

∫
R

|Uω|2dx =
√
1 − ω2

ω
,

d

dω

∫
R

|Uω|2dx = − 1

ω2
√
1 − ω2

, (3.73)

which yield �2
1 = 1 − ω2 = �r (ω)2. Correction terms �2 and α are not determined

up to this order of the asymptotic expansion.
Selecting now V0 = W0 = Vt , V1 = Ṽt , V̌1 = V̌t , and V′

0 = βVg , we use (3.17),
(3.19), (3.50), (3.55), (3.57), and (3.64) in the solvability condition (3.71) and obtain
the quadratic equation for �1 in the explicit form

�2
1

∫
R

[
ω|Uω|2 + i

2

(
ŪωU

′
ω −UωŪ

′
ω

)]
dx + i

2

∫
R

(
ŪωU

′
ω −UωŪ

′
ω

)
dx = 0.

(3.74)

Expressing

i

2

∫
R

(
ŪωU

′
ω −UωŪ

′
ω

)
dx =

∫
R

(1 − ω2)2

(1 + ω cosh(2μx))2
dx =

√
1 − ω2 I (ω),

and
∫
R

[
ω|Uω|2 + i

2

(
ŪωU

′
ω −UωŪ

′
ω

)]
dx =

√
1 − ω2 [1 + I (ω)] , (3.75)

where

I (ω) := (1 − ω2)

∫ ∞
0

dz

(1 + ω cosh(z))2
= 1 − 1√

1 − ω2
log

(
1 −

√
1 − ω2

ω

)
> 0,

(3.76)

we obtain �2
1 = − I (ω)

1+I (ω)
= −�i (ω)2. Again, correction terms �2 and β are not

determined up to this order of the asymptotic expansion.
Note again that the nonzero values in (3.73) and (3.75) verify the nonzero values in

(3.19) and (3.20), and hence, the assumption 〈Ft,g, σ F̃t,g〉L2 �= 0 in Proposition 3.2,
according to Remark 4.

Justification of the formal expansion (3.69) and the proof of Lemma 3.7 is achieved
by exactly the same argument as in the proof of Lemma 3.5. The proof relies on
the resolvent estimate (3.35), which is valid for the massive Gross–Neveu model,
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because by Propositions 3.1 and 3.2, the zero eigenvalue of the operator SH (which
has algebraic multiplicity four) is isolated from the rest of the spectrum.

Persistence of eigenvalues is proved with the symmetry in Proposition 3.6. If an
eigenvalue is expressed as λ = p(i�i (ω)+μp)with uniqueμp = O(p) and�i (ω) >

0, then nonzero real part ofμp would contradict the symmetry of eigenvalues about the
imaginary axis. Therefore, Re(μp) = 0 and the eigenvalues in the expansion (3.67)
remain on the imaginary axis. On the other hand, if another eigenvalue is expressed
as λ = p(�r (ω) + μp) with unique μp = O(p) and �r (ω) > 0, then μp may
have in general a nonzero imaginary part, as it does not contradict the symmetry of
Proposition 3.6 for a fixed p �= 0. This is why the statement of Lemma 3.7 does not
guarantee that the corresponding eigenvalues in the expansion (3.68) are purely real.

In the end of this section, we will show that μp = O(p2), which justifies the
O(p3) bound for the eigenvalues in the asymptotic expansions (3.67) and (3.68).
In this procedure, we will uniquely determine the parameters β and α in the same
asymptotic expansions. Extending the expansion (3.69) to p3�3 and p3V3 terms, we
obtain the linear inhomogeneous equation

HV3 = (i�1S − P)V2 + i�2S(�1V1 + V̌1 + V′
0) + i�3SV0. (3.77)

The Fredholm solvability condition

〈W0, (i�1S − P)V2 + i�2S(�1V1 + V̌1 + V′
0)〉L2 = 0 (3.78)

determines the correction terms�2, β, andα uniquely. Indeed, using (3.17) and (3.50),
we rewrite the solvability condition (3.78) in the form

i〈W0,SV1〉L2�2�1 = −〈W0, (i�1S − P)V2〉L2

= −〈(−i�̄1S − P)W0,V2〉L2

= −〈H(−�̄1W1 + W̌1),V2〉L2

= −〈(−�̄1W1 + W̌1),HV2〉L2

= −〈(−�̄1W1 + W̌1), i�2SV0

+(i�1S − P)(�1V1 + V̌1 + V′
0)〉L2 ,

where we have used the linear inhomogeneous equation (3.70) and have introduced
W1 and W̌1 from solutions of the inhomogeneous equations HW1 = iSW0 and
HW̌1 = −PW0. Using

〈W1, iSV0〉L2 = 〈W1,HV1〉L2 = 〈HW1,V1〉L2 = 〈iSW0,V1〉L2 = −i〈W0,SV1〉L2

and

〈W̌1, iSV0〉L2 = 〈W̌1,HV1〉L2 = 〈HW̌1,V1〉L2

= −〈PW0,V1〉L2 = −〈W0,PV1〉L2 = 0,
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where the last equality is due to (3.55), we rewrite the solvability equation in the form

2i〈W0,SV1〉L2�2�1 = −〈(−�̄1W1 + W̌1), (i�1S − P)(�1V1 + V̌1 + V′
0)〉L2 .

(3.79)

Removing zero entries by using (3.17), (3.50), and (3.55), we rewrite Eq. (3.79) in the
form

2i〈W0,SV1〉L2�2�1 = �2
1

(
i〈W1,SV′

0〉L2 + i〈W1,SV̌1〉L2

− i〈W̌1,SV1〉L2 − 〈W1,PV1〉L2

)

+〈W̌1,PV̌1〉L2 + 〈W̌1,PV′
0〉L2 . (3.80)

We shall now write Eq. (3.80) explicitly as the 2-by-2 matrix equation by using V0 =
W0 = �

(0)
V , V1 = W1 = �

(1)
V , V̌1 = W̌1 = �

(2)
V , and

V′
0 = �

(0)
V

[
0 α

β 0

]
= [βVg, αVt

]
.

Using (3.17), (3.51), (3.56), (3.57), and (3.58), we rewrite Eq. (3.80) in the matrix
form

2i

[〈Vt ,SṼt 〉L2 0
0 〈Vg,SṼg〉L2

]
�2�1 = i�2

1

[〈Ṽt ,SVt 〉L2 0
0 〈Ṽg,SVg〉L2

] [
0 α

β 0

]

+
[〈V̌t ,PVt 〉L2 0

0 〈V̌g,PVg〉L2

] [
0 α

β 0

]

+ i�2
1

[
0 −〈V̌t ,SṼg〉L2

〈Ṽg,SV̌t 〉L2 0

]

−�2
1

[
0 〈Ṽt ,PṼg〉L2

〈Ṽg,PṼt 〉L2 0

]

+
[

0 〈V̌t ,PV̌g〉L2

〈V̌g,PV̌t 〉L2 0

]
,

(3.81)

where �1 is defined uniquely from either solution of the quadratic Eqs. (3.72) and
(3.74). Because the 2-by-2 matrix on the right-hand side of Eq. (3.81) is anti-diagonal,
we obtain �2 = 0 for every choice of �1.

Now, we check that the coefficients α and β are uniquely determined from the
right-hand side of the matrix Eq. (3.81). The coefficient α is determined for �2

1 =
�r (ω)2 > 0 from the anti-diagonal entry

i�2
1〈Ṽt ,SVt 〉L2 + 〈V̌t ,PVt 〉L2 = i〈Ṽt ,SVt 〉L2

(
�r (ω)2 + �i (ω)2

)
,
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which is nonzero for every ω ∈ (0, 1). Therefore, we obtain from (3.81) the unique
expression for α:

α =
�r (ω)2

(
〈Ṽt ,PṼg〉L2 + i〈V̌t ,SṼg〉L2

)
− 〈V̌t ,PV̌g〉L2

i〈Ṽt ,SVt 〉L2
(
�r (ω)2 + �i (ω)2

) . (3.82)

Similarly, the coefficient β is determined for �2
1 = −�i (ω)2 < 0 from the anti-

diagonal entry

i�2
1〈Ṽg,SVg〉L2 + 〈V̌g,PVg〉L2 = −i〈Ṽg,SVg〉L2

(
�i (ω)2 + �r (ω)2

)
,

which is nonzero for every ω ∈ (0, 1). Therefore, we obtain from (3.81) the unique
expression for β:

β =
�i (ω)2

(
i〈V̌g,SṼt 〉L2 − 〈Ṽg,PṼt 〉L2

)
− 〈V̌g,PV̌t 〉L2

−i〈Ṽg,SVg〉L2
(
�i (ω)2 + �r (ω)2

) . (3.83)

These computations justify the O(p3) terms in the expansions (3.67) and (3.68) for
the eigenvalues λ.

4 Numerical Approximations

We approximate eigenvalues of the spectral stability problems (3.21) and (3.47) with
the Chebyshev interpolation method. This method has been already applied to the
linearized Dirac system in one dimension in Chugunova and Pelinovsky (2006). The
block-diagonalized systems in (3.21) and (3.47) are discretized on the grid points

x j = L tanh−1(z j ), j = 0, 1, . . . , N ,

where z j = cos
(

jπ
N

)
is the Chebyshev node and a scaling parameter L is chosen

suitably so that the grid points are concentrated in the region, where the solitary wave
Uω changes fast. Note that x0 = ∞ and xN = −∞.

According to the standard Chebyshev interpolation method (Trefethen 2000), the
first derivative that appears in the systems (3.21) and (3.47) is constructed from the
scaled Chebyshev differentiation matrix D̃N of the size (N + 1) × (N + 1), whose
each element at i th row and j th column is given by

[D̃N ]i j = 1

L
sech2

( xi
L

)
[DN ]i j ,

where DN is the standard Chebyshev differentiation matrix [see page 53 of Trefethen
(2000)] and the chain rule du

dx = dz
dx

du
dz has been used. Denoting IN as an identity
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matrix of the size (N + 1) × (N + 1), we replace each term in the systems (3.21) and
(3.47) as follows:

∂x → D̃N , 1 → IN , Uω → diag(Uω(x0),Uω(x1), · · · ,Uω(xN )),

Due to the decay of the solitary wave Uω to zero at infinity, we have Uω(x0) =
Uω(xN ) = 0.

The resulting discretized systems from (3.21) and (3.47) are of the size 4(N +1)×
4(N + 1). Boundary conditions are naturally built into this formulation, because the
elements of the first and last rows of thematrix [D̃N ]i j are zero. As a result, eigenvalues
from the first and last rows of the linear discretized system are nothing but the end
points of the continuous spectrum in Proposition 3.1, whereas the boundary values of
the vector V at the end points x0 and xN are identically zero for all other eigenvalues
of the linear discretized system.

Throughout all our numerical results, we pick the value of a scaling parameter L
to be L = 10. This choice ensures that the solitary wave solutionsUω for all values of
ω used in our numerical experiments remain nonzero up to 16 decimals on all interior
grid points x j with 1 ≤ j ≤ N − 1.

4.1 Eigenvalue Computations for the Massive Thirring Model

Figure 2 shows eigenvalues of the spectral stability problem (3.21) for the solitary
wave (2.7) of the massive Thirring model. We set ω = 0 and display eigenvalues λ in
the complex plane for different values of p. The subfigure at p = 0.2 demonstrates
our analytical result in Lemma 3.5, which predicts splitting of the zero eigenvalue of
algebraic multiplicity four into two pairs of real and imaginary eigenvalues. Increasing
the value of p further, we observe emergence of imaginary eigenvalues from the
edges of the continuous spectrum branches, as seen at p = 0.32. A pair of imaginary
eigenvalues coalesces and bifurcates into the complex plane with nonzero real parts,
as seen at p = 0.36, and later absorbs back into the continuous spectrum branches,
as seen in the next subfigures. We can also see emergence of a pair of imaginary
eigenvalues from the edges of the continuous spectrum branches at p = 0.915. The
pair bifurcates along the real axis after coalescence at the origin, as seen at p = 0.93.
The gap of the continuous spectrum closes up at p = 1. For a larger value of p, two
pairs of real eigenvalues are seen to approach each other.

Figure 3 shows how the positive imaginary and real eigenvalues bifurcating from the
zero eigenvalue depends on p forω = 0.5, 0,−0.5, respectively at each row. Red solid
lines show asymptotic approximations established in Lemma 3.5 for λ = �r (ω)p
and λ = i�i (ω)p. Green-filled regions in Fig. 3a, c, e denote the location of the
continuous spectrum. Symbols ∗ and + in Fig. 3b, d, f denote purely real eigenvalues
and eigenvalues with nonzero imaginary part.

Numerical results suggest the persistence of transverse instability for any period p
because of purely real eigenvalues, which come close to each other and persist for a
large p.We observe a stronger instability for a larger solitarywavewithω = −0.5 than
for a smaller solitary wave with ω = 0.5. We notice that an imaginary eigenvalue does
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Fig. 2 Numerical
approximations for the spectral
problem (3.21) associated with
the solitary wave (2.7) of the
massive Thirring model at ω = 0
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Fig. 3 Numerical approximations of isolated eigenvalues of the spectral problem (3.21) versus parameter
p. a ω = 0.5. b ω = 0.5. c ω = 0. d ω = 0. e ω = −0.5. f ω = −0.5

not reach the edge of the continuous spectrum for ω = 0.5 and ω = 0 due to colliding
with other imaginary eigenvalue coming from the edge of the continuous spectrum.
On the other hand, an imaginary eigenvalue for ω = −0.5 gets absorbed in the edge
of the continuous spectrum. This is explained by the movement of the two branches
of the continuous spectrum in the opposite directions: up and down as the value of p
varies. Moving-down branch on Im(λ) > 0, as seen in ω = 0.5 and ω = 0, expels
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Table 1 max| Im λ|<10 |Re λ|
versus values of ω and N for the
spectral problem (3.21) with
p = 0

ω = −0.5 ω = 0 ω = 0.5

N = 100 1.96 × 10−1 2.57 × 10−1 1.16 × 10−1

N = 300 1.36 × 10−4 2.18 × 10−4 7.02 × 10−5

N = 500 2.22 × 10−7 8.77 × 10−5 6.56 × 10−8

an eigenvalue from its edge that makes collision with the other imaginary eigenvalue,
while moving-up branch on Im(λ) > 0, as seen in ω = −0.5, absorbs an imaginary
eigenvalue approaching the edge.

To verify a reasonable accuracy of the numericalmethod, wemeasure themaximum
real part of eigenvalues along the imaginary axis with |Im(λ)| < 10. This quantity
shows the level of spurious parts of the eigenvalues, and it is known to be large in the
finite difference methods applied to the linearized Dirac systems [see discussion in
Chugunova and Pelinovsky (2006)]. Table 1 shows values of max| Im λ|<10 |Re λ| for
three values of ω and three values of the number N of the Chebyshev points. In all
numerical computations reported on Figs. 2 and 3, we choose N = 300; in this way,
spurious eigenvalues are hardly visible on the figures.

4.2 Eigenvalue Computations for the Massive Gross–Neveu Model

Figures 4 and 5 shows eigenvalues of the spectral stability problem (3.47) for the
solitary wave (2.11) of the massive Gross–Neveu equation with parameter values
ω = 2/3 and ω = 1/3, respectively. We confirm spectral stability of the solitary wave
for p = 0. In agreement with numerical results in Berkolaiko et al. (2015), we also
observe that the spectrum of a linearized operator for p = 0 has an additional pair
of imaginary eigenvalues in the case ω = 1/3. (Recall that this issue was considered
to be contradictory in the literature with some results reporting spectral instability of
solitary waves for ω = 1/3 in Mertens et al. 2012; Shao et al. 2014.)

−0.2 0 0.2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
p=0

Re(λ)

Im
(λ
)

−0.2 0 0.2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
p=0.1

Re(λ)

Im
(λ
)

−0.2 0 0.2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
p=1

Re(λ)

Im
(λ
)

−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5
p=0

Re(λ)

Im
(λ
)

−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5
p=0.1

Re(λ)

Im
(λ
)

−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5
p=1

Re(λ)

Im
(λ
)

(a) (b)

Fig. 4 Numerical approximations for the spectral problem (3.47) associated with the solitary wave (2.11)
of the massive Gross–Neveu model. a ω = 2/3. b ω = 1/3
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Fig. 5 Numerical approximations of isolated eigenvalues of the spectral problem (3.47) versus parameter
p. a ω = 2/3. b ω = 2/3. c ω = 1/3. d ω = 1/3

The subfigures of Fig. 4 at p = 0.1 demonstrate our analytical result in Lemma 3.7,
which predicts splitting of the zero eigenvalue of algebraic multiplicity four into two
pairs of eigenvalues along the real and imaginary axes. Note that the pair along the real
axis persists as the pair of real eigenvalues up to the numerical accuracy. (Recall that
the statement of Lemma 3.7 lacks the result on the persistence of real eigenvalues.)
Increasing the values of p further, we observe that the real eigenvalues move back to
the origin and split along the imaginary axis, as seen in the subfigures at p = 1. The
gap of the continuous spectrum branches around the origin is preserved for all values
of parameter p. The pairs of imaginary eigenvalues persist in the gap of continuous
spectrum for larger values of the parameter p.

Figure 5 shows real and imaginary eigenvalues versus p for the same cases ω =
2/3 and ω = 1/3. The green-shaded region indicates the location of the continuous
spectrum. Red solid lines show asymptotic approximations established in Lemma 3.7
for λ = �r (ω)p and λ = i�i (ω)p. It follows from our numerical results that the
transverse instability has a threshold on the p values so that the solitary waves are
spectrally stable for sufficiently large values of p. These thresholds on the transverse
instability were observed for other values of ω in (0, 1).
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Table 2 max| Im λ|<10 |Re λ|
versus values of ω and N for the
spectral problem (3.47) with
p = 0

ω = 1/3 ω = 2/3

N = 100 6.48 × 10−2 2.03 × 10−3

N = 300 1.72 × 10−2 1.68 × 10−3

N = 500 1.38 × 10−2 1.20 × 10−3
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Fig. 6 Numerically computed λ for the spectral problem (3.47) with p = 0 for different values of the
number N of Chebyshev points. a ω = 2/3. b ω = 1/3

To control the accuracy of the numerical method, we again compute the values of
max| Im λ|<10

|Re λ| for spurious parts of eigenvalues along the imaginary axis. Table 2

shows the result for two values of ω and three values of N . Compared to Table 1, we
observe a slower convergence rate and lower accuracy of our numerical approxima-
tions.

We found that spurious eigenvalues are more visible for smaller values of ω, in
particular, for the value ω = 1/3, evidenced in Fig. 6. While spurious eigenvalues in
the case of ω = 1/3 in Fig. 6 are quite visible, the maximum real part of eigenvalues
with | Im λ| < 2 is much smaller for N = 400. As a result, the value N = 400
was chosen for numerical approximations reported on Figs. 4 and 5, and this choice
guarantees that spurious eigenvalues are hardly visible on the figures.

5 Discussion

In this last section, we discuss our main result, Theorem 3.3, in connection with the
more general massive Dirac equations (2.2) and (2.9). One way to consider the more
general case without going into too many technical details is to study reductions in the
massive Dirac equations to the nonlinear Schrödinger (NLS) equation. Both families
of solitary waves (2.7) and (2.11) have reductions to the NLS solitary wave in the limit
of ω → 1. Here we explore reductions to the two-dimensional NLS equation starting
with themassiveDirac equations (2.2) and (2.9). Justification of these reductions to the
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NLS equation (in a more complex setting of infinitely many coupled NLS equations)
can be found in the recent work (Pelinovsky et al. 2012).

5.1 Small-Amplitude Solitary Waves for the Periodic Stripe Potentials

Starting with the massive Dirac equations (2.2) for the periodic stripe potentials, we
can use the scaling transformation

{
u(x, y, t) = εei tU (εx, εy, ε2t),
v(x, y, t) = εei t V (εx, εy, ε2t),

(5.1)

where ε is a formal small parameter, and rewrite the system in the equivalent form

{
V −U + iεUX + ε2(iUT +UYY ) = ε2(α1|U |2 + α2|V |2)U,

U − V − iεVX + ε2(iVT + VYY ) = ε2(α2|U |2 + α1|V |2)V,
(5.2)

where X = εx , Y = εy, and T = ε2t are rescaled variables for slowly varying spatial
and temporal coordinates. Proceeding now with formal expansions,

{
U = W + i

2εWX + ε2Ũ ,

V = W − i
2εWX + ε2Ṽ ,

(5.3)

whereW is the leading-order part and (Ũ , Ṽ ) are correction terms, we obtain the NLS
equation onW at the leading order from the condition that the correction terms (Ũ , Ṽ )

are bounded:

iWT − 1

2
WXX + WYY = (α1 + α2)|W |2W. (5.4)

The NLS equation (5.4) is referred to as the hyperbolic NLS equation because of
the linear diffractive terms. It admits the family of Y -independent line solitary waves
if α1 + α2 > 0, which includes both the case of the periodic stripe potentials with
α2 = 2α1 > 0 and the case of the massive Thirring model with α1 = 0 and α2 > 0.

From the previous literature, see, e.g., recent works (Pelinovsky et al. 2014; Peli-
novsky and Yang 2014) or pioneer work (Zakharov and Rubenchik 1974), it is known
that the line solitary waves are unstable in the hyperbolic NLS equation (5.4) with
respect to the long transverse perturbations. The spectral instability is induced by the
spatial translation eigenmode, in agreement with the result of Lemma 3.5. Moreover,
the instability region extends to all values of the transverse wave number p, in agree-
ment with our numerical results on Figs. 2 and 3. Thus, our results remain applicable
to the more general family of the massive Dirac equations (2.2) with α1 + α2 > 0 at
least for small-amplitude solitary waves.

Remark 5 The case α1 + α2 < 0 can also be considered with a similar reduction to
the two-dimensional NLS equation, but the scaling transformation (5.1) needs to be
replaced by

123



400 J Nonlinear Sci (2016) 26:365–403

{
u(x, y, t) = εe−i tU (εx, εy, ε2t),
v(x, y, t) = εe−i t V (εx, εy, ε2t).

(5.5)

This is because the small-amplitude solitary waves bifurcate from the point ω = −1 if
α1 + α2 < 0, whereas they bifurcate from the point ω = +1 if α1 + α2 > 0. The case
α1 +α2 = 0 is exceptional, when the reduction to the two-dimensional NLS equation
fails.

Substituting (5.5) into (2.2) and performing computations similar to (5.2) and (5.3),
we obtain the elliptic NLS equation

iWT + 1

2
WXX + WYY = (α1 + α2)|W |2W. (5.6)

The Y -independent solitary waves exist if α1 + α2 < 0 and they are unstable with
respect to long Y -periodic perturbations (Kivshar and Pelinovsky 2000; Pelinovsky
and Yang 2014; Zakharov and Rubenchik 1974).

5.2 Small-Amplitude Solitary Waves for the Hexagonal Potentials

Turning now to the massive Dirac equations (2.9) for the hexagonal potentials, we can
use the same scaling transformation (5.1) and obtain

⎧⎨
⎩
V −U + ε(iUX + VY ) + iε2UT = ε2

(
β1(U |U |2 +UV 2 + 2U |V |2) + β2U (U 2 − V 2)

)
,

U − V − ε(iVX +UY ) + iε2VT = ε2
(
β1(V |V |2 + VU 2 + 2V |U |2) + β2V (V 2 −U 2)

)
.

(5.7)

Proceeding now with formal expansions,

{
U = W + ε

2 (iWX + WY ) + ε2Ũ ,

V = W − ε
2 (iWX + WY ) + ε2Ṽ ,

we obtain the following NLS equation for W from the condition that the correction
terms (Ũ , Ṽ ) are bounded:

iWT − 1

2
WXX − 1

2
WYY = 4β1|W |2W. (5.8)

The NLS equation (5.8) is referred to as the elliptic NLS equation because of the linear
diffractive terms. It admits the family of Y -independent line solitary waves if β1 > 0,
which includes both the case of the hexagonal potentials with β1, β2 > 0 and the case
of the massive Gross–Neveu model with β1 = −β2 > 0.

Similarly to Remark 5, if β1 < 0, one can use the scaling transformation (5.5) and
derive the elliptic NLS equation
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iWT + 1

2
WXX + 1

2
WYY = 4β1|W |2W. (5.9)

However, the case β1 = 0 is exceptional, when the reduction to the elliptic NLS
equation fails.

It is well known from the previous literature, see, e.g., Kivshar and Pelinovsky
(2000), Pelinovsky and Yang (2014), Zakharov and Rubenchik (1974), that the line
solitary waves are unstable in the elliptic NLS equations (5.8) and (5.9) with respect
to the long transverse perturbations. The spectral instability is induced by the gauge
rotation eigenmode, in agreement with the result of Lemma 3.7. Moreover, the insta-
bility band has a finite threshold on the transverse wave number p, in agreement with
our numerical results in Figs. 4 and 5. Thus, our results remain applicable to the more
general family of the massive Dirac equations (2.9) with β1 �= 0 and arbitrary β2 at
least for small-amplitude solitary waves.

5.3 Summary

To summarize, we proved analytically for the massive Thirring and Gross–Neveu
models in two spatial dimensions that the line solitary waves are unstable with respect
to the transverse perturbations of sufficiently long periods. We approximated eigen-
values of the transverse stability problem numerically and showed that the instability
region extends to the transverse perturbations of any period for the massive Thirring
model, but it has a finite threshold for the massive Gross–Neveu model. Based on the
small-amplitude reduction to the hyperbolic or elliptic NLS equations, we extended
this conclusion to the more general massive Dirac equations in two spatial dimen-
sions which model periodic stripe and hexagonal potentials in the two-dimensional
Gross–Pitaevskii equation.
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