
Transverse instabilities of deep-water
solitary waves

BY BERNARD DECONINCK
1,*, DMITRY E. PELINOVSKY

2

AND JOHN D. CARTER
3

1Department of Applied Mathematics, University of Washington,
Campus Box 352420, Seattle, WA 98195, USA

2Department of Mathematics, McMaster University, 1280 Main Street West,
Hamilton, Ontario L8S 4K1, Canada

3Mathematics Department, Seattle University, 900 Broadway,
Seattle, WA 98122-4340, USA

The dynamics of a one-dimensional slowly modulated, nearly monochromatic localized
wave train in deep water is described by a one-dimensional soliton solution of a two-
dimensional nonlinear Schrödinger (NLS) equation. In this paper, the instability of such a
wave train with respect to transverse perturbations is examined numerically in the
context of the NLS equation, using Hill’s method. A variety of instabilities are obtained
and discussed. Among these, we show that the solitary wave is susceptible to an oscillatory
instability (complex growth rate) due to perturbations with arbitrarily short wavelength.
Further, there is a cut-off on the instability with real growth rates. We show analytically
that the nature of this cut-off is different from what is claimed in previous works.
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1. Introduction

The hyperbolic nonlinear Schrödinger (NLS) equation in non-dimensional
variables is

ijt CjxxKjyy C2jjj2jZ 0; ð1:1Þ

for a complex wave function jðx; y; tÞ. It describes the evolution of gravity–
capillary waves in deep water that may be two-dimensional, nearly monochro-
matic, and are slowly modulated. Subscripts in (1.1) are used to denote partial
derivatives. A derivation of this equation may be found in Ablowitz & Segur
(1981). Up to scaling, the elevation of the water wave surface is given by

hZReðj eik 0xKiu0tÞ; ð1:2Þ

where ‘Re’ denotes the real part, k 0 is the wavenumber of the carrier wave
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Figure 1. A contour plot of the water wave surface h0ðx; y; tÞ with k 0Z1, tZ0. Higher values
correspond to lighter colours.
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train, and u0Z
ffiffiffiffiffi
k 0

p
is the carrier frequency given by the deep-water dispersion

relation.
A trivial-phase one-soliton solution of the one-dimensional NLS equation

(equation (1.1), ignoring dependence on y) is given by

jZ eit sech x: ð1:3Þ
This solution corresponds to a one-dimensional localized wave train:

h0ðx; y; tÞZ cosðk 0xKðu0K1ÞtÞsech x: ð1:4Þ
A contour plot of h0ðx; y; tÞ is shown in figure 1.

Remarks

(i) By using the Lie point symmetries of (1.1) (Sulem & Sulem 1999), this
solution may be transformed into the most general form of a one-
dimensional soliton solution with trivial spatial phase profile of (1.1). Thus,
only considering (1.3) is not as restrictive as it appears.

(ii) Using a linear transformation on the spatial variables, the solution (1.3)
may be oriented so as to propagate at a non-zero angle with the x-axis
(Saffman & Yuen 1978). The analysis of these solutions is similar to that
considered here.

In order to examine the stability of (1.3) with respect to two-dimensional
perturbations, consider

jZ ðsech xCeuðx; y; tÞC ievðx; y; tÞÞeit; ð1:5Þ
where e is a small, real constant and uðx; y; tÞ, vðx; y; tÞ are real-valued functions.
The resulting equation is polynomial in e. Its constant term vanishes, since (1.3)
Proc. R. Soc. A (2006)



2041Transverse instabilities of solitary waves
is a solution of (1.1). The order e term is dominant, and its coefficient is a linear
partial differential equation for uðx; y; tÞ and vðx; y; tÞ. Separating its real and
imaginary parts gives the following coupled set of partial differential equations:

Kut Z vxxKvyy Cð2 sech2xK1Þv;

vt Z uxxKuyy Cð6 sech2xK1Þu:

(
ð1:6Þ

Since the coefficients of these equations do not explicitly depend on y or t, we
may separate variables, and let

uðx; y; tÞZUðx; r;UÞeiryCUt Cc:c:;

vðx; y; tÞZV ðx; r;UÞeiryCUt Cc:c:;

(
ð1:7Þ

where r2R, as only perturbations that are bounded in space are considered.
Further,Cc:c: denotes that the complex conjugate of the previous term is added.
Lastly, U is a complex constant that determines the stability of the solitary wave
solution with respect to perturbations with x-dependence given by Uðx; r;UÞ and
V ðx; r;UÞ and y-dependence characterized by the wavenumber r. Then,
Uðx; r;UÞ, V ðx; r;UÞ satisfy the coupled system of ordinary differential equations

UU Z ðLKKr2ÞV ;

KUV Z ðLCKr2ÞU ;

(
ð1:8Þ

where

LKZKv2x C1K2 sech2x;

LCZKv2x C1K6 sech2x:

(
ð1:9Þ

Thus, if eigenfunctions Uðx; r;UÞ, V ðx; r;UÞ of the system are found for which U
has a strictly positive real part, the solitary wave solution (1.3) is unstable with
respect to perturbations with wavenumber r. The growth rate of the
perturbation is ReðUÞ. For real U, ðU ;V Þ are real-valued, and the form of the
perturbed solution is

he Zh0C2e cosðryÞeUtðU cosðk 0xKðu0K1ÞtÞKV sinðk 0xKðu0K1ÞtÞÞ: ð1:10Þ
This shows that a real positive eigenvalue U gives rise to uniform exponential
growth of the perturbation, i.e. the entire profile of the perturbation is multiplied
by the same factor eUt. On the other hand, for complex U,

he Zh0CeeURtðReðU C iV Þcosðk 0xKðu0K1ÞtCryCUItÞ
KImðU C iV Þsinðk 0xKðu0K1ÞtCryCUItÞ
CReðUKiV Þcosðk 0xKðu0K1ÞtKryKUItÞ
C ImðUKiV Þsinðk 0xKðu0K1ÞtKryKUItÞÞ:

ð1:11Þ

In this case, the effect of the instability is not a mere amplification of the
perturbation profile, as there is an additional oscillatory effect. We refer to
instabilities due to non-real eigenvalues U as oscillatory instabilities.

In this paper, the spectral problem (1.8) is investigated numerically and
analytically. A review of previous works on this problem is given in §2.
Proc. R. Soc. A (2006)
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The numerical results are discussed in §3. Sections 4 and 5 describe analytical
results on the spectrum of (1.8). Section 6 concludes the paper. Appendix A
contains the outline of the numerical method.
2. Literature review

An overview of previous work was already presented in Pelinovsky (2001). For
the sake of contrasting our results with those in the literature, this overview is
partially repeated here, although different points are emphasized. Different
reviews may be found in Yuen & Lake (1982), Kuznetsov et al. (1986) and
Kivshar & Pelinovsky (2000). Similar considerations for a different but related
problem are discussed in Skryabin (1999).

The transverse instability of the one-dimensional NLS equation soliton (1.3)
was first discussed by Zakharov & Rubenchik (1974). The one-dimensional (i.e.
rZ0) problem (1.8) has a quadruple zero eigenvalue, i.e. UZ0 for rZ0.
Zakharov & Rubenchik used regular perturbation theory near ðr;UÞZð0; 0Þ to
find asymptotic expressions for four branches UðrÞ. Two of these branches result
in imaginary (neutrally stable) values of U, whereas the other two give a real
positive (unstable) and a real negative (stable) value of U. In effect, this settles
the global stability question of the one-dimensional soliton solution: it is unstable
because it is unstable with respect to two-dimensional perturbations with long-
wavelength (small r) transverse perturbations. The method of Zakharov &
Rubenchik leads to

U2
1 Z

4

3
r2K

4

9

p2

3
K1

� �
r4COðr6Þ; ð2:1Þ

for the two real branches U1 (unstable) andKU1 (stable), and

U2
2 ZK4r2K

4

3

p2

3
C1

� �
r4COðr6Þ; ð2:2Þ

for the two imaginary branches U2 andKU2, both neutrally stable (Yajima 1974;
Pereira et al. 1978; Anderson et al. 1979; Kivshar & Pelinovsky 2000).

Successively, attention focused on the transverse stability of (1.3) with respect
to short waves (large r). Plotting the positive root of (2.1) may lead one to
believe that there is a cut-off rc on the set of r values for which (1.3) is unstable
with respect to transverse perturbations with wavenumber r. However, this
argument is based on a perturbation expansion around ðr;UÞZð0; 0Þ, and is not
valid for large r. Different authors examined this behaviour, see for instance
Cohen et al. (1976), Saffman & Yuen (1978) and Anderson et al. (1979).

Cohen et al. (1976) appear to be the first to consider (1.8) from a numerical
point of view, for a large range of r values. Their results agree well with the
perturbation result (2.1) for small values of r. For larger values of r, they found
that the instability growth rate due to real U reaches a maximum, around
rz0:85, after which it decreases. Their numerical results for values of rO1 were
sufficiently problematic that they were not displayed in their paper. Some
unstable growth was observed for rZ1:5, but not for rZ2. At rZ1, they found
that U is at around 90% of its maximal value.
Proc. R. Soc. A (2006)



2043Transverse instabilities of solitary waves
Saffman & Yuen (1978), apparently unaware of this work, solved the eigenvalue
problem (1.8) numerically as well. They concluded that the growth due to real
eigenvalues reaches a maximum around rZ0:8, after which it decreases to
zero, at rz1:09. Some of these results were extended to periodic solutions with
increasingly longer periods by Martin et al. (1980). These authors also discussed
instabilities due to complex eigenvalues corresponding to short-wave (large r)
perturbations, but no concrete claims about the soliton limit were made.

Anderson et al. (1979) revisit earlier numerical results by Pereira et al. (1978).
No references to Cohen et al. (1976) or Saffman & Yuen (1978) are made.
Anderson et al. solve (1.8) numerically, using a leap-frog finite-difference method.
They report excellent agreement with (2.1), almost up to the maximal value of U,
obtained at rz0:8. As r is advanced beyond rZ1, a bifurcation of the growth
rate to complex values is observed, at rz1:08. Their results are corroborated by
use of the Rayleigh–Ritz variational quotient, using a variety of test functions.

Ablowitz & Segur (1979) considered this same problem, using mostly
perturbation theory. Specifically, considering real U2, they found that in the
short-wave limit (r/N), U2ZKr4COðr2Þ. This establishes neutral stability at
the leading order. These authors referred to experiments done in one-dimensional
(i.e. narrow) wave tanks by J. Hammack (1979, unpublished work) at the
University of Florida in 1979, which showed good agreement with the dynamics
of (1.3) in a one-dimensional NLS equation setting. As the presence of transverse
short-wave instabilities would appear to contradict these experimental
observations, Ablowitz & Segur concluded that ‘short waves are not unstable.
Indeed if they were, it would be difficult to observe envelope solitons even in
narrow wave tanks.’

Remarks

(i) It should be pointed out that many of the works discussed above claim to
numerically solve the problem (1.8). In all cases, these authors presumably
reduced (1.8) to a periodic problem, possibly with large period. The effect
of this truncation is not discussed. The numerical method used in the
present paper does this as well, but the effects due to a finite period are
carefully controlled and can be made arbitrarily small by tuning the input
parameters (see appendix A).

(ii) The majority of the works cited are interested in the dominant unstable
mode at any r. Starting from random perturbations, it is this mode which
might be observed in experiments, or in numerical solutions of (1.1).
3. Numerical results

In this paper, the spectral problem (1.8) is solved numerically, for a discrete set
of r-values, ranging from rZ0 to 1.5. The numerical method is described in
appendix A. The results of these numerical runs are presented in figures 2 and 3.
Also indicated are solid curves, depicting known and new analytical results.
Note that figure 2a could be extended to stable modes, by including negative U.
The resulting figure is reflection symmetric with respect to the horizontal axis.
Proc. R. Soc. A (2006)
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Figure 2. Real (a) and imaginary (b) parts of the spectrum of (1.8) as functions of varying r,
obtained using the numerical method described in appendix A. Also indicated are various analytical
results, obtained using perturbation methods. Apart from the analytical results, all points plotted
were computed numerically, and no filling in of one- or two-dimensional regions was done. The
different bifurcation points of figure 4 are also indicated (Pa, Pb, Pc, Pd), as are the points
corresponding to the eigenfunctions of figures 5–7. Points of the continuous spectrum are plotted as
points, real discrete eigenvalues are shown as diamonds, complex discrete eigenvalues as circles. The
solid line in (b) is the analytical resultGið1Kr2Þ, r%1 for the boundary of the continuous spectrum.
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For values of rO1, a spurious cloud of eigenvalues surrounds the eigenvalue
UZ0. This is a numerical effect. The size of this cloud can be made arbitrarily
small by using larger values of L and N (see appendix A). For the runs here,
ReðUÞ!0:02 for any of the numerical eigenvalues in the spurious cloud. These
points were removed before producing the plots shown here.

Figure 4 displays the different bifurcations as r changes from rZ0 to 1.5. Note
the fourfold symmetry due to the Hamiltonian character of (1.1). Finally, a
variety of computed eigenfunctions and the water wave surface they give rise to,
using (1.10) or (1.11), is shown in figures 5–7, corresponding to real and complex
values of U.

From these figures, the following conclusions may be drawn.

(i) Small-r instability. As predicted by Zakharov & Rubenchik (1974) (and
verified by all cited in the previous section), as r moves away from 0, the
quadruple eigenvalue at the origin splits into four, resulting in two real
eigenvaluesGU1 and two imaginary eigenvaluesGU2. This is illustrated
in figure 4a. The numerical results show excellent agreement with the
perturbation results (2.1) and (2.2). A representative eigenfunction
for the unstable eigenvalue U1 is shown in figure 5i. As noted by
Proc. R. Soc. A (2006)
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Zakharov & Rubenchik, this eigenfunction is odd, and it gives rise to a
so-called ‘snaking’ instability, whereby the solitary wave ridge oscillates
forward and backward.
Also at rZ0, a discrete eigenvalueGU3 emerges from the edge point of

each component of the continuous spectrum located atGið1Ck2Þ, with
k2R. Note that Saffman & Yuen (1978) already reported the emergence
from the continuous spectrum at rZ0 of the isolated eigenvalue U3. Such a
bifurcation is known as an edge bifurcation. It may be analysed using a
modified Evans function (Kapitula & Sandstede 1998, 2002; Pelinovsky
et al. 1998).
Proc. R. Soc. A (2006)
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Figure 6. A continuation of the previous figure. For both (v) and (vi), NZ500, LZ500. For (v)
ðr;UÞZð1:05; 0:0556098Þ, for (vi) ðr;UÞZð1:03; 0:0205356Þ.

Figure 5. (Opposite.) Numerically computed eigenfunctions (left) for real eigenvalues U. UðxÞ is
shown in black, V ðxÞ in grey. Also shown is a contour plot (right) of the water wave surface these
eigenfunctions give rise to, using (1.10) and incorporating the contributions from ðr;UÞ and
ðr;KUÞ. Higher values correspond to lighter colours. Eigenfunctions are normalized so thatPN

kZKN jUk j2C jVk j2Z1. For all plots, eZ0:1, k 0Z1, tZ0 and PZ2. For (i) and (ii), the parameter
values are NZ100 and LZ50. For (i) ðr;UÞZð0:1; 0:115Þ, for (ii) ðr;UÞZð0:8; 0:657Þ. For (iii) and
(iv), NZ500, LZ500. For (iii) ðr;UÞZð1:07; 0:286454Þ, for (iv) ðr;UÞZð1:07; 0:135085Þ. The
different scales on the axes in these figures should be noted.
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(ii) An oscillatory instability. At rz0:31, the isolated imaginary eigenvalues
GU2 collide with the imaginary eigenvaluesGU3. This gives rise to two
complex conjugate pairs of eigenvaluesGU4ðrÞ andGU�

4ðrÞ, past rz0:3,
due to a Hamiltonian–Hopf bifurcation. This bifurcation may be explained
from the collision of eigenvalues of opposite (negative and positive) Krein
signatures, where the Krein signature is the sign of the Hamiltonian of (1.6)
computed for the eigenvector corresponding to the colliding imaginary
eigenvalues (Kapitula et al. 2004).
The real part ofU4 andU

�
4 on these curves reaches amaximumat rz0:55,

after which it monotonically decreases. The corresponding eigenfunction
and the resulting water wave surface are shown in figure 7vii. These
eigenfunctions appear to be even, resulting in ‘neck’ instability, where the
Proc. R. Soc. A (2006)
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ridge of the soliton alternates between being high and narrow, and low and
broad. For all r, the growth rate ReðU4ÞZReðU�

4Þ along this curve is less
than that of some other curve of unstable eigenvalues UðrÞ (i.e. for any r in
the domain of U4, at least one other eigenvalue U exists such that
ReðUÞOReðU4Þ, see below). Thus, this curve of complex eigenvalues and its
eigenfunctions lead to oscillatory instabilities, but these are always
dominated by other instabilities. The birth of these complex eigenvalues
is illustrated in figure 4b. To our knowledge, the existence of the branch of
oscillatory instabilities (complex eigenvalues) for the solitary wave solution
(1.3) is a new result. Similar oscillatory instabilities for periodic waves were
reported in Martin et al. (1980).

(iii) Maximal growth rate. At rz0:8, U1 reaches its maximum U1z0:657,
resulting in the largest growth rate for perturbations of the solution (1.3) of
(1.1). For rO0:8, U1 decreases monotonically. This agrees qualitatively
with the results in Cohen et al. (1976) and Saffman & Yuen (1978) and
quantitatively with Anderson et al. (1979). A numerical computation of the
Proc. R. Soc. A (2006)



2049Transverse instabilities of solitary waves
resulting eigenfunction is shown in figure 5ii. The resulting instability is still
of snaking type.

(iv) Behaviour at rZ1. The behaviour at rZ1 has been the subject of much
discussion. The continuous spectrum for (1.8) is always confined to the
imaginary U-axis. It may be found exactly by considering the behaviour as
x/GN in (1.8), leading to

UGZGið1Kr2 Ck2Þ; k2R ð3:1Þ
as an explicit characterization of the continuous spectrum. Thus, for a given
rR0 the continuous spectrum is given by

r!1 : fU2C : ReðUÞZ 0; ImðUÞR1Kr2g
gfU2C : ReðUÞZ 0; ImðUÞ%K1Cr2g; ð3:2aÞ

rR1 : fU2C : ReðUÞZ 0g: ð3:2bÞ
Note that the edge of the continuous spectrum is given by UGZGið1Kr2Þ.
Our numerical results are in excellent agreement with this analytical result,
as can be seen in figure 2b. At rZ1, the two previously disconnected parts of
the continuous spectrummerge, after which they overlap for larger values of
r. As depicted in figure 4c, the consequence of this merger is the ejection of a
pair of real eigenvaluesGU5 for rO1, given by

U5 Z 2
ffiffiffi
2

p
ðrK1Þ3=2COððrK1Þ5=2Þ; ð3:3Þ

which is proven in §5. To our knowledge this is a new result. Two
eigenfunctions on this branch are shown in figure 6v,vi.

(v) Existence of a cut-off for realU instabilities. There is a largest r value rc such
that for rOrc no instabilities due to real UðrÞ exist. Approximately,
rcz1:08. At rc, the two eigenvaluesU1 andU5 collide. Their corresponding
eigenfunctions near the collision appear qualitatively similar. They are
shown in figure 5iii,iv.

(vi) Large-r instability. The solitary wave is unstable with respect to
perturbations with arbitrarily large transverse wavenumber r. This
instability is due to a pair of complex conjugate eigenvalues ðU6;U

�
6Þ

(emerging from the collision of U1 and U5 at rc), as well as the pair of
complex conjugate eigenvalues ðU4;U

�
4Þ. For both branches,

ReðU6ÞOReðU4ÞO0, but ImðU6Þs0, and thus the instability is oscillatory
in nature. The behaviour near rZrc is illustrated in figure 4d. This appears
to be in agreement with the results of Anderson et al. (1979), and the
results hinted at by Cohen et al. (1976). The eigenfunction corresponding to
ðr;UÞZð1:09; 0:199897C0:143238iÞ and the resulting water wave surface
are shown in figure 7viii. These eigenfunctions are odd, resulting in ‘snake’
instability.

Note that the existence of a large-r instability does not contradict the
conclusions reached by Ablowitz & Segur (1979) because those authors only
considered real U2. It follows from their results that no real discrete eigenvalues
exist for large r.
Proc. R. Soc. A (2006)
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4. Bifurcations in the spectrum for r2!1

The spectra of the operators LG are known analytically. The continuous
spectrum of LK4Zl4 is fl2C : ReðlÞR1g and the discrete spectrum has an
isolated eigenvalue at lZ0. Similarly, the continuous spectrum of LC4Zl4 is
fl2C : ReðlÞR1g as well. In this case the discrete spectrum has two isolated
eigenvalues at lZ0 and K3.

When 0!r2!1, the stability problem (1.8) satisfies the assumptions of the
recent work (Pelinovsky 2005). Two negative eigenvalues of LCKr2 and one
negative eigenvalue of LKKr2 must match the unstable eigenvalues and
the eigenvalues of negative Krein signature of the problem (1.8) (see proposition
8.3 in Pelinovsky 2005). Indeed, there is one real (unstable) eigenvalue U1 and a
pair of eigenvalues of negative Krein signatures ðU2;KU2Þ for 0!r2!r2c1, where
rc1z0:3. (The fact that the pair ðU2;KU2Þ has negative Krein signature follows
from Lyapunov–Schmidt reduction, see Skryabin (1999) for a similar analysis).
The other pair of eigenvalues ðU3;KU3Þ has positive Krein signature, which
follows from general properties of edge bifurcations (Kapitula et al. 2004). The
number of unstable eigenvalues (total three: one real and two complex) is
preserved after the Hamiltonian–Hopf bifurcation for r2c1!r2!1.
5. Analysis of the behaviour of the spectrum near r2Z1

It was previously hypothesized in the literature that the curve of the real unstable
eigenvalue U1ðrÞ touches the horizontal axis at some cut-off value (see the
discussion in Pelinovsky (2001)), and various values were mentioned (for example
rZ1:09 in Saffman & Yuen (1978)), with rZ1 always being a contender. Our
numerical results show that the curve U1ðrÞ does not touch the horizontal axis.
Instead, a new curve of eigenvaluesGU5 emanates from the origin for rO1 as a
consequence of the collision of the two parts of the continuous spectrum, as
mentioned in §3. Therefore, in this section, we prove the asymptotic formula (3.3).

When r2O1, the assumptions of Pelinovsky (2005) are violated since the
negative index of the operators LKKr2 and LCKr2 becomes infinite. It was
suggested in Pelinovsky (2001) that at r2Z1 a modified edge bifurcation takes
place, which would be responsible for the disappearing of the unstable
eigenvalues as r2 is increased past 1. An analytical method was developed
based on eigenfunction decompositions and asymptotic analysis of singular
integral equations (adopted from Pelinovsky et al. (1998)). Unfortunately, a
miscalculation was made. The integral kernel Kðk; k 0Þ defined below eqn (12) in
Pelinovsky (2001) is singular in the limit k; k 0/0, while it was assumed in eqn
(13) that limk/0limk 0/0Kðk; k 0ÞZ0. With this correction in mind, the results of
§4 of Pelinovsky (2001) on the modified edge bifurcations cannot be justified.
Note that the results of §5 of Pelinovsky (2001) remain valid, as they are based
on regular perturbation theory.

In this section, we develop an alternative analysis based on the modified Evans
function (following Kapitula & Sandstede (1998)). We confirm that the point
r2Z1 does indeed give rise to a modified edge bifurcation, which leads to a new
pair of real eigenvalues ðU5;KU5Þ for r2O1, but to no additional eigenvalues
for r2!1.
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(a ) The Evans function

In order to define the Evans function for the stability problem (1.8), we define
a map from the parameters ðr2;UÞ to the new parameters ðkC; kKÞ,

r2 Z 1K
k2CCk2K

2
; UZ

k2CKk2K

2i
: ð5:1Þ

Near the point of interest ðr2;UÞZð1; 0Þ, the new parameters ðkC; kKÞ provide a
multiple cover of the original parameter plane ðr2;UÞ. Using the new parameters,
the Evans function can be locally extended in an analytic way. To find the
eigenvalues of the stability problem (1.8), some care is required to ensure that
the zeros of the extended Evans function are found on the correct Riemann sheet.
Using the new parameters ðkC; kKÞ, the stability problem (1.8) is rewritten as

ðKv2xK6 sech2xÞU ZK
1

2
ðk2CCk2KÞU C

i

2
ðk2CKk2KÞV ; ð5:2aÞ

ðKv2xK2 sech2xÞV ZK
i

2
ðk2CKk2KÞUK

1

2
ðk2CCk2KÞV : ð5:2bÞ

Let uZðU ;U 0;V ;V 0ÞT. The eigenfunctions corresponding to the discrete
spectrum of (5.2a) and (5.2b) decay exponentially as ekGx as jxj/N in the
no-potential case. In the domain ReðkGÞO0, we define four fundamental
solutions of (5.2a) and (5.2b) specified by their exponential behaviour as jxj/N:

uGðx; kC; kKÞ/

1

kG

Gi

GikG

0
BBBB@

1
CCCCAekGx ; as x/KN; ð5:3Þ

and

vGðx; kC; kKÞ/

1

KkG

Gi

HikG

0
BBBB@

1
CCCCAeKkGx ; as x/CN: ð5:4Þ

The Evans function is defined as the Wronskian determinant of these
fundamental solutions:

EðkC; kKÞZ detðuCðx; kC; kKÞ;uKðx; kC; kKÞ; vCðx; kC; kKÞ; vKðx; kC; kKÞÞ: ð5:5Þ

By Abel’s theorem, this Wronskian determinant is independent of x. In the
no-potential case, an easy calculation gives EðkC; kKÞZ16kCkK. Following
standard techniques (e.g. Kapitula & Sandstede 1998), the fundamental solutions
(5.3) and (5.4) and the Evans function (5.5) are well-defined when the potential
functions decay exponentially. Zeros (including multiplicities) of EðkC; kKÞ in the
domain ReðkCÞO0 and ReðkKÞO0 coincide with eigenvalues of the systems
(5.2a) and (5.2b) with an exponentially decaying eigenfunction. The analyticity
properties of EðkC; kKÞ are described in proposition 5.1.
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Proposition 5.1. The fundamental solutions uGðx; kC; kKÞ and vGðx; kC; kKÞ
characterized by (5.3) and (5.4) and the Evans function EðkC; kKÞ defined by (5.5)
are analytic functions near ðkC; kKÞZð0; 0Þ.

Proof. In the domain ReðkGÞO0, we express the fundamental solutions
uGðx; kC; kKÞ in the form

uGðx; kC; kKÞZ

uG

u 0
GCkGuG

GiwG

Giðw 0
GCkGwGÞ

0
BBBBB@

1
CCCCCAekGx ; ð5:6Þ

where the component functions ðuG;wGÞ solve the coupled system

ðKv2xK6 sech2xÞuGZ 2kGu
0
GG iUðuGKwGÞ; ð5:7aÞ

ðKv2xK2 sech2xÞwGZ 2kGw
0
GHiUðuGKwGÞ; ð5:7bÞ

subject to the boundary conditions

lim
x/KN

uGðxÞZ 1; lim
x/KN

u 0
GðxÞZ 0;

lim
x/KN

wGðxÞZ 1; lim
x/KN

w 0
GðxÞZ 0:

ð5:8Þ

Since the systems (5.7a) and (5.7b) depend analytically on the parameters
ðkC; kKÞ2C

2 and the boundary conditions (5.8) are independent of ðkC; kKÞ, the
fundamental solutions uGðx; kC; kKÞ depend analytically on these parameters near
the point ðkC; kKÞZð0; 0Þ, see Gardner & Zumbrun (1998). The same statement
extends to the fundamental solutions vGðx; kC; kKÞ and hence to the Evans
function EðkC; kKÞ computed at any x2R. &
(b ) Eigenvalues at UZ0

The point UZ0 corresponds to the case k2CZk2Khk2, so that r2Z1Kk2.
We compute E0, the value of EðkC; kKÞ at k2CZk2K, to determine the possible
values of r2 at which bifurcations may occur. The value E0 depends on whether
r2O1 or r2!1.

For r2!1 and UZ0, the system (1.8) decouples, and its solutions may be
written in terms of the exact eigenfunctions of the operators LK and LC:

uGðxÞZ

fC

f 0C
GigC

Gig 0C

0
BBB@

1
CCCA; vGðxÞZ

fK

f 0K
GigK

Gig 0K

0
BBB@

1
CCCA; ð5:9Þ

where ðfG; gGÞ are given explicitly in Pelinovsky (2001) as

fGðxÞZ
2Cq2H3q tanh xK3 sech2x

ð1CqÞð2CqÞ eGqx ;

gGðxÞZ
qHtanh x

1Cq
eGqx ;
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with qZ
ffiffiffiffiffiffiffiffiffiffiffiffi
1Kr2

p
O0. It is easy to verify that (5.9) satisfies (5.3) and (5.4) with

the correspondence kCZkKZq. Substituting (5.9) in the Evans function (5.5),
we obtain the exact value of E0 for r

2!1:

E0 Z 16q2
1Kq

1Cq

� �2 qK2

qC2

� �
; with q Z

ffiffiffiffiffiffiffiffiffiffiffiffi
1Kr2

p
O0: ð5:10Þ

For r2O1 and UZ0, the fundamental solutions of (1.8) have another
representation:

uGðxÞZ

fG

f 0G

GigG

Gig 0G

0
BBBBB@

1
CCCCCA; vGðxÞZ

~fH

~f
0
H

Gi~gH

Gi~g 0H

0
BBBBB@

1
CCCCCA; ð5:11Þ

where

fGðxÞZ
k2K2G3ik tanh xC3 sech2x

ðkHiÞðkH2iÞ eGikx ; gGðxÞZ
kG i tanh x

kHi
eGikx

and

~fGðxÞZ
k2K2G3ik tanh xC3 sech2x

ðkG iÞðkG2iÞ eGikx ; ~gGðxÞZ
kG i tanh x

kG i
eGikx ;

with kZ
ffiffiffiffiffiffiffiffiffiffiffiffi
r2K1

p
O0. As before, it is easy to verify that (5.11) satisfies (5.3) and

(5.4) with the correspondence kCZKkKZ ik. Substituting (5.11) in the Evans
function (5.5), we obtain the exact value of E0 for r

2O1:

E0 Z
16k4

4Ck2
; with k Z

ffiffiffiffiffiffiffiffiffiffiffiffi
r2K1

p
O0: ð5:12Þ

We see from (5.10) and (5.12) that E0Z0 at r2ZK3, 0 and 1, which are the only
bifurcation points from the origin UZ0 (see also Pelinovsky (2001)). The first
case ðr2ZK3Þ is not of interest here, because it results in an imaginary transverse
wavenumber. Note that for the elliptic NLS equation, this case corresponds to
the cut-off on the range of transversely unstable wavenumbers of the soliton
solution (1.3), as shown Janssen & Rasmussen (1983). The second case ðr2Z0Þ
has been analysed in the past, originally by Zakharov & Rubenchik (1974), as
reviewed in §2. We focus on the case r2Z1 in what follows.
(c ) Bifurcation analysis near r2Z1

The bifurcation point r2Z1 and UZ0 corresponds to the origin ðkC; kKÞZ
ð0; 0Þ in the systems (5.2a) and (5.2b). Using proposition 5.1, we study the Taylor
series expansion of EðkC; kKÞ near ðkC; kKÞZð0; 0Þ. Let the fundamental solutions
uGðx; kC; kKÞ be represented by (5.6). The Taylor series approximation for the
scalar functions ðuG;wGÞ up to quadric terms in kG can be written as

uGZ u 0ðxÞCkGu1ðxÞCk2Gu2ðxÞCk3Gu3ðxÞCk4Gu4ðxÞ
G iUðuð1Þ

1 ðxÞCkGu
ð1Þ
2 ðxÞCk2Gu

ð1Þ
3 ðxÞÞKU2u

ð2Þ
2 ðxÞCOð5Þ ð5:13Þ
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and

wGZw0ðxÞCkGw1ðxÞCk2Gw2ðxÞCk3Gw3ðxÞCk4Gw4ðxÞ

G iUðwð1Þ
1 ðxÞCkGw

ð1Þ
2 ðxÞCk2Gw

ð1Þ
3 ðxÞÞKU2w

ð2Þ
2 ðxÞCOð5Þ; ð5:14Þ

where U is defined by (5.1), and the terms Oð5Þ represent the remainder of the
Taylor series.

At zeroth order in kG, we find decoupled ordinary differential equations for the
functions ðu 0;w0Þ satisfying the boundary conditions (5.8), so that

u 0 Z 1K
3

2
sech2x; w0 ZKtanh x: ð5:15Þ

The higher-order corrections solve a sequence of linear inhomogeneous
problems with zero boundary conditions as x /KN. The correction functions
ðun;wnÞ solve the equations

ðKv2xK6 sech2xÞun Z 2u 0
nK1; ð5:16aÞ

ðKv2xK2 sech2xÞwn Z 2w 0
nK1; ð5:16bÞ

for nR1. Equations (5.16a) and (5.16b) can be solved analytically, since all
solutions with UZ0 are known in closed form, see (5.9) and (5.11). For instance,
the first few solutions of the inhomogeneous problems (5.16a) are found explicitly
as follows:

u1 ZK
3

2
1Ctanh xK

3

2
sech2x

� �
; w1 Z 1Ctanh x; ð5:17aÞ

u2 Z
9

4
1Ctanh xK

3

2
sech2x

� �
C

3

4
sech2x; w2 ZKð1Ctanh xÞ; ð5:17bÞ

u3 ZK
21

8
1Ctanh xK

3

2
sech2x

� �
K

9

8
sech2x; w3 Z 1Ctanh x: ð5:17cÞ

The correction functions ðuð1Þ
n ;w

ð1Þ
n Þ solve the equations

ðKv2xK6 sech2xÞuð1Þn Z 2u
ð1Þ0
nK1CunK1KwnK1; ð5:18aÞ

ðKv2xK2 sech2xÞwð1Þ
n Z 2w

ð1Þ0
nK1KunK1CwnK1; ð5:18bÞ

for nR1 and u
ð1Þ
0 h0hw

ð1Þ
0 . Since the homogeneous problems (5.18a) and

(5.18b) have non-zero solutions, solutions of the inhomogeneous problems with
zero boundary conditions as x/KN grow algebraically as x/CN. This follows

easily from variation of parameters. For instance ðuð1Þ
1 ;w

ð1Þ
1 Þ grow as x2, ðuð1Þ2 ;

w
ð1Þ
2 Þ grow as x3, and so on. Similarly, the correction functions ðuð2Þ2 ;w

ð2Þ
2 Þ satisfy

inhomogeneous problems, from which it follows that these correction functions
grow as x4 in the limit x/CN.

Replacing the other set of fundamental solutions vGðx; kC; kKÞ by its
asymptotic values (5.4) as x/CN, we express the Evans function EðkC; kKÞ in
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its explicit form (after some simplification):

EðkC; kKÞZK lim
x/CN

uC uK 1 1

u 0
CCkCuC u 0

KCkKuK KkC KkK

wC KwK 1 K1

w 0
CCkCwC Kw 0

KKkKwK KkC kK

����������

����������
: ð5:19Þ

The function EðkC; kKÞ is expanded using the Taylor series expansions (5.13) and
(5.14) for ðuG;wGÞ and the explicit analytical solutions (5.15) and (5.17a)–
(5.17c). Explicit computations using symbolic manipulations in either MAPLE or
MATHEMATICA results in

EðkC; kKÞZK4ðkCCkKÞ2 C10ðkCCkKÞ3K13ðk4CCk4KÞK51ðk2CCk2KÞkCkK

K72k2Ck
2
KKa0ðk2CKk2KÞ2 COð5Þ; ð5:20Þ

where a0 is a numerical coefficient, given by

a0 Z lim
x/CN

3

2
u
ð1Þ0
1 Cu

ð1Þ0
2 K

7

2
w

ð1Þ0
1 Kw

ð1Þ0
2 Cu

ð1Þ0
1 w

ð1Þ0
1

� �
: ð5:21Þ

Although the correction functions ðuð1Þ
1 ;w

ð1Þ
1 Þ and ðuð1Þ2 ;w

ð1Þ
2 Þ grow algebraically as

x/CN, one readily shows using the inhomogeneous problems (5.18a) and
(5.18b) that the algebraically growing terms cancel and a finite value for a0

exists. This fact is also implied from proposition 5.1, since the function EðkC; kKÞ
is well-defined, x-independent and analytic for small kG. Let us define new
variables

aZ kCCkK; bZ kCKkK: ð5:22Þ
This allows us to rewrite the Taylor series approximation (5.20) using these
variables ða; bÞ as

Eða; bÞZK4a2C10a3K
25

2
a4C

1

4
b4K a0 C

3

4

� �
a2b2 COð5Þ: ð5:23Þ

The main consequence for our purposes of the Taylor series approximation is
formulated below.

Proposition 5.2. There exists only one family of zeros of Eða; bÞZ0 in a local
neighbourhood of the point ða; bÞZð0; 0Þ. This family of zeros is given
asymptotically by

a2 Z
1

16
b4COðb6Þ: ð5:24Þ

Proof. Since Eða; bÞ is analytic near ða;bÞZð0; 0Þ, all zeros of Eða; bÞ in a
neighbourhood of ð0; 0Þ may be obtained using the Newton polygon technique
(see §2.8 in Chow & Hale (1982)). Constructing the convex Newton polygon from
the fourth-order terms (5.23), we obtain only one line segment, namely between
the terms a2 and b4, which proves the leading-order result (5.24) by invoking the
Implicit Function Theorem (see §2.2 in Chow & Hale (1982)), modulo the actual
coefficient of b4, which is easily found using a regular scaling argument.
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In order to prove that the next-order term in (5.24) is in the order of Oðb6Þ, we
need to prove that the term b5 is absent in the remainder Oð5Þ terms of the
expansion (5.23). Since this term should also be present if we let aZ0, this may
be inferred from the exact solution (5.12) for UZ0. Indeed, for that case we have
kZ

ffiffiffiffiffiffiffiffiffiffiffiffi
r2K1

p
, with kCZ ik, kKZKik, aZ0 and bZ2ik. Since the expression (5.12)

is even in k, the term k5 is absent; therefore, the term with b5 is absent from
(5.23). &
(d ) Proof of the asymptotic formula (3.3)

The inverse mapping of (5.1) is

kGZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kr2G iU

p
; ð5:25Þ

where we consider the right half-plane of the complex plane of U. The two
branches of the square root function are defined as usual:ffiffiffi

zG
p

ZG
ffiffiffiffiffi
jzj

p
ei argðzÞ=2; cz2C; ð5:26Þ

with argðzÞ2½0; 2pÞ. When r2!1, ReðUÞO0, and jImðUÞj!ð1Kr2Þ, the

numbers 1Kr2G iU lie in the first (C) and fourth (K) quadrants of the
complex plane. When r2O1, ReðUÞO0, and jImðUÞj!r2K1, the numbers
1Kr2G iU lie in the second (C) and third (K) quadrants. For both of these cases,
the C square root function (5.26) is used for the mapping kC and the K square
root function is used for the mapping kK. Thus, kCmaps to the first quadrant, while
kKmaps to the fourth quadrant. Since the new eigenvalue U5 is real, we only need
to consider the mappings kG in a narrow strip jImðUÞj! j1Kr2j around the real
axis, as above. Thus, the parameters a and b in proposition 5.2 are defined
explicitly in terms of r and U as

aZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kr2 C iU

C
p

C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kr2KiU

K
p

; ð5:27aÞ

bZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kr2C iU

C
p

K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kr2KiU

K
p

: ð5:27bÞ
The balance in (5.24) implies that jUj cannot be of order j1Kr2j as r2/1.
Therefore, we consider three separate cases, when jUj is of different orders in
j1Kr2j and the definitions of a and b can be simplified.

Case 1. Let kZ
ffiffiffiffiffiffiffiffiffiffiffiffi
r2K1

p
R0 and jUj!k2. The Taylor series expansions of the

mappings (5.27a) and (5.27b) converge and result in

aZ
U

k
1CO

U2

k4

� �� �
; bZ 2ik 1CO

U2

k4

� �� �
:

With this expansion, the asymptotic result (5.24) is equivalent to the pair of real
eigenvalues

UZGk3 COðk5Þ:
Therefore, we have established an asymptotic approximation for the real unstable
eigenvalue U5ðrÞ, bifurcating for r2O1 from the point ðr;UÞZð1; 0Þ:

U5 Z ðr2K1Þ3=2COððr2K1Þ5=2ÞZ 2
ffiffiffi
2

p
ðrK1Þ3=2COððrK1Þ5=2Þ: ð5:28Þ
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Case 2. Let qZ
ffiffiffiffiffiffiffiffiffiffiffiffi
1Kr2

p
R0 and jUj!q2. Then, the Taylor series expansions of

the mappings (5.27a) and (5.27b) converge and give

aZ 2q 1CO
U2

q4

� �� �
; bZ

iU

q
1CO

U2

q4

� �� �
:

Using this expansion, the asymptotic result (5.24) is equivalent to four eigenvalues
defined by

U2 ZG8q3COðq4Þ:
However, the scaling jUjZOðq3=2Þ violates the assumption that jUj!q2 as q/0.
Therefore, this case does not produce non-zero eigenvalues of the discrete
spectrum.

Case 3. Let jUjO j1Kr2j. The Taylor series expansions of the mappings
(5.27a) and (5.27b) converge and result in

aZ i
ffiffiffiffiffiffiffiffiffi
2jUj

p
eiq=2 1CO

1Kr2

U

 ! !
;

bZ
ffiffiffiffiffiffiffiffiffi
2jUj

p
eiq=2 1CO

1Kr2

U

 ! !
;

where qZargðUÞ. With this expansion the asymptotic result (5.24) produces
only one solution UZ0, which is consistent with the assumptions only if r2Z1.
Therefore, this case does not produce non-zero eigenvalues of the discrete
spectrum either.

The above analysis proves theorem 5.3.

Theorem 5.3. The modified edge bifurcation for the stability problem (1.8) at
r2Z1 results in a pair of discrete eigenvalues ðU5;KU5Þ in the domain r2O1
given by the asymptotic approximation (3.3). No eigenvalues bifurcate from UZ0
at r2Z1 into the domain r2!1.

The result (5.28) is plotted in figures 2 and 8 as a solid curve. Figure 8 shows
the real parts of eigenvalues zoomed near the point rZ1. This figure illustrates
the correctness of the asymptotic approximation (5.28), but it also demonstrates
its small range of validity. This is somewhat expected. First, (5.28) is a low-order
approximation. The inclusion of higher-order terms should improve the range of
validity of the approximation. Second, at rz1:08 the bifurcation ðU1;U5Þ/
ðU6;U

�
6Þ takes place, and one cannot expect the approximation (5.28) to be valid

near or beyond where this other bifurcation occurs.
6. Concluding remarks

In this paper we have considered the linear stability problem (1.8) for the
parameter r2½0;1:5�. We have considered both real and complex eigenvalues,
and the discrete and the continuous spectrum were computed. Wherever both
are available, the agreement between numerical and analytical results is
excellent, serving to validate both.
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Figure 8. The unstable eigenvalue U5 of the stability problem (1.8) as a function of the parameter r
near ðr;UÞZð1; 0Þ. The asymptotic result (5.28) is shown as a solid curve. The numerical results
are shown as dots.
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From the point of physical applications, the most important result presented
in this paper is the existence of U4 and U6, which implies the instability of the
one-dimensional NLS soliton (1.3) with respect to perturbations of all
wavelengths, including arbitrarily short ones. As outlined in §2, it was known
previously that (1.3) is unstable with respect to long-wave (small-r)
perturbations. Instabilities with respect to short-wave (large-r) perturbations
were first hinted at by Cohen et al. (1976). The presence of such oscillatory
instabilities was shown in more detail by Anderson et al. (1979).

How is this consistent with the remarks of Ablowitz & Segur (1979)? They
state that the observations of J. Hammack (1979, unpublished work) imply the
stability of (1.3) with respect to short-wave perturbations. This issue may be
resolved by a closer look at figure 2a. It is clear from that figure that the growth
rate associated with such instabilities is smaller by an approximate factor of at
least 4: the maximal growth rate at rZ0:8 is approximately 0.657. The largest
growth rate associated with U6 is approximately 0.2 at rZrc. The experiments
performed by J. Hammack (1979, unpublished work) were done in a long, narrow
wave tank. In such a setting, the smallest value of r resulting in a transverse
perturbation of wavelength lZ2p=r that will fit in the transverse direction of
the wave tank is found significantly beyond the critical value rcz1:08. For those
values of r, the associated growth rate is small, and observing this instability
experimentally is difficult. One possibility is to employ a longer or wider tank,
which is not a practical suggestion. The other possibility is to seed the instability
by letting the wave pattern evolve according to (1.11), as opposed to according to
(1.3). This might be accomplished using a suitably shaped paddle at the wave
maker.

From a mathematical point of view, the main result of this paper is the
bifurcation of the eigenvalues ðU5;KU5Þ from the continuous spectrum, at the
parameter value rZ1 before which both parts of the continuous spectrum are
disconnected. This result was established both numerically and analytically,
resulting in the asymptotic approximation (5.28).

Mathematically, it would be desirable to also have asymptotic approximation
results for the discrete but complex eigenvalue branches U4 and U6. Since these
Proc. R. Soc. A (2006)
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bifurcations do not occur from the origin, the bifurcation analysis may be more
complicated. Since for both U4 and U6 the imaginary part/N as r/N, it
seems reasonable that one may be able to establish a large r result, valid near the
point at infinity on the complex U sphere.

The work presented here was sponsored by NSF-DMS-FRG-0351466 (BD), NSERC and PREA
grants (DEP), and NSF-DMS-FRG-0139771 (JC). Further, we are grateful to Arnd Scheel for
useful discussions regarding §5.
Appendix A. The numerical method

The numerical method used to solve (1.8) is in essence due to Hill, who used it for
the study of the equation that now bears his name. The method is discussed in
extensive detail in Deconinck & Kutz (submitted). It is especially suitable for
equations with periodic coefficients. In this paper, we restrict the infinite-line
problem to the interval x2½KL;L�. This restriction is then periodically extended.
For all numerical simulations, it is essential to ensure that a sufficiently large
value of L has been used. This is easily verified by examining the degeneration of
periodic bands to isolated eigenvalues.

For x2½KL;L�,

sech2x Z
XN
nZKN

Sne
inpx=L; ðA 1Þ

with

Sn Z
1

2L

ðL
KL

eKinpx=Lsech2x dx: ðA 2Þ

Next, we assume that both U and V are periodic with period 2LP, where P is a
positive integer. Letting PZ1 gives rise to perturbations that have the same
period as the truncated coefficient, PZ2 allows for period and anti-periodic
perturbations, and so on. Further, an overall multiplicative phase factor may be
present as well, according to Floquet theory (Coddington & Levinson 1955;
Deconinck & Kutz submitted). Thus

Uðx; r;UÞZ eimx
XN
nZKN

Une
inpx=LP ;

V ðx; r;UÞZ eimx
XN
nZKN

Vne
inpx=LP ;

8>>><
>>>:

ðA 3Þ

with m2½Kp=2LP;p=2LPÞ, and

Un Z
1

2LP

ðLP
KLP

eKinpx=LPUðx; r;UÞeKimxdx;

Vn Z
1

2LP

ðLP
KLP

eKinpx=LPV ðx; r;UÞeKimxdx:

8>>>><
>>>>:

ðA 4Þ

These series are substituted in (1.8). First, the common factor of eimx is cancelled,
after which the coefficients of all distinct exponentials are equated to zero. This
Proc. R. Soc. A (2006)
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gives rise to the coupled bi-infinite difference equations

mC
np

LP

 !2

C1Kr2

 !
VnK2

XN
kZKN

SðnKkÞ=PVk ZUUn;

mC
np

LP

 !2

C1Kr2

 !
UnK6

XN
kZKN

SðnKkÞ=PUk ZKUVn;

8>>>>><
>>>>>:

ðA 5Þ

for n2Z. In these equations, SðnKkÞ=PZ0 unless nKk is divisible by P. In order to
use these bi-infinite difference equations as the basis for a numerical method,
they are truncated to incorporate only nZKN ;.;N , for some positive integer
N. Thus, for any simulation, two numerical choices need to be made: the period
2L at which sech2x is cut-off, and the truncation on the number N of Fourier
modes used in (A 5). Two more algorithm choices are required as well: which
value of P is used, and which values of m are used. Once these parameters are
fixed, the QR algorithm is used to find the eigenvalues U of the resulting
ð4NC2Þ!ð4NC2Þ-dimensional matrix. This is repeated for any choice of m and
r. These eigenvalues give approximations to elements of the spectrum of (1.8).
Any desired corresponding eigenfunctions are easily recovered from the
corresponding eigenvectors.

This numerical method certainly has its limitations. Many of these are
discussed in Deconinck & Kutz (submitted), but one also finds there a discussion
of many advantages of the method, such as its spectral convergence and its
ability to approximate the entire spectrum in a compact region of the complex
plane. In the context of this problem, the method should be compared with the
other methods that have been employed, as discussed in §2. Many of those are
continuation methods, which work well in many respects, but they only give one
branch of the spectrum if there are multiple ones. Further, if the spectral
branches have vertical tangents as functions of r, continuation methods used
carelessly may either break down or they tend to overshoot the value of r at
which this happens, as was hypothesized in Pelinovsky (2001). Our method does
not rely on any previously obtained spectrum at r to determine the spectrum at
rCDr. Instead, at any r value, the spectra of an entirely new set of matrices is
computed. To the best of our knowledge, finite-difference methods have not been
used on this problem. Indeed, using finite-difference methods on this problem
does not appear to be a good idea: the number of grid points required for a decent
accuracy in this problem seems prohibitive. A comparison of matrix sizes
required for equal accuracy using either Hill’s method or a finite-difference
method is given in Deconinck & Kutz (submitted).
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