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Abstract
In recent years, three exceptional discretizations of the φ4 theory have been
discovered (by Speight and Ward, Bender and Tovbis, and Kevrekidis) which
support translationally invariant kinks, i.e. families of stationary kinks centred
at arbitrary points between the lattice sites. It has been suggested that
the translationally invariant stationary kinks may persist as sliding kinks,
i.e. discrete kinks travelling at nonzero velocities without experiencing any
radiation damping. The purpose of this study is to check whether this is indeed
the case. By computing the Stokes constants in beyond-all-order asymptotic
expansions, we prove that the three exceptional discretizations do not support
sliding kinks for most values of the velocity—just like the standard, one-
site discretization. There are, however, isolated values of velocity for which
radiationless kink propagation becomes possible. There is one such value for
the discretization of Speight and Ward and three sliding velocities for the model
of Kevrekidis.

PACS numbers: 05.45.Yv, 63.20.Pw

1. Introduction

Spatially discretized partial differential equations (or, equivalently, chains of coupled ordinary
differential equations) have attracted considerable attention recently. One of the issues that has
been vigorously debated and that will concern us in this paper, is whether discrete systems can
support solitary waves travelling without losing energy to resonant radiation and decelerating
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as a result. We address this issue for one of the prototype models of nonlinear physics, the
φ4-theory:

utt = uxx + 1
2u(1 − u2). (1.1)

The φ4-equation (1.1) is Lorentz-invariant and so the existence of the travelling kink

u(x, t) = tanh
x − ct − s

2
√

1 − c2
, (1.2)

where |c| < 1 and s ∈ R, is an immediate consequence of the existence of the stationary kink
for c = 0. On the other hand, if we discretize equation (1.1) in x,

ün = un+1 − 2un + un−1

h2
+ f (un−1, un, un+1), (1.3)

the translation and Lorentz invariances are lost and the existence of the travelling kink (and
even of an arbitrarily centred stationary one) becomes a nontrivial matter. In equation (1.3),
un ∈ R, n ∈ Z, t ∈ R, h is the lattice spacing and the nonlinearity f (un−1, un, un+1) satisfies
the continuity condition

f (u, u, u) = 1
2u(1 − u2). (1.4)

We restrict ourselves to symmetric discretizations, i.e.

f (un−1, un, un+1) = f (un+1, un, un−1). (1.5)

Equation (1.1) results from (1.3) in the continuum limit, where un(t) = u(xn, t), xn = nh and
h → 0. In this limit, the truncation error of the Taylor series is O(h2). We shall be concerned
with monotonic kink solutions of (1.3): un+1(t) � un(t) for all n ∈ Z. As h → 0, such
monotonic discrete kinks approach the continuous kink (1.2).

The most common, one-site discretization of the nonlinearity function is given by

f (un−1, un, un+1) = 1
2un(1 − u2

n). (1.6)

It is a well-established fact [L88], however, that the discrete Klein–Gordon equation (1.3),
(1.6) admits only a countable set of stationary monotonic kinks with the boundary conditions

lim
n→−∞ un(t) = −1, lim

n→+∞ un(t) = +1. (1.7)

Physically, this fact is related to the presence of the Peierls–Nabarro barrier, an effective
potential periodic with the spacing of the lattice. Half of the stationary kinks are centred
at the minima (the on-site kinks) and the other half (the off-site kinks) at the maxima of
the Peierls–Nabarro potential. There are no continuous families of stationary discrete kinks
of the form un = u(n − s), with s a free parameter, which would interpolate between the
two solutions. In an abuse of terminology, we will be calling such families ‘translationally
invariant kinks’—although, in the first place, translation invariance is a property of an equation
rather than a solution, and in the second, all lattice equations are of course not translationally
invariant. As for propagating waves, of special importance are kinks moving at constant speed
and without the emission of radiation. We will be referring to such kinks, i.e. solutions of
the form un = u(n − ct − s) where u(ξ) is a monotonically growing function satisfying the
boundary conditions (1.7), as sliding kinks, to emphasize the fact that they do not experience
any radiative friction. Being an obstacle to the ‘translational invariance’ of static kinks, the
Peierls–Nabarro barrier is also detrimental to the existence of sliding kinks—at least for small
c (see reviews in [S03] and [IJ05]).
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In an attempt to find a discrete model with ‘translationally invariant’ and sliding kinks,
Speight and Ward [SW94, S97] considered a Hamiltonian discretization of the form

f (un−1, un, un+1) = 1

12
(2un + un+1)

(
1 − u2

n + unun+1 + u2
n+1

3

)

+
1

12
(2un + un−1)

(
1 − u2

n + unun−1 + u2
n−1

3

)
. (1.8)

In the static limit, the corresponding energy admits a topological lower bound which is saturated
by a first- (rather than second-) order difference equation. This equation is readily shown to have
a one-parameter continuous family of stationary kink solutions un = u(n − s) for 0 � h � 2
(see proposition 1 in [S97]). The parameter s of the family defines the position of the kink
relative to the lattice. Since all members of the family have the same (lowest attainable) energy,
the stationary kink experiences no Peierls–Nabarro barrier. As for travelling kinks, Speight
and Ward’s numerical simulations revealed that although moving kinks in this model do lose
energy to Cherenkov radiation and decelerate as a result, this happens at a slower rate than a
similar process in equation (1.6) (see figures 4 and 5 in [S97]).

Another line of attack was chosen by Bender and Tovbis [BT97] who proposed a different
discretization supporting a continuous family of arbitrarily centred stationary kinks:

f (un−1, un, un+1) = 1
4 (un+1 + un−1)(1 − u2

n). (1.9)

In this case, the family arises due to the suppression of the stationary kink’s resonant radiation.
In fact, the family of stationary kinks can be found explicitly as

un(t) = tanh[a(n − s)], (1.10)

where a = arcsinh(h/2) for all h ∈ R. (The solution (1.10) coincides with the stationary dark
soliton of the repulsive Ablowitz–Ladik equation [HA93].)

Finally, the nonlinearity

f (un−1, un, un+1) = 1
8 (un+1 + un−1)(2 − u2

n+1 − u2
n−1) (1.11)

was introduced by Kevrekidis [K03], who demonstrated the existence of a two-point
invariant and hence a first-order difference equation associated with the stationary equation.
Consequently, the discretization (1.11) also supports a continuous family of stationary kinks
for all h ∈ [0, h0] with some h0 > 0. (For general discussion, see [S99, BOP05, DKY05a].)
A relevant property of the model (1.11), which is related to the existence of a two-point
invariant [K03] and indicates some additional underlying symmetry, is the conservation of
momentum. (See also [DKY05b].)

Since the reasons for the nonexistence of ‘translationally invariant’ kinks and sliding
kinks are apparently related (the breaking of symmetries of the underlying continuum theory
or, speaking physically, the presence of the Peierls–Nabarro barrier), the availability of
‘translation-invariant’ stationary kinks in the models (1.8), (1.9) and (1.11) suggests that they
might have sliding kinks as well. It is the purpose of the present study to find out whether this
is indeed the case. We shall analyse the persistence of continuous families of stationary kinks
un = u(n− s) for nonzero velocities; in other words, examine the existence of solutions of the
form u(n− ct − s) where u(z) is a monotonically growing function satisfying (1.7) and c �= 0.
We develop an accurate numerical test in the limit h → 0 which shows whether or not standing
and travelling kinks of the discrete φ4 model (1.3) bifurcate from the exact kink solutions (1.2)
of its continuous counterpart (1.1). The analysis of this bifurcation poses a singular problem
in perturbation theory which can be analysed using two (inner and outer) matched asymptotic
scales on the complex plane [TTJ98, T00a]. In particular, the nonvanishing of the Stokes
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constant in the inner asymptotic equation serves as a sufficient condition for the nonexistence
of continuous solutions of the difference equations [TTJ98].

Our test will be based on computing the Stokes constant for the differential–difference
equation underlying the lattice system. We will examine all four discretizations of the φ4 theory
mentioned above, i.e. equations (1.6), (1.8), (1.9) and (1.11). Since translationally invariant
stationary kinks un = u(n − s) do exist for the three exceptional nonlinearities (1.8), (1.9)
and (1.11), the Stokes constant is a priori vanishing for c = 0 in these three cases. However,
we will show that in all three cases the Stokes constant acquires a nonzero value as soon as
c deviates from zero. It remains nonzero for all c except a few isolated values which define
the particular velocities of the sliding kinks in the corresponding model. There is one such
isolated zero of the Stokes constant for the nonlinearity (1.8) and three sliding velocites for
the discretization (1.11). Consequently, the main conclusion of this work is that the sliding
kinks, i.e. kinks travelling at a constant speed without the emission of radiation, can occur
only at particular values of the velocity. The sliding velocities are, of course, functions of the
discretization spacing h, so that sliding kinks arise along continuous curves on the (c, h)-plane.

We conclude this introduction with a remark on a convention adopted in the remainder of
this paper—namely, that the linear part of the function f (un−1, un, un+1) in (1.3) can always
be fixed to (1/2)un without loss of generality. Indeed, the most general function satisfying
(1.4) and (1.5) is f = [(1/2) − 2a]un + a(un+1 + un−1) + cubic terms, where a is arbitrary.
Since h2 in (1.3) is also a free parameter, we can always make a replacement h → h̃ such that
1/h2 + a = 1/h̃2. This gives

f (un−1, un, un+1) = 1
2un − Q(un−1, un, un+1), (1.12)

where Q is a homogeneous polynomial of degree 3 which is independent of the parameter h.
The outline of this paper is as follows. In the next section (section 2) we review the

construction of the outer and inner asymptotic solutions in the limit h → 0. Section 3 contains
details of the numerical computation of the Stokes constants while the last section (section 4)
summarizes the results of our work.

2. Inner and outer asymptotic expansions in the limit h → 0

We are looking for a sliding-kink solution of the discrete φ4 models (1.3) in the form

un(t) = φ(z), z = h(n − s) − ct, (2.1)

where φ(z) is assumed to be a twice differentiable function of z ∈ R that satisfies the differential
advance–delay equation

c2φ′′(z) = φ(z + h) − 2φ(z) + φ(z − h)

h2
+

1

2
φ(z) − Q (φ(z − h), φ(z), φ(z + h)) , (2.2)

with the boundary conditions φ(z) → ±1 as z → ±∞. The velocity c is assumed to be
smaller than 1 in modulus. If a solution to this boundary-value problem (i.e. a heteroclinic
orbit) exists, then the parameter s is arbitrary due to the translation invariance of the advance–
delay equation (2.2). The scaling parameter h (which stands for the lattice step-size) can be
used to reduce equation (2.2) to a singularly perturbed differential equation as h → 0 [TTJ98].
Formal asymptotic solutions of the problem (2.2) can be constructed at the inner and outer
asymptotic scales. The formal series represent convergent asymptotic solutions of the singular
perturbation problem only if the Stokes constants are all zero [T00a].

Asymptotic analysis beyond all orders of perturbation theory was pioneered by Kruskal
and Segur [KS91] and has been employed by many authors. It was extended by Pomeau et al
[PRG88] to allow the computation of radiation coefficients from the Borel summation of series
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rather than from the numerical solution of differential equations. Essentially the same method
has been applied to different problems by Grimshaw and Joshi [GJ95, G95] and Tovbis and
collaborators [TTJ98, T00a, T00b, TP05]. In this paper, we shall work with formal inner and
outer asymptotic series for the problem (2.2) without attempting rigorous analysis of their
asymptoticity.

2.1. Outer asymptotic series

Assuming that the solution φ(z) is a real analytic function of z, we consider the Taylor series
for the second difference in a strip Dδ = {z ∈ C : |Im z| < δ}, where δ > 0:

φ(z + h) − 2φ(z) + φ(z − h) = h2φ′′(z) +
∞∑

n=2

h2n 2

(2n)!
φ(2n)(z). (2.3)

Since the cubic polynomial Q(un−1, un, un+1) satisfies the continuity and symmetry relations
(1.4) and (1.5), the nonlinearity of (2.2) can also be expanded in a Taylor series in the same
strip:

Q (φ(z − h), φ(z), φ(z + h)) = 1

2
φ3(z) +

∞∑
n=1

h2nQ2n

(
φ, (φ′)2, . . . , φ(2n)

)
, (2.4)

where the coefficients Q2n depend on even derivatives and even powers of odd derivatives of
φ(z) and also Q2n(φ, 0, . . . , 0) = 0. The differential advance–delay equation (2.2) can thus
be written as

(1 − c2)φ′′ +
1

2
φ(1 − φ2) +

∞∑
n=1

h2n

(
2

(2n + 2)!
φ(2n+2) − Q2n(φ, (φ′)2, . . . , φ(2n))

)
= 0.

(2.5)

For h = 0, equation (2.5) becomes the travelling wave reduction of the continuous model
(1.1), with the explicit solution

φ0(z) = tanh ξ ; ξ = z

2
√

1 − c2
, |c| < 1. (2.6)

We will search for solutions of equation (2.5) of the form

φ̂(z) = φ0(z) +
∞∑

n=1

h2nφ2n(z). (2.7)

Substituting the expansion (2.7) into (2.5) we get, at order h2n,

Lφ2n = H2n,

where the linearized operator L is given by

L = − d2

dξ 2
+ 4 − 6 sech2 ξ,

and H2n are polynomials in φ0, φ2, . . . , φ2n−2 and their derivatives. The kernel of L is one-
dimensional and spanned by an even eigenfunction y0 = sech2 ξ . The rest of the spectrum
of L is positive. It is not difficult to prove by induction that if φ2k(z) are all odd in z for
k = 0, 1, . . . , n−1, the nonhomogeneous term H2n is also odd in z and hence, by the Fredholm
alternative, there exists a unique odd bounded solution φ2n(z) for z ∈ R. Moreover, since H2n

decays to zero exponentially fast as |z| → ∞, the functionφ2n(z) is also exponentially decaying
for any n � 1. The perturbation φ2(z), in particular, satisfies the nonhomogeneous equation

Lφ2 = − 1
3 [φ(iv)

0 + αφ′′
0 + βφ2

0φ
′′
0 + γφ0(φ

′
0)

2], (2.8)
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where the numerical coefficients depend on whether the nonlinearity function f is given by
(1.6), (1.8), (1.9) or (1.11):

One-site (1.6): α = β = γ = 0,

Speight–Ward (1.8): α = 1, β = γ = −4,

Bender–Tovbis (1.9): α = 3, β = −3, γ = 0,

Kevrekidis (1.11): α = 3, β = −9, γ = −6.

The odd bounded solution φ2(z) of the nonhomogeneous equation (2.8) is

φ2(z) = A tanh ξ sech2 ξ + Bξ sech2 ξ, (2.9)

where

A = (1 − c2)(γ + 2β) + 6

72(1 − c2)2
, B = − (1 − c2)(α + β) + 1

24(1 − c2)2
.

The hat in the series (2.7) indicates that the series is formal, i.e. it may or may not converge
[TTJ98,T00a], depending on the choice of c and Q in equation (2.2). We shall be referring to
(2.7) as the outer asymptotic expansion.

2.2. Inner asymptotic series

The leading-order term (2.6) of the outer expansion (2.5) has poles at ξ = (π i/2)(1 + 2n),
where n ∈ Z. We apply the scaling transformation

z = hζ + iπ
√

1 − c2, φ(z) = 1

h
ψ(ζ ) (2.10)

to equation (2.2) in order to study the convergence of the formal asymptotic solution (2.7) near
the pole ξ = (π i/2) (see [TTJ98,T00a]). This yields the following differential advance–delay
equation for ψ(ζ ):

c2ψ ′′(ζ ) = ψ(ζ + 1) − 2ψ(ζ ) + ψ(ζ − 1) − Q(ψ(ζ − 1), ψ(ζ ), ψ(ζ + 1)) +
h2

2
ψ(ζ ).

(2.11)

The following are the cubic functions Q for each of the four discretizations that we deal with
in this paper:

One-site (1.6): Q = 1
2ψ3(ζ ),

Speight–Ward (1.8): Q = 1
36 [ψ3(ζ + 1) + 3ψ2(ζ + 1)ψ(ζ ) + 3ψ(ζ + 1)ψ2(ζ )

+ 4ψ3(ζ ) + 3ψ(ζ − 1)ψ2(ζ ) + 3ψ2(ζ − 1)ψ(ζ )

+ ψ3(ζ − 1)],

Bender–Tovbis (1.9): Q = 1
4ψ2(ζ )[ψ(ζ + 1) + ψ(ζ − 1)],

Kevrekidis (1.11): Q = 1
8 [ψ3(ζ + 1) + ψ2(ζ + 1)ψ(ζ − 1) + ψ(ζ + 1)ψ2(ζ − 1)

+ ψ3(ζ − 1)].

We note that the heteroclinic orbit becomes small as h → 0 under the normalization (2.10): if
φ(z) → ±1 as z → ±∞, then ψ(ζ ) → ±h as Re ζ → ±∞. The formal asymptotic series
(2.7) in the new variables (2.10) becomes a new formal series

ψ̂(ζ ) = ψ̂0(ζ ) +
∞∑

n=1

hnψ̂n(ζ ), (2.12)
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where each term ψ̂n(ζ ) can be expanded in a formal series in descending powers of ζ . In
particular, the leading-order function ψ̂0(ζ ) has the general form

ψ̂0(ζ ) =
∞∑

n=0

a2n

ζ 2n+1
. (2.13)

By comparing the series (2.12) and (2.13) with the solutions (2.6) and (2.9) in variables (2.10),
we note the correspondence

a0 = 2
√

1 − c2, a2 = − (1 − c2)(γ + 2β) + 6

9
√

1 − c2
.

We shall be referring to (2.12) as the inner asymptotic expansion. The odd powers of h in
the inner asymptotic expansion (2.12) appear due to the matching conditions with the outer
asymptotic expansion (2.7) under the scaling (2.10), as well as due to the nonzero boundary
conditions for the heteroclinic orbits ψ(ζ ) → ±h as Re ζ → ±∞.

2.3. Leading-order problem for an inner solution

Convergence of the formal inverse-power series (2.13) for the leading-order solution ψ̂0(ζ )

depends on the values of the Stokes constants [T00a]. Computation of the Stokes constants is
based on Borel–Laplace transforms of the inner equation (2.11) [TTJ98]. Assuming continuity
in h, we study the leading-order solution ψ0(ζ ) = limh→0 ψ(ζ ) of the truncated inner equation

c2ψ ′′
0 (ζ ) = ψ0(ζ + 1) − 2ψ0(ζ ) + ψ0(ζ − 1) − Q (ψ0(ζ − 1), ψ0(ζ ), ψ0(ζ + 1)) . (2.14)

By substituting the series (2.13) into equation (2.14), one can derive a recurrence relation
between the coefficients in the set {an}∞n=0. The Stokes constants can be computed from the
asymptotic behaviour of the coefficients an for large n. Alternatively, the leading-order solution
ψ0(ζ ) and the Stokes constants can be defined using the Borel–Laplace transform:

ψ0(ζ ) =
∫

γ

V0(p)e−pζ dp. (2.15)

The choice of the contour of integration γ determines the domain of ψ0(ζ ) in the complex
ζ -plane. We define two solutions ψ

(s)
0 (ζ ) and ψ

(u)
0 (ζ ), which lie on the stable and unstable

manifolds, respectively, such that

lim
Re ζ→+∞

ψ
(s)
0 (ζ ) = 0, lim

Re ζ→−∞
ψ

(u)
0 (ζ ) = 0. (2.16)

We note that the stable and unstable solutions tend to the stationary point at the origin, since
the heteroclinic orbits connect the stationary points at ψ = ±h which move to the origin as
h → 0. The three stationary points coalesce to become a degenerate stationary point at the
origin within the truncated inner equation (2.14).

The Borel–Laplace transform (2.15) produces the stable solution ψ
(s)
0 (ζ ) when the contour

of integration γs lies in the first quadrant of the complex p-plane and extends from p = 0 to
p = ∞. Similarly, it produces the unstable solution ψ

(u)
0 (ζ ) when the contour of integration γu

lies in the second quadrant. We choose the integration contours in such a way that arg p → π/2
as p → ∞, so that the solutions ψ

(s)
0 (ζ ) and ψ

(u)
0 (ζ ) are defined by (2.15) for all complex ζ

with Im ζ < 0.
The Borel transform V0(p) satisfies the following integral equation, which follows from

(2.14) and (2.15):(
4 sinh2 p

2
− c2p2

)
V0(p) = Q̂[V0(p)]. (2.17)
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Figure 1. Contours of integration for the stable and unstable solutions ψ
(s)
0 and ψ

(u)
0 . The curves

γ ′
s and γ ′

u are deformations of the contours γs and γu, respectively.

Here, Q̂[V (p)] denotes a double convolution of V (p) with itself (in this case, the hat is used
to denote an operator). We list below the convolutions Q̂[V (p)] for each of the four models
under consideration:

One-site (1.6): 2Q̂ = V (p) ∗ V (p) ∗ V (p),

Speight–Ward (1.8): 18Q̂ = cosh p[V (p) ∗ V (p) ∗ V (p)] + 3{cosh p[V (p) ∗ V (p)]}
∗ V (p)+3[cosh pV (p)] ∗ V (p) ∗ V (p)+2V (p) ∗ V (p) ∗ V (p),

Bender–Tovbis (1.9): 2Q̂ = [cosh pV (p)] ∗ V (p) ∗ V (p),

Kevrekidis (1.11): 4Q̂ = cosh p[V (p) ∗ V (p) ∗ V (p)]

+ [cosh pV (p)] ∗ [epV (p)] ∗ [e−pV (p)],

where the asterisk ∗ denotes the convolution integral for the Borel–Laplace transform:

V (p) ∗ W(p) =
∫ p

0
V (p − p1)W(p1)dp1,

and the integration is performed from the origin to the point p on the complex plane, along
the contour γ . The inverse power series (2.13) for the limiting solution ψ0(ζ ) becomes the
following power series for the Borel transform V0(p):

V̂0(p) =
∞∑

n=0

v2np
2n, v2n = a2n

(2n)!
, (2.18)

where v0 = a0 = 2
√

1 − c2. The hat denotes a formal series which might only converge for
some values of p. The virtue of the integral form (2.17) is that the limiting behaviour of vn

for large n can be related to singularities of V0(p), which in turn correspond to the oscillatory
tails of ψ0(ζ ).

If the sliding kink exists, the inverse-power series for ψ0(ζ ) will converge for all ζ ∈ C

such that Im ζ < 0. This implies that the stable and unstable solutions ψ
(s)
0 (ζ ) and ψ

(u)
0 (ζ )

coincide, i.e. that the contour γs in the right half of the complex p-plane can be continously
deformed to the contour γu in the left half-plane (see figure 1). If, however, there are any
singularities between the two contours, then a continuous deformation is possible only if the
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residues are zero. The residues are proportional to the values of the Stokes constants. When
the Stokes constants are nonzero, the formal power series (2.18) for the solution V0(p) of the
integral equation (2.17) diverges for some values of p in the sector between the contours γs

and γu.

2.4. Stokes constants

The Borel transform V0(p) is singular near the points in the p-plane where the coefficient in
front of V0(p) on the left-hand side of the integral equation (2.17) vanishes [T00a], except
for the point p = 0 where the right-hand side is also zero. That is, singularities occur when
(2/p) sinh(p/2) = ±c. The location of these singularities is important because the stable and
unstable solutions are not, in fact, uniquely defined by (2.16); different solutions are generated
depending on where the contours lie relative to the singularities of V0(p) with Re p �= 0.
Exploiting this nonuniqueness, we wish to choose the contours γs and γu to lie above all the
singularities with nonzero real part; this will minimize the number of singularities between the
stable and unstable solutions.

It is not difficult to show that the contour γs extending from 0 to ∞ can be chosen in such
a way, i.e. so that there are no singularities between it and the imaginary axis. Indeed, assume,
for definiteness, that c > 0. Let (2nc − 1) be the number of positive roots of the equation
sin q = cq and denote the real and imaginary parts of p/2 by κ and q: p/2 = κ + iq. In the
(κ, q)-plane, consider a rectangular region D bounded by the horizontal segments q = 2πn

and q = ε at the top and bottom, and vertical segments κ = −ε and κ = ε on the left and right.
Here n is any positive integer greater than nc and ε > 0 is taken to be small. Using the argument
principle, we can count the number of (complex) roots of the equation sinh(p/2) = c(p/2) in
the region D. We have

tan arg
p

2
= cosh κ sin q − cq

sinh κ cos q − cκ
.

On the right lateral side, where κ = ε, this becomes

tan arg
p

2
≈ 1

ε

sin q − cq

cos q − c
. (2.19)

As we move from q = ε to q = 2πn, the numerator in (2.19) will change sign (2nc − 1)

times. In a similar way, moving down along the left side there will be (2nc − 1) more zero
crossings, while no zero crossings will occur along the horizontal segments. This means that
the argument can change by no more than (4nc − 2)π and hence there are at most (2nc − 1)

roots in the region D, no matter how large n is. Similarly, we can show that the equation
sinh(p/2) = −c(p/2) has no more than 2nc roots in the region D, if 2nc is the number of
positive roots of sin q = −cq. The upshot is that for any finite c, there are only a finite number
of singularities with small real parts; the singularities cannot accumulate to the imaginary axis.
For c �= 0, the singularities with nonzero real parts lie on the curves

q = ±
√

1

c2
cosh2 κ − κ2 coth2 κ → ±1

c
cosh κ as |κ| → ∞.

Accordingly, in order for the integration contours γs and γu to lie above these singularities,
they must be curvilinear (and not just rays) as shown in figure 1.

Having chosen the contours γs and γu to lie above the singularities in the first and second
quadrants, respectively, the only singularities of V0(p) that determine whether the stable
solution ψ

(s)
0 (ζ ) can be continuously transformed into the unstable solution ψ

(u)
0 (ζ ) are those
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at nonzero pure imaginary values of p. We will be referring to these values as resonances.
The set of resonances Rc is defined by the transcendental equation

Rc =
{
p = ik, k ∈ R+ :

2

k
sin

k

2
= ±c

}
. (2.20)

When c = 0, the set R0 is infinite-dimensional and can be described explicitly:

R0 = {p = 2πni, n ∈ N}.
Let p1 = ik1 be the smallest imaginary root in the set Rc. It is clear from (2.20) that
0 < k1 < 2π for c ∈ (0, 1), so that k1 → 2π as c → 0+ and k1 → 0 as c → 1−. The
set of resonances Rc is finite-dimensional for c ∈ (0, 1) and it consists of only one root
p1 = ik1 for c ∈ (c1, 1), where c1 ≈ 0.22.

Due to the resonances, a function ψ0(ζ ) that satisfies the truncated inner equation (2.14)
may have oscillatory tails as |Re ζ | → ∞. Adding the solutions of equation (2.14) linearized
about ψ̂0(ζ ), the general bounded solution of (2.14) in the limit |ζ | → ∞ can be represented
as [TTJ98]

ψ0(ζ ) = ψ̂0(ζ ) +
∑

ikn∈Rc

αnϕ̂n(ζ )e−iknζ + multiple harmonics. (2.21)

Here, ψ̂0(ζ ) is given by the power series (2.13); αn are coefficients which we will be referring
to as amplitudes in what follows; kn > 0 are roots of (2.20) for p = ikn and the functions
ϕ̂n(ζ )e−iknζ , n � 1, satisfy the linearized truncated inner equation (2.14). In particular, the
equation for the leading-order term ϕ̂1(ζ ) is

e−ik1 ϕ̂1(ζ + 1) + (c2k2
1 − 2)ϕ̂1(ζ ) + eik1 ϕ̂1(ζ − 1) + 2ic2k1ϕ̂

′
1(ζ ) − c2ϕ̂′′

1 (ζ )

= D1Qϕ̂1(ζ − 1) + D2Q ϕ̂1(ζ ) + D3Q ϕ̂1(ζ + 1), (2.22)

where D1,2,3Q are the partial derivatives of Q(ψ0(ζ − 1), ψ0(ζ ), ψ0(ζ + 1)) with respect to
its first, second and third argument, respectively, evaluated at ψ0 = ψ̂0(ζ ).

If the amplitude αn is nonzero for some n, the formal power series (2.13) does not converge
because the solution (2.21) does not decay as |Re ζ | → ∞. The amplitudes αn are proportional
to the Stokes constants computed for the formal power series (2.13). Each oscillatory term
in the sum (2.21) becomes exponentially small in h when we transform from ζ to z using the
transformation (2.10). Since p1 = ik1 is the element of Rc with the smallest imaginary part,
it follows that the n = 1 term dominates the sum in (2.21) when the transformation (2.10) is
made (unless α1 = 0). Furthermore, when c ∈ (c1, 1), where c1 ≈ 0.22, it is the only term in
the sum since the resonant set Rc consists of just the one root p1 = ik1. We shall, therefore,
only be concerned with the leading-order Stokes constant, which multiplies the function ϕ̂1(ζ ).

If ψ̂0(ζ ) is given by the power series (2.13), the solution of the linearized equation (2.22)
can also be represented by a formal power series:

ϕ̂1(ζ ) = ζ r

∞∑

=0

b
ζ
−
, (2.23)

where we can set b0 = 1 due to the linearity of (2.22). Substituting (2.13) and (2.23) into
(2.22) and using (2.20), the coefficient b1 can be determined from

2irζ r−1(c2k1 − sin k1) + ζ r−2[r(r − 1)(cos k1 − c2)

+2ib1(r − 1)(c2k1 − sin k1) − 6(1 − c2)] + O(ζ r−3) = 0.
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In this equation, the coefficient of each power of ζ should be set to zero. In order to set the
coefficent in front of the first term to zero in the situation where c �= 0, we must choose r = 0.
The second term then gives

b1 = 3i(1 − c2)

c2k1 − sin k1
,

after which all the other coefficients b2, b3, . . ., can be computed recursively. On the other
hand, in the situation with c = 0, we have k1 = 2π and the coefficient in front of ζ r−1 is zero
regardless of the value of r . Setting the coefficient in front of ζ r−2 to zero requires that we
choose either r = 3 or r = −2, and hence we have two different descending-power series, one
starting with ζ 3 and the other one with ζ−2. We shall focus on the former as it dominates the
latter in the limit ζ → ∞. Again, the succeeding terms in (2.23) are determined recursively.

Thus, we have established that the leading-order oscillatory term in the expansion (2.21)
behaves as

α1

[
1 +

b1

ζ
+ O

(
1

ζ 2

)]
e−ik1ζ for c �= 0 and

α1
[
ζ 3 + b1ζ

2 + O(ζ 1)
]

e−2π iζ for c = 0.

(2.24)

For c �= 0, the two leading order terms in the expression above are generated by, respectively,
a simple pole and a logarithmic singularity of the Borel transform V0(p) at p = ik1. For c = 0
they are generated by a quadruple pole of V0(p) at p = 2π i. From the fact that V0 is an even
function of p, we deduce the structure of this function near the poles:

V0(p) →




k2
1K1(c)

p2 + k2
1

− σ(c) ln(p2 + k2
1) + · · · (for c �= 0),

6(2π)8S1(
p2 + 4π2

)4 +
2(2π)6ρ(
p2 + 4π2

)3 + · · · (for c = 0),

(2.25)

as p → ±ik1. Here K1(c) and S1 are the leading-order Stokes constants for c �= 0 and c = 0,
respectively; σ(c) and ρ are independent of p, and · · · stands for terms with even slower growth
as p → ik1.

To show that these singularities do indeed give rise to the oscillatory tails in (2.24), we
compare the two integrals ψ

(s)
0 and ψ

(u)
0 for a given value of ζ . To this end, we deform the paths

of integration γs and γu to γ ′
s and γ ′

u, respectively, without crossing any singularities. This is
illustrated in figure 1. There are two contributions to the difference ψ

(s)
0 (ζ ) − ψ

(u)
0 (ζ ). The

first comes from integrating around the pole at p = ik1, and is equal to 2π i times the residue
of the function V0(p)e−pζ at p = ik1, determined from (2.25). The second contribution arises
because the integrand increases as the singularity is encircled, since it is a branch point of the
logarithm. Since ln z can be written as ln |z| + i arg z, where z = p − ik1, we see that V0(p)

increases by −2π iσ(c) as the branch point p = ik1 is encircled in the c �= 0 case. Therefore,
the difference in the integrand of (2.15) along the paths γ ′

s and γ ′
u is −2π iσ(c)e−pζ , which must

be integrated along the path of integration from p = ik1 to infinity, to give −2π iσ(c)e−ik1ζ /ζ .
(We have considered the integration on a Riemann surface in order to account for branch
points.) Adding together the two contributions discussed above, we have

ψ
(s)
0 (ζ ) − ψ

(u)
0 (ζ ) =




[
πk1K1(c) − 2π iσ(c)

ζ
+ O

(
1

ζ 2

)]
e−ik1ζ for c �= 0,

− 1

128

[
16π3iS1ζ

3

+(192π4S1 + ρ)ζ 2 + O(ζ 1)
]
e−2π iζ for c = 0.

(2.26)
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If we take the limit Re ζ → −∞, then the unstable solution ψ
(u)
0 (ζ ) decays to zero as a power

law, according to the expansion (2.13). Thus, the stable solution ψ
(s)
0 (ζ ) has the oscillatory

tail given by the representation (2.21) with the amplitude factor

α1 =



πk1K1(c) for c �= 0,

− iπ3

8
S1 for c = 0.

(2.27)

Similarly, if we take the limit Re ζ → +∞, then the stable solution ψ
(s)
0 (ζ ) decays to zero,

while the unstable solution ψ
(u)
0 (ζ ) has the representation (2.21) with the amplitude factor

given by the negative of expression (2.27). By comparing the other terms on the right-hand
side of (2.26) to the corresponding terms in (2.24), σ(c) and ρ can be uniquely determined.

We now match the leading-order singular behaviour of V0(p) near p = ±ik1, given by
(2.25), to the formal power series (2.18). Expanding the expressions in (2.25) as power series
gives us

V0(p) →




K1(c) − σ(c) ln(k2
1) + · · ·

+
∞∑

n=1

(−1)nk−2n
1

(
K1(c) +

σ(c)

n
+ · · ·

)
p2n for c �= 0,

∞∑
n=0

(−1)n(n + 2)(n + 1)

(2π)2n
[(n + 3)S1 + ρ + · · ·]p2n for c = 0,

(2.28)

as p → ±ik1. These series converge for all |p| < k1; in particular, they are valid for p → ±ik1,
provided |p| < k1. Hence we can replace (2.25) with (2.28) in this neighbourhood. In (2.28),
the dots ‘. . .’ stand for coefficients of the expansion of terms with a slower growth as p → ±ik1

which were dropped in (2.25). The discarded terms would modify the coefficients of the power
series (2.28); however, there are terms which would not be affected by these modifications,
namely terms with large n. For example, the coefficients proportional to σ(c) and ρ in (2.28)
are a factor of n smaller than those proportional to K1(c) and S1; the discarded coefficients
would be even smaller. Therefore the leading singular behaviour of V0(p) as p → ±ik1

is determined just by the large-n coefficients of the power series (2.28), and hence only the
large-n coefficients should be matched to the coefficients of the expansion (2.18). This gives
the Stokes constant as a limit of the coefficients v2n of the series (2.18):

K1(c) = lim
n→∞(−1)nk2n

1 v2n for c �= 0,

S1 = lim
n→∞

(−1)n(2π)2nv2n

(n + 3)(n + 2)(n + 1)
for c = 0.

(2.29)

This formula is used in the next section for numerical computations of the leading-order Stokes
constant K1(c) for c �= 0.

Note that, since (2.18) matches (2.28) in the limit n → ∞, the formal power series V̂0(p)

also has a radius of convergence k1. However, the formal inverse-power series ψ̂0(ζ ) diverges
for all ζ unless V̂0(p) converges everywhere (which requires that all the Stokes constants be
zero).

Next, we note that as c → 0, the Stokes constant K1(c) does not tend to S1, its value
at c = 0. This discontinuity is due to the fact that, as c → 0, pairs of simple roots in the
resonant set Rc coalesce (e.g. ik1 coalesces with ik2 at 2π i, and so on). As a result, all roots
are double and the representation of ϕ̂1(ζ ) is discontinuous at c = 0, with the power degree
r of the prefactor in (2.23) jumping from r = 0 for c �= 0 to r = 3 for c = 0. In particular,
in exceptional models, i.e. discrete models with continuous families of stationary kinks (such
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as (1.8), (1.9) and (1.11)) the constant S1 is a priori zero while the limit of K1(c) as c → 0
may be nonvanishing. In fact, numerical computations of the top limit in (2.29) indicate that
the Stokes constant blows up as c → 0. Renormalization of K1(c) for small c is, however, a
nontrivial asymptotic problem which is beyond the scope of our current investigation.

For c ∈ (c1, 1), where c1 ≈ 0.22, the resonant set Rc contains only one root ik1

and, therefore, there is just one Stokes constant K1(c), which completely determines the
convergence of the formal power series for ψ̂0(ζ ). If K1(c0) = 0 at some point c0 ∈ (c1, 1),
the stable and unstable solutions ψ

(s)
0 (ζ ) and ψ

(u)
0 (ζ ) coincide to leading order. Arguments

based on the implicit function theorem (see [TP05]) reveal a heteroclinic bifurcation which
occurs on crossing a smooth curve c = c∗(h) on the (c, h)-plane, with c∗(0) = c0.

On the other hand, for c ∈ (0, c1) the resonant set Rc contains more than one root. If
K1(c0) = 0 for some c0 ∈ (0, c1), this alone is not sufficient for the convergence of the formal
power series ψ̂0(ζ ). The higher-order Stokes constants K2(c), K3(c), . . ., must be introduced
and computed from the asymptotic behaviour of the power series V̂0(p).

As we shall show in the next section, the function K1(c) does have zeros in the case of
the discretizations (1.8) and (1.11). All these zeroes are ‘safe’; that is, all c0 values lie in the
interval (c1, 1), so that the higher-order Stokes constants do not have to be computed.

3. Numerical computations of the Stokes constant

In this section, we report on the numerical computation of the Stokes constants K1(c) for
the four different discretizations of the φ4 model (1.3) under consideration. Our numerical
method uses the expression (2.29) of the Stokes constant in terms of the coefficients of the
formal power series solution (2.18). First, we obtain the recurrence relation for the coefficients
in the set {vn}∞n=0 by substituting the power series expansion (2.18) into the limiting integral
equation (2.17) and using the convolution formula

pn ∗ pm = n! m!

(n + m + 1)!
pn+m+1. (3.1)

After that, we compute the asymptotic behaviour of these coefficients as n → ∞ and evaluate
the limit (2.29) numerically for a fixed value of c �= 0.

In order to calculate the Stokes constants for the four models in a uniform way, we write
a general symmetric homogeneous cubic polynomial Q(un−1, un, un+1) as

Q =
1∑

α=−1

1∑
β=α

1∑
γ=β

aα,β,γ un+αun+βun+γ , (3.2)

where aα,β,γ are numerical coefficients, with α, β, γ ∈ {−1, 0, 1} and α � β � γ . The
symmetry implies that aα,β,γ = a−γ,−β,−α and therefore it is sufficient to specify just six
coefficients. The values of these coefficients for the four nonlinearities in question are given
in table 1.

By applying the Borel–Laplace transform (2.15) to equation (2.14) with Q as in (3.2), we
obtain the corresponding cubic convolution function Q̂[V (p)] on the right-hand side of the
integral equation (2.17):

Q̂[V (p)] =
1∑

α=−1

1∑
β=α

1∑
γ=β

aα,β,γ eαpV (p) ∗ eβpV (p) ∗ eγpV (p). (3.3)
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Table 1. The coefficients aα,β,γ = a−γ,−β,−α of the cubic polynomial (3.2) for the four models
under consideration.

Model a1,1,1 a0,0,0 a0,1,1 a0,0,1 a−1,1,1 a−1,0,1

One-site (1.6) 0 1/2 0 0 0 0
Speight–Ward (1.8) 1/36 1/9 1/12 1/12 0 0
Bender–Tovbis (1.9) 0 0 0 1/4 0 0
Kevrekidis (1.11) 1/8 0 0 0 1/8 0

To derive the recurrence formula for the coefficents v2n in (2.18), it will be more convenient
to consider the power series expansion which consists of both even and odd powers of p:

V̂0(p) =
∞∑

n=0

vnp
n. (3.4)

We now substitute the series (3.4) into (2.17) with Q̂[V (p)] given by (3.3) and use the
convolution formula (3.1). Equating the coefficients of pn+2 where n = 0, 1, 2, . . ., in the
resulting equation, we find that

[n/2]∑
i=0

2

(2i + 2)!
vn−2i − c2vn =

1∑
α=−1

1∑
β=α

1∑
γ=β

aα,β,γ

(n + 2)(n + 1)

{
n∑

i=0

(
n−i∑
k=0

αk

k!
vn−i−k

)

×

 i∑

j=0

(
j∑

l=0

βl

l!
vj−l

) (
i−j∑
m=0

γ m

m!
vi−j−m

)
j !(i − j)!

i!


 i!(n − i)!

n!

}
, (3.5)

where [n/2] is the integer part of n/2 and 00 = 1. Equation (3.5) is a recurrence relation
between the coefficients {vn}∞n=0. Solving equation (3.5) with n = 0, we get v0 = 2

√
1 − c2.

Note that this result is independent of the choice of aα,β,γ , i.e. independent of the model.
Letting v1 = 0 and making use of the symmetry of Q, one can show by induction that the
coefficients of all odd powers in (3.4) are zero (as we concluded previously on the basis that
the outer expansion is odd in z).

To prevent overflow or underflow when evaluating the recurrence relation numerically, we
shall work with the normalized coefficients

wn = (−1)nk2n
1 v2n

so that the Stokes constant (2.29) for c �= 0 is given by

K1(c) = lim
n→∞ wn. (3.6)

Reformulating (3.5) in terms of wn, we use the relation (3.6) to compute K1 numerically. We
truncate the sums involving 1/(2i +2)!, 1/l! and 1/m! when these factors become smaller than
10−50 and evaluate the sums involving the combinatorial factors in two halves. In the first, the
summation index increases from zero to the halfway point, and in the second it decreases from
its maximum. This ensures that the combinatorial factors are always decreasing from one step
to the next so that they can be accurately determined recursively. We also truncate these sums
when the combinatorial factors fall below 10−50.

These expedients result in a numerical routine fast enough to allow for evaluation of the
recurrence relation up to very large n; this is essential given the slow convergence of wn to a
constant. Matching (2.18) to (2.28) yields

v2n → (−1)nk−2n
1 [K1(c) + σ(c)/n] as n → ∞,
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Figure 2. Convergence of the sequence wn and its accelerated counterpart w̃n to the Stokes constant
K1(c). The dashed line depicts the values of wn and the solid line marks the accelerated sequence
w̃n. Left: the Kevrekidis discretization (1.11) with c = 0.5. Right: Speight–Ward discretization
(1.8) with c = 0.005.

therefore, the rate at which wn converges to K1(c) is of order 1/n:

wn = K1(c) +
σ(c)

n
+

σ̃ (c)

n2
+ O

(
1

n3

)
. (3.7)

Although the convergence of wn to K1(c) is extremely slow, we can accelerate the process
using (3.7). Defining

w̃n ≡ wn + n(wn − wn−1),

we get

w̃n = K1(c) − σ(c) + σ̃ (c)

n2
+ O

(
1

n3

)
.

The convergence of the sequence w̃n is much faster than that of wn; see figure 2. The relative
error

E(n) = σ(c) + σ̃ (c)

n2

1

K1(c)

can be written as

E(n) = n

2

w̃n − w̃n−1

w̃n

plus terms of order 1/n4. This gives an empirical criterion for the termination of the process.
We continued our computations until E(n) reached a value smaller than 10−3, i.e. until the
percentage error dropped below 0.1%. For c > 0.5, the value of n to which we have to
compute in order to achieve this accuracy is less than 100, increasing for smaller values of c to
approximately 5000 for c = 0.005. Consequently, the above numerical algorithm is not suited
to the study of the c → 0 limit and would have to be modified for that purpose.

Figure 3 displays the Stokes constant computed using the above numerical procedure,
for the four models of table 1. We see that, in all four models, the Stokes constant K1(c)

vanishes almost nowhere in the region c �= 0. There are, however, several isolated zeros:
K1(c) = 0 for c0 ≈ 0.45 in the case of the Speight–Ward nonlinearity (1.8) and for c0 ≈ 0.37,
0.63 and 0.83 in the case of the Kevrekidis discretization (1.11). Importantly, all of these
lie in the region (c1, 1) where the resonance set (2.20) consists of only one value, p1 = ik1.
(Here c1 ≈ 0.22.) Therefore, there is a sliding kink in the h → 0 limit for each of these
isolated values of velocity. Furthermore, strong parallels between our current setting and that
of solitons of the fifth-order KdV equation [TP05] suggest that sliding kinks should exist
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Figure 3. The Stokes constant K1 as a function of the kink’s speed c for the four discretizations of
the φ4 model. Clockwise from the top left: one-site (1.6); Bender–Tovbis (1.9); Kevrekidis (1.11);
Speight–Ward (1.8).

along a curve on the (c, h) plane emanating from each of the points (c0, 0). In other words, we
conjecture that there is a radiationless kink travelling with a certain particular speed c∗(h) for
each h in the case of the Speight–Ward nonlinearity, and that there are three such velocities (for
each h) in the case of the Kevrekidis model. For small h, c∗(h) should be close to the above
values c0.

In order to verify the existence of kinks sliding at these isolated velocities by an independent
method, we solved the differential advance–delay equation (2.2) numerically. The infinite line
was approximated by an interval of length 2L = 200, with the antiperiodic boundary conditions
φ(−L) = −φ(L). We made use of Newton’s iteration with an eighth-order finite-difference
approximation of the second derivative; the step size was chosen to be h/10. The continuum
solution (1.2) was used as an initial guess.

If we find a solution to the advance–delay equation with φ(z) decaying to a constant
for large positive and negative z, then we regard this solution as (a numerical approximation
to) a radiationless travelling kink. We were able to tune c for a fixed value of h so that the
radiation was reduced to the order of 10−12, whereupon the finite accuracy of our numerical
scheme prevented any further reduction. To make sure that the radiation does vanish rather
than reaching a local minimum but remaining nonzero, we plot the average magnitude of the
radiation near the ends of the interval as a function of c, for fixed h. This is defined as the
average of [φ(z) − φ]2 over the last 20 units of the interval, where φ is the average value
of φ(z) over these last 20 units. The results are shown in figure 4. Note the straight-line
behaviour of the graphs near the isolated values of c; this indicates that the coefficient of the
sinusoid superimposed over the kink’s flat asymptote crosses through zero (rather than attaining
a small but nonzero minimum). The suppression of radiation at the isolated points is thereby
verified.

Finally, the last question that we would like to address here is whether the intensity
of the radiation from the moving discrete kink depends on the type of discretization. More
specifically, we would like to know whether the choice of one of the exceptional discretizations
(which, by definition, support translationally invariant stationary kinks) serves to reduce the
radiation from the moving kinks. Speight and Ward have already given an affirmative answer
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Figure 4. The numerical evidence for the disappearance of radiation at isolated values of c = c∗
in Speight and Ward’s model (top left panel) and Kevrekidis’ model (three other panels). The
magnitude of the oscillatory tails, as defined in the text, is plotted as a function of c for a fixed
value of h. The minimum radiation is attained at the value c∗(h) which is found numerically. (This
c∗(h) is of course slightly different from the value c∗(0) for which the Stokes constant vanishes.)

Figure 5. The Stokes constant as a function of µ in the model (3.8). Note the logarithmic scale of
the vertical axis.

for their exceptional discretization; here we consider the one-parameter nonlinearity

Q = (1 − µ)

2
u3

n +
µ

4
u2

n(un+1 + un−1), (3.8)

which interpolates between the one-site nonlinearity (1.6) (for which µ = 0) and the
exceptional discretization (1.9) of Bender and Tovbis (for which µ = 1). Figure 5 shows
the Stokes constant for the model (3.8), as µ changes from 0 to 1 for fixed values of c. The
Stokes constant is indeed seen to be drastically reduced as µ approaches 1—that is, in the limit
of the exceptional discretization. (It nonetheless remains nonzero, of course, unless c = 0.)

4. Concluding remarks

In this paper we have investigated the existence of sliding kinks—i.e. discrete kinks travelling
at a constant velocity over a flat background, without emitting any radiation—in four
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discrete versions of the quartic-coupling theory. One of these models is the most common,
one-site, discretization. As the overwhelming majority of discrete φ4-equations, it does
support travelling kinks, but these kinks radiate and decelerate as a result. The other three
discretizations we considered are all exceptional in the sense that they all support one-parameter
continuous families of stationary kinks where the free parameter defines the position of the
kink relative to the lattice. This property is clearly nongeneric; the translation invariance of
the continuous φ4-theory is broken by the discretization and hence in generic disretizations
kinks may only be centred at a site or midway between two sites. Since the nonexistence of
‘translationally-invariant’ and sliding kinks in the generic models can be ascribed to similar
factors, namely, the breaking of the translation and Lorentz invariances, it was hoped that the
exceptional discretizations might turn out to be equally exceptional from the point of view of
sliding kinks. Our approach was based on the computation of the Stokes constants associated
with the putative sliding kink in a given equation.

The main conclusion of our work is that sliding kinks do exist in the discrete φ4 theories
but only with special, isolated, velocities (which of course depend on h). There is one such
velocity in the exceptional model of Speight and Ward and three different sliding velocities in
the discretization of Kevrekidis. It is natural to expect that the sliding kinks should play the role
of attractors similarly to the fronts moving with ‘stable velocities’ in dissipative systems; that
is, radiating travelling kinks should evolve into kinks travelling with the sliding velocities—if
there are such velocities in the system. Not every discretization supports sliding kinks, of
course; in particular, no sliding velocities arise for the generic, one-site, nonlinearity and even
for the exceptional discretization of Bender and Tovbis.

One natural way of trying to construct the sliding kinks is via power series expansions in
powers of c2; for the exceptional discretizations, this construction can be carried out to any
order. This approach was pursued in the recent work of Ablowitz and Musslimani [AM03].
Our results indicate, however, that these power series will not converge and exponentially small
terms (terms lying beyond all orders of the power expansion) emerge because of the singular
behaviour of the Stokes constant K1(c) as c → 0. Detailed studies of this singular limit will
be presented elsewhere.

The exceptional discretizations have richer underlying symmetries than generic
nonlinearities but the ‘translation invariance’ of the stationary kink alone does not automatically
guarantee the existence of the sliding velocities. The exact relation between the ‘translational
invariance’ and mobility of kinks is still to be clarified; at this stage it is worth mentioning that
the Stokes constant associated with (and hence the intensity of radiation from) a moving kink
is several orders of magnitude smaller in exceptional models than in generic discretizations.

Finally, it is instructive to point out some parallels with an earlier work of Flach
et al [FZK99] who also studied the phenomenon of kink sliding in Klein–Gordon lattices.
In the scheme of [FZK99], one postulates an analytic expression for the sliding kink,
un(t) = φ(n−ct−s), with some explicit function φ(z) and then reconstructs the Klein–Gordon
nonlinearity for which this is an exact solution. Our present conclusions are in agreement with
the results of these authors who observed that for a given h, the kink may only slide at a
particular, isolated, velocity. The two approaches, ours and that of [FZK99], are reciprocal;
while we examine the existence of sliding kinks for particular discretizations of the φ4-theory,
with fixed parameters independent of the kink’s velocity, in the ‘inverse method’ of [FZK99]
one assumes an explicit solution of a particular form but does not have any control over the
resulting nonlinearities. Consequently, the discrete Klein–Gordon models generated by the
‘inverse method’ are not discretizations of the φ4-theory and do include explicit dependence
on the velocity of the sliding kink.
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