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Discrete vector on-site vortices
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We study discrete vortices in coupled discrete nonlinear Schrédinger equations. We focus
on the vortex cross configuration that has been experimentally observed in
photorefractive crystals. Stability of the single-component vortex cross in the anti-
continuum limit of small coupling between lattice nodes is proved. In the vector case, we
consider two coupled configurations of vortex crosses, namely the charge-one vortex in
one component coupled in the other component to either the charge-one vortex (forming
a double-charge vortex) or the charge-negative-one vortex (forming a, so-called, hidden-
charge vortex). We show that both vortex configurations are stable in the anti-
continuum limit, if the parameter for the inter-component coupling is small and both of
them are unstable when the coupling parameter is large. In the marginal case of the
discrete two-dimensional Manakov system, the double-charge vortex is stable while the
hidden-charge vortex is linearly unstable. Analytical predictions are corroborated with
numerical observations that show good agreement near the anti-continuum limit, but
gradually deviate for larger couplings between the lattice nodes.

Keywords: discrete nonlinear Schréodinger equations; vortices;
persistence and stability; Lyapunov—Schmidt reductions

1. Introduction

In the past few years, the developments in the nonlinear optics of photorefractive
materials (Fleischer et al. 2005) and of Bose-Einstein condensates (BECs) in
optical lattices (Brazhnyi & Konotop 2004) have stimulated an enormous
amount of theoretical, numerical and experimental activity in the area of discrete
nonlinear Hamiltonian systems. A particular focus in this effort has been drawn
to the prototypical lattice model of the discrete nonlinear Schrodinger (DNLS)
equation (Kevrekidis et al. 2001). The latter, either as a tight binding limit
(Alfimov et al. 2002) or as a generic discrete nonlinear envelope wave equation
(Kivshar & Peyrard 1992) plays a key role in unveiling the relevant dynamics
within the appropriate length and time scales.

One of the principal directions of interest in these lattice systems consists of
the effort to analyse the main features of their localized solutions. In the
particular case of two spatial dimensions, such structures can be discrete gap
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solitons (Christodoulides & Joseph 1988; Kivshar 1993) or discrete vortices (i.e.
structures that have topological charge over a discrete contour; Malomed &
Kevrekidis 2001; Yang & Musslimani 2003). The study of these types of coherent
structures has made substantial leaps of progress in the past two years with the
numerical and experimental observation of regular discrete solitons (Fleischer
et al. 2003a,b), dipole solitons (Yang et al. 2004), soliton-trains (Chen et al.
2004a), soliton-necklaces (Yang et al. 2005) and vector solitons (Chen et al.
2004b) in photorefractive crystals and experimental discovery of robust discrete
vortex states (Neshev et al. 2004; Fleischer et al. 2004).

On the other hand, the recent years were marked by the experimental
developments in soft condensed-matter physics of BECs. Among the important
recent observations, one can single out the experimental illustration of the dark
(Burger et al. 1999), bright (Strecker et al. 2002) and gap (Eiermann et al. 2004)
solitons in quasi-one-dimensional BECs. The experimental capabilities seem to
be on the verge of producing similar structures in a two-dimensional context
(Greiner et al. 2001).

In both of the above contexts (nonlinear optics and atomic physics), multi-
component systems were recently studied due to their relevance to applications.
In particular, the first observations of discrete vector solitons in nonlinear
waveguide arrays were reported in Meier et al. (2003), while numerous experiments
with BECs were directed towards studies of mixtures of different spin states of *Rb
(Myatt et al. 1997) or **Na (Stamper-Kurn et al. 1998) and even ones of different
atomic species such as 'K —%"Rb (Modugno et al. 2001) and "Li —'**Cs (Mudrich
et al. 2002). While the above BEC experiments did not include the presence of an
optical lattice, the addition of an external optical potential could be manufactured
within the present experimental capabilities (Brazhnyi & Konotop 2004).

It is the purpose of the present work to address these recent features of the
physical experiments, namely discrete systems with multiple components. In
particular, we aim at addressing the fundamental issue of how localized
excitations are affected by the presence of two components which are coupled
(nonlinearly) to each other. While our results will be presented for the specific
example of two coupled DNLS equations with cubic nonlinearities, we believe
that similar features persist in a variety of other models. We should note here
that rather few studies have focused on the two-dimensional vector generaliz-
ation of the DNLS equation (Ablowitz & Musslimani 2002; Hudock et al. 2003;
Vicencio et al. 2004). To the best of our knowledge, these earlier studies did not
address vortices in coupled discrete systems.

For vortices in coupled systems, a number of interesting questions emerges
concerning the stability of particular vortex configurations (e.g. the so-called
vortex cross; Neshev et al. 2004; Fleischer et al. 2004) including the case of equal
charges in both components and the case of opposite charges between the two
components. The former state has a double vortex charge, while the latter has a
hidden vortex charge. It has been shown for the continuous NLS equation with
cubic-quintic (Desyatnikov et al. 2005) and saturable (Ye et al. 2004)
nonlinearities that these two states have different stability windows.

In the present setting, we examine the stability of such vortex structures in
the discrete case, both analytically and numerically. We use the method of
Lyapunov—Schmidt (LS) reductions developed earlier in Pelinovsky et al
(2005a,b). This method allows for direct analytical calculations of eigenvalues
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of the linear stability problem as functions of the system parameters (such as
the coupling between adjacent lattice sites and the coupling between the
two components).

Our presentation is structured as follows. In §2, we introduce the setup and
the vortex cross configurations. In §3, we study the stability of such
configurations in the one-component model. In §4, we generalize the vortex
cross configuration to the two-component case and compare our results with
numerical computations of the parameter continuations. In §5, we deal with a
special Manakov case of the system of two DNLS equations. Finally, in §6, we
summarize our findings. Appendix A presents technical details for the case of the
single-component vortex cross.

2. Setup

We write the coupled system of DNLS equations in the form:

iun,m + 6(un-i-l,m + un—l,m + un,m-i—l + un,m—l) + (’un,m|2 + 6’vn,m‘2)un,m = 07 (21)

ii}n,m + 6(”n+1,m + vn—l,m + Un,m+1 + vn,m—l) + (6|un,m|2 + |Un,m|2)vn,m = 07 (22)

where 8> 0 and e¢>0. Parameter § is often referred to as the cross-phase
modulation coefficient in optics. The self-phase modulation has been set to unity
in the systems (2.1) and (2.2). As is discussed in detail in Hudock et al. (2003; see
also references therein), typical values of § in the optical setting are 8= 2/3 for
two linear mutually orthogonal polarization modes in each waveguide and §=2
for two circular polarizations (or two different carrier wavelengths). On the other
hand, for binary condensates this coefficient is of the order of unity (Myatt et al.
1997) producing at =1 the discrete (non-integrable) analogue of the well-known
continuum integrable Manakov system. Hence, we will particularly focus on
these values of § in our numerical results in what follows, even though our
analysis will be kept as general as possible.
Localized modes of the coupled systems (2.1) and (2.2) take the form,

un,m(t) = ¢n,meita Un,m(t) = ‘pn,meiwt7 (23)

where w is a parameter of time-periodic solutions and (¢, ,, ¥, ) satisfy the
system of nonlinear difference equations,

(1 - |¢n,m|2 - 6|¢n,m|2)¢n,m = 6(¢n+1,m + ¢n—1,m + ¢n,m+1 + ¢n,m—1)) (24)

(w - ﬁ|¢n,m|2 - |¢n,m|2)‘pn,m = 6("pn-%l.,m + lpn—l,m + wn,m+1 + wn,m—l)' (25)

We are interested in a particular vortex solution, called the wvortex cross. An
example of this solution is obtained numerically for 8=2/3, w=1 and e= 0.1 and
it is shown in figure 1. Let us consider the diagonal square discrete contour on the
grid (n, m) €27,

% = {(=1,0): (0,—1); (1,0); (0, 1)} = 2%, (2.6)

enumerated in the same order by j=1,2,3,4. We shall assume that the vortex
cross of figure 1 bifurcates from the limiting solution at the anti-continuum
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Figure 1. The contour plots show the amplitude and phase (left and right panels, respectively) of
the two components (top and bottom, respectively) for a (1, 1) (left four subplots) and a (1, —1)
(right four subplots) vortex configuration, in the case of §=2/3, w=1 and ¢=0.1.
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limit e=0:
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n,m

D =

ael, (n,m)e S0, be”, (n,m)es80,
= (2.7)

0, (n, m) & 80, 0, (n, m) & SO

where the set of phase parameters {6, v]-}le is yet to be determined, while the
set of amplitude parameters (a, b) is determined from solutions of the system

G+ =1, B+ =ow. (2.8)
When 8 # 1, there exists a unique solution of the system (2.8),
2 _ 1= fw 2 _w—0
ot =— = .
1—6? 1—6
The solution is meaningful only if a®>> 0 and b*> 0, which define the domain
of existence

(2.9)

min(g, ) < < max(8,87). (2.10)

When =1, the domain of existence shrinks into the line w=1 and the
solution of the system (2.8) forms a one-parameter family,

a=cosd, b=sind, o€]0,2m]. (2.11)

The vortex cross, if it exists, is defined by the phase configurations along the
discrete contour S,

m(j—1 m(j—1
=00, =),
The upper sign corresponds to the (1, 1) coupled state called the double-charge
vorter, while the lower sign corresponds to the (1, —1) coupled state called the
hidden-charge vortex. Persistence and stability of the vortex configurations
(2.7), (2.9) and (2.12) are addressed separately in the cases =0, 0< (<1,
=1 and >1.

j=1,2,3,4. (2.12)
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3. Scalar vortex cross

We apply the method of LS reductions developed in Pelinovsky et al. (2005b) to
the scalar nonlinear difference equation

(1 - ’(pmm‘Q)@n,m = 6(¢n+1,m + @n—l,m + @n,m-‘rl + (Dn,m—l)' (31)

This scalar equation corresponds to the reduction ¥, ,, =0, ¥(n,m) € Z? of the
systems (2.4) and (2.5). Local existence of a single-component vortex cross in the
scalar problem (3.1) is proved in appendix A for small values of € (on the basis of
proposition 2.9 in Pelinovsky et al. (2005b)). This result is formulated as follows.

Proposition 3.1. There exists a unique (up to the gauge invariance)
continuation in € of the limiting solution at e=0:

o0 — e, (n,m)e s,
7 0, (n,m) & 50

where SO s given by equation (2.6) and the values of 0; are given by equation

(2.12). The family of vortex solutions ®,,,(€), (n,m)EZ* is a smooth (real
analytic) function of €.

(3.2)

To address spectral stability of the vortex cross in the time-evolution of the
single-component DNLS equation, we consider the linearization problem with the
explicit formula

(1) = 0B + e+ By e,
and derive the linear eigenvalue problem from the DNLS equation,

(]- _2|®n,m|2)an,m _qsgi,,mbn,m _E(an+l,m + Ap—1,m + A m+1 + an,mfl) = i/.{an,ma
(3.3)

(1 - 2|¢n,m|2)bn,m - éi,m Apm — 6(bn+1,m + bn—l,m + b’n,m+1 + bn,m—l) = _i)\bn,mv
(3.4)

where A is an eigenvalue and (a,, ,b,,,) are components of an eigenvector.
Symbolically, we write the linear eigenvalue problem as

H(e)p = iAo, (3.5)

where H(e) is the linearized Jacobian matrix for the systems (3.1), o is a diagonal
matrix of (1, —1) and ¢ is an eigenvector consisting of (a, ,, b, ). The linear

eigenvalue problem for the limiting solution @, ,, = @n?m, at €e=0 has a set of
double zero eigenvalues with the eigenvectors e; and generalized eigenvectors e;,

such that H"e;=0 and H"eé,=2ise;, where H”=7(0). The index j

enumerates the set S(¥) and the eigenvectors e; and €; have non-zero components
only at the corresponding nodes of the set S,

oif oif)
e =i |, &= - (3.6)
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The kernel of H(e) for € # 0 includes at least one eigenfunction,

dj’ﬂ,m
<pn,m=< 5 ) (n,m) €27, (3.7)

which follows from the gauge invariance of the DNLS equation with respect to
rotation of the complex phase in @, ,, ®(n, m) €7 Tt is easy to show that a
generalized kernel for zero eigenvalue is non-empty as it includes a solution of the
inhomogeneous equation H (e )qb 2io¢ exists, where ¢ is given by equation (3.7).

Using the perturbatlon Serles expansmn for D, m( ), we define the expansion
H(e)=HO + eHY + HP + O(¢*). By lemma 4.1 in Pelinovsky et al. (2005b),
computations of appendix A determine the splitting of zero eigenvalues of H(e)
as € # 0. The splitting of zero eigenvalues of o/H(e) is formulated and proved as
follows.

Proposition 3.2. Let @, ,,(¢), (n, m) €Z* be a family of vortez solutions defined
by proposition 3.1. The linearized problem (3.3)-(3.4) has zero eigenvalue of
algebraic multiplicity two and geometric multiplicity one and three small pairs of
purely imaginary eigenvalues of negative Krein signatures' with the asymptotic
approximations

Moy dsy =E2i€+ O(€7), A5 =Edie® + O(€).
The rest of the spectrum is bounded away from the origin as e = 0 and it is located
on the tmaginary axis of A.

Proof. We supplement the general proof of lemma 4.2 in Pelinovsky et al.
(2005b) with the explicit perturbation series expansions for small eigenvalues of
the linear eigenvalue problem (3.5),

Q= (p(o) + e(p(l) + 62(/)(2) + 0(63), A=¢€A + GQAQ + 0(63), (3.8)
where
0 _\ y_h 1)
4 )= Z i€ (P( = ? Z Cj€; + Pinhom>
Jj=1 Jj=1
and the solution (pi(rlﬂ)lom =—HOTHW O = 1MW) is uniquely defined on the

set SU, where S is the set of adjacent nodes to the set of S(*). At the second-
order perturbation theory, the problem is written in the form

HOp® + HVWp + HP O = i2100M) + ity (3.9)

Projecting the problem to the kernel of H”), we find the reduced eigenvalue
problem

Mye =i, (3.10)
where ¢= (¢, ¢, c3, c4)T and M, is computed in appendix A. Therefore, two

negative eigenvalues v;, of the Jacobian matrix 62./\/12 generate two pairs of
imaginary eigenvalues of negative Krein signatures’ in the linear eigenvalue
problem by virtue of the relation A=+,/2y. The same computation is then
extended up to the fourth order, where it is found that the negative eigenvalue 75

LA simple eigenvalue of the linear eigenvalue problem (3.5) is said to have the negative Krein
signature if the quadratic form for the associated eigenvector (H(€)g,p) is negative.
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Figure 2. Eigenvalues of the scalar vortex cross versus €. (a) Imaginary part and (b) real part of the

relevant eigenvalues. The solid lines display the numerical results, while the dashed ones
correspond to the asymptotic approximations.

of the extended matrix eM,+ €'M, determines the third pair of purely
imaginary eigenvalues by virtue of the same relation A ==4+/2y. [ |

We note that the count of eigenvalues of negative Krein signatures
corresponds to the closure theorem for negative index of H(e) (see Pelinovsky
et al. (2005a) for details). There are four negative eigenvalues of H" for the
limiting solution (3.2) and three more small negative eigenvalues occur for € # 0.
The total number of negative eigenvalues is reduced by the gauge symmetry
constraint, such that six negative eigenvalues in a constrained subspace match
three pairs of imaginary eigenvalues with negative Krein signature.

The asymptotic approximations of eigenvalues A are plotted in figure 2 by
dashed lines. The numerical computations of the same eigenvalues (up to the
prescribed numerical accuracy) versus € are shown by solid lines. The numerical
accuracy is excellent for € < 0.1 but it becomes worse for € > 0.2 especially for the
smallest eigenvalue. The astute reader will, in fact, observe that this is a general
trend in what follows (see figures below), i.e. higher-order predictions may be
more sensitive (as may be expected due to their higher-order corrections) to
variations of € as € grows. All three pairs of purely imaginary eigenvalues
bifurcate into complex domains when they collide to other eigenvalues of the
stability problem (e.g. with eigenvalues of positive Krein signatures or with the
spectral band). The first collision is numerically detected to occur at e =0.395.

4. Vector vortex crosses for 0< < 1and 8> 1

In order to consider the coupled vortex configurations in the non-degenerate case
B #1, we extend computations of appendix A to the solution of the coupled
nonlinear difference equations (2.4) and (2.5). We report here computations for
two related problems: (i) bifurcations of small eigenvalues of the linearized
Jacobian matrix near the zero eigenvalue and (ii) bifurcations of small
eigenvalues of the linearized stability problem near the origin. Because of
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the computational complexity of the analytical approximations, we shall
complement the analytical results of the second-order LS reductions with the
symbolic computational results of the fourth-order LS reductions.

Similarly to the scalar case, the linearized stability problem for the two-
component system takes the matrix-vector form

H(e)p = ikaep, (4.1)
where H(e) is the linearized Jacobian matrix for the systems (2.4) and (2.5), ¢ is
a diagonal matrix of (1, —1,1, —1) and ¢ is an eigenvector consisting of four
elements of the perturbation vector at each node (n, m) € Z?. The diagonal block
of the matrix H(e) at each node (n, m) €Z* takes the form

1=2|¢h, l* = Bl ml” ~bnm — B¢nmVum — Bum¥um
—brm 1=20¢0 0l = BVuml” = BPum¥um — BV
— B m¥m —Bbumtnm 0= Blduml =2l ~Yom
— B%nmVum = Bun¥um Vo 0= Blnm|* =2 ml*

The non-diagonal blocks of H(€) come from the difference operators in the right-
hand-side of the systems (2.4) and (2.5).

(a) Bifurcations of zero eigenvalues of the linearized Jacobian matriz

We extend the perturbation series expansions (A 1) to the two-component case,

¢IL NL Z € ¢IL m» wn HL Z € wn m» (4'2)

where the zero-order solution in the anti-continuum hrmt is given by equation (2.7)
and parameters (a, b) are given in equation (2.9). The first-order corrections are
found from the uncoupled system of equations, similarly to the scalar case,

0, (n,m)es®, 0, (n,m)es®
¢(1) = i0 (1) lp(l) = —1 v (1)
n,m aZe ' (n,m)eS n,m bZe L' (n,m)eS
0, (n,m)GESO)US(l), 0, (n,m)GES 0y sm,
(4.3)
where Zgl) is defined in (A 3). The second-order corrections are found in the form
( s]@)ew], (n,m) &€ S(O), r](z el , (n,m)€ S
0, (n,m)esW, 0, (n,m)e sV
aZe’el, (n,m)e 5%, w2 bZe"’l n,m) €
]
0, (n,m)&sOuUsHyS?, \Q@mmesﬁusﬂuyﬂ
(4.4)
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where 252) is defined in (A 5). The real parameters (s 2 7(2)) satisfy an

o,
inhomogeneous system

—2(as®? + B0r*)) = 4 +2 cos(0;41 — ;) +2 cos(8,— —0;) + cos(0,4,—0,), (4.5)

—Q(ﬂasj(?) + br]@)) =4 +2cos(vj4y —v;) +2cos(vj4 —v;) +cos(vjpo—v;). (4.6)

When § #1, the inhomogeneous system (4.5) and (4.6) has a unique solution.
Second-order corrections to the bifurcation equations are uncoupled and have the
form

g](.2) = 2sin(f; —

j 0]'_;,_1) +2 Sln(0] _0]'_1) + Sln(0] _0]'_;,_2),

h? =2 sin(v; —vj41) +2sin(v; —v;4) +sin(v; —vj49),

J
where a suitable normalization of gj( ) and £ is made. As a result, the Jacobian

matrix computed from derivatives of (gj( ), h(2)) in (6;,v,) is block-diagonal as
diag(My, M), where M, is defined in appendlx A. By lemma 4.1 in Pelinovsky
et al. (2005b), non-zero eigenvalues of diag(M,, M) determine small eigenvalues of

the linearized Jacobian matrix H(e),
Y1234 = —2¢ + 0(64).

Two zero eigenvalues of diag(Ms, M,) split into two non-zero eigenvalues in the
fourth-order LS reductions, while two other zero eigenvalues of diag(M,, My)
persist beyond all orders due to the gauge invariance of each component in coupled
DNLS equations (2.1) and (2.2). Indeed, the kernel of H(e) for € # 0 includes at least
two eigenfunctions,

¢n,m 0
_¢n m 0 9
o = , , (n,m)eZ". 4.7
¢ ' 0 1pn,m ( ) ( )
0 _ltzn,m

In order to compute the small non-zero eigenvalues of the linearized Jacobian
matrix H(e), we use the symbolic computation package based on Wolfram’s
MaTaEMATICA. The projection to the eigenspace of diag(M,, M,) spanned by
eigenvectors (py,04)" and (04, py)*, where p, = (—1,1,—1,1) and 0,= (0,0,0,0),
leads to the reduced eigenvalue problem (for w=1),

(041 + 5042) = yay,

1+6
(e + o) = 7a
Q) tay) = ,
1+ 5 1 2 Yy
where (al, a,) are coordinates of the projections, y= hmf_,oe v and the upper/
lower signs refer to the two coupled vortices (1 +1). It is clear that the

eigenvalues of the reduced eigenvalue problem are the same for either sign
and they define two small eigenvalues of the linearized Jacobian matrix H(e)

Proc. R. Soc. A (2006)
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(for w=1),
vs = —8¢! + O(%), v = —78((11_:5) e+ O().

(b) Bifurcations of zero eigenvalues of the linearized stability problem

We consider the eigenvalue problem (4.1) in the limit of small e. Let
Hie)=HY + eHY + H® + O(e*). The set of eigenvectors of H) e;j=0 and
'H(O)fj =0 takes the form

ewj 0
_67101 0
e =i , =i . (4.8)
0 eV
0 _e_ll/7

The corresponding set of generalized eigenvectors of HO) e;=2ige; and H(O)fj =
2igf; takes the form

A+eiﬂf A,ewf

) A+e_iﬁf A,G_w]

ej = . ) f] = . ) (49)
B+elV] Bielll]
B+ e~ iv; Be iv;

where
1 -8 1
Ay=———, By=A=——"_ B=—
Toaa-y) T ab(1—4?) ?(1—6°)

Bifurcations of zero eigenvalues of the linear eigenvalue problem (4.1) can be
computed with the extended perturbation series expansions (4.2) for ¢, ,(¢) and
Vym(€) and extended perturbation series (3.8) for ¢ and A, where

4 4 4 4
A A A
0) _ 1) _ M A 1 1
oV =3 e+ df; oV = o > e, Ty > i + Pt
J=1 J=1 j=1 j=1

and (p(l) =—HOHW O = HD O is uniquely defined on the set SM. At

inhom —
the second-order perturbation theory, we have the same problem (3.9), from

which we derive the reduced eigenvalue problem,

Mye =15 (A e+ Ad), (4.10)

M,d = 1i(Byc+ B_d), (4.11)

where ¢= (¢, ¢, €3, ¢))", d= (dy, dy, ds, d;)* and M, is the same as in the scalar

case. Let y; = (1/2)A%. The reduced eigenvalue problems (4.10) and (4.11) has
four zero roots for v, and two double-degenerate non-zero roots for v;, given
from the quadratic equation

(y1 +20%) (v, + 20%) = 4a*b°6°. (4.12)
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If =1, such that a*=b*=1/(1+ B), then the two non-zero roots for y, are
found explicitly,
_ 20F8)
T 1+8
By using the relation A; =++/2v,, we have just proved that the linear eigenvalue
problem (4.1) in the case w=1 and 0< <1 has four small pairs of purely
imaginary eigenvalues with asymptotic approximations,
Mgy Agq =2 2 — +9ie, [P 2
12 A4 =E2i€ + O(€),  Asg, Arg = £ 2i€q [——+ O(€).
S D 1+6
Two pairs of eigenvalues 45 s and A; g become pairs of real eigenvalues in the case
B>1. Two pairs of zero eigenvalues of the reduced eigenvalue problems (4.10)
and (4.11) split at the fourth-order LS reductions as pairs of non-zero eigenvalues
Ag 10 and Ay 12. Two other pairs of zero eigenvalues persist beyond all orders for
€ #0, since the geometric kernel includes two explicit solutions (4.7) and there
exists a two-parameter solution of the inhomogeneous equation H (€)@ = 2iog,
where ¢ is given by equation (4.7). In order to find the small non-zero pairs of
eigenvalues, we apply again the symbolic computation package based on
Wolfram’s MatnemATICA. The projection to the eigenspace of diag(Msy, My)
spanned by eigenvectors (p2,04)T and (0, p2)T for 4, =0 leads to the reduced
eigenvalue problem (for w=1),

—8 1
1+6 (a1 +Bay) = m/@(oﬁ — Baa),
—8 1
m (iﬁoél + 0{2) == ml%(_ﬁal + 0{2),

where (ay, ay) are coordinates of the projections and the upper/lower signs refer
to the two coupled vortices (1,£1). The eigenvalues of the reduced eigenvalue
problem differs between the double-charge vortex (1, 1) and the hidden-charge
vortex (1, —1). For the double-charge vortex, the two pairs of small eigenvalues
of the linearized stability problem are purely imaginary for any (:

1-p
1+

For the hidden-charge vortex, the two pairs of small eigenvalues of the linearized
stability problem are purely imaginary for 0 < <1 and real for §>1:

1—
(L=1): Ag10,A1112 =i4i\/ﬁf2 +0(€).

We can specify precisely how many purely imaginary eigenvalues of the
linearized stability problem (4.1) have negative Krein signature. When 0 < <1,

there are eight negative eigenvalues of H\”) for the limiting solution (2.7) and six
more small negative eigenvalues occur for € #0. The total number of negative
eigenvalues is reduced by two gauge symmetry constraints, such that 12 negative
eigenvalues in a constrained subspace match six pairs of imaginary eigenvalues
with negative Krein signature. When > 1, there are four negative eigenvalues of

(1, 1) : /19710 = i4i€2 + 0(63), /111’12 = "_|_41 62 + 0(63).
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Figure 3. Eigenvalues of the vector vortex cross with w=1 and 8= 2/3 versus €. (a) (1, 1) and (b)
(1, —1). The solid lines show the numerical results, while the dashed lines show the asymptotic
approximations. Bold curves correspond to double eigenvalues (that remain indistinguishable
within the parametric window examined herein). A good agreement is observed for € <0.1.

H for the limiting solution (2.7) and five more small negative eigenvalues occur
for € # 0. The total number of negative eigenvalues is reduced by one?, such that
eight negative eigenvalues in a constrained subspace match two real eigenvalues
and three pairs of imaginary eigenvalues with negative Krein signature for the
double-charge vortex and four real eigenvalues and two pairs of imaginary
eigenvalues with negative Krein signature for the hidden-charge vortex.
Therefore, the last pair of purely imaginary eigenvalues Ay, for the double-
charge vortex has positive Krein signature for 8> 1.

We obtain numerically small eigenvalues A for small values of € and w=1. The
results are shown in figure 3 for §=2/3 and in figure 4 for 8=2. The left plot
corresponds to the vortex pair (1, 1), while the right plot corresponds to the
vortex pair (1, —1). We note that the degeneracy of the pairs 4, ,= 143, and
A5 = A7 is preserved for the case (1, —1), such that each bold curve is double.
The degeneracy of these eigenvalues is broken for the case (1, 1) and it is also
broken for the pair Ag ;) # 411 12 for the case (1, —1).

In the case of §=2/3, shown in figure 3, all six pairs of neutrally stable
eigenvalues bifurcate to the complex plane for larger values of € due to the
Hamiltonian—Hopf (HH) bifurcation. The first HH bifurcation happens earlier for
the case (1, 1) at € =0.395, due to the broken degeneracy between the two pairs
of eigenvalues 4,5 and A3,. For the case (1, —1), the first HH bifurcation
occurs at € =0.495, i.e. the hidden-charge vortex has a larger stability window for
0<B<1 (a similar observation is reported for continuous systems in
Desyatnikov et al. (2005) and Ye et al. (2004)).

In the case of =2, shown in figure 4, both cases (1, 1) and (1, —1) are always
unstable due to the pairs of eigenvalues A; s and A7 4. There are also additional
observations. In the case (1, 1), the pairs of double real eigenvalues in the
second-order LS reductions A5 g and A g split as a quartet of complex eigenvalues,
similarly to our computations in Pelinovsky et al. (2005b). Real and imaginary

2When § is increased from 8<1 to 8>1, the Hessian matrix related to two gauge symmetry
constraints loses one positive eigenvalue that passes through zero at =1 to the negative
eigenvalue for $>1 (Pelinovsky & Kivshar 2000).
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Figure 4. Eigenvalues of the vector vortex cross with w=1 and =2 versus €. (a) (1,1) and (b)
(1, —1). The solid lines show the numerical results, while the dashed lines show the asymptotic
approximations. Bold curves in (a) correspond to the real and imaginary parts of complex
eigenvalues, while bolded curves in (b) correspond to double eigenvalues.

parts of the quartet of complex eigenvalues are shown in figure 4a by bold curves.
Only three HH bifurcations out of four pairs of purely imaginary eigenvalues
occur for larger values of €. In the case (1, —1), two more pairs of real eigenvalues
occur such that the hidden-charge vortex is more unstable compared to the
double-charge vortex for 8>1. Only two HH bifurcations occur for large values
of e.

5. Vector vortex cross for =1

The coupled DNLS system in the symmetric case =1 is referred to as the
discrete Manakov system. In the case §=1, the existence domain of the coupled
vortex configurations shrinks to the line w=1. The zero-order solution in the
anti-continuum limit is given by equation (2.7), where parameters (a, b) are
given by equation (2.11). The second-order solution of the linear inhomogeneous
systems (4.5) and (4.6) with a singular matrix exists provided that the values of
6; and v; are defined by equation (2.12). The arbitrary parameter in the second-
order solution sj(?) and rJ@) renormalizes the arbitrary parameter 6 in the
representation (2.11).

When 8= w= 1, the existence problem (2.4)—(2.5) is symmetric with respect to
components (¢, ,,, ¥, ) such that the systems (2.4) and (2.5) can be reduced to the
scalar difference equation (3.1) with the two independent transformations

(17 1) : ¢n,m = COs 5@n,mv wn,m = sin 6(pn,m7

(1,—1) : Gpm = €08 0D, ., Yy, =sin (ﬁ)n’m.

The existence result for the scalar vortex cross is formulated in proposition 3.1. We
will need the following non-degeneracy condition for the scalar vortex cross:

2

Z |q)n,m|2 * E (p%,m Z q_)?zm . (51)

(n,m)EZ2? (n,m)€Z2? (n,m)ez?
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It is clear from the limiting solution (2.7) that the constraint (5.1) is satisfied for
small e. The stability problem (4.1) is different between the cases (1, 1) and (1, —1).

(a) FEigenvalues of the (1, 1) vortezx cross

In this case, the stability problem (4.1) is block-diagonalized under the
following transformation of the four components of the vector ¢ on the lattice
node (n, m) €72,

Qp.m cos 0 0 sin 0 0 01
bn,m 0 cos 0 0 sin 0
(1, 1) . ’ = P2
rm —sin 6 0 cosé 0 ?3
Cnm 0 —sin 6 0 cos 0 Ps /) nm

The components (a,,,, b, ) satisfy the linear eigenvalue problem for scalar
vortices (3.3) and (3.4). The components (c; ,, ¢p) satisfy two uncoupled
self-adjoint eigenvalue problems,

2\ + + + + + .+
(1 - |@n.,m| )Cﬁ,m _E(C;+1,m + C;—l,m + C;;m-i-l + C;,m—l) = ilxc%,m' (52)

Using the result of proposition 3.2 and equivalent computations for the
uncoupled self-adjoint problems (5.2), we prove the following result.

Proposition 5.1. Let @,,,,(¢), (n,m) € Z? be a family of vortex solutions defined
by proposition 3.1. The linearized problem (4.1) in the case B=1 for the (1,1)
vorter cross has a zero eigenvalue of algebraic multiplicity six and geometric
multiplicity five and five small pairs of purely imaginary eigenvalues given
asymptotically by

A1y27A374 = izlé + 0(62), ;{576 = i2i62 + 0(63),
dg =£6i€ + O(€%), A9y =+4ie® + O(€).
The rest of the spectrum s bounded away the origin as e — 0 and it is located on
the imaginary axis of A.

Proof. It remains to study bifurcations of zero eigenvalues in the self-adjoint
problem (5.2) as € # 0. Let us define the perturbation series for the problem (5.2),

=Y +ecV +E? +0(8), A=+ifa + O().

The zero-order solution is spanned by unit vectors e; at the jth component that
correspond to the node (n, m) € SO,
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The first-order correction ¢!) takes the form

0, (n,m)es?,

(1) —
Cnm = Zal, n,m) e sW,

o, (n,m) &SV U sH,

where the sum Z ; is defined in equation (A 3). At the second-order in €, we find
a set of non-trivial equations at the nodes (n, m) € S,

Olj + (Xj+2 + 2((1]'_;,_1 + aj—l) = AQO[J', ] = 1,2,3,4.

The reduced eigenvalue problem has a double zero eigenvalue and two
non-zero eigenvalues —2 and 6. Two zero eigenvalues of the problem (5.2)
persist at all orders of €, because of the exact solutions: cJ,,—:m=d>n7m and
C% m = ¢7’L m:* .

We note that the pairs of eigenvalues 4,5, 434 and Ag;, continue the
eigenvalues of the vortex cross (1, 1) from § # 1 to 8=1. The pairs of eigenvalues
As¢ and A;g match with the zero values of the O(e) corrections to the
corresponding eigenvalues of the vortex cross (1, 1) for 8 # 1. Finally, the pair of
non-zero eigenvalues Ay 15 for § # 1 is forced to remain at the origin for §=1 due
to the polarization-rotation symmetry.

We can now specify how many purely imaginary eigenvalues A have negative
Krein signature. When =1, there are 4 negative and 12 zero eigenvalues of
H for the limiting solutlon (2 7). Out of the 12 zero eigenvalues, three small
negative eigenvalues bifurcate in the subspace for components (a,, ,, b,,,), two
small positive and two small negative eigenvalues bifurcate in the subspace for
components (¢ ., ¢, ) and five eigenvalues remain at zero as e#0. T he total
number of negative eigenvalues is reduced by one symmetry constraint®, such
that eight negative eigenvalues in a constrained subspace match four palrs of
imaginary eigenvalues with negative Krein signature. The only pair of purely
imaginary eigenvalues with positive Krein signature is the pair A5g that is
related to the two small positive eigenvalues in the subspace for components

(C—;L_,ma c;,m)'

(b) FEigenvalues of the (1, — 1) vortex cross

Since the stability problem (4.1) has no block-diagonalization for the (1,—1)
vortex cross, the results of the second-order LS reductions give only two pairs of
purely imaginary eigenvalues 1, 5 and A3 4. We shall study the eigenvalues of the
fourth-order LS reduction by using the symbolic computation package based on
Wolfram’s MATHEMATICA. In order to prepare for symbolic computations, we note
that the eigenvalues of H(e) in the case (1, —1) are exactly the same as
eigenvalues of H(e) in the case (1, 1), due to the equivalent transformation of the

3The Hessian matrix related to two gauge symmetry constraints has a zero eigenvalue for f=1,
while only positive eigenvalues are counted in a reduction of the negative index of H(e).

Proc. R. Soc. A (2006)



2686 P. G. Kevrekidis and D. E. Pelinovsky

vector ¢ in the eigenvalue problem H(e)p = yo:

Gy, cos 0 0 0 sin 0

?1

(1,-1) bn,m 0 cosd sino 0 ?9

7 . c:,: m 0 —sind cos o 0 @3
C;,m —sin 6 0 0 cos 0 Ps/) nm

As a result of this transformation, we immediately find the five-dimensional
kernel of H(e) for € #0, which can be spanned as follows:

cos 0 P, , —sind @, 0 —sin é @, ,, 0
B —cos 6D, ,, 0 —siné @, 0 —siné @,
Pnm = —gin 6 &)n‘m ’ 0 | cosé D, . ’ 0 7 Cos 0 @n,m ’
sin 6 @,,.,, cos 0P, ,, 0 Cos 0 q_ﬁmm 0

(5.3)

for (n, m) €Z*. The algebraic multiplicity of zero eigenvalue for € # 0 is defined
by the solution of the inhomogeneous equation H (€)@ = 2io¢, which is equivalent
to the projection equations

Z (9j,00) =0, j=1,2,3, 4,5,

(n,m)eZ?

where ¢ is spanned by five eigenvectors ¢; in the decomposition (4.7). Solving
this system of linear equations, we have found under the non-degeneracy
condition (5.1) that there is a one-parameter solution of the inhomogeneous
system for 6 #7/4 and a three-parameter solution for 6= m/4. Thus, the zero
eigenvalue has algebraic multiplicity siz for 6 # w/4 and eight for 6 = /4.

In the limit e=0, when H®) = H(0), we construct explicitly three sets of linearly
independent eigenvectors of H?,

cos 6 el cos 6 e'li sin 6 e’
| —cosé e it . | —coso e 3 sin 6 e~ 1%
€ =1 ) o | fi =1 ) R fi = v (5.4)
sinoe % —sino e % —cosoe '
—sin 6 el sin 6 e'% —cos 6 e\l

Only the set of eigenvectors e; generates the set of generalized eigenvectors of the
problem H® e;=2ige;, where
cos 0 e
cos 6 e 10 (5.5)
e = . 5.5
! sin 6 e 1%
sin 6 el

Thus, the zero eigenvalue of H() has algebraic multiplicity sizteen and geometric
multiplicity twelve. Two pairs of purely imaginary eigenvalues of negative Krein
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signatures bifurcate at the second-order LS reductions as
ALQ, 1374 == i21€ + 0(62).

In order to study bifurcations of non-zero eigenvalues at the fourth-order LS
reductions, we consider the extended perturbation series (3.8) for ¢ and A with

A =0 and
4 4 4
o =D ce ) dfff +Y dify (56)
=1 i=1 i=1

Performing computations symbolically, we have 12 homogeneous equations at the

order of O(€®) for 12 variables (¢, dj, d;), j=1,2,3,4, which can be converted
and simplified to the following determinant equation:

v3 +4(1 + 4 cos 46)y, + 36 = 0,

where v, = (1/2)43. By using the inverse relation A, ==+./27, and finding the roots
for v, explicitly, we obtain four small pairs of eigenvalues with asymptotic
approximations,

A5 =t 2i€ \/1 + 4 cos 46 —/8(cos 46 + cos 85) + O(€*),

Mg = i2162\/1 + 4 cos 46 + /8(cos 46 + cos 88) + O(€”).

When 6=0 or 6 = /2, we obtain the same pairs of purely imaginary eigenvalues
as in the case (1, 1) (see proposition 5.1). When é = /4, we obtain two degenerate
pairs of real eigenvalues,

A5,67A778 = i2\/§)€2 + 0(63).

The instability domain is found analytically from the condition that
complex-valued roots for vy, coalesce and become a double negative root.
This happens when cos(46)+ cos(80) =0, which is solved on the interval
6€0,7/2] at 6=n/12 and 6=>5m/12". Thus, the instability domain of
the (1, —1) vortex cross in the case f=1 is bounded by the interval
0€(m/12,5m/12).

In order to capture the remaining pair of non-zero eigenvalues Ag,, we shall
reorder the perturbation series expansions and to move the last two sums in the
decomposition (5.6) to the order of O(e?), while the coefficients of the vector
c=(c¢y, ¢, ¢3,¢4)7 should be projected to the vector py=(—1,1,—1,1) of the
kernel of M, such that ¢= z;p,. Performing computations symbolically, we have
twelve homogeneous equations at the order of O(e') for eight variables in the
vectors d* and d; and the coordinate z;. The homogeneous system is satisfied

with the choice d* =0 and d~ = z,p,, where z, is another coordinate. The
coordinates (z;,z,) solve a homogeneous system with the determinant equation

A3 =—16 cos?(20). Therefore, a small pair of purely imaginary eigenvalues of
negative Krein signatures has the asymptotic approximation

g1 = E4i€’cos(20) + O(€).

4 Another solution exists at 6=m/4, but it corresponds to the case when complex-valued roots
coalesce and become a double positive root for vys.
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Figure 5. Eigenvalues of the vector vortex cross with w= =1 and 6 = 7/4 versus €. (a) (1, 1) and
(b) (1, —1). The solid lines show the full numerical results, while the dashed lines show the
asymptotic approximations. Bold curves show double eigenvalues.

When 6=0 and 6= /2, the pair Ag;o matches to that in the case (1,1) (see
proposition 5.1). When 6 = m/4, the pair remains at the origin as it follows from the
study of algebraic multiplicity of zero eigenvalue. According to the count of
negative eigenvalues, the total number of negative eigenvalues of H(¢) for small €
reduced by one symmetry constraint is eight. These eigenvalues match two pairs of
imaginary eigenvalues 4, 5 and 43 4 and two real positive eigenvalues 4; s and 17’85.

Asymptotic and numerical approximations of small eigenvalues A for small
values of € for w= =1 and 6 = 7/4 are shown in figure 5. Figure 5a corresponds
to the vortex pair (1, 1), while figure 5b corresponds to the vortex pair (1, —1).
We can see that the (1, 1) vortex cross is linearly stable in the anti-continuum
limit, according to the results of proposition 5.1. On the other hand, the (1, —1)
vortex cross becomes unstable because of the double pairs of real eigenvalues
A5 6= A75. The other double pair of purely imaginary eigenvalues remains double
for all €>0, such that A2 = A3 4. Therefore, the stability changes drastically in
the case 8=1: the (1, 1) vortex cross is stable near the anti-continuum limit while
the (1, —1) vortex cross is linearly unstable.

6. Conclusion

We have examined analytically and numerically the existence and stability of
vortex cross configurations in the single-component and two-component DNLS
equations. We have used the Lyapunov—Schmidt theory, to obtain the
bifurcation functions and the solvability conditions that allow persistence of
such configurations near the anti-continuum limit. Additionally, the theory
gives analytical expressions for eigenvalues of the linearized stability problem
as functions of the system parameters (namely, the coupling between adjacent

® Eigenvalues 256 and A7 g are real only in the case 6 = w/4. For other values of d, these eigenvalues
are either complex-valued or purely imaginary. The count is not affected, since two pairs of real
eigenvalues are equivalent to four complex eigenvalues which may coalesce due to the inverse
Hamilton—Hopf bifurcation to two pairs of purely imaginary eigenvalues with positive and negative
Krein signatures.
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lattice nodes €>0 and the coupling between the two components §>0). We
believe that similarly to what was experimentally shown for the scalar vortex-
cross configuration in Neshev et al. (2004) and Fleischer et al. (2004), the
stable vector vortex-cross configurations can be observed experimentally either
in waveguide array experiments (Meier et al. 2003) or in atomic physics
experiments of coupled hyperfine states of BECs in deep optical lattices
(Myatt et al. 1997). While in the former context, specific values of the
nonlinear coupling @ are selected by the nature of the physical model, in the
latter there is even the versatile capability of tuning § at will via the so-called
Feshbach resonance (Brazhnyi & Konotop 2004) and observing a wide range of
phenomena presented herein.

P.G.K. is supported by NSF through the grants DMS-0204585, DMS-CAREER and DMS-0505663.
D.E.P. is supported by NSERC and PREA grants.

Appendix A. Continuation of the single-component vortex cross

We apply the algorithm of LS reductions (see Pelinovsky et al. (2005b) for
details) and compute the first few terms of the perturbation series expansions,

) => o). (A1)
k=0
(0)

The zero-order solution @, is given by (3.2). The first-order correction is
obtained in the explicit form

0, (n,m) e S,

@nl,Zn = Zelﬂl n m ES (A 2)

o, (n,m) & S us<1>
where 1) is the set of adjacent nodes to the set S and 251) e?is a schematic
notation for the following solution:
(1) et 4 el 4 olfs 4 ol (n,m) = (0,0),
el =l et (nym) = {(-1,-1); (1,-1); (1,1); (—1,1)},  (A3)
: e, (n,m) ={(-2,0); (0 —2);(2,0);: (0,2)}.
The mdex j enumerates nodes in the set S that are adjacent to the nodes in the
set S listed in the figured brackets of (A 3). No non-trivial bifurcation equations
arise at the first-order reductions, i.e. the first-order correction to the bifurcation

function g(l)(ﬂ) is zero, where 8 = (6, 6, 05, 6,) and notations of Pelinovsky et al.
(2005b) are used. The second-order correction is found in the form

( s](?)ewf, (n,m) € 50

07 (n,m) e SV,
o), — (A1)

Ze“?l (n,m) € s@

o, (n,m) & SO U S(1> U s
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where
—25(-2) =4+ 2cos(f;41 —0;) +2cos(fj—y —0;) + cos(f;42—0,).

The set S@ contains outward adjacent nodes to the set S\ {(0,0)} and Z elf
is a schematic notation for the following solution:

) 2ei0'7 + eij? (n7 m) = {(_27_1); (17—2); (27 1)5 (_17 2)}7
Zew[ = eiﬁj + 260'7“7 (nv m) = {(_17_2); (27_1)§ (17 2); (_27 1)}7 (A 5)
l (mm) = {(-3,0): (0,-3): (3,0): 0.3)}.
The second-order corrections to the bifurcation function take the form
07 =2sin(0,—0,4,) + 2sin(0,—0,,) +sin(6,—0,5,), j=1,2,3,4. (A6)

The bifurcation equations g (0) = 0 are satisfied with the one-parameter family
of asymmetric vortices,

0120, 0220, 03:7T, 04:7T+0, (A?)
where § € (0, 7). When 6= /2, the family (A7) reduces to the vortex cross

configuration (2.12). The Jacobian matrix M, of the second-order bifurcation

function g¥ (@) is obtained by differentiation of g in 6. At the family of
asymmetric vortices (A 7), the Jacobian matrix M, takes the form

—1 —2 cos 0 1 2 cos 6
—2 cos 0 —1 2 cos 0 1
Mg =
1 2 cos 6 —1 —2 cos 0
2 cos 1 —2 cos 0 —1

It has two zero eigenvalues and two non-zero eigenvalues —2+ 4 cos 6. In the case
of the vortex cross (= m/2), it has two zero eigenvalues and two negative
eigenvalues —2. The third-order correction satisfies the inhomogeneous
equation,

0)2 2 2 2 2 5(1
(1=2(00) )0, — N al, =07, + 0, + 7+ 0+ |0l el

n,m—1

where we have shortened nonlinear terms, since q')ﬁ,"m(p;;, <I)§71m 5,2,7 0 for all
(n, m) €Z*. The third-order correction is found in the form

(0, (n,m)eS?
‘@n m| @n m + ZSZ 16 + Zelﬁl ’fL m E S(

o), =<0, (n,m>es<2, (A8)

Ze101 (n, m) ES

0, (n,m)e&sSOuUsHus?ys®
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where the sum ZEI) 81(2)6161 is defined similarly to the sum (A 3), the sum ZE?’) elf!
is not used for further computations and the sum ZELB) e is defined as follows:

SO {361'% +3e'9]+17 (n7 m) = {(_17_1);(1a_1);(171);(_171)}>

ol — A
Z 5eli 4 elfit + el (n,m) = {(—2,0); (0,—2);(2,0);(0,2)}, (49)

1
No non-trivial bifurcation equations arise at the third-order reductions, i.e.
g(?’)(0) = 0. The fourth-order correction satisfies the inhomogeneous equation,

+ oY

n,m = n,m n+1l,m n—1,m

(1=2/@), )l — N al), =200, ol + o75a), + ol

n,
a0+ o)

n,m—1"

Solving the inhomogeneous equation for the third-order corrections, we obtain
the bifurcation equations at the fourth order of LS reductions in the form

g](-4) =(4+42cos(0;42—0;41) +2cos(0;—0,41) +cos(0;—1 — 0;41))sin(0,41 — ;)
+(4+2cos(;—o—0;_1) +2cos(0; —6;_;) +cos(0; 41 —0;_1))sin(0,_, — 0,)
+%(4 +2cos(0j—1 —0;_5) +2cos(0;4.1 —0;49) +cos(0;—0,,5))sin(0; 1, —0))
+ (4 +2c08(0;41 —0;12) +2cos(0; 1 —0;_5) +cos(8;—0,_5))sin(6;_, —0;)
+2(1+cos(8;4+1—0,))sin(0;—0;41) +2(1 +cos(0;—; —0;))sin(0,—0,_;)
+2(2+cos(fy—0) +cos(f3—0,) +cos(fy—0,) +cos(f3—0,)
+cos(f, —0,) +cos(0, —05))(sin(0,— 0, 1) +sin(0,—0,_1) +sin(0; — 0,15))
+4sin(0; —0;4,) +4sin(6; —0,_,).

For the asymmetric vortex, we have

g" = (-1y2sin(20), j=1,2 3 4.

The Jacobian matrix M, has two zero eigenvalues with orthogonal eigenvectors,

1 -1

1

b= 1 ) b = ]
1 1

It is clear that the vector g =2 sin(26)p, is not orthogonal to the eigenvector
p, of the kernel of My, unless § = {0, 7/2, w}. By proposition 2.10 in Pelinovsky
et al. (2005b), the family of asymmetric vortices (A7) terminates at the

Proc. R. Soc. A (2006)



2692 P. G. Kevrekidis and D. E. Pelinovsky

fourth-order reduction. The exceptional cases include discrete solitons for 6=
{0, 7} and the vortex cross at = m/2. In order to consider persistence of the
vortex cross, we compute the Jacobian matrices M, and M, from the bifur-
cation functions ¢g® and g¥) explicitly,

-1 0 1 0 3 2 =1 2
0 -1 0 1 2 3 2 -
Mg = ) M4 =
1 0 —1 0 -7 2 3 2
o 1 0 -1 2 =1 2 3

Since Myp; =0 and M, p, #0, the zero eigenvalue of M, with the associated
eigenvector p, bifurcates. By proposition 2.9 in Pelinovsky et al. (2005b), this
implies that the family of the vortex cross is continued from the anti-continuum
limit uniquely up to the rotational transformation @ — @ + 6,p; that corresponds
to the gauge symmetry of the DNLS equation (3.1). Proposition 3.1 is hence
proved.

Small eigenvalues of the linearized Jacobian matrix H(e) are defined by an
extended eigenvalue problem for the Jacobian matrices My and My,

(EMy + My + O(€)) e = ye.

There exist four eigenvalues of the extended problem which admit the
asymptotic approximations,

Y12 = —26% + 0(64), Y3 = —8¢ + 0(66), vy =0.

The eigenvalue 5 is obtained by the perturbation theory for the zero eigenvalue
of M, associated with the eigenvector p, (orthogonal to the eigenvector py),

lim 6—473 _ (p2; Mypy) —
>0 (p27 p?)
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