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By José R. Salgueiro, Yuri S. Kivshar, Dmitry E. Pelinovsky,
Verónica Simón, and Humberto Michinel

We study spatial vector solitons in a photonic crystal fiber (PCF) made of a
material with the focusing Kerr nonlinearity. We show that such two-component
localized nonlinear waves consist of two mutually trapped components confined
by the PCF linear and the self-induced nonlinear refractive indices, and they
bifurcate from the corresponding scalar solitons. We demonstrate that, in a
sharp contrast with an entirely homogeneous nonlinear Kerr medium where
both scalar and vector spatial solitons are unstable and may collapse, the
periodic structure of PCF can stabilize the otherwise unstable two-dimensional
spatial optical solitons. We apply the matrix criterion for stability of these
two-parameter solitons, and verify it by direct numerical simulations.

1. Introduction

Photonic crystal fibers (PCF) have attracted much interest due to their intriguing
properties, many potential applications, as well as the recent development of
successful technologies for their fabrication with engineered linear and nonlinear
properties [1, 2]. Photonic crystal fibers are characterized by a conventional
cylindric geometry with a two-dimensional lattice of air holes running parallel
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to the fiber optical axis. Such PCF structures share the propagation properties
of photonic crystals, based on the existence of the frequency gap with the
transmission suppressed due to the Bragg scattering, as well as the properties
of conventional optical fibers, due to the presence of a defect in the structure
acting as a PCF core. Some of the PCF intriguing characteristics include the
possibility to design single-moded PCFs independently on the light frequency
even for a large core, allowing the guidance of high powers what makes PCFs
very suitable for amplifiers or laser cavity applications. On the other hand,
there exists an upper cut-off frequency by means of a reduction of the core
index, and this also allows a very flexible control on the dispersion properties,
supporting large shifts of the zero-dispersion point, and birefringence, which
can be made much higher than in conventional fibers by a proper design.

In PCFs, light confinement is restricted to the core of the fiber and therefore
nonlinear effects, such as light self-trapping and localization in the form of
spatial optical solitons [3], may become important. The stabilizing effect of
periodic media for optical solitons has been observed in a number of cases. In
particular, one-dimensional vector solitons that are unstable in uniform media
are stable in a medium with a periodic modulation of the refractive index [4].
Also, discrete vector solitons were experimentally observed in two-dimensional
optically induced photonic lattices [5]. Similar to the case of two-dimensional
nonlinear photonic crystals [6], it has been recently demonstrated numerically
that a PCF can support and stabilize both fundamental and vortex spatial optical
solitons [7, 8]. In sharp contrast with an entirely homogeneous nonlinear
Kerr medium where spatial solitons are unstable and may collapse, it was
shown that the periodic structure of PCF can stabilize the otherwise unstable
two-dimensional spatial optical solitons.

In this paper, we make a further step forward in the study of nonlinear effects
in PCFs, in comparison with the recent analysis [7, 8], and analyze the existence
and stability of spatial vector solitons in PCFs. In general, vector solitons are
defined as two-component mutually trapped localized beams whose properties
may differ substantially from the properties of one-component scalar solitons
[3]. In addition, two-dimensional vector solitons are known to be unstable in the
nonlinear Kerr medium [9]. In contrast, as we show in this paper, the periodic
modulation of the refractive index in the PCF provides an effective physical
mechanism to stabilize the otherwise unstable two-dimensional spatial optical
solitons. We study the stability of these two-parameter solitons and apply the
matrix stability criterion that is then verified by direct numerical simulations.

The structure of this paper is as follows. First, in Section 2 we introduce our
physical model that is characterized by an effective potential created by the
PCF environment and also describe the nonlinear interaction between the beam
components. Then, in Section 3 we introduce our numerical method to find the
classes of spatially localized modes existing in the nonlinear core of the PCF.
In Section 4 we describe the family of two-component spatial solitons. Finally,
in Section 5 the stability of both one- and two-component solitons is analyzed.
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Figure 1. (a,b) Examples of stationary solutions for scalar PCF spatial solitons for β = 3.2 and
β = 6, and (c) power dependence of the soliton family. Points A and B in the power diagram
(c) correspond to the examples (a,b), respectively. Inset: the corresponding one-dimensional
profiles at y = 0 for both examples.

2. Model

We consider a simple model of PCF that describes, at a given frequency, the
spatial distribution of light in a nonlinear dielectric material with a triangular
lattice of air holes in a circular geometry. We assume that the PCF material
possesses a nonlinear Kerr response, and the hole at the center is filled by the
same material creating a nonlinear defect, as shown in Figures 1(a) and (b). In
the substrate material of the fiber, the linear refractive index is ns, whereas
inside the holes it is na. Air holes have radius r. We consider the case when the
PCF core guides two modes or two orthogonal polarizations. In the nonlinear
regime, the mutual interaction between these two modes is described by the
system of coupled equations,

i
∂ψ1

∂z
+ �ψ1 + naψ1 + V (x, y)

(
δ + |ψ1|2 + µ|ψ2|2

)
ψ1 = 0,

i
∂ψ2

∂z
+ �ψ2 + naψ2 + V (x, y)

(
δ + |ψ2|2 + µ|ψ1|2

)
ψ2 = 0,

(1)
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where ψ1 and ψ2 are two components (or two polarizations) of the electric
field, � is a transversal Laplace operator in (x , y), δ = ns − na, and V (x , y)
is an effective potential describing the defect and the lattice of holes in the
transverse plane (x , y). We normalize V = 1 in the material outside the holes,
and V = 0 in the holes. The nonlinear incoherent interaction between the
components is described by the parameter µ.

To find stationary two-dimensional nonlinear modes of PCF, we look for the
solutions in the form

ψ1(x, y, z) = u(x, y)eiβz, ψ2(x, y, z) = v(x, y)eiγ z,

and obtain the following coupled system of z-independent differential equations:

βu = �u + nau + V (x, y)(δ + u2 + µv2)u,

γ v = �v + nav + V (x, y)(δ + v2 + µu2)v.
(2)

The model (2) describes the stationary distribution of a two-component field
in an inhomogeneous nonlinear medium, in a planar geometry. Without the
external potential, the vector solitons in both one- and two-dimensional cases
have been studied earlier [3]. However, the lattice of air holes and the central
defect break the radial symmetry of the problem, and the corresponding vector
solitons are not radially symmetric.

3. Numerical method

To find the solutions for nonlinear localized modes, we consider a rectangular
domain of the (x ,y) and apply a finite-difference scheme, taking n and m
uniformly distributed samples of the variables x and y, respectively, to cover
all the domain. Denoting those samples as xi, 1 ≤ i ≤ n, and yj, 1 ≤ j ≤ m,
at each mapped point (xi, yj) of the domain we consider the corresponding
samples for all the functions defined in the equations: uij = u(xi, yj) and,
similarly, the second component vij, and the potential Vij. Substituting these
redefined variables into the model (2), and imposing homogeneous boundary
conditions in all four edges of the domain, we obtain an algebraic nonlinear
problem of 2 × n × m equations with the same number of unknowns uij

and vij.
To make the notation more compact, the samples corresponding to different

functions, which constitute n × m matrices, are rearranged concatenating the
columns of the matrices to produce big column vectors of N rows (N = n × m),
u, v, and V. Besides, we compact the vectors corresponding to both field
components in a unique field vector, by concatenating one after another,
q = (uT | vT )T , with 2N components qk . In that way, the algebraic nonlinear
system can be written as Aq = 0, where A is the 2N × 2N matrix, which
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depends on the unknown vector through the nonlinear terms, and we denote it
as A[q]. The system of equations takes the form

A[q]q = 0, (3)

being the rows of the matrix product

Ek = � j (A[q])k j q j , (4)

so that the system is written as Ek = 0, k = 1, 2, . . . , 2N . The matrix A, even
being huge in size, is in practice very sparse, and it differs from zero at the
main diagonal, two diagonals next to the main one, and two more at the
distance n from the main one (these four diagonals appear due to the coupling
terms in the derivatives of the Laplace operator), and also two more diagonals
at a distance N from the main one, due to the coupling between both field
components.

The nonlinear system of Equation (3) can be solved using the standard
globally convergent Newton method [10, 11], which builds the solution
iteratively from an initial guess q0 in the form ql = ql−1 + δq, l = 1, 2, . . . ,
where the calculation of the so-called Newton step δq at each iteration involves
the solution of the linear system

J(δq) = −E, (5)

where E is the vector obtained by substituting the last iterate into Equation (4),
and J is the Jacobian matrix defined as J ij = ∂ Ei/∂qj, and also evaluated
substituting the last known iterate. The Jacobian matrix presents a similar sparse
structure as the matrix A, and it can be calculated analytically. Obviously, due to
a huge size of the matrix J, the system (5) can only be solved iteratively. Taking
into account that for our particular problem the matrix J is symmetric, though
in general indefinite, the SYMMLQ method [12] proved to be successful.

Some improvements are possible in the method, taking the advantage of the
system symmetries. In fact, due to the hexagonal lattice of holes, the field
should be invariant under the rotation by the angles l(π/3), where l is an
integer. It would make possible to solve the problem only in a circular sector of
the amplitude π/3, imposing periodic boundary conditions at the borders and
homogeneous in the radial direction. The number of points could be reduced
in that case by the factor of six. Another approach, that took advantage of the
lattice periodicity, was developed by Ferrando et al. [7].

4. Stationary solutions

The presence of the external linear potential given by the central defect and
the lattice of air-holes makes the system nonscalable and its radial symmetry
broken. Therefore, the study has to be carried out by numerical methods. We
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solve Equation (2) numerically for both scalar (when one of the components
vanishes, i.e., v = 0) and vector (or two-component) spatial solitons and obtain
the stationary states of the nonlinear system.

4.1. Scalar solitons

For the scalar case, we assume that one of the components is absent (e.g.,
v = 0) and we study a single nonlinear equation of the nonlinear eigenvalue
problem (2). We find a family of the spatially localized modes—the so-called
PCF spatial solitons—as a function of the mode propagation number β. These
results are similar to those earlier reported by Ferrando et al. [7], and the
solution can be envisaged as the fundamental mode of the effective fiber
generated by the combined effect of the PCF refractive index and the nonlinear
index induced by the solution amplitude itself.

Figures 1(a) and (b) show two examples of stationary, spatially localized
solutions of the nonlinear model (2) at v = 0, which describe scalar spatial
optical solitons as nonlinear modes of PCF. The whole family of such
one-parameter solutions can be characterized by the power P = ∫

u2dxdy,
that is plotted in Figure 1(c), where the points A and B correspond to the
examples (a,b), respectively. The material parameters for the PCF are taken as
na = 1, ns = 4, and r = 0.75.

First, we note that these stationary solutions for scalar spatial solitons in PCF
have been found earlier by Ferrando et al. [7], who also mentioned, without a
proof, that such nonlinear modes are stabilized by the lattices of PCF holes.
Indeed, it is well known that in the nonlinear focusing Kerr media without a
nonlinearity saturation, the self-trapped optical beams are always unstable [3].
This instability can manifest itself as the beam spreading, when the input
power is lower than that of the soliton, or the beam collapse, when the power
is larger than the soliton power. As has been mentioned earlier by Ferrando
et al. [7], such a soliton instability can be suppressed by the presence of the
lattice of holes, because the external potential stops the beam spreading, as it
happens in a conventional optical fiber, leading to the existence of a family of
stable stationary beams.

To demonstrate this feature, we follow the standard analysis of the soliton
stability [3] and plot in Figure 1(c) the soliton power as a function of the soliton
propagation constant. A positive slope of this dependence indicates the soliton
stability, as will be demonstrated below. In Figure 2 we present some related
numerical simulations of the dynamics of a perturbed scalar soliton. Some of
the stationary states are scaled by factors slightly higher and lower than unity,
respectively, so as to induce an initial perturbation, and then propagated using
a standard beam-propagation-method algorithm. The result is that the soliton
behaves stably if its power remains below the maximal limiting power on
Figure 1(c).
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Figure 2. Results of numerical simulations of the soliton dynamics in the scalar case. The
initial stationary solution is perturbed by two amplitude scalings (indicated in the graphs): one
is higher and the other one is lower than the unity. Shown is the maximum soliton intensity
versus the propagation distance.

When the scaling factor is taken higher than unity, a stable propagation
is observed for the solitons of low enough power, as seen in Figure 2(a).
Nevertheless, for higher values of the power the soliton may collapse if the
scaling factor is too large (Figure 2(b)), but it remains stable for a smaller
scaling (Figure 2(c)). Further increase in the initial power results in collapse of
the beam for any scaling factor (Figure 2(d)).

When the scaling factor is taken smaller than unity, the lattice of holes stops
the soliton spreading in all cases, so that the soliton propagates stable, as is
illustrated in all cases presented in Figure 2.

4.2. Vector solitons

Vector solitons in the coupled problem (2) depend on both propagation
constants (β, γ ) as well as the material parameters (δ, µ). Some examples of
the vector solitons in PCF are presented in Figure 3, corresponding to the
points A and B marked on the existence domain shown in Figure 4. This
domain, whose symmetry respect to both parameters β and γ is evident
from the symmetry of both the equations of the model (2), is plotted in the
plane (β, γ ). The existence domain is limited by two lines at whose points
(bifurcation points) the vector solitons originate from the scalar solitons;
such curves can be regarded as bifurcation curves. When µ < 1, close to the
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Figure 3. Examples of the two-component stationary solutions of the model (2) for vector
solitons in PCFs. Two cases correspond to the points A (β = 5, γ = 4) and B (β = 5, γ = 8) in
the existence domain shown in Figure 4 for µ = 2. In each column both components are
shown in the plane (x , y), together with a one-dimensional x-cutoff profile to compare the
field amplitudes.

lower bifurcation curve, the second component decreases becoming a linear
guided mode of the soliton mode in the first (self-guided) component; the
opposite case occurs close to the upper bifurcation curve where the role of
the components is reversed. When µ > 1, we have the opposed situation with

Figure 4. Existence domain for the vector solitons in PCF in the plane (β, γ ), shown at two
values of the coupling parameter µ. Labeled points correspond to two particular examples
shown in Figure 3.



Spatial Vector Solitons in Nonlinear Photonic Crystal Fibers 165

respect to the lower and upper bifurcation curves. The presence of an effective
waveguide associated with one missing hole in the lattice is the reason that
the propagation constants take a value different from zero, when the power
vanishes; this threshold value corresponds to the eigenvalue of the linear mode
guided by this effective waveguide in the lattice of air holes.

Similar to the scalar case, the presence of a periodic lattice of holes
suggests that the vector solitons may become stable in this system. In this
case, the vectorial nature of the system plays an important role to determine
the portion of the domain where the solutions are stable. As follows from
the next section, by applying the generalized matrix stability criterion, it is
possible to determine the boundary between the stable and unstable regions.
According to that, this boundary is the set of points that fulfill the marginal
stability condition det(D) = 0, where Dij = ∂ Pi/∂β j while (P1, P2) and
(β1, β2) are, respectively, powers and propagation constants for the components
(u, v). In Figure 4 this boundary, as well as both regions of stability and
instability are represented. A number of numerical simulations were carried
out to test the stability of the solutions in each region. A standard beam
propagation algorithm was used and the stationary solutions of the system
were rescaled by a constant slightly higher that one, so that the peak amplitude
of the fields initially raises over the peak amplitude of the exact stationary
solution. For fields in the stability region, in spite of the initial growth of
amplitude, it becomes stable after certain propagation distance.

5. Soliton stability

Stability of scalar and vector solitons in the coupled NLS equation can be
studied with the matrix stability criterion [13, 14]. Applications of the matrix
criterion depend on the exact count on the number of eigenvalues of the
matrix Schrödinger operators and require careful numerical computations of a
spectral (linearization) problem. Alternatively, a count of the eigenvalues can
be developed in a local neighborhood of the bifurcation curves, such as the
ones shown on Figure 4. These computations can be developed analytically,
with the perturbation series expansions [15–17].

5.1. Scalar solitons

For simplicity and without loss of generality, we set na = 0 in our analytical
computations. First, we study the stability of scalar solitons, when u = φ(x , y)
and v = 0, where φ(x , y) is a solution of the nonlinear eigenvalue
problem

�φ − βφ + V (x, y)(δ + φ2)φ = 0, (6)
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We assume that there exists a ground-state (positive definite) solution of the
linear problem

�φ0 − β0φ0 + δV (x, y)φ0 = 0,

with the propagation constant β0. Applying the local bifurcation analysis for
the nonlinear ground state, we look for the solutions in the asymptotic form,
φ = ε[φ0 + ε2φ2 + O(ε4)] and β = β0 + ε2β2 + O(ε4), and obtain the result

β2 =
(
φ2

0, V (x, y)φ2
0

)
(φ0, φ0)

> 0, (7)

where the inequality follows from the fact that V (x , y) is nonnegative. Therefore,
the soliton power (squared L2 norm) p(β) = ‖φ‖2

L2 = (φ, φ) is an increasing
function of the propagation constant β near the bifurcation point β = β0:

dp

dβ
= (φ0, φ0)

β2
+ O(ε2) > 0. (8)

Stability for the scalar solitons is determined by the linear eigenvalue problem,
L+u = −λw and L−w = λu, where the linear operators L± are defined as

L+ = β − � − V (x, y)(δ + 3φ2(x, y)),

L− = β − � − V (x, y)(δ + φ2(x, y)).

If φ(x , y) > 0 for all (x , y) ∈ R2, then L− is nonnegative with the zero eigenvalue
L−φ = 0 due to the gauge invariance. We consider the number of negative
eigenvalues of L+ and apply the earlier results for one-dimensional solitons
[13]. It is clear that L+ must have at least one negative eigenvalue because

(φ, L+φ) = −2(φ2, V (x, y)φ2) < 0. (9)

When β = β0 and φ = 0, the operator L+ has a simple zero eigenvalue and
no negative eigenvalues. Therefore, according to the perturbation theory, the
operator L+ has exactly one negative eigenvalue for β > β0 near the local
bifurcation threshold. The condition for applicability of the Vakhitov–Kolokolov
criterion is satisfied and it suggests stability of scalar solitons at least near the
bifurcation point.

Numerically, we have checked that the number of negative eigenvalues of
L+ does not change and the slope of dP/dβ is always positive, as shown in the
example presented in Figure 1(c). Therefore, the scalar optical solitons in PCF
is stable everywhere for β > β0.

5.2. Vector solitons

Next, we study stability of vector solitons, when u = �(x , y) and v = (x , y),
where �(x , y) and (x , y) are real-valued positive solutions of the coupled
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nonlinear eigenvalue problem

β� = �� + V (x, y)(δ + �2 + µ2)�,

γ = � + V (x, y)(δ + µ�2 + 2).
(10)

We consider a local bifurcation of the vector soliton from the scalar one,
and look for solutions in the asymptotic form, � = �0 + ε2�2 + O(ε4) and
 = ε(0 + ε22 + O(ε4)), and also expand the eigenvalue, γ = γ 0 + ε2γ 2 +
O(ε4), where β is an arbitrary parameter, such that β > β0. The function
�0 = φ(x , y) satisfies the nonlinear eigenvalue problem (6) for a scalar soliton.
Function 0 = ψ(x , y) is a ground-state solution of the linear eigenvalue
problem

L0ψ = (γ0 − � − V (x, y)(δ + µφ2))ψ = 0, (11)

where γ 0 is a function of parameters (δ, µ) and the propagation constant β.
The problem for �2(x , y), L+�2 = µV (x , y)φψ2, is always solvable, in the
assumption that the operator L+ for the scalar soliton has one negative and no
zero eigenvalues for any β > β0. Finally, from the solvability condition of the
linear inhomogeneous problem

L02 = 2µV (x, y)φψ�2 + V (x, y)ψ3 − γ2ψ, (12)

we derive that

γ2 = 2µ
(
ψ2, V (x, y)φ�2

) + (ψ2, V (x, y)ψ2)

(ψ, ψ)
.

Numerical results show that γ 2 > 0 for µ < 1 (i.e., the bifurcation occurs from
the lower boundary of the existence domain on the plane (β, γ )), γ 2 < 0
for µ > 1 (i.e., bifurcation occurs from the upper boundary of the existence
domain), and γ 2 = 0 for µ = 1 (i.e., the existence domain shrinks on the
diagonal γ = β > β0 and γ 0 = β0).

We compute the Hessian matrix of derivatives of individual powers P =
(�, �) and Q = (, ) with respect to parameters β and γ . Let p = (φ, φ)
and assume that p′(β) > 0 for scalar soliton with β > β0. Near the local
bifurcation threshold at γ = γ 0, we have

∂P

∂γ
= 2(φ, �2)

γ2
+ O(ε2) = ∂ Q

∂β
,

∂ Q

∂γ
= (ψ, ψ)

γ2
+ O(ε2), (13)

such that the determinant of the Hessian matrix is

D(β, γ ) = (ψ, ψ)p′(β)

γ2
− 4(φ, �2)2

γ 2
2

+ O(ε2). (14)
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When µ < 1, we have γ 2 > 0 and the determinant may change the sign.
Numerical results show that D > 0 for β0 < β < β∗ and D < 0 for β > β∗ near
the local bifurcation boundary γ = γ 0.

When µ > 1, we have γ 2 < 0 and the determinant is always negative near the
local bifurcation boundary γ = γ 0. When µ = 1, we have β = γ and P = Q,
such that D = 0.

With the standard linearization, the stability problem for vector solitons
reduces to the matrix eigenvalue problem L̂+u = −λw and L̂−w = λu, where
u is a two-vector of real parts of the perturbation and w is a two-vector
of imaginary parts of the perturbation, for a real eigenvalue λ. The matrix
Schrodinger operators are

L̂+ =
(

β − � − V (δ + 3�2 + µ2) −2µV �

−2µV � γ − � − V (δ + 32 + µ�2)

)

L̂− =
(

β − � − V (δ + �2 + µ2) 0

0 γ − � − V (δ + 2 + µ�2)

)

Because L̂− is a diagonal composition of two scalar Schrödinger operators,
each has a simple zero eigenvalue with the ground state � and ; therefore,
the operator L̂− is non-negative. Therefore, stability of fundamental vector
solitons is determined by the number of negative eigenvalues of the matrix
operator L̂+, similar to [13].

We compute the number of negative eigenvalues of the operator L̂+ near the
local bifurcation point. When γ = γ 0 and  = 0, we have

L̂+ =
(

L+ 0

0 L0

)
(15)

such that the operator L+ has exactly one negative eigenvalue (by the
assumption that the scalar soliton is stable for β > β0) and the operator L0 has a
simple zero eigenvalue with the eigenfunction ψ . We study bifurcation of the
simple zero eigenvalue of L0 for γ �= γ 0. Using the same small parameter ε as
in the local bifurcation analysis, we are looking for solution of the eigenvalue
problem L̂+u = λu by the regular perturbation theory u1 = εU 1 + O(ε3),
u2 = ψ + ε2U 2 + O(ε4), and λ = ε2λ2 + O(ε4).

By algorithmic computations of the regular perturbation theory, we have
the linear inhomogeneous problem for the first-order correction, L+U 1 =
2µV (x , y)φψ2, which is solvable with the solution U 1 = 2�2. Furthermore,
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we have the linear inhomogeneous problem for U 2,

L0U2 = (λ2 − γ2)ψ + 2µV (x, y)φψ�2 + 3V (x, y)ψ3 + 2µV (x, y)φψU1,

with the solvability condition

λ2 = γ2 − 6µ(ψ2, V (x, y)φ�2) + 3(ψ2, V (x, y)ψ2)

(ψ, ψ)
= −2γ2.

When µ < 1, we have γ 2 > 0, such that the zero eigenvalue of L0 becomes
a negative eigenvalue of L̂+. As a result, we have two negative eigenvalues
of L̂+ near the local bifurcation boundary. Because p′(β) > 0, we have two
positive eigenvalues of the Hessian matrix when D > 0 and one positive
eigenvalue when D < 0. In the former case, the vector soliton is stable, while
it is unstable in the latter case. Therefore, the boundary of D = 0 separates the
domains of stability and instability of vector solitons on the plane (β, γ ) in the
assumption that the number of negative eigenvalues of L̂+ remains unchanged
in the entire existence domain.

When µ > 1, we have γ 2 < 0, such that the zero eigenvalue of L0 becomes
a positive eigenvalue of L̂+. As a result, we have only one negative eigenvalue
of L̂+ near the local bifurcation boundary. In the same region, we have exactly
one positive eigenvalue of the Hessian matrix, because D < 0. Therefore, the
vector soliton is stable near the local bifurcation boundary. Numerics show that
there exists a curve D = 0 in the existence domain (see Figure 4(b)), where the
positive eigenvalue of the Hessian matrix crosses zero and becomes negative
eigenvalue. These curves approach the bifurcation curves asymptotically for
large (β, γ ), because D < 0 on the bifurcation curves. In the assumption that the
number of negative eigenvalues of L̂+ remains unchanged in the entire existence
domain, the curve D = 0 separates the stability and instability domains.

When µ = 1, we have γ = β and the zero eigenvalue of L0 is preserved
as the zero eigenvalue of L̂+ in the entire existence domain β = γ > β0.
This additional eigenvalue is related to an arbitrary polarization of the vector
soliton in the case µ = 1: � = cos θφ and  = sin θφ, where φ solves the
scalar problem (6). The operator L̂+ always has a single negative eigenvalue
(because we have verified numerically that L+ has a single negative eigenvalue
for β > β0). Therefore, the vector soliton must be linearly stable in the case
µ = 1 for any β > β0 (excluding the limit β → ∞).

6. Conclusions

We have demonstrated that stable two-dimensional vector solitons can be
supported by a nonlinear PCF structure with the Kerr nonlinearity. They
constitute a class of two-component spatially localized modes that bifurcate from
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their one-component scalar counterparts and are described by two independent
parameters. Both scalar and vector solitons provide a generalization of the
guided mode trapped in the PCF core to the nonlinear case, being confined
by both linear and self-induced nonlinear refractive indices. The periodic
PCF environment also provides an effective stabilization mechanism for these
localized modes, in a sharp contrast with an entirely homogeneous nonlinear
Kerr medium where both scalar and vector spatial solitons are unstable and
may undergo the collapse instability. We have applied the analytical matrix
criterion for stability of these PCF vector solitons, and have verified that this
criterion is confirmed by the direct simulations of the soliton dynamics.
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