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Abstract

We study discrete vortices in the two-dimensional nonlinear Schrödinger lattice with small coupling between lattice nodes.
The discrete vortices in the anti-continuum limit of zero coupling represent a finite set of excited nodes on a closed discrete
contour with a non-zero charge. Using the Lyapunov–Schmidt reductions, we analyze continuation and termination of the
discrete vortices for small coupling between lattice nodes. An example of a square discrete contour is considered that includes
the vortex cell (also known as the off-site vortex). We classify families of symmetric and asymmetric discrete vortices that
bifurcate from the anti-continuum limit. We predict analytically and confirm numerically the number of unstable eigenvalues
associated with each family of such discrete vortices.
c© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Discrete systems and differential-difference equations have become topics of increasing physical and
mathematical importance. The variety of physical applications where such models are relevant, and their significant
differences from the mathematical theory of partial differential equations, contribute to the extensive recent interest
in these topics. The applicability of such models extends to areas as diverse as nonlinear optics, atomic and soft
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condensed-matter physics, as well as biophysics. Specific details and references can be found in our first paper [1]
as well as in reviews [2–7].

The present work is devoted to the existence and stability of coherent structures in two-dimensional lattices,
which include both discrete solitons [6,7] and discrete vortices [8,9] (see also the pioneering work of [2] and the
works of [10,11] for Klein–Gordon lattices). These two-dimensional coherent structures have emerged recently in
studies of photorefractive crystals in nonlinear optics [12,13] and droplets of optical lattices in Bose–Einstein
condensates [14,15]. A significant boost to this subject was given by the experimental realization of two-
dimensional photonic crystal lattices with periodic potentials based on the ideas of [12]. As a result, discrete
solitons were observed in [16,17], while more complex structures such as dipoles, soliton trains and vector solitons
were observed in [18–20].

Most recently, observations of discrete vortices were reported by two independent groups [21,22] where the
fundamental vortices with topological charge one were experimentally created and detected in photorefractive
crystals. Two main examples of charge-one discrete vortices include a vortex cross (an on-site centered vortex)
and a vortex cell (an off-site centered vortex). These structures were also recently predicted in a continuous two-
dimensional model with the periodic potential [23].

These discoveries have stimulated further theoretical work and numerical computations. Thus, while in [9],
discrete vortices of charge two were shown to be unstable, recently in [24] discrete vortices of charge three were
found to be stable. Based on the theoretical predictions of [24], further experiments on localized structures were
undertaken to unveil other interesting structures, such as the discrete soliton necklace [25]. The discrete vortices
have been also extended to three-dimensional discrete and periodic continuum models [26–28]. Furthermore,
asymmetric vortices have been recently predicted in the two-dimensional lattices in [29].

The above activity clearly signals the importance and experimental relevance of discrete solitons and vortices in
two-dimensional discrete lattices. However, most of the above-mentioned works are predominantly of experimental
or numerical nature, while the mathematical theory of existence and stability of discrete localized structures has not
been developed to a similar extent. The only analytical method which was developed so far relied on computations
of effective action functionals (see Sections 3.2, 3.3 in [2]). It was applied to the one-dimensional discrete NLS
lattice in [30] and later extended to the computations of effective Hamiltonians [31].

The aim of the present paper is to develop a categorization of discrete solitons and vortices in the discrete two-
dimensional nonlinear Schrödinger (NLS) equations. We start from a well-understood limit [32] (the so-called anti-
continuum case of zero coupling between the lattice nodes) and examine the persistence of the limiting solutions
for small coupling by means of the Lyapunov–Schmidt theory. This method allows us to discuss persistence and
stability of the localized structures by analyzing finite-dimensional linear eigenvalue problems. The theoretical
predictions agree well with full numerical computations of the discrete two-dimensional NLS equation. The method
of Lyapunov–Schmidt reductions, which we employ in this paper, generalizes the pioneering method of [32], which
is based on the implicit function theorem. Very similar results on the existence and stability of two-dimensional
discrete vortices were obtained independently in [33] for a triangular lattice of weakly coupled Hamiltonian
oscillators. The method of [33] relies on the averaging theory of effective Hamiltonians, which determine the
dynamics near the discrete localized mode using Taylor series approximations.

Our main results are summarized for the simplest localized structures in Table 1. These results corroborate
and extend the previously reported experimental and numerical findings. We quantify the stability of the charge-
one vortex in accordance with [9,21–23], the instability of the charge-two vortex in accordance with [9,24] and the
stability of the charge-three vortex in accordance with [24]. We further demonstrate the instability of all asymmetric
vortices, which persist in the two-dimensional discrete lattice. Furthermore, our results can be used to extract the
spectral stability of the dipole mode considered in [18] and of the soliton necklace of [25].

The paper is structured as follows. Abstract results on the existence of discrete solitons and vortices are derived
in Section 2. Persistence of localized modes for a particular square discrete contour is considered in Section 3.
Stability of the persistent solutions is addressed in Section 4. Analytical results are compared to numerical
computations in Section 5. Section 6 concludes the paper.
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Table 1
The numbers of eigenvalues of linearized energy and the linearized stability problem, associated with discrete vortices in the two-dimensional
NLS lattice with small coupling between lattice nodes

Contour SM Vortex of charge L Linearized energy H Stable and unstable eigenvalues

M = 1 symmetric L = 1 n(H) = 5, p(H) = 2 Nr = 0, N+

i = 1, N−

i = 2, Nc = 0
M = 2 symmetric L = 1 n(H) = 8, p(H) = 7 Nr = 1, N+

i = 0, N−

i = 0, Nc = 3
M = 2 symmetric L = 2 n(H) = 10, p(H) = 5 Nr = 1, N+

i = 2, N−

i = 4, Nc = 0
M = 2 symmetric L = 3 n(H) = 15, p(H) = 0 Nr = 0, N+

i = 0, N−

i = 7, Nc = 0
M = 2 asymmetric L = 1 n(H) = 9, p(H) = 6 Nr = 6, N+

i = 0, N−

i = 1, Nc = 0
M = 2 asymmetric L = 3 n(H) = 14, p(H) = 1 Nr = 1, N+

i = 0, N−

i = 6, Nc = 0

The numbers n(H) and p(H) stand for negative and small positive eigenvalues of H , such that n(H) + p(H) = 8M − 1. The numbers
Nr, N+

i , N−

i , and Nc stand for eigenvalues of the linearized stability problem with Re(λ) > 0, Im(λ) = 0; Re(λ) = 0, 0 < Im(λ) � 1
and positive Krein signature; Re(λ) = 0, 0 < Im(λ) � 1 and negative Krein signature; and Re(λ) > 0, Im(λ) > 0 respectively, such that
2Nr + 2N+

i + 2N−

i + 4Nc = 2(4M − 1). The negative index theory [1] implies that Nr + 2N−

i + 2Nc = n(H) − 1, which is confirmed by
the table data.

2. Existence of discrete vortices

We consider the discrete nonlinear Schrödinger (NLS) equation in two spatial dimensions [5]:

iu̇n,m + ε(un+1,m + un−1,m + un,m+1 + un,m−1 − 4un,m) + |un,m |
2un,m = 0, (2.1)

where un,m(t) : R+ → C, (n, m) ∈ Z2, and ε > 0 is the inverse squared step size of the lattice. The discrete NLS
equation (2.1) is a Hamiltonian system with the Hamiltonian function

H =

∑
(n,m)∈Z2

ε|un+1,m − un,m |
2
+ ε|un,m+1 − un,m |

2
−

1
2
|un,m |

4. (2.2)

Besides the conserved Hamiltonian (2.2), the discrete NLS equation conserves the squared l2-norm, called the
power:

Q =

∑
(n,m)∈Z2

|un,m |
2. (2.3)

The power conservation is related to the invariance of the discrete NLS equation (2.1) with respect to the gauge
transformation:

un,m(t) 7→ un,m(t)eiθ0 , ∀θ0 ∈ R. (2.4)

Time-periodic localized modes of the discrete NLS equation (2.1) take the form

un,m(t) = φn,mei(µ−4ε)t+iθ0 , φn,m ∈ C, (n, m) ∈ Z2, (2.5)

where θ0 ∈ R and µ ∈ R are parameters. Since localized modes in the focusing NLS lattice (2.1) with ε > 0 may
exist only for µ > 4ε [4] and the parameter µ is scaled out by the scaling transformation,

φn,m =
√

µφ̂n,m, ε = µε̂, (2.6)

the parameter µ > 0 will henceforth be set as µ = 1. In this case, the complex-valued φn,m solve the nonlinear
difference equations on (n, m) ∈ Z2:

(1 − |φn,m |
2)φn,m = ε

(
φn+1,m + φn−1,m + φn,m+1 + φn,m−1

)
. (2.7)
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As ε = 0, the localized modes of the difference equations (2.7) are given by the limiting solution:

φ(0)
n,m =

{
eiθn,m , (n, m) ∈ S,

0, (n, m) ∈ Z2
\ S,

(2.8)

where S is a finite set of nodes on the lattice (n, m) ∈ Z2 and θn,m are parameters for (n, m) ∈ S. Since θ0 is
arbitrary in the ansatz (2.5), we can set θn0,m0 = 0 for a particular node (n0, m0) ∈ S. Using this convention, we
define two special types of localized modes, called discrete solitons and vortices.

Definition 2.1. The localized solution of the difference equations (2.7) with ε > 0, that has all real-valued
amplitudes φn,m , (n, m) ∈ Z2, and satisfies the limit (2.8) with all θn,m = {0, π}, (n, m) ∈ S, is called a discrete
soliton.

Definition 2.2. Let S be a simple closed discrete contour on the plane (n, m) ∈ Z2. The localized solution of the
difference equations (2.7) with ε > 0, that has complex-valued φn,m , (n, m) ∈ Z2, and satisfies the limit (2.8) with
θn,m ∈ [0, 2π ], (n, m) ∈ S, is called a discrete vortex.

Definition 2.3. Let S be a simple closed discrete contour on the plane (n, m) ∈ Z2 such that each node (n, m) ∈ S
has exactly two adjacent nodes in vertical or horizontal directions along S. Let 1θ j be the phase difference between
two successive nodes in the contour S, defined according to the enumeration j = 1, 2, . . . , dim(S), such that
|1θ j | ≤ π . If the phase differences 1θ j are constant along S, the discrete vortex is called symmetric. Otherwise,
it is called asymmetric. The total number of 2π phase shifts across the closed contour S is called the vortex charge.

In particular, we consider the square discrete contour S = SM :

SM = {(1, 1), (2, 1), . . . , (M + 1, 1), (M + 1, 2), . . . , (M + 1, M + 1),

(M, M + 1), . . . , (1, M + 1), (1, M), . . . , (1, 2)} , (2.9)

where dim(SM ) = 4M . According to Definition 2.3, the contour SM for a fixed M could support symmetric and
asymmetric vortices with some charge L . The simplest vortex is the symmetric charge-one vortex cell (M = L = 1:
θ1,1 = 0, θ2,1 =

π
2 , θ2,2 = π , θ1,2 =

3π
2 ) [9,23]. Although the main formalism of our paper is developed for any

M ≥ 1, we obtain a complete set of results on persistence and stability of discrete vortices only in the cases
M = 1, 2, 3, which are of most physical interest. The contours SM for M = 1 and M = 2 are shown in Fig. 1.

It follows from the general method [2,32] that the discrete solitons of the two-dimensional NLS lattice (2.7)
(see Definition 2.1) can be continued to the domain 0 < ε < ε0 for some ε0 > 0. It is more complicated to
find a configuration of θn,m for (n, m) ∈ S that allows us to continue the discrete vortices (see Definition 2.2)
for ε > 0. The continuation of the discrete solitons and vortices is based on the Implicit Function Theorem and
the Lyapunov–Schmidt Reduction Theorem [34,35]. Abstract results on the existence of such continuations are
formulated and proved below, after the introduction of some relevant notation.

Let O(0) be a small neighborhood of ε = 0 such that O(0) = (−ε0, ε0) for some ε0 > 0. Let N = dim(S)

and T be the torus on [0, 2π]
N such that θn,m for (n, m) ∈ S form a vector θ ∈ T . Let Ω = l2(Z2, C) be the

Hilbert space of square-summable complex-valued sequences {φn,m}(n,m)∈Z2 , equipped with the inner product and
the norm

(u, v)Ω =

∑
(n,m)∈Z2

ūn,mvn,m, ‖u‖
2
l2 =

∑
(n,m)∈Z2

|un,m |
2 < ∞. (2.10)

Let u denote an infinite-dimensional vector in Ω that consists of components un,m for all (n, m) ∈ Z2.

Proposition 2.4. There exists a unique (discrete soliton) solution of the difference equations (2.7) in the domain
ε ∈ O(0) that satisfies (i) φn,m ∈ R, (n, m) ∈ Z2 and (ii) limε→0 φn,m = φ

(0)
n,m , where φ

(0)
n,m is given by (2.8) with

θn,m = {0, π}, (n, m) ∈ S. The solution φ(ε) is analytic in ε ∈ O(0).
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Fig. 1. Examples of the simple closed square contour SM for M = 1 and M = 2.

Proof. Assume that φn,m ∈ R for all (n, m) ∈ Z2. The difference equations (2.7) are rewritten as zeros of the
nonlinear vector-valued function:

fn,m(φ, ε) = (1 − φ2
n,m)φn,m − ε

(
φn+1,m + φn−1,m + φn,m+1 + φn,m−1

)
= 0. (2.11)

The mapping f : Ω ×O(0) 7→ Ω is C1 on φ ∈ Ω and has a bounded continuous Fréchet derivative, given by

Ln,m =

(
1 − 3φ2

n,m

)
− ε

(
s+1,0 + s−1,0 + s0,+1 + s0,−1

)
, (2.12)

where sn′,m′ is the shift operator, such that sn′,m′un,m = un+n′,m+m′ . It is obvious that

f(φ(0), 0) = 0, ker(L(0)) = ∅, (2.13)

where φ(0) is the discrete soliton for ε = 0 (see Definition 2.1) and L(0) is the operator L computed at φ = φ(0)

and ε = 0. It follows from (2.12) and (2.13) that L(0)
: Ω 7→ Ω has a bounded inverse. By the Implicit Function

Theorem [35, Appendix 1], there exists a local mapping φ : O(0) → Ω , such that φ(ε) is at least continuous in
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ε ∈ O(0) and φ(0)
= φ(0). Moreover, since f(φ, ε) is analytic in ε ∈ O(0), then φ(ε) is analytic in ε ∈ O(0)

[34, Chapter 2.2]. �

Remark 2.5. Proposition 2.4 does not exclude a possibility of continuation of the limiting solution (2.8) with
θn,m = {0, π} for all (n, m) ∈ S to the complex-valued solution φ(ε) in ε ∈ O(0).

Proposition 2.6. There exists a vector-valued function g : T ×O(0) 7→ RN such that the limiting solution (2.8) is
continued to the domain ε ∈ O(0) if and only if θ ∈ T is a root of g(θ , ε) = 0 in ε ∈ O(0). Moreover, the function
g(θ , ε) is analytic in ε ∈ O(0) and g(θ , 0) = 0 for any θ ∈ T .

Proof. When φn,m ∈ C for some (n, m) ∈ Z2, the difference equations (2.7) are complemented by the complex
conjugate equations in the abstract form:

f(φ, φ̄, ε) = 0, f̄(φ, φ̄, ε) = 0. (2.14)

Taking the Fréchet derivative of f(φ, φ̄, ε) with respect to φ and φ̄, we compute the linearization operator H for
the difference equations (2.7):

Hn,m =

(
1 − 2|φn,m |

2
−φ2

n,m
−φ̄2

n,m 1 − 2|φn,m |
2

)
− ε(s+1,0 + s−1,0 + s0,+1 + s0,−1)

(
1 0
0 1

)
. (2.15)

Let H(0)
= H(φ(0), 0). It is clear that H(0)

: Ω × Ω 7→ Ω × Ω is a self-adjoint Fredholm operator of index zero
with dim ker(H(0)) = N . Moreover, eigenvectors of ker(H(0)) renormalize the parameters θn,m for (n, m) ∈ S in
the limiting solution (2.8). By the Lyapunov Reduction Theorem [35, Chapter 7.1], there exists a decomposition
Ω = ker(H(0)) ⊕ ω such that g(θ , ε) is defined in terms of the projections to ker(H(0)). Let {en,m}(n,m)∈S be a set
of N linearly independent eigenvectors in the kernel ofH(0). It follows from the representation,

H(0)
n,m = −

(
1 e2iθn,m

e−2iθn,m 1

)
, (n, m) ∈ S, (2.16)

that each eigenvector en,m in the set {en,m}(n,m)∈S has the only non-zero element (eiθn,m , −e−iθn,m )T at the (n, m)-th
position of (u, w) ∈ Ω × Ω . By projections of the nonlinear equations (2.14) to ker(H(0)), we derive an implicit
representation for the functions g(θ , ε):

(n, m) ∈ S : 2ign,m(θ , ε) = (1 − |φn,m |
2)
(

e−iθn,m φn,m − eiθn,m φ̄n,m

)
− εe−iθn,m

(
φn+1,m + φn−1,m + φn,m+1 + φn,m−1

)
+ εeiθn,m

(
φ̄n+1,m + φ̄n−1,m + φ̄n,m+1 + φ̄n,m−1

)
, (2.17)

where the factor (2i) is introduced for convenient notation. Let φn,m = eiθn,m un,m for (n, m) ∈ S and φn,m = un,m
for (n, m) ∈ Z2

\ S. Since eigenvectors of ker(H(0)) are excluded from the solution φ in ω ⊂ Ω , we have un,m ∈ R
for (n, m) ∈ S such that

(n, m) ∈ S : −2ign,m(θ , ε) = εe−iθn,m
(
φn+1,m + φn−1,m + φn,m+1 + φn,m−1

)
− εeiθn,m

(
φ̄n+1,m + φ̄n−1,m + φ̄n,m+1 + φ̄n,m−1

)
(2.18)

and g(θ , 0) = 0 for any θ ∈ T . Since f(φ, φ̄, ε) is analytic in ε ∈ O(0), then g(θ , ε) is analytic in ε ∈ O(0)

[35, Appendix 3]. �

Corollary 2.7. The function g(θ , ε) can be expanded into convergent Taylor series in O(0):

g(θ , ε) =

∞∑
k=1

εkg(k)(θ), g(k)(θ) =
1
k!

∂k
ε g(θ , 0). (2.19)
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If the root θ(ε) of g(θ , ε) = 0 is analytic in ε ∈ O(0), then the solution φ(ε) is analytic in ε ∈ O(0) such that

φ(ε) = φ(0)
+

∞∑
k=1

εkφ(k), (2.20)

where φ(0) is given by (2.8).

Lemma 2.8. Let θ(ε) be a root of g(θ , ε) = 0 in ε ∈ O(0). An arbitrary shift θ(ε) + θ0p0, where θ0 ∈ R and
p0 = (1, 1, . . . , 1)T, gives a one-parameter family of roots of g(θ , ε) = 0 for the same ε.

Proof. The statement follows from the symmetry of the difference equations (2.7) with respect to gauge
transformation (2.4) (see [35, Chapter 7.3]). �

Proposition 2.9. Let θ∗ be the root of g(1)(θ) = 0 and M1 be the Jacobian matrix of g(1)(θ) at θ = θ∗. If the
matrixM1 has a simple zero eigenvalue, there exists a unique (modulo gauge transformation) analytic continuation
of the limiting solution (2.8) to the domain ε ∈ O(0).

Proof. By Lemma 2.8, the matrixM1 always has a non-empty kernel with the eigenvector p0 = (1, 1, . . . , 1) due
to gauge transformation. Let X0 be the constrained subspace of CN :

X0 = {u ∈ CN
: (p0, u) = 0}. (2.21)

If the matrix M1 is non-singular in the subspace X0, then there exists a unique (modulo the shift) analytic
continuation of the root θ∗ in ε ∈ O(0) by the Implicit Function Theorem, applied to the nonlinear equation
g(θ , ε) = 0 [35, Appendix 1]. �

Proposition 2.10. Let θ∗ be a (1 + d)-parameter solution of g(1)(θ) = 0 and M1 have a zero eigenvalue of
multiplicity (1 + d), where 1 ≤ d ≤ N − 1. Let g(2)(θ∗) = · · · = g(K−1)(θ∗) = 0 but g(K )(θ∗) 6= 0. The limiting
solution (2.8) can be continued in the domain ε ∈ O(0) only if g(K )(θ∗) is orthogonal to ker(M1).

Proof. Let p0 and {pl}
d
l=1 be eigenvectors of ker(M1). We define the constrained subspace of X0:

Xd = {u ∈ X0 : (pl , u) = 0, l = 1, . . . , d}. (2.22)

If g(K )(θ∗) 6∈ Xd , the Lyapunov–Schmidt Reduction Theorem in finite dimensions [35, Chapter 1.3] shows that
the solution θ∗ cannot be continued in ε ∈ O(0). �

Proposition 2.6 gives an abstract formulation of the continuation problem for the limiting solution (2.8) for
ε 6= 0. Proposition 2.9 gives a sufficient condition for existence and uniqueness (up to gauge invariance) of such
continuations. Proposition 2.10 gives a sufficient condition for termination of multi-parameter solutions. Particular
applications of Propositions 2.6, 2.9 and 2.10 are limited by the complexity of the set S in the limiting solution
(2.8), since computations of the vector-valued function g(1)(θ), g(2)(θ), . . . , g(K )(θ) and the Jacobian matrix M1
could be technically involved. We apply the abstract results of Propositions 2.6, 2.9 and 2.10 to the square discrete
contour SM , defined in (2.9).

3. Persistence of discrete vortices

We consider discrete solitons and vortices on the contour SM defined by (2.9). Let the set θ j correspond to the
ordered contour SM , starting at θ1 = θ1,1, θ2 = θ2,1 and ending at θN = θ1,2, where N = 4M . In what follows, we
use the periodic boundary conditions for θ j on the circle from j = 1 to j = N , such that θ0 = θN , θ1 = θN+1, and
so on.
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The discrete vortex has the charge L if the phase differences 1θ j between two consecutive nodes add up to
2π L along the discrete contour SM , where 1θ j is defined within the fundamental branch |1θ j | ≤ π . By gauge
transformation, we can always set θ1 = 0 for convenience. We will also choose θ2 = θ with 0 ≤ θ ≤ π for
convenience, which corresponds to discrete vortices with L ≥ 0.

3.1. Solutions of the first-order reductions

Substituting the limiting solution φ
(0)
n,m in the bifurcation function (2.18), we find that g(1)(θ) in the Taylor series

(2.19) is non-zero for the contour SM and it takes the form

g(1)
j (θ) = sin(θ j − θ j+1) + sin(θ j − θ j−1), 1 ≤ j ≤ N . (3.1)

The bifurcation equations g(1)(θ) = 0 are rewritten as a system of N nonlinear equations for N parameters
θ1, θ2, . . . , θN as follows:

sin(θ2 − θ1) = sin(θ3 − θ2) = · · · = sin(θN − θN−1) = sin(θ1 − θN ). (3.2)

We classify all solutions of the bifurcation equations (3.2) and give explicit examples for M = 1 and M = 2.

Proposition 3.1. Let a j = cos(θ j+1 − θ j ) for 1 ≤ j ≤ N, such that θ1 = 0, θ2 = θ , and θN+1 = 2π L, where
N = 4M, 0 ≤ θ ≤ π and L is the vortex charge. All solutions of the bifurcation equations (3.2) reduce to four
families:

(i) Discrete solitons with θ = {0, π} and

θ j = {0, π}, 3 ≤ j ≤ N , (3.3)

such that the set {a j }
N
j=1 includes l coefficients a j = 1 and N − l coefficients a j = −1, where 0 ≤ l ≤ N.

(ii) Symmetric vortices of charge L with θ =
π L
2M , where 1 ≤ L ≤ 2M − 1, and

θ j =
π L( j − 1)

2M
, 3 ≤ j ≤ N , (3.4)

such that all N coefficients are the same: a j = a = cos
(

π L
2M

)
.

(iii) One-parameter families of asymmetric vortices of charge L = M with 0 < θ < π and

θ j+1 − θ j =

{
θ

π − θ

}
mod (2π), 2 ≤ j ≤ N , (3.5)

such that the set {a j }
N
j=1 includes 2M coefficients a j = cos θ and 2M coefficients a j = − cos θ .

(iv) Zero-parameter asymmetric vortices of charge L 6= M and

θ = θ∗ =
π

2

(
n + 2L − 4M

n − 2M

)
, 1 ≤ n ≤ N − 1, n 6= 2M, (3.6)

such that the set {a j }
N
j=1 includes n coefficients a j = cos θ∗ and N − n coefficients a j = − cos θ∗ and the

family (iv) does not reduce to any of the families (i)–(iii).

Proof. All solutions of the bifurcation equations (3.2) are given by the binary choice equations (3.5) in the two
roots of the sine function on θ ∈ [0, 2π ], where the first choice gives a j = cos θ and the second choice gives
a j = − cos θ . Let us assume that there are in total n first choices and N − n second choices, where 1 ≤ n ≤ N .
Then, we have

θN+1 = nθ + (N − n)(π − θ) = (2n − N )θ + (N − n)π = 2π L ,



28 D.E. Pelinovsky et al. / Physica D 212 (2005) 20–53

where L is the integer charge of the discrete vortex. There are only two solutions of the above equation. When θ

is an arbitrary parameter, we have n =
N
2 = 2M and L = M , which gives the one-parameter family (iii). When

θ = θ∗ is fixed, we have

θ∗ =
π

2

(
n + 2L − 4M

n − 2M

)
.

When n = N − 2L , we have the family (i) with N − 2L phases θ j = 0 and 2L phases θ j = π . Since the charge
is not assigned to discrete solitons, parameter L could be half-integer: L = (N − l)/2, where 0 ≤ l ≤ N . When
n = 4M , we have the family (ii) for any 1 ≤ L ≤ 2M −1. Other choices of n, which are irreducible to the families
(i)–(iii), produce the family (iv). �

Remark 3.2. The one-parameter family (iii) connects special solutions of the families (i) and (ii). When θ = 0 and
θ = π , the family (iii) reduces to the family (i) with l = 2M . When θ =

π
2 , the family (iii) reduces to the family

(ii) with L = M . We shall call the corresponding solutions of family (i) the super-symmetric soliton and those of
family (ii) the super-symmetric vortex.

Remark 3.3. There exist N1 = 2N−1 solutions of family (i), N2 = 2M − 1 solutions of family (ii), and N3
solutions of family (iii), where

N3 = 2N−1
−

2M−1∑
k=0

N !

k!(N − k)!
. (3.7)

The number N4 of solutions of family (iv) cannot be computed in general. We consider such solutions only in the
explicit examples of M = 1 and M = 2.

Example (M = 1 (N = 4)). There are N1 = 8 solutions of family (i), N2 = 1 solution of family (ii), N3 = 3
solutions of family (iii), and no solutions of family (iv). The only symmetric vortex is the vortex cell with L = 1
and θ =

π
2 . The three one-parameter asymmetric vortices are given explicitly by

(a) θ1 = 0, θ2 = θ, θ3 = π, θ4 = π + θ (3.8)

(b) θ1 = 0, θ2 = θ, θ3 = 2θ, θ4 = π + θ (3.9)

(c) θ1 = 0, θ2 = θ, θ3 = π, θ4 = 2π − θ. (3.10)

Example (M = 2 (N = 8)). There are N1 = 128 solutions of family (i), N2 = 3 solutions of family (ii),
N3 = 35 solutions of family (iii), and N4 = 14 solutions of family (iv). The three symmetric vortices have
charge L = 1 (θ =

π
4 ), L = 2 (θ =

π
2 ), and L = 3 (θ =

3π
4 ). The one-parameter asymmetric vortices

include 35 combinations of four upper choices and four lower choices in (3.5), starting with the following three
solutions:

(a) θ1 = 0, θ2 = θ, θ3 = 2θ, θ4 = 3θ, θ5 = 4θ, θ6 = π + 3θ, θ7 = 2π + 2θ, θ8 = 3π + θ,

(b) θ1 = 0, θ2 = θ, θ3 = 2θ, θ4 = 3θ, θ5 = π + 2θ, θ6 = π + 3θ, θ7 = 2π + 2θ, θ8 = 3π + θ,

(c) θ1 = 0, θ2 = θ, θ3 = 2θ, θ4 = 3θ, θ5 = π + 2θ, θ6 = 2π + θ, θ7 = 2π + 2θ, θ8 = 3π + θ,

and so on. The zero-parameter asymmetric vortices include seven combinations of vortices with L = 1 for seven
phase differences π

6 and one phase difference 5π
6 and seven combinations of vortices with L = 3 for one phase

difference π
6 and seven phase differences 5π

6 .
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3.2. Continuation of solutions of the first-order reductions

We compute the Jacobian matrixM1 from the bifurcation function g(1)(θ), given in (3.1):

(M1)i, j =

cos(θ j+1 − θ j ) + cos(θ j−1 − θ j ), i = j
− cos(θ j − θi ), i = j ± 1
0, |i − j | ≥ 2

(3.11)

subject to the periodic boundary conditions. The structure of the matrix M1 is defined by the coefficients
a j = cos(θ j+1 − θ j ) for 1 ≤ j ≤ N . The same type of matrices occurs in the perturbation theory of continuous
multi-pulse solitons in coupled NLS equations [36]. Three technical results establish the location of the eigenvalues
of the matrixM1.

Lemma 3.4. Let n0, z0, and p0 be the numbers of negative, zero, and positive terms of a j = cos(θ j+1 − θ j ),
1 ≤ j ≤ N, such that n0 + z0 + p0 = N. Let n(M1), z(M1), and p(M1) be the numbers of negative, zero, and
positive eigenvalues of the matrixM1, defined by (3.11). Assume that z0 = 0 and write

A1 =

N∑
i=1

∏
j 6=i

a j =

(
N∏

i=1

ai

) (
N∑

i=1

1
ai

)
. (3.12)

If A1 6= 0, then z(M1) = 1, and either n(M1) = n0 − 1, p(M1) = p0 or n(M1) = n0, p(M1) = p0 − 1.
Moreover, n(M1) is even if A1 > 0 and is odd if A1 < 0. If A1 = 0, then z(M1) ≥ 2.

Proof. The first statement follows from [36, Appendix A]. Let the determinant equation be D(λ) = det(M1 −

λI ) = 0. By induction arguments in [36,37], it can be found that D(0) = 0 and D′(0) = −N A1. On the other
hand, D′(0) = −λ1λ2 · · · λN−1, where λN = 0 (which exists always with the eigenvector p0 = (1, 1, . . . , 1)T; see
Proposition 2.9). Then, it is clear that (−1)n(M1) = sign(A1). When A1 = 0, at least one more eigenvalue is zero,
such that z(M1) ≥ 2. �

Lemma 3.5. Let all coefficients a j = cos(θ j+1 − θ j ), 1 ≤ j ≤ N, be the same: a j = a. Eigenvalues of the matrix
M1 are computed explicitly as follows:

λn = 4a sin2 πn

N
, 1 ≤ n ≤ N . (3.13)

Proof. When a j = a, 1 ≤ j ≤ N , the eigenvalue problem for the matrixM1 takes the form of the linear difference
equations with constant coefficients:

a
(
2x j − x j+1 − x j−1

)
= λx j , x0 = xN , x1 = xN+1, (3.14)

The discrete Fourier mode x j = exp
(

i 2π jn
N

)
for 1 ≤ j, n ≤ N results in the solution (3.13). �

Lemma 3.6. Let all coefficients a j = cos(θ j+1 − θ j ), 1 ≤ j ≤ N, alternate the sign as a j = (−1) j a, where
N = 4M. Eigenvalues of the matrixM1 are computed explicitly as follows:

λn = −λn+2M = 2a sin
πn

2M
, 1 ≤ n ≤ 2M, (3.15)

such that n(M1) = 2M − 1, z(M1) = 2, and p(M1) = 2M − 1. These numbers do not change if the set {a j }
N
j=1

is obtained from the sign-alternating set {(−1) j a}
N
j=1 by permutations.

Proof. When a j = (−1) j a, 1 ≤ j ≤ 4M , the eigenvalue problem for the matrix M1 takes the form of a coupled
system of linear difference equations with constant coefficients:

a
(
y j − y j−1

)
= λx j , a

(
x j − x j+1

)
= λy j , 1 ≤ j ≤ 2M, (3.16)

subject to the periodic boundary conditions: x1 = x2M+1 and y0 = y2M . The discrete Fourier mode x j =
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x0 exp
(

i 2π jn
2M

)
and y j = y0 exp

(
i 2π jn

2M

)
for 1 ≤ j, n ≤ 2M results in the solution (3.15). In this case, we have

n(M1) = 2M − 1, z(M1) = 2, and p(M1) = 2M − 1, such that D(0) = D′(0) = 0 and D′′(0) < 0 in the
determinant equation D(λ) = det(M1 − λI ). In order to prove that z(M1) = 2 remains invariant with respect to
permutations of the sign-alternating set {(−1) j a}

N
j=1, we find with the aid of Mathematica that

D′′(0) =

(
N∏

i=1

ai

) (
αN

(
N−1∑
i=1

1
ai ai+1

+
1

a1aN

)
+ βN

(
N−2∑
i=1

N∑
l=i+2

1
ai al

−
1

a1aN

))
, (3.17)

where 0 < αN < βN are numerical coefficients. Let A∗ denote the sign-alternating set {(−1) j a}
N
j=1 and A denote

a set obtained from A∗ by permutations. It is clear that(
N−1∑
i=1

1
ai ai+1

+
1

a1aN

)
A∗

≤

(
N−1∑
i=1

1
ai ai+1

+
1

a1aN

)
A

and (
N−1∑
i=1

N∑
l=i+1

1
ai al

)
A∗

=

(
N−1∑
i=1

N∑
l=i+1

1
ai al

)
A

.

Therefore, the expression in brackets in (3.17) can be estimated as follows:

(αN − βN )

(
N−1∑
i=1

1
ai ai+1

+
1

a1aN

)
A

+ βN

(
N−1∑
i=1

N∑
l=i+1

1
ai al

)
A

≤ (αN − βN )

(
N−1∑
i=1

1
ai ai+1

+
1

a1aN

)
A∗

+ βN

(
N−1∑
i=1

N∑
l=i+1

1
ai al

)
A∗

< 0,

where the last inequality follows from the fact that D′′(0) < 0 for A∗. Therefore, z(M1) = 2 for the set
A. Combining it with estimates from [36, Appendix A], we have n(M1) = p(M1) = 2M − 1 for the
set A. �

Using Lemmas 3.4–3.6, we classify continuations of solutions of the first-order reductions (see families (i)–(iv)
of Proposition 3.1).

For family (i), excluding the case of super-symmetric solitons (see Remark 3.2), the numbers of positive and
negative signs of a j are different, such that the conditions z0 = 0 and A1 6= 0 are satisfied in Lemma 3.4,
and hence z(M1) = 1. By Proposition 2.9, the family (i) has a unique continuation to discrete solitons (see
Definition 2.1). This result agrees with Proposition 2.4. Continuations described in Remark 2.5 are only possible
for super-symmetric solitons.

For family (ii), all coefficients a j are the same: a j = a = cos
(

π L
2M

)
, 1 ≤ j ≤ N . By Lemma 3.5, there is

always a zero eigenvalue (λN = 0), while the remaining (N − 1) eigenvalues are all positive for a > 0 (when
1 ≤ L ≤ M − 1), negative for a < 0 (when M + 1 ≤ L ≤ 2M − 1), and zero for a = 0 (when L = M).
By Proposition 2.9, the family (ii), excluding the case of super-symmetric vortices (see Remark 3.2), has a unique
continuation to symmetric vortices with charge L , where 1 ≤ L ≤ 2M − 1 and L 6= M (see Definitions 2.2 and
2.3).

For family (iii), there are 2M coefficients a j = cos θ and 2M coefficients a j = − cos θ , which are non-zero
for θ 6=

π
2 . By Lemma 3.6, we have n(M1) = 2M − 1, z(M1) = 2, and p(M1) = 2M − 1. The additional
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zero eigenvalue is related to the derivative of the family of the asymmetric discrete vortices (3.5) with respect to
the parameter θ . Therefore, continuations of family (iii) of asymmetric vortices, including the particular cases of
super-symmetric solitons of family (i) and super-symmetric vortices of family (ii), must be considered beyond the
first-order reductions.

For family (iv), since n 6= 2M , the conditions z0 = 0 and A1 6= 0 are satisfied in Lemma 3.4, and hence
z(M1) = 1. By Proposition 2.9, the family (iv) has a unique continuation to asymmetric vortices for ε 6= 0.

3.3. Continuation of solutions to the second-order reductions

Results of the first-order reductions are insufficient for concluding persistence of the asymmetric vortices of
family (iii), including the super-symmetric soliton of family (i) and the super-symmetric vortex of family (ii).
Therefore, we continue the bifurcation function g(θ , ε) to the second order of ε in the Taylor series (2.19).
It follows from (2.7) that the first-order correction of the Taylor series (2.20) satisfies the inhomogeneous
problem:

(1 − 2|φ(0)
n,m |

2)φ(1)
n,m − φ(0)2

n,m φ̄(1)
n,m = φ

(0)
n+1,m + φ

(0)
n−1,m + φ

(0)
n,m+1 + φ

(0)
n,m−1. (3.18)

We define the solution of the inhomogeneous problem (3.18) in ω ⊂ Ω , so that the homogeneous solutions in
ker(H(0)) are removed from the solution φ(1). This is equivalent to the constraint: φn,m = un,meiθn,m , un,m ∈ R,
for all (n, m) ∈ SM . We develop computations for three distinct cases: M = 1, M = 2 and M ≥ 3. This separation
is due to the special structure of the discrete contours SM .

Case M = 1: The inhomogeneous problem (3.18) has a unique solution φ(1)
∈ ω ⊂ Ω :

φ(1)
n,m = −

1
2

[
cos(θ j−1 − θ j ) + cos(θ j+1 − θ j )

]
eiθ j , (3.19)

where the index j enumerates the node (n, m) on the contour SM ,

φ(1)
n,m = eiθ j , (3.20)

where the node (n, m) is adjacent to the j-th node on the contour SM , while φ
(1)
n,m is zero for all remaining nodes.

By substituting the first-order correction term φ
(1)
n,m into the bifurcation function (2.18), we find the correction term

g(2)(θ) in the Taylor series (2.19):

g(2)
j (θ) =

1
2

sin(θ j+1 − θ j )
[
cos(θ j − θ j+1) + cos(θ j+2 − θ j+1)

]
+

1
2

sin(θ j−1 − θ j )
[
cos(θ j − θ j−1) + cos(θ j−2 − θ j−1)

]
, 1 ≤ j ≤ N . (3.21)

We compute the vector g2 = g(2)(θ) at the asymmetric vortex solutions (3.8)–(3.10):

(a) g2 =


0
0
0
0

 , (b) g2 =


2
0

−2
0

 sin θ cos θ, (c) g2 =


0

−2
0
2

 sin θ cos θ.

The kernel ofM1 is two-dimensional with the eigenvectors p0 = (1, 1, 1, 1)T and p1. The eigenvector p1 is related
to derivatives of the solutions (3.8)–(3.10) in θ :

(a) p1 =


0
1
0
1

 , (b) p1 =


0
1
2
1

 , (c) p1 =


0
1
0

−1

 .
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The Fredholm alternative (p1, g2) = 0 is satisfied for the solution (a) but fails for the solutions (b) and (c), unless
θ = {0, π

2 , π}. The latter cases are included in the definitions of super-symmetric discrete solitons and vortices
(see Remark 3.2). By Proposition 2.10 with K = 2, the solutions (b) and (c) cannot be continued in ε 6= 0, while
the solution (a) can be continued up to the second-order reductions.

Case M = 2: The solution φ(1)
∈ ω ⊂ Ω of the inhomogeneous problem (3.18) is given by (3.19) and (3.20),

except for the center node (2, 2), where

φ
(1)
2,2 = eiθ2 + eiθ4 + eiθ6 + eiθ8 . (3.22)

The correction term g(2)(θ) is given by (3.21) but the even entries are modified as follows:

g(2)
j (θ) → g(2)

j (θ) + sin(θ j − θ j−2) + sin(θ j − θ j+2) + sin(θ j − θ j+4), j = 2, 4, 6, 8. (3.23)

The vector g2 = g(2)(θ) can be computed for each of 35 one-parameter asymmetric vortex solutions, starting with
the first three solutions:

(a) g2 =



2
1
0

−1
−2
−1
0
1


sin θ cos θ, (b) g2 =



2
1

−1
−1
0

−1
−1
1


sin θ cos θ, (c) g2 =



2
1

−1
−2
0
1

−1
0


sin θ cos θ.

The second eigenvector p1 of the kernel ofM1 is related to derivatives of the family in θ , e.g.

(a) p1 =



0
1
2
3
4
3
2
1


, (b) p1 =



0
1
2
3
2
3
2
1


, (c) p1 =



0
1
2
3
2
1
2
1


.

Assuming that θ 6= {0, π
2 , π}, the Fredholm alternative condition (p1, g2) = 0 fails for all solutions of family (iii)

but one. The only solution of family (iii), where g2 = 0, is characterized by the alternating signs of coefficients
a j = cos(θ j+1 − θ j ) for 1 ≤ j ≤ N .

Case M ≥ 3: The solution φ(1)
∈ ω ⊂ Ω of the inhomogeneous problem (3.18) is given by (3.19) and (3.20),

except for the four interior corner nodes (2, 2),(M, 2),(M, M), and (2, M), where

φ(1)
n,m = eiθ j−1 + eiθ j+1 , j = 1, M + 1, 2M + 1, 3M + 1. (3.24)

The correction term g(2)(θ) is given by (3.21), except for the adjacent entries to the four corner nodes on the contour
SM : (1, 1), (1, M + 1), (M + 1, M + 1), and (M + 1, 1), which are modified by

g(2)
j (θ) → g(2)

j (θ) + sin(θ j − θ j−2), j = 2, M + 2, 2M + 2, 3M + 2,

g(2)
j (θ) → g(2)

j (θ) + sin(θ j − θ j+2), j = M, 2M, 3M, 4M. (3.25)
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For any M ≥ 3, there is a solution of family (iii), where g2 = 0, which is characterized by the alternating signs of
coefficients a j = cos(θ j+1 − θ j ) for 1 ≤ j ≤ N . In the case M = 3, we have checked that all other solutions of
family (iii) have (p1, g2) 6= 0 and hence terminate at the second-order reductions.

By Proposition 2.10 with K = 2, all asymmetric vortices of family (iii), except for the sign-alternating set
a j = cos(θ j+1 − θ j ) = (−1) j+1 cos θ , 1 ≤ j ≤ N , cannot be continued to ε 6= 0 for M = 1, 2, 3. The only
solution which can be continued up to the second-order reductions has the explicit form

θ4 j−3 = 2π( j − 1), θ4 j−2 = θ4 j−3 + θ, θ4 j−1 = θ4 j−3 + π, θ4 j = θ4 j−3 + π + θ, (3.26)

where 1 ≤ j ≤ M and 0 ≤ θ ≤ π . This solution includes two particular cases of super-symmetric solitons of
family (i) for θ = 0 and θ = π and super-symmetric vortices of family (ii) for θ =

π
2 . Continuation of the solution

(3.26) must be considered beyond the second-order reductions.
Based on these computations, we also consider continuations of super-symmetric solitons of family (i).

Let M2 be the Jacobian matrix computed from the bifurcation function g(2)(θ), given in (3.21), (3.23) and
(3.25). Since (p1, g2) 6= 0 for θ 6= {0, π

2 , π}, except for the case of the sign-alternating set {(−1) j a}
N
j=1,

it follows from regular perturbation theory that (p1,M2p1) 6= 0. Therefore, the second zero eigenvalue
of M1 bifurcates off zero for the matrix M1 + εM2. By Proposition 2.9 (which needs to be modified
for the Jacobian matrix M1 + εM2), the super-symmetric solutions of family (i), which are different
from the sign-alternating set {(−1) j a}

N
j=1, are uniquely continued to discrete solitons (see Definition 2.1).

Continuations described in Remark 2.5 are only possible for super-symmetric solitons with the sign-alternating set
{(−1) j a}

N
j=1.

3.4. Jacobian matrix of the second-order reductions

The Jacobian matrixM1 of the first-order reductions is zero identically for super-symmetric vortices of family
(ii) with L = M . In order to study stability of super-symmetric vortices, we will need to the Jacobian matrix M2,
which is computed from the second-order bifurcation function g(2)(θ), given in (3.21), (3.23) and (3.25). These
computations are developed separately for three cases M = 1, M = 2, and M ≥ 3.

Case M = 1: Non-zero elements ofM2 are given by

(M2)i, j =


+1, i = j

−
1
2
, i = j ± 2

0, |i − j | 6= 0, 2

(3.27)

or explicitly

M2 =


1 0 −1 0
0 1 0 −1

−1 0 1 0
0 −1 0 1

 . (3.28)

The matrixM2 has four eigenvalues: λ1 = λ2 = 2 and λ3 = λ4 = 0. The two eigenvectors for the zero eigenvalue
are p3 = (1, 0, 1, 0)T and p4 = (0, 1, 0, 1)T. The eigenvector p4 corresponds to the derivative of the asymmetric
vortex (3.8) with respect to parameter θ , while the eigenvector p0 = p3 + p4 corresponds to the shift due to gauge
transformation.

Case M = 2: The Jacobian matrix M2 is given in (3.27) except for the even entries. The modified Jacobian
matrix M̃2 has the form

M̃2 =M2 + 1M2, (3.29)
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where 1M2 is a rank-one non-positive matrix with the elements

(1M2)i, j =

−1, i = j
+1, i = j ± 2
−1, i = j ± 4

j = 2, 4, 6, 8 (3.30)

and all other elements are zeros. The explicit form for the modified matrix M̃2 is

M̃2 =



1 0 −
1
2

0 0 0 −
1
2

0

0 0 0
1
2

0 −1 0
1
2

−
1
2

0 1 0 −
1
2

0 0 0

0
1
2

0 0 0
1
2

0 −1

0 0 −
1
2

0 1 0 −
1
2

0

0 −1 0
1
2

0 0 0
1
2

−
1
2

0 0 0 −
1
2

0 1 0

0
1
2

0 −1 0
1
2

0 0



. (3.31)

The eigenvalue problem for M̃2 decouples into two linear difference equations with constant coefficients:

2x j − x j+1 − x j−1 = 2λx j , j = 1, 2, 3, 4

−2y j+2 + y j+1 + y j−1 = 2λy j , j = 1, 2, 3, 4,

subject to the periodic boundary conditions for x j and y j . By the discrete Fourier transform (see the proof of
Lemma 3.6), the first problem has eigenvalues λ1 = 1, λ2 = 2, λ3 = 1, and λ4 = 0, while the second
problem has eigenvalues λ5 = 1, λ6 = −2, λ7 = 1, and λ8 = 0. The two eigenvectors for the zero eigenvalue
are p4 = (1, 0, 1, 0, 1, 0, 1, 0)T and p8 = (0, 1, 0, 1, 0, 1, 0, 1)T, where the eigenvector p8 corresponds to the
derivative of the asymmetric vortex (3.26) with respect to parameter θ and the eigenvector p0 = p4+p8 corresponds
to the shift due to gauge transformation.

Case M ≥ 3: The Jacobian matrixM2 is given in (3.27), except for the adjacent entries to the four corner nodes
on the contours SM : (1, 1), (1, M + 1), (M + 1, M + 1), and (M + 1, 1). The modified Jacobian matrix M̃2 has
the form

M̃2 =M2 + 1M2, (3.32)

where 1M2 is a rank-four non-positive matrix with the elements

(1M2)i, j =

−1, i = j = 2, M, M + 2, 2M, 2M + 2, 3M, 3M + 2, 4M
+1, i = j − 2 = M, 2M, 3M, 4M
+1, i = j + 2 = 2, M + 2, 2M + 2, 3M + 2

(3.33)
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and all other elements are zeros. The explicit form for the modified matrix M̃2 in the case M = 3 is

M̃2 =



1 0 −
1
2

0 0 0 0 0 0 0 −
1
2

0

0 0 0 −
1
2

0 0 0 0 0 0 0
1
2

−
1
2

0 0 0
1
2

0 0 0 0 0 0 0

0 −
1
2

0 1 0 −
1
2

0 0 0 0 0 0

0 0
1
2

0 0 0 −
1
2

0 0 0 0 0

0 0 0 −
1
2

0 0 0
1
2

0 0 0 0

0 0 0 0 −
1
2

0 1 0 −
1
2

0 0 0

0 0 0 0 0
1
2

0 0 0 −
1
2

0 0

0 0 0 0 0 0 −
1
2

0 0 0
1
2

0

0 0 0 0 0 0 0 −
1
2

0 1 0 −
1
2

−
1
2

0 0 0 0 0 0 0
1
2

0 0 0

0
1
2

0 0 0 0 0 0 0 −
1
2

0 0



. (3.34)

The eigenvalue problem for M̃2 decouples into eigenvalue problems for two 6-by-6 matrices, which are related
by the Toeplitz transformation. As a result, the spectra of these two matrices are identical with the eigenvalues,
obtained with the use of MATLAB:

λ1 = λ7 = −0.780776, λ2 = λ8 = −0.5, λ3 = λ9 = 0,

λ4 = λ10 = 0.5, λ5 = λ11 = 1.28078, λ6 = λ12 = 1.5.

The matrix M̃2 has exactly two zero eigenvalues, one of which is related to the derivative of the asymmetric vortex
(3.26) in θ and the other one to the shift due to gauge transformation.

Computations of the matrix M2 for super-symmetric vortices of family (ii) in the cases M = 1, 2, 3 confirm
the results of the second-order reductions for asymmetric vortices of family (iii) in those cases. Although all N3
solutions of family (iii) reduce to the super-symmetric vortex of family (ii) in the first-order reductions, it is the
only family (3.26) that survives in the second-order reductions, such that the super-symmetric vortex of family (ii)
with L = M and θ =

π
2 can be deformed along an appropriate eigenvector p1 and continued up to the second-order

reductions to the asymmetric vortex (3.26).

3.5. Higher-order reductions

The presence of the arbitrary parameter θ in the family of asymmetric vortices (3.26) is not supported by
the symmetry of the discrete contour SM or by the symmetry of the discrete NLS lattice (2.1). According to
Proposition 2.10, we would expect therefore that the one-parameter family (3.26) do not persist beyond all orders
of the Lyapunov–Schmidt reductions. This would imply that zeros of g(1)(θ) are destroyed in a higher-order term
g(K )(θ) of the Taylor series (2.19) for g(θ , ε). In order to confirm this conjecture, we develop a MATLAB-assisted
algorithm.

Let M be the index of the discrete contour SM and K be the truncation order of the Lyapunov–Schmidt reduction.
We construct a square domain (n, m) ∈ D(M, K ) which includes N0-by-N0 lattice nodes, where N0 = 2K +M+1.
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Corrections of the power series (2.20) for a given configuration of θ in (3.26) solve the set of inhomogeneous
equations

H(0)

(
φ(k)

φ̄
(k)

)
=

(
f(k)

f̄
(k)

)
, 1 ≤ k ≤ K ,

whereH(0) is given by (2.16) and f(k) is the right-hand-side terms, which are defined recursively from the nonlinear
equations (2.7). When φ(k)

∈ ω ⊂ Ω (see the proof of Proposition 2.6), we have a unique solution of the
inhomogeneous equations for any 1 ≤ k ≤ K :

φ(k)
n,m = −

1
2

f (k)
n,m, (n, m) ∈ SM , φ(k)

n,m = f (k)
n,m, (n, m) ∈ Z2

\ SM ,

provided that

g(k)
n,m = −Im( f (k)

n,me−iθn,m ) = 0, (n, m) ∈ SM , 1 ≤ k ≤ K ,

where g(k) is defined by (2.18). According to Proposition 2.10, if all g(k)
= 0 for 1 ≤ k ≤ K −1, but (p1, g(K )) 6= 0,

where p1 is the derivative vector of (3.26) with respect to parameter θ , then the family (3.26) terminates at the K -th
order of the Lyapunov–Schmidt reduction.

In the case M = 1, when p1 = (0, 1, 0, 1)T, we have found from the numerical algorithm that the vector g(k) is
zero for k = 1, 2, 3, 4, 5 and non-zero for k = K = 6. Moreover, (p1, g(6)) 6= 0 for any θ 6= {0, π

2 , π}. Similarly,
in the case M = 2, we have also found that K = 6 and (p1, g(6)) 6= 0 for any θ 6= {0, π

2 , π}. Therefore, our
conjecture is confirmed for M = 1 and M = 2 with the aid of MATLAB.

In the case M = 3, we have found that g(3) is non-zero for any 0 < θ < π but it satisfies the constraint
(p1, g(3)) = 0. Therefore, if the super-symmetric vortex with M = L = 3 persists, it must have a non-uniform
phase shift across the contour S3. Our MATLAB-assisted procedure does not allow us to predict whether the
family of asymmetric vortices terminates in higher-order reductions k ≥ 4 if g(3)

6= 0. We will show persistence
of a super-symmetric vortex with M = L = 3 and termination of the asymmetric vortex (3.26) numerically at the
end of Section 5.

3.6. Summary on the persistence of localized modes

Individual results on the persistence of localized modes on the square discrete contour SM are summarized
as follows. Let the localized modes of the nonlinear equations (2.7) be defined by Definitions 2.1–2.3 from the
limiting solution φ

(0)
n,m in (2.8) and the discrete contour SM in (2.9). For M = 1, 2, 3, there exists a unique (modulo

gauge transformation) continuation to the domain ε ∈ O(0) of the following families of solutions:

• discrete solitons of family (i) in (3.3);
• symmetric vortices of family (ii) in (3.4);
• zero-parameter asymmetric vortices of family (iv) in (3.6).

Asymmetric vortices of family (iii) in (3.5) cannot be continued to the domain ε ∈ O(0) for M = 1, 2, 3. In
what follows, we consider the stability of persistent localized modes in the time evolution of the discrete NLS
equation (2.1).

4. Stability of discrete vortices

The spectral stability of discrete vortices (2.5) with µ = 1 and θ0 = 0 is studied with the standard linearization:

un,m(t) = ei(1−4ε)t
(
φn,m + an,meλt

+ b̄n,meλ̄t
)

, (n, m) ∈ Z2, (4.1)
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where λ ∈ C and (an,m, bn,m) ∈ C2 solve the linear eigenvalue problem on (n, m) ∈ Z2:(
1 − 2|φn,m |

2
)

an,m − φ2
n,mbn,m − ε

(
an+1,m + an−1,m + an,m+1 + an,m−1

)
= iλan,m,

−φ̄2
n,man,m +

(
1 − 2|φn,m |

2
)

bn,m − ε
(
bn+1,m + bn−1,m + bn,m+1 + bn,m−1

)
= −iλbn,m .

The stability problem (4.2) can be formulated in the matrix–vector form:

σHψ = iλψ, (4.2)

where ψ ∈ Ω × Ω consists of 2-blocks of (an,m, bn,m)T, H is defined by the linearization operator (2.15), and σ

consists of 2-by-2 blocks of Pauli matrices σ3 (σ3 is the diagonal matrix of (1, −1)). The discrete vortex is called
spectrally unstable if there exist λ and ψ ∈ Ω ×Ω in the problem (4.2) such that Re(λ) > 0. Otherwise, the discrete
vortex is called weakly spectrally stable. When the localized mode φ(ε) is expanded into the Taylor series (2.20),
the linearized operatorH is expanded in the corresponding Taylor series:

H = H(0)
+

∞∑
k=1

εkH(k), (4.3)

whereH(0) is defined in (2.16), while the first-order and second-order corrections are given by

H(1)
n,m = −2

(
φ̄(0)

n,mφ(1)
n,m + φ(0)

n,m φ̄(1)
n,m φ(0)

n,mφ(1)
n,m

φ̄(0)
n,m φ̄(1)

n,m φ̄(0)
n,mφ(1)

n,m + φ(0)
n,m φ̄(1)

n,m

)
− (s+1,0 + s−1,0 + s0,+1 + s0,−1)

(
1 0
0 1

)
and

H(2)
n,m = −2

(
φ̄(0)

n,mφ(2)
n,m + φ(0)

n,m φ̄(2)
n,m φ(0)

n,mφ(2)
n,m

φ̄(0)
n,m φ̄(2)

n,m φ̄(0)
n,mφ(2)

n,m + φ(0)
n,m φ̄(2)

n,m

)
−

(
2|φ(1)

n,m |
2 φ(1)2

n,m
φ̄(1)2

n,m 2|φ(1)
n,m |

2

)
.

It is clear from the explicit form (2.16) that the spectrum of H(0)ϕ = γϕ has exactly N negative eigenvalues
γ = −2, N zero eigenvalues γ = 0 and infinitely many positive eigenvalues γ = +1. The negative and
zero eigenvalues γ = −2 and γ = 0 map to N double zero eigenvalues λ = 0 in the eigenvalue problem
σH(0)ψ = iλψ . The positive eigenvalues γ = +1 map to the infinitely many eigenvalues λ = ±i . Since zero
eigenvalues of σH(0) are isolated from the rest of the spectrum, their splitting can be studied through regular
perturbation theory. On the other hand, if the localized solution φn,m decays sufficiently fast in (n, m) ∈ Z2 as
|n|+|m| → ∞, the continuous spectral bands of σH are located on the imaginary axis of λ near the points λ = ±i ,
similarly to the case for φn,m = 0 for (n, m) ∈ Z2 [38]. Therefore, the infinite-dimensional part of the spectrum
does not produce any unstable eigenvalues Re(λ) > 0 in the stability problem (4.2) with small ε ∈ O(0). We shall
consider how zero eigenvalues ofH(0) and σH(0) split as ε 6= 0 for the localized modes categorized in Section 3.6.

4.1. Splitting of zero eigenvalues in the first-order reductions

The splitting of zero eigenvalues ofH is related to the Lyapunov–Schmidt reductions of the nonlinear equations
(2.14). We show that the same matrix M1, which gives the Jacobian of the bifurcation functions g(1)(θ), also
defines small eigenvalues ofH that bifurcate from zero eigenvalues ofH(0) in the first-order reductions.

Lemma 4.1. Let the Jacobian matrix M1 have eigenvalues µ
(1)
j , 1 ≤ j ≤ N. The eigenvalue problem Hϕ = γϕ

has N small eigenvalues γ j in ε ∈ O(0), such that

lim
ε→0

γ j

ε
= µ

(1)
j , 1 ≤ j ≤ N . (4.4)
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Proof. We assume that there exists an analytical solution φ(ε) of the nonlinear equations (2.14). The Taylor series
of φ(ε) is defined by (2.20). By taking the derivative in ε, we rewrite the problem (2.14) in the form

Hpψ(ε) + εHsψ(ε) +Hsφ(ε) = 0, ψ(ε) = φ′(ε), (4.5)

where the linearization operator (2.15) is represented asH = Hp +εHs . Using the series (2.20) and (4.3), we have
the linear inhomogeneous equation

H(0)φ(1)
+Hsφ

(0)
= 0. (4.6)

Let e j (θ), j = 1, . . . , N be eigenvectors of the kernel of H(0). Each eigenvector e j (θ) contains the only non-zero
block i(eiθ j , −e−iθ j )T at the j-th position, which corresponds to the node (n, m) on the contour SM . It is clear that
the eigenvectors are orthogonal as follows:

(ei (θ), e j (θ)) = 2δi, j , 1 ≤ i, j ≤ N . (4.7)

Let ê j (θ), j = 1, . . . , N be generalized eigenvectors, such that each eigenvector ê j (θ) contains the only non-zero
block (eiθ j , e−iθ j )T at the j-th position. Direct computations show that

σH(0)ê j (θ) = 2ie j (θ), 1 ≤ j ≤ N . (4.8)

The limiting solution (2.8) can be represented as follows:

φ(0)(θ) =

N∑
j=1

ê j (θ).

By comparing the inhomogeneous equation (4.6) with the definition (2.18) of the bifurcation function g(θ) and its
Taylor series (2.19), we have the correspondence

g(1)
j (θ) =

1
2

(
e j (θ),Hsφ

(0)(θ)
)

.

Consider a perturbation to a fixed point of g(1)(θ∗) = 0 in the form θ = θ∗ + εc, where c = (c1, c2, . . . , cN )T
∈

RN . It is clear that

φ(0)(θ) = φ(0)
+ ε

N∑
i=1

ci ei + O(ε2), e j (θ) = e j − εc j ê j + O(ε2),

where φ(0)
= φ(0)(θ∗), e j = e j (θ∗), and ê j = ê j (θ∗). By expanding the bifurcation function g(1)(θ) near θ = θ∗,

we define the Jacobian matrixM1:

g(1)
j (θ) = g(1)

j + ε (M1c) j + O(ε2),

where

(M1c) j =
1
2

n∑
i=1

(
e j ,Hsei

)
ci −

1
2

c j

N∑
i=1

(
ê j ,Hs êi

)
. (4.9)

On the other hand, the regular perturbation series for small eigenvalues of the problem Hϕ = γϕ are defined as
follows:

ϕ = ϕ(0)
+ εϕ(1)

+ ε2ϕ(2)
+ O(ε3), γ = εγ1 + ε2γ2 + O(ε3), (4.10)

where ϕ(0)
=
∑N

j=1 c j e j , according to the kernel of H(0). The first-order correction term ϕ(1) satisfies the
inhomogeneous equation

H(0)ϕ(1)
+H(1)ϕ(0)

= γ1ϕ
(0). (4.11)
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Projection to the kernel ofH(0) gives the eigenvalue problem for γ1:

1
2

N∑
i=1

(
e j ,H(1)ei

)
ci = γ1c j . (4.12)

By direct computations,

−
1
2

N∑
i=1

(
ê j ,Hs êi

)
= cos(θ j − θ j+1) + cos(θ j − θ j−1) =

1
2

N∑
i=1

(
e j ,H(1)

p ei

)
,

such that the limiting relation (4.4) follows from (4.9) and (4.12) withH(1)
= H(1)

p +Hs . �

We apply results of Lemma 4.1 to the localized modes categorized in Section 3.6. The numbers of negative,
zero and positive eigenvalues of M1 are denoted as n(M1), z(M1) and p(M1) respectively. They are predicted
from Lemmas 3.4–3.6.

For family (i), we compute the parameter A1 in Lemma 3.4 as A1 = (−1)N−l(2l − N ), where l is defined in
Proposition 3.1. By Lemma 3.4, we have n(M1) = N − l − 1, z(M1) = 1, and p(M1) = l for 0 ≤ l ≤ 2M − 1
and n(M1) = N − l, z(M1) = 1, and p(M1) = l − 1 for 2M + 1 ≤ l ≤ 4M . In the case of super-symmetric
solitons for l = 2M , by Lemma 3.6, we have n(M1) = 2M − 1, z(M1) = 2, and p(M1) = 2M − 1.

For family (ii), by Lemma 3.5, we have n(M1) = 0, z(M1) = 1, and p(M1) = N − 1 for 1 ≤ L ≤ M − 1 and
n(M1) = N − 1, z(M1) = 1, and p(M1) = 0 for M + 1 ≤ L ≤ 2M − 1, where L is defined in Proposition 3.1.
The case of super-symmetric vortices L = M can only be studied in the second-order reductions, sinceM1 = 0.

The family (iv) is characterized by the value of cos θ∗ 6= 0, L 6= M and 1 ≤ n ≤ N − 1, n 6= 2M , which are
specified in Proposition 3.1. The parameter A1 in Lemma 3.4 is computed as A1 = (−1)N−n(cos θ∗)

N−1(2n − N ),
such that z(M1) = 1 in all cases. In the case cos θ∗ > 0, by Lemma 3.4, we have n(M1) = N − n − 1 and
p(M1) = n for 1 ≤ n ≤ 2M − 1 and n(M1) = N − n and p(M1) = n − 1 for 2M + 1 ≤ n ≤ N − 1.
In the opposite case of cos θ∗ < 0, we have n(M1) = n and p(M1) = N − n − 1 for 1 ≤ n ≤ 2M − 1 and
n(M1) = n − 1 and p(M1) = N − n for 2M + 1 ≤ n ≤ N − 1.

The splitting of zero eigenvalue of H is related to splitting of zero eigenvalues of σH in the stability problem
(4.2).

Lemma 4.2. Let the Jacobian matrix M1 have eigenvalues µ
(1)
j , 1 ≤ j ≤ N. The eigenvalue problem σHψ =

iλψ has N pairs of small eigenvalues λ j in ε ∈ O(0), such that

lim
ε→0

λ2
j

ε
= 2µ

(1)
j , 1 ≤ j ≤ N . (4.13)

Proof. The regular perturbation series for small eigenvalues of σH are defined as follows:

ψ = ψ (0)
+

√
εψ (1)

+ εψ (2)
+ ε

√
εψ (3)

+ O(ε2), λ =
√

ελ1 + ελ2 + ε
√

ελ3 + O(ε2), (4.14)

where, due to the relations (4.7) and (4.8), we have

ψ (0)
=

N∑
j=1

c j e j , ψ (1)
=

λ1

2

N∑
j=1

c j ê j , (4.15)

according to the kernel and generalized kernel of σH(0). The second-order correction term ψ (2) satisfies the
inhomogeneous equation

H(0)ψ (2)
+H(1)ψ (0)

= iλ1σψ
(1)

+ iλ2σψ
(0). (4.16)



40 D.E. Pelinovsky et al. / Physica D 212 (2005) 20–53

Projection to the kernel ofH(0) gives the eigenvalue problem for λ1:

M1c =
λ2

1

2
c, (4.17)

where c = (c1, c2, . . . , cN )T and the matrix M1 is the same as in the eigenvalue problem (4.12). The relation
(4.13) follows from (4.17). �

We apply results of Lemma 4.2 to the localized modes of Section 3.6. The numbers of negative, zero and
positive eigenvalues of M1, denoted as n(M1), z(M1) and p(M1), are computed above. Let Nr, N0 and N−

i
be the numbers of pairs of real, zero and imaginary eigenvalues of the reduced eigenvalue problem (4.17). The
notation N−

i is used for imaginary eigenvalues with negative Krein signature (see [1,36]).
For family (i), we have N−

i = N − l − 1, N0 = 1, and Nr = l for 0 ≤ l ≤ 2M − 1; N−

i = N − l − 1, N0 = 2,
and Nr = l − 1 for l = 2M ; and N−

i = N − l, N0 = 1, and Nr = l − 1 for 2M + 1 ≤ l ≤ N , where l is defined in
Proposition 3.1.

For family (ii), we have N−

i = 0, N0 = 1, and Nr = N − 1 for 1 ≤ L ≤ M − 1; N−

i = 0, N0 = N , and
Nr = 0 for L = M ; and N−

i = N − 1, N0 = 1, and Nr = 0 for M + 1 ≤ L ≤ 2M − 1, where L is defined in
Proposition 3.1.

For family (iv) with cos θ∗ > 0, we have N−

i = N − n − 1, N0 = 1, and Nr = n for 1 ≤ n ≤ 2M − 1 and
N−

i = N − n, N0 = 1, and Nr = n − 1 for 2M + 1 ≤ n ≤ N − 1. In the opposite case of cos θ∗ < 0, we have
N−

i = n, N0 = 1, and Nr = N − n − 1 for 1 ≤ n ≤ 2M − 1 and N−

i = n − 1, N0 = 1, and Nr = N − n for
2M + 1 ≤ n ≤ N − 1.

There are several features which are not captured in the first-order reductions. For super-symmetric solitons of
family (i), when l = 2M but a j 6= (−1) j a, the additional zero eigenvalue splits at the second-order reductions,
which leads to an additional non-zero eigenvalue of the stability problem (4.2). For symmetric vortices of family
(ii), multiple real eigenvalues of the first-order reductions split into the complex domain in the second-order
reductions. For super-symmetric vortices of family (ii), when L = M , the matrix M1 = 0, such that non-
zero eigenvalues occur in the second-order reductions. Finally, for super-symmetric solitons with l = 2M and
a j = (−1) j a and super-symmetric vortices with L = M , an additional zero eigenvalue bifurcates in the higher-
order reductions. These special features of the problem under consideration are addressed in the rest of this section.

4.2. Splitting of zero eigenvalues in the second-order reductions: Super-symmetric solitons

For super-symmetric solitons of family (i), when l = 2M but a j 6= (−1) j a, the Jacobian matrix M1 has two
zero eigenvalues with eigenvectors p0 and p1, but the Jacobian matrix M1 + εM2 has only one zero eigenvalue
with eigenvector p0. Therefore, the splitting of the zero eigenvalue occurs in the second-order reduction. Extending
the regular perturbation series (4.10) to the next order, we find that γ1 = 0 for c = p1, and

γ2 =
(p1,M2p1)

(p1, p1)
.

Extending the regular perturbation series (4.14) to the second order, we have find that λ2
1 = 0 for c = p1, and

λ2
2 = 2

(p1,M2p1)

(p1, p1)
= 2γ2.

Thus, the splitting of the zero eigenvalue in the second-order reduction is the same as the splitting of zero
eigenvalues in the first-order reductions. A positive eigenvalue γ2 results in a pair of real eigenvalues λ2, while
a negative eigenvalue γ2 results in a pair of purely imaginary eigenvalues λ2 of negative Krein signature. This
result recovers conclusions of our previous paper [1], where we address the stability of discrete solitons in the
one-dimensional NLS lattice.
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4.3. Splitting of non-zero eigenvalues in the second-order reductions

We continue the regular perturbation series (4.14) to the second-order reductions. Using explicit solutions for
φ(1), required in H(1), we compute the explicit solution of the inhomogeneous equation (4.16) subject to the
constraint (4.17):

ψ (2)
=

λ2

2

N∑
j=1

c j ê j +
1
2

N∑
j=1

(sin(θ j+1 − θ j )c j+1 + sin(θ j−1 − θ j )c j−1)ê j +

N∑
j=1

c j (S+ + S−) e j , (4.18)

where the operators S± shift elements of e j from the node (n, m) ∈ SM to the adjacent nodes (n, m) ∈ Z2
\ SM ,

according to enumeration j = 1, . . . , N . The third-order correction termψ (3) satisfies the inhomogeneous equation

H(0)ψ (3)
+H(1)ψ (1)

= iλ1σψ
(2)

+ iλ2σψ
(1)

+ iλ3σψ
(0). (4.19)

Projection of the combined inhomogeneous problems (4.16) and (4.19) to the kernel of H(0) gives the extended
eigenvalue problem for λ1 and λ2:

M1c =
λ2

1

2
c +

√
ε (λ1λ2c + λ1L1c) , (4.20)

where the matrix L1 is defined by

(L1)i, j =

{
sin(θ j − θi ), i = j ± 1,

0, |i − j | 6= 1
(4.21)

subject to the periodic boundary conditions. Let µ
(1)
j be an eigenvalue of the symmetric matrix M1 with the

eigenvector c j . Then,

λ1 = ±

√
2µ

(1)
j , λ2 = −

(c j ,L1c j )

(c j , c j )
. (4.22)

Since the matrix L1 is skew-symmetric, the second-order correction term λ2 is purely imaginary, unless
(c j ,L1c j ) = 0. For discrete solitons of family (i), we have sin(θ j+1 − θ j ) = 0, such that L1 = 0 and λ2 = 0.
For symmetric vortices of family (ii) with L 6= M , the matrix M1 has double eigenvalues, according to the roots
of sin2 πn

N in the explicit solution (3.13). Using the same discrete Fourier transform as in the proof of Lemma 3.5,
one can find the values of λ1 and λ2 in this case.

Lemma 4.3. Let all coefficients a j = cos(θ j+1 − θ j ) and b j = sin(θ j+1 − θ j ), 1 ≤ j ≤ N be the same: a j = a
and b j = b. Eigenvalues of the reduced problem (4.20) are given explicitly:

λ1 = ±
√

8a sin
πn

N
, λ2 = −2ib sin

2πn

N
, 1 ≤ n ≤ N . (4.23)

According to Lemma 4.3, all double roots of λ1 for n 6=
N
2 and n 6= N split along the imaginary axis in λ2.

When a > 0, the splitting occurs in the transverse directions to the real values of λ1. When a < 0, the splitting
occurs in the longitudinal directions to the imaginary values of λ1. The simple roots at n =

N
2 and n = N are not

affected, since λ2 = 0 for n =
N
2 and n = N .

4.4. Splitting of zero eigenvalues in the second-order reductions: super-symmetric vortices

We extend results of the regular perturbation series (4.10) and (4.14) to the case M1 = 0, which occurs for
super-symmetric vortices of family (ii) with charge L = M . When M1 = 0, it follows from the problem (4.11)
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that γ1 = 0 and the first-order correction term ϕ(1) has the explicit form

ϕ(1)
=

1
2

N∑
j=1

(c j+1 − c j−1)ê j +

N∑
j=1

c j (S+ + S−) e j , (4.24)

where the operators S± are the same as in the formula (4.18). The second-order correction term ϕ(2) satisfies the
inhomogeneous equation

H(0)ϕ(2)
+H(1)ϕ(1)

+H(2)ϕ(0)
= γ2ϕ

(0). (4.25)

Projection to the kernel ofH(0) gives the eigenvalue problem for γ2:

1
2

(
e j ,H(1)ϕ(1)

)
+

1
2

N∑
i=1

(
e j ,H(2)ei

)
ci = γ2c j . (4.26)

By direct computations in the three separate cases M = 1, M = 2, and M ≥ 3, one can verify that the matrix
on the left-hand side of the eigenvalue problem (4.26) is nothing but the matrix M2, which is the Jacobian of the
nonlinear function g(2)(θ). Let the numbers of negative, zero and positive eigenvalues ofM2 be denoted as n(M2),
z(M2) and p(M2) respectively. For super-symmetric vortices of family (ii), we have computed in Section 3.4 that
n(M2) = 0, z(M2) = 2 and p(M2) = 2 for M = 1; n(M2) = 1, z(M2) = 2 and p(M2) = 5 for M = 2; and
n(M2) = 4, z(M2) = 2 and p(M2) = 6 for M = 3.

Splitting of zero eigenvalues of σH is studied with the regular perturbation series (4.14). When M1 = 0, it
follows from the problem (4.16) that λ1 = 0, such that the regular perturbation series (4.14) can be re-ordered as
follows:

ψ = ψ (0)
+ εψ (1)

+ ε2ψ (2)
+ O(ε3), λ = ελ1 + ε2λ2 + O(ε3), (4.27)

where

ψ (0)
=

N∑
j=1

c j e j , ψ (1)
= ϕ(1)

+
λ1

2

N∑
j=1

c j ê j , (4.28)

and ϕ(1) is given by (4.24). The second-order correction term ψ (2) is found from the inhomogeneous equation

H(0)ψ (2)
+H(1)ψ (1)

+H(2)ψ (0)
= iλ1σψ

(1)
+ iλ2σψ

(0). (4.29)

Projection to the kernel ofH(0) gives the eigenvalue problem for λ1:

M2c = λ1L2c +
λ2

1

2
c, (4.30)

where c = (c1, c2, . . . , cN )T, the matrix M2 is the same as in the eigenvalue problem (4.26), and the matrix L2
follows from the matrix L1 in the form (4.21) with sin(θ j+1 − θ j ) = 1, or explicitly:

(L2)i, j =

+1, i = j − 1
−1, i = j + 1
0, |i − j | 6= 1

(4.31)

subject to the periodic boundary conditions. SinceM2 is symmetric and L2 is skew-symmetric, the eigenvalues of
the problem (4.30) occur in pairs (λ1, −λ1).

Comparing matrices M2 in (3.27) and L2 in (4.31), we understand that M2 = −
1
2L

2
2. However, the Jacobian

matrices M̃2 are modified in the case M = 2 and M ≥ 3 by the rank-one and rank-four non-positive matrices
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1M2. As a result, the eigenvalue problem (4.30) can be factorized as follows:

1
2

(L2 + λ1)
2 c = 1M2c. (4.32)

If λ1 ∈ R, then (c,L2c) = 0 and (c,M̃2c) > 0. If λ1 ∈ iR, then either L2c = −λ1c or (c, 1M2c) < 0. In
order to associate the Krein signature with purely imaginary eigenvalues λ1, we consider the energy quadratic form
computed at the eigenvector (4.27) for λ ∈ iR:

(ψ,Hψ) = ε2 Q2 + O(ε3), (4.33)

where

Q2 =

(
ψ (0),H(2)ψ (0)

+H(1)ψ (1)
+H(0)ψ (2)

)
+

(
ψ (1),H(1)ψ (0)

+H(0)ψ (1)
)

= iλ1

(
ψ (0), σψ (1)

)
+ iλ1

(
ψ (1), σψ (0)

)
= λ1

N∑
j=1

(
c̄ j
(
c j+1 − c j−1

)
− c j

(
c̄ j+1 − c̄ j−1

))
+ 2λ2

1

N∑
j=1

|c j |
2

= 2λ1 (c, (L2 + λ1)c) .

The sign of the energy quadratic form (4.33) coincides with the Krein signature of imaginary eigenvalues λ (see,
e.g., [1]). When L2c = −λ1c, eigenvalues λ ∈ iR have zero Krein signature at the second-order reductions. When
(c, 1M2c) < 0, eigenvalues λ ∈ iR have negative Krein signature at the second-order reductions.

Computations of eigenvalues of the reduced eigenvalue problem (4.30) are reported in the three distinct cases:
M = 1, M = 2 and M = 3.

Case M = 1: The reduced eigenvalue problem (4.30) takes the form of the difference equation with constant
coefficients:

−c j+2 + 2c j − c j−2 = λ2
1c j + 2λ1

(
c j+1 − c j−1

)
, 1 ≤ j ≤ 4M, (4.34)

subject to the periodic boundary conditions. By the discrete Fourier transform, the difference equation reduces to
the characteristic equation(

λ1 + 2i sin
πn

2M

)2
= 0, 1 ≤ n ≤ 4M. (4.35)

When M = 1, the reduced eigenvalue problem (4.30) has two eigenvalues of algebraic multiplicity two at λ1 = −2i
and λ1 = 2i and a zero eigenvalue of algebraic multiplicity four. The multiple imaginary eigenvalue λ1 = 2i has
zero Krein signature, according to the discussion below (4.33).

Case M = 2: The reduced eigenvalue problem (4.30) takes the form of a system of difference equations with
constant coefficients:

−x j+1 + 2x j − x j−1 = λ2
1x j + 2λ1

(
y j − y j−1

)
, j = 1, 2, 3, 4,

y j+1 − 2y j+2 + y j−1 = λ2
1 y j + 2λ1

(
x j+1 − x j

)
, j = 1, 2, 3, 4,

where x j = c2 j−1 and y j = c2 j subject to the periodic boundary conditions. The characteristic equation for the
linear system takes the explicit form

λ4
1 − 2λ2

1

(
1 − (−1)n

− 8 sin2 πn

4

)
+ 8 sin2 πn

4

(
1 − (−1)n

− 2 sin2 πn

4

)
= 0, n = 1, 2, 3, 4.

The reduced eigenvalue problem (4.30) has three eigenvalues of algebraic multiplicity four at λ1 = −
√

2i,
λ1 =

√
2i, and λ1 = 0, and four simple eigenvalues at λ1 = ±i

√√
80 + 8 and λ1 = ±

√√
80 − 8. The multiple
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imaginary eigenvalue λ1 =
√

2i has zero Krein signature, while the simple imaginary eigenvalue λ1 = i
√√

80 + 8
has negative Krein signature, according to the discussion below (4.33).

Case M = 3: Eigenvalues of the reduced eigenvalue problem (4.30) are computed numerically by using
Mathematica. The results are as follows:

λ1,2 = ±3.68497i, λ3,4 = λ5,6 = ±3.20804i, λ7,8 = ±2.25068i, λ9,10 = λ11,12 = ±i,

λ13,14 = λ15,16 = ±0.53991, λ17,18,19,20 = ±0.634263 ± 0.282851i, λ21,22,23,24 = 0.

Using these computations of eigenvalues, we summarize that the second-order reduced eigenvalue problem
(4.30) has no unstable eigenvalues λ when L = M = 1; a simple unstable (positive) eigenvalue when L = M = 2;
two unstable real and two unstable complex eigenvalues when L = M = 3.

The destabilization of the super-symmetric vortex with M = 2 occurs due to the center node (2, 2), which
couples the four even-numbered nodes of the contour S2 in the second-order reductions. Due to this coupling,
the rank-one non-positive matrix 1M2 modifies the Jacobian matrix M̃2, which acquires a simple negative
eigenvalue, compared to the non-negative matrix M2. This deformation results in a simple unstable eigenvalue
in the reduced eigenvalue problem (4.32).

Similarly, destabilization of the super-symmetric vortex with M = 3 occurs due to the coupling of eight nodes
of the contour S3 with four interior corner points (2, 2), (2, M), (M, M), and (M, 2). Due to this coupling, the
rank-four non-positive matrix 1M2 leads to four negative eigenvalues in the Jacobian matrix M̃2 and to four
unstable eigenvalues in the reduced eigenvalue problem (4.32).

We note that if 1M2 = 0 for any M ≥ 1 (i.e. if all nodes inside the contour SM would be removed by drilling
a hole), the eigenvalues of M2 would be all positive and the eigenvalues of the reduced problem (4.32) would be
all purely imaginary, similarly to in the case M = 1. In this case, the eigenvalue problem (4.32) would be solved
with the discrete Fourier transform in the form (4.35) for a general M ≥ 1.

We also note that multiple eigenvalues of zero Krein signatures can split either along the imaginary axis or into
the complex domain. When eigenvalues split along the imaginary axis, a multiple eigenvalue of even algebraic
multiplicity splits into equal numbers of eigenvalues of positive and negative Krein signatures [39]. We will show
numerically in Section 5 that this scenario holds for super-symmetric vortices in the cases M = 1, 2, 3.

4.5. Splitting of zero eigenvalues in the higher-order reductions

We study the splitting of zero eigenvalues in higher-order reductions with a modification of the MATLAB-
assisted algorithm of Section 3.5.

The regular perturbation series (4.10) for the eigenvalue problem Hϕ = γϕ starts with the zero order ϕ(0)
=∑N

j=1 c j e j . We consider the splitting of the double zero eigenvalue of M2 which corresponds to the eigenvectors
p0 and p1, where p0 = (1, 1, . . . , 1, 1)T and p1 = (0, 1, . . . , 0, 1)T. For this purpose, we set c = (c1, . . . , cN ) =

p1 +αp0, where α is a parameter. We assume that the splitting occurs at the order K of the higher-order reductions.
Once the perturbation series (4.10) is extended up to the order K in the computational domain (n, m) ∈ D(K , M),
all corrections of the perturbation series can be found from the linear inhomogeneous equations:

H(0)ϕ(k)
= −

k∑
m=1

H(m)ϕ(k−m), 1 ≤ k ≤ K − 1

and

H(0)ϕ(K )
= −

K∑
m=1

H(m)ϕ(K−m)
+ γKϕ

(0),
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where γ = γK εK
+ O(εK+1) is the leading-order approximation for the smallest non-zero eigenvalue of H. The

higher-order correction γK and the parameter α in the linear superposition are found from the projection formulas,
onto the kernel ofH(0).

Applying this algorithm to the super-symmetric vortices with M = 1, we have found that K = 6, α = −
1
2 , and

γ6 = −16, such that the zero eigenvalue becomes a small negative eigenvalue for small ε 6= 0. In the case M = 2,
the same algorithm results in the same conclusion with K = 6, α = −

1
2 , and γ6 = −8. The algorithmic procedure

does not work in the case M = 3, when the phase difference between two adjacent sites on the discrete contour
changes in higher orders of the Lyapunov–Schmidt reductions.

Similarly, we develop the regular perturbation series (4.27) for the eigenvalue problem σHψ = iλψ starting
with the zero order ψ (0)

=
∑N

j=1 c j e j and c = p1 + αp0, where α = −
1
2 . In the case M = 1, we have found that

λ1 = λ2 = 0 but λ3 6= 0, such that λ2
3 = −32 = 2γ6. Therefore, a small negative eigenvalue ofH at K = 6 results

in a pair of small imaginary eigenvalues of σH with negative Krein signature, similarly to the standard result of
the first-order reductions. The same conclusion was obtained in the case M = 2 with λ2

3 = −16 = 2γ6. The case
M = 3 is again omitted from consideration.

4.6. Summary on the stability of localized modes

Individual results on the stability of localized modes on the square discrete contour SM are summarized as
follows. Let families of discrete solitons and vortices be defined in Section 3.6. For M = 1, 2, 3, the following
solutions are spectrally stable in the domain ε ∈ O(0):

• discrete solitons of family (i) with l = 0;
• symmetric vortices of family (ii) with the charge M + 1 ≤ L ≤ 2M − 1;
• the symmetric vortex of family (ii) with the charge L = M = 1

All other solutions have at least one unstable eigenvalue with Re(λ) > 0. We note that stability of discrete
solitons of family (i) with l = 0 is equivalent to stability of discrete solitons in the one-dimensional NLS lattice,
which is proved in our previous paper [1]. When l = 0, the limiting solution (2.8) consists of alternating up and
down pulses along the contour SM , similarly to Theorem 3.6 in [1].

5. Numerical results

We perform a numerical analysis (within a prescribed tolerance of 10−8) of the linear stability problem
associated with the discrete NLS equation (2.1). We examine discrete vortices in the simplest cases M = 1 and
M = 2. The results are shown in Figs. 2–7 and summarized in Table 1.

In computations of solutions of the problems (2.7) and (4.2), we will use an equivalent renormalization of the
problem with the parameter

ε =
ε

1 − 4ε
.

This renormalization is equivalent to keeping the diagonal term −4εφn,m in the right-hand side of the difference
equations (2.7). As a result, the discrete solitons and vortices exist in the semi-infinite domain ε > 0 and the finite
interval 0 < ε < 1

4 . The anti-continuous limit is not affected by the renormalization since ε ≈ ε for small ε.
In Figs. 2–7, the top left panel shows the profile of the vortex solution for a specific value of ε by means

of contour plots of the real (top left), imaginary (top right), modulus (bottom left) and phase (bottom right) two-
dimensional profiles. The squares in each sub-figure show nodes of the discrete lattice (n, m) ∈ Z2, where different
colors correspond to different values of the plotted quantities, according to the color scheme on the right of each
sub-figure.
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Fig. 2. The (super-symmetric) vortex cell with L = M = 1. The top left panel shows the profile of the solution for ε = 0.6. The subplots
show the real (top left), imaginary (top right), modulus (bottom left) and phase (bottom right) fields. The top right panel shows the spectral
plane (λr, λi) of the linear eigenvalue problem (4.2). The bottom panel shows the small eigenvalues versus ε (the top subplot shows the
imaginary part, while the bottom shows the real part). The solid lines show the numerical results, while the dashed lines show the results of the
Lyapunov–Schmidt reductions.

The top right panel shows the complex plane λ = λr + iλi for the linear eigenvalue problem (4.2) for the
same value of ε. The bottom panel shows the dependence of small eigenvalues as a function of ε, obtained via
continuation methods from the anti-continuum limit of ε = 0. The solid lines represent numerical results, while
the dashed lines show results of the first-order, second-order and sixth-order reductions.

Fig. 2 shows results for the super-symmetric vortex of charge L = 1 on the contour SM with M = 1. In
the second-order and sixth-order reductions, the stability spectrum of the vortex solution has a pair of imaginary
eigenvalues λ ≈ ±i

√
32ε3 and two pairs of imaginary eigenvalues λ ≈ ±2εi. The latter pairs split along

the imaginary axis beyond the second-order reductions. The larger pair of negative Krein signature leads to a
Hamiltonian–Hopf bifurcation for larger values of ε ≈ 0.38 upon collision with the continuous spectrum. The
smaller pair of positive Krein signature disappears at ε ≈ 0.66. The smallest pair of imaginary eigenvalues has
negative Krein signature and leads to a Hamiltonian–Hopf bifurcation at ε ≈ 0.92 due to collision with another
pair of positive Krein signature which bifurcates from the continuous spectrum.

Fig. 3 shows results for the symmetric vortex of charge L = 1 on the contour SM with M = 2. There are three
double and one simple real unstable eigenvalues in the first-order reductions, but all double eigenvalues split into
the complex plane in the second-order reductions. The asymptotic result (4.23) for eigenvalues λ ≈

√
ελ1 + ελ2
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Fig. 3. The symmetric vortex with L = 1 and M = 2; the top panels show the mode profile (left) and linear stability (right) for ε = 0.1.

with N = 8, a = cos(π/4) and b = sin(π/4) is shown in Fig. 3, in very good agreement with numerical
results.

Fig. 4 shows results for the super-symmetric vortex with L = M = 2. The second-order and sixth-order
reductions have a pair of simple real eigenvalues λ ≈ ±ε

√√
80 − 8, a pair of simple imaginary eigenvalues

λ ≈ ±iε
√√

80 + 8, a pair of simple imaginary eigenvalues λ ≈ ±4iε3, and a pair of imaginary eigenvalues
of algebraic multiplicity four at λ ≈ ±iε

√
2. The bottom right panel of Fig. 4 shows the splitting of multiple

imaginary eigenvalues beyond the second-order reductions along the imaginary axis and also four subsequent
Hamiltonian–Hopf bifurcations for larger values of ε (ε ≈ 0.23; 0.5; 0.5; 1.45). The other two pairs of purely
imaginary eigenvalues collide with the band edge of the continuous spectrum at ε ≈ 1.315; 1.395 and disappear
into the continuous spectrum.

Fig. 5 shows results for the symmetric vortex with L = 3 and M = 2. The first-order reductions predict
three pairs of double imaginary eigenvalues, a pair of simple imaginary eigenvalues and a double zero eigenvalue.
The double non-zero eigenvalues split in the second-order reductions along the imaginary axis, given by (4.23)
with N = 8, a = cos(3π/4) and b = sin(3π/4). The seven pairs of imaginary eigenvalues lead to a
cascade of seven Hamiltonian–Hopf bifurcations for larger values of ε due to their collisions with the continuous
spectrum. The first Hamiltonian–Hopf bifurcation when the symmetric vortex becomes unstable occurs for
ε ≈ 0.096.
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Fig. 4. The super-symmetric vortex with L = M = 2; the top panels show the mode profile (left) and linear stability (right) for ε = 0.1. The
bottom right panel is an extension of the bottom left panel to larger values of ε.

Zero-parameter asymmetric vortices of family (iv) on the contour SM with M = 2 are shown in Fig. 6 for
L = 1 and in Fig. 7 for L = 3. In the case of Fig. 6, all the phase differences between adjacent sites in the
contour are π/6, except for the last one which is 5π/6, completing a phase trip of 2π for a vortex of topological
charge L = 1. Eigenvalues of the matrixM1 in the first-order reductions can be computed numerically as follows:
µ

(1)
1 = −1.154, µ

(1)
2 = 0, µ

(1)
3 = 0.507, µ

(1)
4 = 0.784, µ

(1)
5 = 1.732, µ

(1)
6 = 2.252, µ

(1)
7 = 2.957 and

µ
(1)
8 = 3.314. As a result, the corresponding eigenvalues λ ≈ ±

√
2µ(1)ε yield one pair of imaginary eigenvalues

and six pairs of real eigenvalues, in agreement with our numerical results. The bottom panel of Fig. 6 shows that
two pairs of real eigenvalues collide for ε ≈ 0.047 and ε ≈ 0.057 and lead to two quartets of eigenvalues.

In the case of Fig. 7, all the phase differences in the contour are 5π/6, except for the last one which is π/6,
resulting in a vortex of topological charge L = 3. Eigenvalues of the matrixM1 are found numerically as follows:
µ

(1)
1 = −3.314, µ

(1)
2 = −2.957, µ

(1)
3 = −2.252, µ

(1)
4 = −1.732, µ

(1)
5 = −0.784, µ

(1)
6 = −0.507, µ

(1)
7 = 0, and

µ
(1)
8 = 1.154. Consequently, this solution has six pairs of imaginary eigenvalues and one pair of real eigenvalues.

The first Hamiltonian–Hopf bifurcation occurs for ε ≈ 0.086.
At the end of this section, we address the persistence and stability of super-symmetric vortices in the case

M = L = 3, where our analytical results from Lyapunov–Schmidt reductions have limitations. Numerical
computations indicate fast convergence of the iterative procedure to the super-symmetric vortex for ε > 0. Table 2
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Fig. 5. The symmetric vortex with L = 3 and M = 2; the top panels show the mode profile (left) and linear stability (right) for ε = 0.1.

Table 2
The phase values of twelve nodes across the discrete contour S3 in the super-symmetric vortex with M = L = 3 for ε = 0.01

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6
0.0012099765 1.5678285580 3.1469803754 4.7135989568 6.2802175384 1.5761840486
j = 7 j = 8 j = 9 j = 10 j = 11 j = 12
3.1428026301 4.7094212116 0.0053877218 1.5720063033 3.1386248848 4.7177767021

shows the values of complex phases θ j across the discrete contour S3 for ε = 0.01. It is clear from the Table
that the phase differences between two adjacent sites across the discrete contour become slightly different from
π/2, as was noted in the algorithmic computations of the higher-order reductions. Fig. 8 shows the eigenvalues
of the discrete spectrum for the super-symmetric vortices with M = L = 3 for ε = 0.01. According to our
computations of eigenvalues of the second-order reduction, we find four unstable eigenvalues, which include
two real and two complex-conjugate eigenvalues. Also, we observe that the additional pair of zero eigenvalues
splits slowly from zero in higher-order reductions, which proves our conjecture that the one-parameter family
of asymmetric vortices terminates, while the zero-parameter family of super-symmetric vortices persists in the
Lyapunov–Schmidt reductions.
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Fig. 6. The asymmetric vortex with L = 1 and M = 2; the top panels show the mode profile (left) and linear stability (right) for ε = 0.1.

6. Conclusion

In the present work we have developed the mathematical analysis of discrete soliton and vortex solutions of
the two-dimensional NLS lattice with small coupling between lattice nodes. These solutions are relevant to recent
experimental and numerical studies in the context of nonlinear optics, photonic crystal lattices, soft condensed-
matter physics, and Bose–Einstein condensates.

We have examined the persistence of discrete vortices starting from the anti-continuum limit of uncoupled
oscillators and continuing towards a finite coupling constant ε. We have found persistent families of such solutions
that include symmetric and asymmetric vortices. We have ruled out other non-persistent solutions by means of
the Lyapunov–Schmidt reduction method. For persistent solutions, we have derived the leading-order asymptotic
approximations for small unstable and neutrally stable eigenvalues of the stability problem.

We have applied the results to particular computations of discrete vortices of topological charge L = 1, L = 2,
and L = 3 on the discrete square contours SM with M = 1, M = 2, and M = 3. Besides particular computations
collected in Table 1 and Figs. 2–7, these results offer a road map for stability predictions for larger contours,
as well as predictions on how to stabilize the discrete vortices. For example, super-symmetric vortices of charge
L = M ≥ 2 can be stabilized by excluding the inner nodes inside the discrete contour SM .
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Fig. 7. The asymmetric vortex with L = 3 and M = 2; the top panels show the mode profile (left) and linear stability (right) for ε = 0.1.

Fig. 8. Eigenvalues of the super-symmetric vortex with L = 3 and M = 3 for ε = 0.01.
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There are remaining open problems for future analytical work. First, it would be nice to extend this analysis
to three-dimensional structures, such as the discrete solitons, vortices, or vortex “cubes” (see [26–28]). Second,
other types of contours can be studied in the two-dimensional lattice, such as the diagonal square contours
which would include the “vortex cross” or the octagon (see [25]). While, conceptually, the methodologies and
techniques presented here can be adapted to the problems mentioned above, actual computations of the higher-
order Lyapunov–Schmidt reductions become technically involved but can be carried out with symbolic computing
software.
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