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The existence of traveling waves in strongly inhomogeneous media is reviewed in the
framework of the one-dimensional linear wave equation with a variable speed. Such solutions
are found by using a homogenization, in which the variable-coefficient wave equation is
transformed to a constant-coefficient Klein–Gordon equation. This transformation exists if and
only if the spatial variations of the variable speed satisfy a constraint expressed by a second-
order ordinary differential equation with two arbitrary parameters. All solutions of the
constraint are found in explicit form, and our results obtained by this systematic procedure
include many previous results found in the literature. Further, we show that the wave equation
under the same constraint on the variable speed admits a two-parameter Lie group of nontrivial
commuting point symmetries.
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1. Introduction

The linear wave equation is a widely used model in mathematical physics. However, explicit solutions for this equation when
the wave speed varies spatially can only be obtained in certain special cases [2,4,6,9,20,23]. These solutions are nevertheless useful
to describe wave propagation and reflection in a strongly inhomogeneous medium, and to test numerical algorithms.

If the speed of the wave equation changes slowly in space, then asymptotic solutions of the wave equation can be found using
the well-known WKB method; see the texts [1,3,7,15,18]. The main feature of the WKB approximation is that the basic
monochromatic wave has the same structure as a travelingwave in thewave equationwith constant coefficients, but its amplitude
and phase vary slowly in space. On the other hand, it has often been assumed that such traveling waves do not exist in a strongly
inhomogeneous medium due to internal reflections along the wave path [8,12]. In the framework of the WKB approximation,
these internal reflections are exponentially small with respect to the small parameter characterizing the slow variation of the
medium relative to a typical wavelength (see, for instance, [3,7]), whereas in a strongly inhomogeneous medium, the internal
reflections could be quite large.

For certain special cases of the spatial dependence of the wave speed, solutions of the variable-coefficient wave equation
having the form of a unidirectional traveling wave have been found in various physical contexts [14,22,24,25], including surface
and internal waves in fluids [11,13].

In this paper, we re-examine the existence of such traveling waves in the one-dimensional linear wave equation with a
spatially-variable wave speed c(x), written in the form
∂2u
∂t2

− ∂
∂x c2 xð Þ ∂u∂x

� �
= 0: ð1Þ
imshaw).
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This formarises for instance for surfacewaterwaves,whenexpressed in termsof thewaveelevation.Weshall also consider another
version of the wave equation (which follows for instance from the electro-magnetic Maxwell equations in one dimension)
so tha
∂2v
∂t2

−c2 xð Þ ∂
2v

∂x2
= 0: ð2Þ
The two equations (Eqs. (1) and (2)) are related and the transformation between the two equations is not unique. For instance,
u=∂v /∂x is one possible relation, while another one follows from the wave system
∂u
∂t =

∂v
∂x ;

∂v
∂t = c2 xð Þ ∂u∂x : ð3Þ
Wewill show that travelingwaves of thewave equations (Eqs. (1) and (2)) exist for different constraints on thewave speed c(x).
In view of the relations between the two equations, this fact implies that two different sets of traveling waves exist in each of the
wave equations and in the wave system (Eq. (3)).

The main idea to find traveling waves in an inhomogeneous medium is based on the possibility to find a change of variables
which reduces the variable-coefficient wave equations (Eqs. (1) and (2)) to a constant-coefficient Klein–Gordon equation
∂2W
∂T2 −∂2W

∂X2 + κW = 0; ð4Þ

(X,T,W) are new variables and κ is a constant parameter. Explicit solutions of the Klein–Gordon equation (Eq. (4)) describing
where
traveling waves can be found and these explicit solutions become traveling waves of the wave equations (Eqs. (1) and (2)).

The technique behind the derivation of the constant-coefficient Klein–Gordon equation from the variable-coefficient wave
equation has been known since the classical works of P.S. Laplace [16] and S. Lie [17]. Lie groups of point symmetries and similarity
solutions for thewave equation (Eq. (2)) and thewave system (Eq. (3))were considered by Bluman and Kumei [6] and reproduced in
the handbook ([10], Section 12.2). It is surprising, however, that nontrivial point symmetries of thewave equation (Eq. (1)) arise for a
different constraint on c(x) and differ from those of the other wave equation (Eq. (2)). Moreover, although many examples of such
transformations for the linear and nonlinear wave equations can be found in the literature, see for instance the works of Bluman [4],
Bluman and Cheviakov [5], and Ibragimov and Rudenko [14], as far as we are aware, no general transformation of the wave equation
(Eq. (1)) to theKlein–Gordonequation (Eq. (4))has been reported in literature. Although themethod forfinding such transformations
is well known,we thought that it would be useful to find and tabulate all such transformations in a single article. Hence, in this paper,
we characterize all possible constraints on c(x) that enable existence of nontrivial point symmetries, and all possible constraints on c(x)
that enable reductions to the Klein–Gordon equation (Eq. (4)) in the context of the wave equation (Eq. (1)).

Our article is structured as follows. Section 2 gives a classification of point symmetries of the wave equation (Eq. (1)). Section 3
describes the transformation of the wave equation (Eq. (1)) to the Klein–Gordon equation (Eq. (4)). Section 4 discusses the
various profiles of c(x) that admit a homogenization. Similar results for the wave equation (Eq. (2)) are described in Section 5.
Section 6 concludes the article with a brief discussion of traveling waves in inhomogeneous media.

2. Point symmetries of the wave equation (Eq. (1))

Let us rewrite the wave equation (Eq. (1)) in the form
A x;ux;uxx;uttð Þ := utt− c2 xð Þux

� �
x
= 0: ð5Þ
We classify here all point symmetries generated by the infinitesimal operator
M = τ t; xð Þ ∂∂t + ξ t; xð Þ ∂
∂x + η t; x;uð Þ ∂

∂u ; ð6Þ

ing the classical algorithm in the text by Olver [19]. Compared to the general algorithm, we have here a simplified operator
follow
(Eq. (6)) thanks to the fact that the wave equation (Eq. (5)) is linear in u. Prolongations of the infinitesimal generator (Eq. (6)) to
the first and second orders are computed explicitly by
η 1ð Þ
x = ηx + ux ηu−ξxð Þ−utτx;

η 1ð Þ
t = ηt + ut ηu−τtð Þ−uxξt ;

η 2ð Þ
xx = ηxx + ux 2ηux−ξxxð Þ + uxð Þ2ηuu−utτxx + uxx ηu−2ξxð Þ−2uxtτx;

η 2ð Þ
tt = ηtt + ut 2ηut−τttð Þ + utð Þ2ηuu−uxξtt + utt ηu−2τtð Þ−2uxtξt ;

t the second-order prolongation of the symmetry generator is given by

M 2ð Þ = M + η 1ð Þ
x

∂
∂ux

+ η 1ð Þ
t

∂
∂ut

+ η 2ð Þ
xx

∂
∂uxx

+ η 2ð Þ
tt

∂
∂utt

: ð7Þ
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No terms containing uxt are included in Eq. (7) because these terms are not included in the main equation (Eq. (5)). The
generator equation M(2)A(x,ux,uxx,utt)=0 results in a polynomial expression in terms of ux, ut, uxx, utx, utt, where utt can be
eliminated using Eq. (5). The terms ut2 and ux

2 are removed if and only if ηuu=0, so that we may write
where

where

where

while
η t; x;uð Þ = d t; xð Þ + γ t; xð Þu:
The term with d(t,x)≠0 generates an infinite-dimensional group of symmetries due to the linear superposition principle for
the linear wave equation ([19], Section 2.4), and so we can set d(t,x)≡0 without loss of generality. Hence, we rewrite M(2)A(x,ux,
uxx,utt)=0 as a system of five equations
O uxxð Þ τt = ξx−
c′

c
ξ;

O utxð Þ ξt = c2τx;

O uxð Þ ξtt = c2ξx
� �

x−2c2γx−4cc′τt−2 cc′ð Þ′ξ;

O utð Þ τtt = c2τx
� �

x + 2γt ;

O uð Þ γtt = c2γx

� �
x:
Eliminating τtt from the first two equations and comparing the result with the fourth equation, we find that
γ = − c′ xð Þ
2c xð Þ ξ + γ0;

γ0 is an arbitrary constant. The term with γ0≠0 generates a one-dimensional group of symmetries due to scaling
where
invariance of the linear wave equation ([19], Section 2.4]), and so we can set γ0≡0 without loss of generality. Eliminating ξtt from
the first two equations and comparing the result with the third equation, we find the same condition on γ. Finally, substituting γ to
the last fifth equation and expressing ξtt from the other equations, we obtain a nontrivial constraint on ξ in terms of c:
c 2cc″ + c′ð Þ2
� �

ξx + c2c‴− c′ð Þ3
� �

ξ = 0:
Using a substitution ξ(x,t)=c(x)Ξ(x,t), we separate the variables and rewrite the constraint on c(x) in the equivalent
form
cc‴ + 2c′c″

2cc″ + c′
� �2 = −Ξx

Ξ
≡b xð Þ; ð8Þ

b(x) is an arbitrary function. As a result, we obtain

Ξ x; tð Þ = a tð Þexp −∫x
0 b x′ð Þdx′

� �
;

a(t) is also an arbitrary function. The systemof twofirst-order equations on ξ and τ is nowwritten in the symmetric form

Ξt = cτx; τt = cΞx:
Using the explicit form for Ξ(x,t), we obtain
τ = τ0 xð Þ−c xð Þb xð Þexp −∫x

0
b x′ð Þdx′

� �
∫t

0
a t′ð Þdt′;

τ0(x) is an arbitrary function, and an additional constraint

a′ tð Þ + c xð Þ c xð Þb′ xð Þ + c′ xð Þb xð Þ−c xð Þb2 xð Þ
� �

∫t

0
a t′ð Þdt′ = c xð Þτ′0 xð Þexp ∫x

0
b x′ð Þdx′

� �
: ð9Þ
Separating variables in the constraint (9), we find that there exist a constant λ∈R such that
c2b′ xð Þ + cc′b−c2b2 + λ = 0; ð10Þ

τ0(x) and a(t) are found from the system

c xð Þτ′0 xð Þexp ∫x

0
b x′ð Þdx′

� �
= a′ 0ð Þ; a′ tð Þ−λ∫t

0 a t′ð Þdt′ = a′ 0ð Þ:
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Here τ0(0), a(0) and a′(0) generate a three-parameter group of symmetries, where the term with τ0(0)≠0 is related to the
time-invariance of the wave equation (Eq. (5)) ([19], Section 2.4). The nontrivial two-parameter group of symmetries generated
by the terms with a(0), a′(0)≠0 exists under the constraint on c(x) given by systems (8) and (10).

Set λ=μ2. A general solution of the equation for a(t) is given by
and it

which

where
Substi

where

and
a tð Þ = a 0ð Þcosh μtð Þ + a′ 0ð Þ
μ

sinh μtð Þ; ð11Þ

is analytically continued from μ∈R to μ∈C including the point μ=0. Let us introduce new variables

z = ∫x

0

dx′

c x′ð Þ ; b xð Þ = B zð Þ
c xð Þ : ð12Þ
Then, Eq. (10) reduces to
B′ zð Þ = B2−μ2
;

admits an explicit solution

B zð Þ = μ
ν + μ + ν−μð Þe2μz
ν + μ− ν−μð Þe2μz ; ð13Þ

ν=B(0) is an arbitrary constant. This equation is also analytically continued from μ∈R to μ∈C including μ=0.
tuting this solution to Eq. (8), we rewrite it in the explicit form

d
dx

log 2cc″ + c′ð Þ2
� �

=
2cc‴ + 4c′c″

2cc″ + c′ð Þ2 =
2B zð Þ
c

:

This equation can be integrated so that the constraint on c(x) can be rewritten as
2cc″ + c′ð Þ2 = ηexp 2∫z

0
B z′ð Þdz′

� �
=

4ημ2

ν + μð Þe−μz− ν−μð Þeμz½ �2 ; ð14Þ

η is an integration constant. Thus, we have obtained the five-parameter constraint on c(x), which is expressed by the
where
second-order differential equation (Eq. (14)) with three arbitrary parameters ν, μ, and η. When μ→0, the constraint degenerates
into the equation
2cc″ + c′ð Þ2 =
η

1−νzð Þ2 : ð15Þ
Substituting b(x) back to the operatorM in Eq. (6) and using the variable z instead of x, we obtain the infinitesimal generator of
the two-parameter symmetry group in the explicit form
M =
a 0ð Þ
2μ

M1 +
a′ 0ð Þ
2μ2 M2; ð16Þ

M1 = − ν + μð Þe−μz + ν−μð Þeμz� 	
sinh μtð Þ ∂∂t + ν + μð Þe−μz− ν−μð Þeμz� 	

cosh μtð Þ ∂
∂z

−1
2
c xð Þ ν + μð Þe−μz− ν−μð Þeμz� 	

cosh μtð Þu ∂
∂u

M2 = − ν + μð Þe−μz + ν−μð Þeμz� 	
cosh μtð Þ ∂∂t + ν + μð Þe−μz− ν−μð Þeμz� 	

sinh μtð Þ ∂
∂z

−1
2
c xð Þ ν + μð Þe−μz− ν−μð Þeμz� 	

sinh μtð Þu ∂
∂u :
In the singular limit μ→0, a renormalization of the infinitesimal generator is needed to obtain a limit
M̃ = lim
μ→0

M +
νa′ 0ð Þ
μ2

∂
∂t


 �
= a 0ð Þ M̃1 + a′ 0ð Þ M̃2; ð17Þ



where

and

where

where

and it
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M̃1 = −νt
∂
∂t + 1−νzð Þ ∂

∂z−
1
2
c xð Þ 1−νzð Þu ∂

∂u

M̃2 = z−1
2
νt2


 � ∂
∂t + t 1−νzð Þ ∂

∂z−
1
2
c xð Þt 1−νzð Þu ∂

∂u :
The existence of the nontrivial two-parameter symmetry group mean that if u(x,t) is a solution of the wave equation (Eq. (5)),
then ũ(x̃, t̃) is also a solution of the same equation in new coordinates (t̃, x ̃, ũ), which are obtained from solutions of the differential
equations
d t̃
d�

= τ t̃; x̃
� �

;
dx̃
d�

= ξ t̃; x̃
� �

;
dũ
d�

= − c′ x̃
� �

2c x̃
� � ξ t̃; x̃

� �
ũ ; ð18Þ

0, starting with initial conditions t̃ |�=0= t, x̃ |�=0=x, and ũ |�=0=u. The last two equations in system (18) admit the exact
for �N
solution
ffiffiffiffiffiffiffiffiffiffi
c x̃
� �q

ũ x̃ ; t̃
� �

=
ffiffiffiffiffiffiffiffiffi
c xð Þ

p
u x; tð Þ; ð19Þ

x̃ = x̃ x; t; �ð Þ and t̃ = t̃ x; t; �ð Þ. Similarly, the first two equations of system (18) admit the exact solution

sinh μ t̃
� �

sinh μtð Þ =
ν + μð Þe−μ z̃− ν−μð Þeμ z̃
ν + μð Þe−μz− ν−μð Þeμz ; ð20Þ

z = ∫x
0 dx

′ = c x′
� �

and z̃ = ∫ x̃
0 dx̃ ′ = c x̃ ′

� �
:

We shall now check how the existence of the nontrivial point symmetries M1 and M2 is related to the possibility of the
homogenization of the variable-coefficient wave equation (Eq. (1)), that is a reduction of this equation to the constant-coefficient
Klein–Gordon equation (Eq. (4)). The constant-coefficient equation admits two commuting point symmetries corresponding to
translations in X and T and the existence of two commuting point symmetries is coordinate-independent. Therefore, let us
compute the commutator of the two nontrivial point symmetries M1 and M2 and set it equal to zero. Under this additional
constraint, the transformation to the Klein–Gordon equation is possible and it is given by the transformation which brings the two
commuting symmetries M1 and M2 to ∂X and ∂T.

Computing [M1,M2] by using a differential function A(t,x,u), we obtain
M1M2−M2M1ð ÞA = −4μ ν2−μ2
� �

At :
Therefore, [M1,M2]=0 if ν=±μ (the case μ=0 is singular and needs special investigation). If ν=±μ, then B(z)=±μ=const
and the wave speed c(x) satisfies the constraint
2cc″ + c′
� �2 = ηe2μz; ð21Þ

is expressed by a second-order differential equation with two arbitrary parameters η and μ. In the singular case μ=0, the
which
point symmetries M̃1 and M̃2 do not commute for any value ofν as the symmetry ∂

∂t occurs at the order higher than M̃2. However, the
commutator of M̃1 and

∂
∂t is
M̃1
∂
∂t − ∂

∂t M̃1


 �
A = νAt ;

vanishes if and only if ν=0.
3. Transformation to the Klein–Gordon equation

We shall now obtain the transformation of the variable-coefficient wave equation (Eq. (1)) to the constant-coefficient Klein–
Gordon equation (Eq. (4)) explicitly, using a generalmethod from the recent work of Ibragimov and Rudenko ([14], Section 4.1). In
other words, we derive a general constraint on c(x) that enables transformation of the wave equation



to the

which

with t
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utt− c2ðxÞux

� �
x = 0: ð22Þ

Klein–Gordon equation

wαα−wββ + κw = 0 ð23Þ

(α,β,w) are new coordinates and κ∈R is an arbitrary parameter.
where
Let us introduce the functions α=α(x,t) and β=β(x,t). Using the chain rule for u=u(x,t)=u(α,β), we reduce Eq. (22) to the

form
α2
t −c2α2

x

� �
uαα + β2

t −c2β2
x

� �
uββ + 2 αtβt−c2αxβx

� �
uαβ + αtt−c2αxx−2cc′ xð Þαx

� �
uα + βtt−c2βxx−2cc′ xð Þβx

� �
uβ = 0:
Without loss of generality (modulo of a scaling transformation of (α,β) and rotations in the (α,β)-plane), we can set
αtβt = c2αxβx; α2
t −c2α2

x = c2β2
x−β2

t ;

reduce necessarily to αt=cβx and βt=cαx, or equivalently to

αtt = c2αxx + cc′ xð Þαx; βtt = c2βxx + cc′ xð Þβx:
Given these constraints on α and β, we can rewrite the equation for u(α,β) in the equivalent form
uαα−uββ−
cc′ xð Þαx

α2
t −c2α2

x

� � uα−
cc′ xð Þβx

α2
t −c2α2

x

� � uβ = 0:
Let us next introduce u(α,β)=γ(α,β)w(α,β) and choose γ(α,β) to remove the terms proportional to wα and wβ. These
constraints are
γα =
cc′ xð Þαxγ

2 α2
t −c2α2

x

� � ; γβ = − cc′ xð Þβxγ
2 α2

t −c2α2
x

� � :

Using the chain rule, we obtain
γt = 0; γx = − c′ xð Þγ
2c

;

t γ(x)=c−1/2(x) without loss of generality. Note that this constraint on γ corresponds exactly to condition (19) obtained
so tha
from the symmetry computations. After the substitution of u=γw into the equation above, we obtain the Klein–Gordon equation
(Eq. (23)) with
κ =
γαα−γββ

γ
−

cc′ xð Þ αxγα + βxγβ

� �
γ α2

t −c2α2
x

� � :
Using the chain rule again, we find that
γtt−c2γxx−cc′ xð Þγx = α2
t −c2α2

x

� �
γαα−γββ

� �
:

Since γ(x)=c−1/2(x), we find that
κ =
2cc″ + c′ð Þ2
4 α2

t −c2α2
x

� � :

Let us now introduce z=∫0

xdx′/c(x′), such that the wave equations for α=α(z,t) and β=β(z,t) simplify to the form
αtt−αzz = 0; βtt−βzz = 0;

he relation αt=βz. Solving the wave equations, we obtain that

α z; tð Þ = f z−tð Þ + g z + tð Þ; β z; tð Þ = −f z−tð Þ + g z + tð Þ;



where

for som

where

where

where

502 R. Grimshaw et al. / Wave Motion 47 (2010) 496–507
f and g are arbitrary functions. As a result,

κ = − 2cc″ + c′ð Þ2
16f ′ z−tð Þg′ z + tð Þ :
Since κ is a constant and c(x) is t-independent, we have
∂
∂t f ′ z−tð Þg′ z + tð Þ� �

= f ′ z−tð Þg″ z + tð Þ−f ″ z−tð Þg′ z + tð Þ = 0:
Separating variables, we obtain
f ′ z−tð Þ = f0e
μ z−tð Þ

; g′ z + tð Þ = g0e
μ z + tð Þ

e constants (f0,g0) and μ. As a result, the constraint on c(x) is rewritten in the explicit form

2cc″ + c′ð Þ2 = −4δe2μz; ð24Þ

δ=4κf0g0 is a new constant. This constraint corresponds exactly to constraint (21) that follows from the existence of two
vial commuting point symmetries (Eq. (16)) with the correspondence η=−4δ=−16κf0g0.
nontri

If μ=0, constraint (24) degenerates to the form
2cc″ + c′ð Þ2 = const: ð25Þ
Differentiation in x and multiplication by c(x) give
d
dx

c2c″
� �

= 0: ð26Þ
If μ=0, the transformation of the variable-coefficient wave equation (Eq. (22)) to the constant-coefficient Klein–Gordon
equation (Eq. (23)) can be obtained by a simpler transformation, which follows from the fact that the nontrivial point symmetry
M̃1 commutes with ∂

∂t. Let us seek the solution of the wave equation (Eq. (22)) in the form
u x; tð Þ = A xð ÞW ξ xð Þ; tð Þ; ð27Þ

A(x) and ξ(x) are unknown functions. Substituting Eq. (27) into Eq. (22), we obtain

A Wtt−c2 ξ′
� �2Wξξ

� �
= A c2ξ′

� �
+ 2c2A′ξ′

� �
Wξ + c2A′

� �
W: ð28Þ
To have constant coefficients in front of the second derivative terms, we set cξ’=1, so that
ξ xð Þ = ∫x
0

dx′

c x′ð Þ≡z:
To have a zero coefficient in front of Wξ, we determine A(x) by A(x)=A0c
−1/2, where A0 is constant. As a result, we obtain the

Klein–Gordon equation
Wtt−Wzz + κW = 0; ð29Þ

d2

dx2
c3=2

� �
=

3κ
c1=2

: ð30Þ
After the differentiation, we see that this equation is equivalent to constraint (25).
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4. Solutions of the constraint on c(x)

We shall now discuss the solution set of constraint (24) on the wave speed c(x) of the wave equation (Eq. (22)). Let us
introduce
which

and fo

where
(Eqs. (
is foun

x = ∫

where
c xð Þ = Q2 zð Þ; z = ∫x
0

dx′

c x′ð Þ :
Then Q(z) satisfies the linear equation
Q″ zð Þ + δe2μzQ zð Þ = 0;

reduces, if μ≠0, to the Bessel equation

Q″ tð Þ + 1
t
Q′ tð Þ + sQ tð Þ = 0; s =

δ
μ2 ; t = eμz: ð31Þ
Solutions of the Bessel equation (Eq. (31)) are expressed through the Bessel functions of the zero order J0, Y0, I0, and K0. For sN0
(δN0), the general solution is
Q tð Þ = A1J0 s1=2t
� �

+ A2Y0 s1=2t
� �

; ð32Þ

r sb0 (δb0), it is

Q tð Þ = B1I0 js j1=2t
� �

+ B2K0 js j1=2t
� �

; ð33Þ

(A1,A2) and (B1,B2) are arbitrary constants. Because of the constraint Q(z)=c1/2(x), only the positive definite solutions
32) and (33)) are allowed. Although the domain of solutions (32) and (33) is t∈R+ (z∈R), the domain of definition for c(x)
d from the transformation

z
0Q

2 zð Þdz = 1
μ
∫t
1Q

2 tð Þ dt
t
:

Since J02, Y02=O(t−1) as t→∞ and J0(t)=O(1), Y0(t)=O(log(t)) as t→0, the first solution (Eq. (32)) corresponds to a semi-axis
(−∞,x∞] in the domain for c(x). Fig. 1 demonstrates the profile c(x) obtained from Eq. (32) when (A1,A2)=(1,0) and (A1,A2)=
(0,1).

On the other hand, since I0(t)=O(et), K0=O(e− t) as t→∞ and I0(t)=O(1), K0=Olog(t) as t→0, the second solution
corresponds to the entire x-axis R if B1≠0 or to a semi-axis (−∞,x∞] if B1=0. Fig. 2 shows the profile c(x) obtained from Eq. (33)
when (B1,B2)=(1,0) and (B1,B2)=(0,1).

If μ=0, the constraint is written in the form of Eq. (26). Two integrations in x lead to
c′ð Þ2 +
E
c
= P; ð34Þ

E and P are two arbitrary constants. Various profiles of c(x) can be obtained from the quadrature (Eq. (34)).
Fig. 1. Profile of c(x) obtained from formula (32) with (A1,A2)=(1,0) (left); (A1,A2)=(0,1) (right) for δ=1 and μ=1.



Fig. 2. Profile of c(x) obtained from formula (33) with (B1,B2)=(1,0) (left); (B1,B2)=(0,1) (right) for δ=1 and μ=1.
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If P=0, the exact solution exists for Eb0 and is given by
which

while

where
[x0,∞)
c xð Þ = c0 x−x0ð Þ2=3; ð35Þ

c0N0 and x0∈R are arbitrary constants (E = −4
9
c30). The exact solution (Eq. (35)) was obtainedmuch earlier in [9] (see also
where

recent work [11]). If c(x) is given by Eq. (35), the wave equation (Eq. (22)) reduces to the constant-coefficient wave equation
(Eq. (29)) with κ=0, as follows from Eq. (30). However, the constant-coefficient wave equation is only valid on the semi-axis
xNx0 since x=x0 is the singularity point for c(x).

If Pb0, the exact solution of Eq. (34) exists for Eb0 and is given by
9 jP j3=2
4R

x−x0ð Þ = arcsin C1=2
� �

−C1=2 1−Cð Þ1=2; C =
9 jP j
4R

c xð Þ; ð36Þ

RN0 and x0∈R are arbitrary constants. Phase-plane analysis shows that the solution c(x) is defined on a finite interval
where
[x0,x∞]⊂R. The profile of c(x) is shown on Fig. 3(left).

If PN0, there are several solutions for c(x) depending on the value of E in Eq. (34). If E=0, then the solution is
c xð Þ = P1=2 x−x0ð Þ; ð37Þ

is also already known, see [9]. If Eb0, the solution is

9P3=2

4R
x−x0ð Þ = C1=2 1 + Cð Þ1=2−log C1=2 + 1 + Cð Þ1=2

� �
; C =

9P
4R

c xð Þ; ð38Þ

if EN0, the solution is

9P3=2

4R
x−x0ð Þ = C1=2 C−1ð Þ1=2 + log C1=2 + C−1ð Þ1=2

� �
; C =

9P
4R

c xð Þ; ð39Þ

RN0 and x0∈R are arbitrary constants. Phase-plane analysis shows again that the solution of c(x) is defined on a semi-axis
for Eb0 and on the entire axis R if EN0. Profiles (38) and (39) are shown on Fig. 3(middle, right).
Fig. 3. Profile of c(x) obtained from formula (36) (left), formula (38) (middle), and formula (39) (right) with x0=0, P=±1, and R=1.
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5. Symmetries and transformations of the wave equation (Eq. (2))

The previous results can also readily be obtained for the wave equation (Eq. (2)) and compared with the analysis of Bluman [4]
and Bluman and Kumei [6]. The constraint on c(x) turns out to be different from constraints (14) and (21), in spite of the
correspondence between solutions of the wave equations (Eqs. (1) and (2)). We summarize here the main results for the wave
equation (Eq. (2)) written in the form
for the

which

which

where
A x; vxx; vttð Þ := vtt−c2 xð Þvxx = 0: ð40Þ
Using the same algorithm as in Section 2, we rewrite the generator equationM(2)A(x,vxx,vtt)=0 as an over-determined system
of five equations
O vxxð Þ τt = ξx−
c′

c
ξ;

O vtxð Þ ξt = c2τx;

O vxð Þ ξtt = c2ξxx−2c2γx;

O vtð Þ τtt = c2τxx + 2γt ;

O vð Þ γtt = c2γxx;

infinitesimal generator

M = τ t; xð Þ ∂∂t + ξ t; xð Þ ∂
∂x + γ t; xð Þv ∂

∂v :
These equations coincide with equations (2.2a–e) in [6]. However, our parametrization of the solutions of these equations is
different.

The third and fourth equations of the system are satisfied by
γ =
c′ xð Þ
2c xð Þ ξ;

coincides with Eq. (2.4) in [6]. The last fifth equation gives a nontrivial constraint on ξ in the form

c 2cc″− c′ð Þ2
� �

ξx + c2c‴−2cc′c″ + c′ð Þ3
� �

ξ = 0;

can be written as

∂x
2cc″− c′ð Þ2

c2
ξ2

" #
= 0:
Let ξ=c(x)Ξ(x,t), so that the equation above can be rewritten in the form
cc‴

2cc″− c′ð Þ2 = −Ξx

Ξ
≡ b xð Þ; ð41Þ

Ξ is parameterized as follows:

Ξ x; tð Þ = a tð Þexp −∫x
0 b x′ð Þdx′

� �
:

Since the first and second equations of the system are identical to those in Section 2, we find a general solution for a(t) and b(t)
in the form of Eqs. (11), (12), and (13), so that constraint (41) is rewritten in the explicit form
2cc″− c′ð Þ2 =
4ημ2

ν + μð Þe−μz− ν−μð Þeμz½ �2 ; ð42Þ

η, μ and ν are arbitrary parameters. This constraint on c(x) includes all particular constraints classified in ([6], Section 2). A
where
general solution of this constraint is constructed in Appendix A of [6].
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Nowwe proceedwith finding the nontrivial point symmetries that enable a homogenization of thewave equation (Eq. (2)) and
its reduction to the Klein–Gordon equation (Eq. (4)). Repeating computations of the symmetry commutator, we obtain the same
result that the symmetries commute if and only if B(z)=const, when constraint (42) reduces to the form
2cc″− c′ð Þ2 = ηe2μz; ð43Þ

η and μ are two arbitrary parameters. Constraint (43) is known for the wave equation (Eq. (2)). It coincides with equation
where
(87) in [4].

Transformation of the wave equation (Eq. (40)) to the Klein–Gordon equation (Eq. (23)) is obtained by the same algorithm as
in Section 3. Using γ=c1/2(x) in the substitution v(x,t)=γ(α,β)w(α,β) for α=α(x,t) and β=β(x,t), we obtain the Klein–Gordon
equation (Eq. (23)) with
κ =
−2cc″ + c′ð Þ2
4 α2

t −c2α2
x

� � :

α(x,t) satisfies the same equations as in Section 3. As a result, the constraint on c(x) takes the same form (Eq. (43)).
where
When μ≠0, the substitution c(x)=Q−2(z) brings constraint (43) to the same Bessel's equation (Eq. (31)), which has explicit

solutions obtained in Section 4. When μ=0, differentiation of 2 cc″−(c′)2=const gives c‴ = 0 with the explicit solution
c xð Þ = a + b x−x0ð Þ2; ð44Þ

a, b, x0 are arbitrary parameters. Constraint (44) occurs naturally in the representation of the solution v(x,t) of the wave
where
equation (Eq. (40)) in the form v(x,t)=A(x)W(z,t) with A(x)=A0c

1/2(x), where A0 is constant. As a result, we obtain the same
Klein–Gordon equation (Eq. (29)) with the constraint
d2

dx2
c1=2

� �
= − κ

c3=2
: ð45Þ
It is clear that this constraint is equivalent to c‴ = 0with the general solution (Eq. (44)). When (a,b)=(0,1), this solution has
been obtained in the literature by several different methods [6,8,11,12,20,23–25]. Reductions to the Klein–Gordon equation
(Eq. (29)) under constraint (44) were discussed in [14] in the physical context of acoustical waves in inhomogeneousmedia and in
[13,24] in the context of internal wave beams in a stratified fluid. We note that if a≥0 and bN0, the profile c(x) is defined on the
entire axis R.

6. Discussions and conclusion

We have shown that, for the profile c(x) satisfying constraints (21) and (43), the variable-coefficient wave equations (Eqs. (1)
and (2)) can be reduced to a constant-coefficient Klein–Gordon equation. Traveling waves of these wave equations are then
determined by the traveling wave solutions of the Klein–Gordon equation. Our results include many similar results already in the
literature, and one of our aims was to have all such allowed cases reported in a single article.

If κ=0 (η=0), when constraints (21) and (43) give c(x)=(x−x0)2/3 and c(x)=(x−x0)2, the Klein–Gordon equation reduces
further to the classical wave equation Wtt−Wzz=0 which has the general solution in the form of two waves propagating in
opposite directionsW(z,t)=F(z− t)+G(z+ t), for some functions F and G. Note that this reductionwas described in full by Varley
and Seymour in [23].

For the specific functions c(x) above for x∈ [x0,∞), thewave equation is only determined for z∈R+ and z∈R−, respectively. The
boundary condition at infinity for both equations can be taken to be the Sommerfeld radiation condition
Wt �Wz→0 as z→� ∞:
The boundary condition at z=0 depends on the specific physical context. If the Sommerfeld radiation condition is applied, the
wave leaves the domain in finite time, but its amplitude tends to infinity as the wave approaches this boundary. In context of the
water waves on a sloping beach such a boundary condition canmodel wave breaking; see, for instance, [21]. But if the wave field is
bounded, the boundary condition for full reflection should be applied, that is W=0 at z=0 and this leads to anti-symmetric
reflection.

Thus, the wave dynamics of the wave equations under these constraints on c(x) is essentially similar to the dynamics in a
homogeneous medium: initial disturbances transform into two separated waves moving in opposite directions. Depending on the
boundary condition at the point z=0 the corresponding wave leaves the domain (“absorbed” at the beach), or reflects with a
change in sign. The influence of the real inhomogeneity is manifested in the variations of the wave amplitude and phase; but the
wave shape does not change.
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If κ≠0, then the Klein–Gordon equation Wtt−Wzz+κW=0 must be used and its general solution consists of two waves
propagating in opposite directions expressed by the Fourier integrals,
W z; tð Þ = ∫∞
−∞ F̂ kð Þeikz−iω kð Þtdk + ∫∞

−∞ Ĝ kð Þeikz + iω kð Þtdk; ð46Þ

F̂(k) and Ĝ(k) represent the Fourier spectrum of the two waves. If κ=m2N0, then ω kð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 + k2

p
and waves of anyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
where

wavenumber k∈R propagate. If κ=−m2b0, then ω kð Þ = k2−m2 and waves with the wavenumbers |k|bm are evanescent. In
addition, under more general constraints (Eqs. (21) and (43)), the Klein–Gordon equation (Eq. (4)) may only be defined on a
subset of the z-axis, so that boundary conditions will be required at the finite end points.

To conclude, we have shown that for certain profiles of the wave speed c(x), the wave equations (Eqs. (1) and (2)) can be
reduced to a constant-coefficient Klein–Gordon equation (Eq. (4)). Thus we are able to show the existence of traveling waves in a
strongly inhomogeneous medium, for these special profiles c(x), based on solutions of the Klein–Gordon equation. Two classes of
solutions are obtained, and their respective domains of existence determined. The first class describes the traveling waves with a
persistent shape, but with changes in amplitude and phase. These traveling waves are defined by traveling waves of the constant-
coefficient wave equation. The second class describes non-reflecting dispersive traveling waves, and is found from the Klein–
Gordon equation.
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