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Spectral stability of multihump vector solitons in the Hamiltonian system
of coupled nonlinear Schrödinger (NLS) equations is investigated both
analytically and numerically. Using the closure theorem for the negative index
of the linearized Hamiltonian, we classify all possible bifurcations of unstable
eigenvalues in the systems of coupled NLS equations with cubic and saturable
nonlinearities. We also determine the eigenvalue spectrum numerically by the
shooting method. In case of cubic nonlinearities, all multihump vector solitons
in the nonintegrable model are found to be linearly unstable. In case of
saturable nonlinearities, stable multihump vector solitons are found in certain
parameter regions, and some errors in the literature are corrected.

1. Introduction

The coupled nonlinear Schrödinger (NLS) equations have wide applications in
the modeling of physical processes. For instance, such equations with the cubic
nonlinearity govern the nonlinear interaction of two wave packets [4] and optical
pulse propagation in birefringent fibers [23] or wavelength-division-multiplexed
optical systems [1, 15]. Similar equations with the saturable nonlinearity
describe the propagation of several mutually incoherent laser beams in biased
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photorefractive crystals [11, 16]. Various types of vector solitons including
single-hump and multihump ones have been known to exist in these coupled
NLS equations [2, 3, 9, 10, 11, 14, 16, 25, 33, 34, 36], and they have been
observed in photorefractive crystals as well [6, 7, 24].

Linear stability of vector solitons in the coupled NLS equations is an
important issue. Fundamental single-hump vector solitons are known to be
stable [26, 29, 37]. Stability of multihump vector solitons (which have one or
more nodal points in one or more components) is more subtle. For the cubic
nonlinearity, it was conjectured in [36] based on the numerical evidence that
multihump vector solitons were all linearly unstable. If the multihump solitons
are pieced together by a few fundamental vector solitons, then their linear
instability has been proven both analytically and numerically in [38, 40]. The
linear instability for other types of multihump vector solitons has not been
proven yet. For the saturable nonlinearity, multihump solitons have been shown
to be stable in certain parameter regions [25, 26], but the origins of their
stability and instability have not yet been fully analyzed.

From a broader point of view, the theory of linear stability of vector
solitons in coupled NLS equations was recently developed with the use of
the closure theorem for the negative index of the linearized Hamiltonian
[18, 27]. However, there are not many applications of the general theory to
particular bifurcations of unstable eigenvalues [17, 41], because the general
theory excludes nongeneric bifurcations. It is desirable to further develop
a perturbation theory to the eigenvalue bifurcations, so that the origin of
instability becomes more apparent in the context of the closure theorem.

In this paper, we investigate the linear stability of multihump vector
solitons in the general Hamiltonian system of coupled NLS equations both
analytically and numerically. Using the closure theorem for the negative
index of the linearized Hamiltonian as well as the perturbation technique,
we classify all possible bifurcations of unstable eigenvalues in two physical
models with cubic or saturable nonlinearities. In the first model, we show
that multihump vector solitons near the points of local bifurcations are always
linearly unstable, in agreement with numerical results in [36]. In the second
model, the situation is more complicated. Our results show that the first
family of multihump vector solitons is indeed linearly stable near the local
bifurcation boundary, in agreement with numerical results in [26]. However,
for the second family, we discovered a new oscillatory instability near the
local bifurcation boundary, which was missed in [26]. Due to this oscillatory
instability, the stability region of vector solitons for the second family is
drastically reduced from that reported in [26]. Numerically, we track the unstable
eigenvalues of multihump solitons and reveal various scenarios of eigenvalue
bifurcations away from the local bifurcation boundaries. We also map out the
correct stability regions of multihump vector solitons in the entire parameter
space. Furthermore, the number of numerically obtained unstable eigenvalues
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agrees completely with that predicted by the negative index of the linearized
Hamiltonian.

Our paper is structured as follows. The main formalism and the closure
theorem for the negative index of the linearized Hamiltonian are described in
Section 2. Analysis of unstable eigenvalues in the coupled NLS equations
with cubic and saturable nonlinearities is developed in Sections 3 and 4,
respectively. Section 5 summarizes our results and open questions. Appendix
A reviews bifurcations of unstable eigenvalues by the perturbation method.

2. Main formalism

We consider a general Hamiltonian system of coupled NLS equations in the
form

i
∂ψn

∂z
+ dn

∂2ψn

∂x2
+ ∂U

∂|ψn|2 ψn = 0, n = 1, . . . , N , (1)

where z ∈ R+, x ∈ R, ψn ∈ C, dn ∈ R, and U = U (|ψ1|2, . . . , |ψN |2) ∈ R. We
assume that U (0) = U ′(0) = 0, and dn > 0 for all n. In optical fibers
(photorefractive crystals), the function ψn(z, x) is the envelope amplitude of the
nth channel (beam), z is the propagation distance along the fiber (waveguide),
and x is the retarded time (the transverse coordinate) [11, 15, 16, 23].

Following the recent work in [27], we study the linear stability of vector
solitons

ψn(z, x) = �n(x)eiβn z, (2)

where �n : R → R, and βn > 0 for all n. We assume that none of the
components �n(x) vanishes identically on x ∈ R. Linearization of the coupled
NLS equations (1) follows from the expansion

ψn(z, x) = {
�n(x) + [un(x) + iwn(x)]eλz + [ūn(x) + iw̄n(x)]eλ̄z

}
eiβn z, (3)

where ‖un‖, ‖wn‖ � 1, and the overline denotes the complex conjugation. The
linearized equations for (un, wn) are the following non-self-adjoint problem in
L2(R, C

2N ):

L1u = −λw, L0w = λu, (4)

where λ ∈ C is an eigenvalue, (u, w)T : R → C
2N is the eigenvector, and L0

and L1 are the matrix Schrödinger operators with elements

(L0)n,m =
(

−dn
d2

dx2
+ βn − ∂U

∂�2
n

)
δn,m, (5)

(L1)n,m =
(

−dn
d2

dx2
+ βn − ∂U

∂�2
n

)
δn,m − 2

∂2U

∂�2
n∂�2

m

�n�m . (6)
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Because the eigenvalue problem (4) is a linearization of the Hamiltonian
system, the values of λ occur as pairs of real or purely imaginary eigenvalues,
or as quadruplets of complex eigenvalues. Eigenvalues with Re(λ) > 0 lead to
spectral instability of vector solitons (2). We denote the number of eigenvalues
in the first open quadrant as N comp, the number of positive real eigenvalues as
N real, and the number of purely imaginary eigenvalues with positive Im(λ)
as N imag. The continuous spectrum has N branches, located at the positive
imaginary axis for Im(λ) ≥ βn , n = 1, . . . , N . Zero eigenvalue λ = 0 has
geometric multiplicity of at least (N + 1) and algebraic multiplicity of at least
(2N + 2), in the assumption that none of the components �n(x) vanishes
identically on x ∈ R [27].

Furthermore, we denote the number of negative and zero eigenvalues of
operators L0,1 in L2(R, C

N ) as n(L0,1) and z(L0,1), respectively. We also
assume that the solution �n(x) depends smoothly on (β1, . . . , βN ) in an open
nonempty set of R

N and introduce the Hessian matrix U with elements

Un,m = ∂ Qn

∂βm
, (7)

where Qn = Qn(β1, . . . , βN ) = ∫
R

�2
n dx . We denote the number of positive

and zero eigenvalues of matrix U as p(U) and z(U), respectively. Finally,
we introduce the linearized Hamiltonian (“energy”) of the eigenvalues λ in
H 1(R, C

2N ):

h[u, w] = 〈u,L1u〉 + 〈w,L0w〉, (8)

where 〈· , ·〉 is the standard inner product in L2(R, C
N ). The negative index of

the linearized Hamiltonian is the number of negative eigenvalues of L1 and L0

in L2(R, C
N ).

Several assumptions are imposed on the linearized problem (4) in a general
case [27]:

(i) z(L1) = 1, z(L0) = N ;

(ii) z(U) = 0;

(iii) no eigenvalues λ ∈ iR+ exist with h[u, w] = 0;

(iv) no embedded eigenvalues λ ∈ iR exist with |Im(λ)| ≥ βmin, where
βmin = min(β1, . . . , βN ).

CLOSURE THEOREM [27]. Assume that (i)–(iv) be satisfied. Let N−
imag be the

number of eigenvalues λ ∈ iR+ with h[u, w] < 0. Then,

(i) Nreal + 2Ncomp + 2N−
imag = n(L1) − p(U) + n(L0), (9)

(ii) Nreal ≥ |n(L1) − p(U) − n(L0)|, (10)

(iii) Ncomp ≤ min(n(L0), n(L1) − p(U)), (11)



Instabilities of Multihump Vector Solitons 113

such that

|n(L1) − p(U) − n(L0)| ≤ Nunst ≤ n(L1) − p(U) + n(L0), (12)

where N unst = N real + 2N comp is the total number of unstable eigenvalues in
the problem (4).

This theorem was originally proved for the coupled NLS equations (1)
in one dimension [27] and then generalized to a three-dimensional NLS
equation [8] and to an abstract Hamiltonian dynamical system [18]. It allows
us to analytically trace unstable eigenvalues under parameter continuations,
starting with the particular limits, where all eigenvalues λ of negative energy
h[u, w] are known. Examples of such parameter continuation are recently
reported in [17, 41] in the context of the coupled NLS equations.

Bifurcations of unstable eigenvalues may occur in the linearized problem
(4), when operators L1 and L0 change according to a continuous deformation
and one of the assumptions (i)–(iv) of the Closure Theorem fails. Bifurcations
are reviewed in Appendix A. In what follows, we apply parameter continuation
and bifurcation analysis to the system of coupled NLS equations (1) with
cubic and saturable nonlinearities.

3. The coupled cubic NLS equations

We consider the system of coupled cubic NLS equations [4, 15, 23]:

iψ1z + ψ1xx + (|ψ1|2 + χ |ψ2|2
)
ψ1 = 0,

iψ2z + ψ2xx + (
χ |ψ1|2 + |ψ2|2

)
ψ2 = 0,

(13)

where χ > 0. The system is a particular example of (1) with N = 2, d1 =
d2 = 1, and

U = 1
2 |ψ1|4 + χ |ψ1|2|ψ2|2 + 1

2 |ψ2|4. (14)

The system (13) has a countable infinite set of families of vector solitons
Φ(x) = (�1, �2)T, classified by different nodal index i = (i1, i2)T, where in is
the number of zeros of �n(x) on x ∈ R [9, 14, 36]. We consider here families
of vector solitons with nodal index i = (0, n)T, n ∈ N, which are locally close
to the NLS soliton, ΦNLS(x) = (�(0), 0)T, where �(0)(x) = √

2β1 sech(
√

β1x).
We let β1 = 1 and β2 = β for convenience and introduce scalar Schrödinger
operators:

L0 = − d2

dx2
+ 1 − 2 sech2(x), (15)
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L1 = − d2

dx2
+ 1 − 6 sech2(x), (16)

Ls = − d2

dx2
+ λ2

n(χ ) − 2χ sech2(x), (17)

where

λn(χ ) =
√

1 + 8χ − (2n + 1)

2
. (18)

The scalar operators L0, L1, Ls define the matrix operators L0 and L1 at ε = 0:

L0 = diag(L0, Ls), L1 = diag(L1, Ls).

We define the perturbation series expansions of vector solitons Φ = (�1, �2)T:

�1(x) = �(0)(x) + ε2�(2)(x) + O(ε4),

�2(x) = ε�(1)(x) + ε3�(3)(x) + O(ε5),
(19)

and

β = λ2
n(χ ) + ε2Cn(χ ) + O(ε4). (20)

Corrections of the perturbation series (19) and (20) satisfy the linear equations:

Ls�
(1) = 0, (21)

L1�
(2) = χ�(0)(�(1))2, (22)

Ls�
(3) = −Cn(χ )�(1) + 2χ�(0)�(1)�(2) + (�(1))3. (23)

The problem (21) has a decaying solution �(1) ≡ �
(1)
n (x) (see [14, 36]). When

n = 0 and χ > 0, the solution �
(1)
0 = sechs(x), s = λ0(χ ) is a ground state.

When n > 0 and χ > χn = n(n + 1)/2, the solution �
(1)
n (x) is an excited state

with exactly n nodes on x ∈ R. The problem (22) also has a decaying solution
�(2)(x), because the right-hand side χ�(0)(�(1)

n )2 is orthogonal to the kernel of
the operator L1, which is �(0)′(x). By the Fredholm Alternative Theorem, the
problem (23) has a decaying solution if and only if the right-hand side is
orthogonal to the kernel of Ls , which is �

(1)
n (x). The orthogonality condition

defines the parameter Cn(χ ) in the form

Cn(χ ) =
〈(
�

(1)
n

)2
,
(
2χ�(0)�(2) + (

�
(1)
n

)2)〉〈
�

(1)
n , �

(1)
n

〉 . (24)

The condition Cn(χ ) 
= 0 gives the sufficient condition of continuation of
the perturbation series expansions (19) and (20). Thus, for χ > χn and
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Cn(χ ) 
= 0, there exists some Rn > 0, such that the nth family of vector
solitons Φ(x) = (�1, �2)T with the nodal index i = (0, n)T bifurcates from
ΦNLS = (�(0), 0)T in the one-sided domain Bn:

Bn = {
β : 0 <

∣∣β − λ2
n(χ )

∣∣ < Rn, sign
(
β − λ2

n(χ )
) = sin(Cn(χ ))

}
. (25)

These results for the first three families n = 0, 1, 2 were analytically obtained
and numerically verified in [36]. We investigate stability of the nth family of
vector solitons in the one-sided domain Bn below.

3.1. Analytical results

We trace unstable eigenvalues using the Closure Theorem. We consider a generic
case Cn(χ ) 
= 0 in the one-sided open domain Bn and show that the left-hand
and right-hand sides of the closure relation (9) are equal to 2n for small ε ≥ 0.

Operator L0 in (15) has one bound state for zero eigenvalue, operator L1 in (16)
has two bound states for negative and zero eigenvalues, and operator Ls in (17)
has (n + 1) bound states with n negative and one zero eigenvalues. Therefore,
at ε = 0, we have n(L0) = 0 + n = n, z(L0) = 1 + 1 = 2, n(L1) = 1 + n, and
z(L1) = 1 + 1 = 2. It follows from the Sturm Nodal Theorem that

n(L0) = n, z(L0) = 2, ∀ε ≥ 0.

Because z(L1) = 2 > 1, we have the bifurcation case z(L1) > 1 for ε = 0 (see
Appendix A.1). It is however a degenerate bifurcation case, because it occurs
on the boundary of the existence domain Bn , such that β ∈ ∂Bn . We trace the
zero eigenvalue of L1 for ε 
= 0 by the regular perturbation series,

u(x) =
[

0

�
(1)
n (x)

]
+ ε

[
u(1)(x)

0

]
+ ε2

[
0

u(2)(x)

]
+ O(ε3) (26)

and

λ = ε2λ2 + O(ε4). (27)

Corrections of the perturbation series (26) satisfy a set of linear nonhomogeneous
equations:

L1u(1) = 2χ�(0)
(
�(1)

n

)2
, (28)

Lsu(2) = (λ2 − Cn(χ ))�(1)
n + 2χ�(0)�(1)

n

(
u(1) + �(2)

) + 3
(
�(1)

n

)3
. (29)

It follows from (22) and (28) that u(1) = 2�(2). By the Fredholm Alternative
Theorem, decaying solutions of (29) exist if and only if the right-hand side
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of (29) is orthogonal to �
(1)
n (x). Using (24), we find that λ2 = −2Cn(χ ).

Therefore, we have

n(L1) = 1 + 	(Cn(χ )) + n, z(L1) = 1, ε > 0,

where 	(z) is the Heaviside step-function. We trace the zero eigenvalue of U
from (7) and (19):

U1,1 = ∂ Q1

∂β1

∣∣∣∣
β1=1

= 2 + 2
〈
�(0), �(2)

〉∂ε2

∂β1

∣∣∣∣
β1=1

+ O(ε2),

U1,2 = ∂ Q1

∂β2

∣∣∣∣
β1=1

= 2
〈
�(0), �(2)

〉∂ε2

∂β2

∣∣∣∣
β1=1

+ O(ε2),

U2,1 = ∂ Q2

∂β1

∣∣∣∣
β1=1

= 〈
�(1)

n , �(1)
n

〉∂ε2

∂β1

∣∣∣∣
β1=1

+ O(ε2),

U2,2 = ∂ Q2

∂β2

∣∣∣∣
β1=1

= 〈
�(1)

n , �(1)
n

〉∂ε2

∂β2

∣∣∣∣
β1=1

+ O(ε2).

It follows from (20) that

∂ε2

∂β2

∣∣∣∣
β1=1

= 1

Cn(χ )
+ O(ε2) (30)

and, due to the symmetry of U ,

det(U) = 2
〈
�

(1)
n , �

(1)
n

〉
Cn(χ )

+ O(ε2). (31)

Therefore, we have

p(U) = 1 + 	(Cn(χ )), z(U) = 0, ε > 0.

We conclude that the bifurcation case z(L1) > 1 on the boundary of the
existence domain β ∈ ∂Bn does not result in bifurcation of any eigenvalue λ

of the stability problem (4), such that n(L1) − p(U) + n(L0) = 2n is valid
everywhere in β ∈ Bn ∪ ∂Bn . It follows from the Closure Theorem that the
ground state with n = 0 is spectrally stable in β ∈ Bn , while the nth excited
state with n ≥ 1 may have at most Nunst unstable eigenvalues, where 0 ≤
N unst ≤ 2n. We show that N unst = 2N comp = 2n in β ∈ Bn in a generic case.

At ε = 0, the stability problem (4) can be decoupled as follows:

L1u1 = −λw1, L0w1 = λu1 (32)

and

Ls(u2 ± iw2) = ±iλ(u2 ± iw2). (33)
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The first problem (32) has the continuous spectrum for Re(λ) = 0 and
|Im(λ)| ≥ 1 and the zero eigenvalue λ = 0 of algebraic multiplicity 4 and
geometric multiplicity 2. The second problem (33) has the continuous spectrum
for Re(λ) = 0 and |Im(λ)| ≥ λ2

n(χ ), zero eigenvalue λ = 0 of geometric
and algebraic multiplicity 2, and 2n isolated eigenvalues in the points λ =
±i(λ2

k − λ2
n), where k = 0, 1, . . . , n − 1. It follows from (18) that for χ > χn:

λ2
k − λ2

n = (n − k)[2λn(χ ) + (n − k)] > (n − k)2 ≥ 1, 0 ≤ k < n. (34)

Therefore, 2n isolated eigenvalues of the problem (33) are embedded in the
continuous spectrum of the problem (32). These embedded eigenvalues have
negative energy h[u, w], because at ε = 0:

〈uk,L1uk〉 = 〈wk,L0wk〉 = −(
λ2

k − λ2
n

)〈
�

(1)
k , �

(1)
k

〉
, 0 ≤ k < n, (35)

where uk = (0, �
(1)
k )T and wk = (0, ∓i�(1)

k )T at ε = 0. By Appendix A.4, all
2n embedded eigenvalues of negative energy h[u, w] bifurcate in a general
case of nonzero 
, see Equation (A.29), to complex unstable eigenvalues
λ ∈ C, Re(λ) > 0 for ε 
= 0, such that N real + 2N comp + 2N−

imag = 2N comp =
2n in β ∈ Bn .

3.2. Numerical results

For ε 
= 0, the linearized problem (4) satisfies the assumptions of the Closure
Theorem. Therefore, all unstable eigenvalues N unst = 2N comp = 2n are
structurally stable for larger values of ε, until new bifurcations occur in
the parameter continuations. We study numerically the locations of unstable
eigenvalues in the linearized problem (4) related to the vector solitons Φ =
(�1, �2)T with nodal index i = (0, n)T, n = 1, 2. Our numerical algorithm is
based on the shooting technique in the complex λ-plane. We also determine the
indices n(L0), n(L1), and p(U) by a numerics-assisted procedure as described
in [39], and relate them to the number of unstable eigenvalues by using the
closure relation (9).

Figure 1 shows the first family of multihump vector solitons with the
correspondence: u = �1(x), v = �2(x), and ω = √

β. For ω < 1, this family
exists between χ1(β) < χ < χ2(β), where χ = χ2(β) is the local bifurcation
boundary, and χ = χ1(β) is the nonlocal bifurcation boundary [9]. Hence, the
one-sided domain β ∈ B1 is located to the left of the local bifurcation curve,
and sign(C1) = 1 in (25). When parameter ω = 0.6 is fixed, we readily find
that χ1 = 0.28 and χ2 = 2.08. When χ moves from χ2 to χ1, the distance
between the two pulses in the v component grows. It diverges to infinity at the
nonlocal bifurcation boundary (near point a in Figure 1).

Figure 2 shows unstable eigenvalues of the linearized problem (4) for ω =
0.6 and χ1 < χ < χ2. In the domain β ∈ B1, there is a pair of unstable complex
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Figure 1. Vector solitons of the first family in the cubic model (13) at β = 0.36 and three
χ values marked as “∗” in the upper left figure. Here, ω ≡ √

β and (u, v) ≡ (�1, �2).

eigenvalues λ = Re(σ 2) ± iIm(σ 2), which bifurcates from the embedded
eigenvalues λ = ±i(λ2

0 − λ2
1); see Equation (34).

When χ → 1+, the complex eigenvalues λ = Re(σ 2) ± iIm(σ 2) approach
the imaginary axis and become embedded eigenvalues λ = ±i(1 − ω2). The
case χ = 1 corresponds to the integrable Manakov system, when the linearized
problem (4) has the following exact solution

u0 =
(−�2

�1

)
w0 = ∓i

(
�2

�1

)
, λ = ±i(1 − ω2). (36)
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Figure 2. Eigenvalue spectrum of the first family of vector solitons in the cubic model (13)
at β = 0.36. The solid (dashed) lines are the real (imaginary) parts of the eigenvalues.



Instabilities of Multihump Vector Solitons 119

This exact solution is generated by the additional polarizational-rotation
symmetry in the potential function U = U (|ψ1|2 + |ψ2|2) at χ = 1. Embedded
eigenvalues λ = ±i(1 − ω2) have negative energy h[u, w], because

〈u0,L1u0〉 = 〈w0,L0w0〉 = −(1 − ω2)(〈�1, �1〉 − 〈�2, �2〉) < 0, (37)

where the last inequality is confirmed numerically from integration of the
exact solutions [34]:

�1(x) =
√

1 − ω2 cosh ωx

cosh x cosh ωx − ω sinh x sinh ωx
, (38)

�2(x) = − ω
√

1 − ω2 sinh x

cosh x cosh ωx − ω sinh x sinh ωx
, (39)

in the entire domain of existence: 0 < ω < 1. Because embedded eigenvalues
λ = ±i(1 − ω2) at χ = 1 have negative energy h[u, w], they bifurcate to the
complex plane for χ 
= 1 when the polarizational symmetry is destroyed. This
is indeed the case as shown in Figure 2, in agreement with Appendix A.4.

There is an additional instability bifurcation at χ = 1. This bifurcation
comes about because at this χ value, the first family of vector solitons Φ =
(�1, �2)T can be generalized to asymmetric solutions with an additional free
parameter [3, 14, 36]. As a result, the derivative of the asymmetric vector
solitons with respect to the free parameter is an eigenvector in the kernel of
the operator L1, such that z(L1) = 2 at χ = 1. When χ 
= 1, the integrability
of the Manakov system is destroyed, and a pair of real or purely imaginary
eigenvalues is generated, in agreement with Appendix A.1. Indeed, Figure 2
shows a pair of purely imaginary eigenvalues λ = ±iσ1 for χ > 1, which
merges to the end points λ = ±iω2 of the continuous spectrum at χ = 1.185,
and a pair of real eigenvalues λ = ±σ1 for χ < 1.

Now, we relate the results of Figure 2 to the closure relation (9). For
this purpose, we have determined the indices n(L1) and p(U) by the
numerics-assisted procedure in [39] (we note that n(L0) = 1 everywhere in the
existence domain of the first family of vector solitons). For ω = 0.6, we have
found numerically that

n(L1) =
{

4, χ1 < χ < 1,

3, 1 < χ < χ2,
p(U) = 2 for all χ1 < χ < χ2, (40)

such that

n(L1) + n(L0) − p(U) =
{

3, χ1 < χ < 1,

2, 1 < χ < χ2.
(41)

On the other hand, Figure 2 shows that



120 D. E. Pelinovsky and J. Yang

2 4 6
0

0.5

1

χ

ω a b c

–20 0 20
–0.5

0

0.5

1

1.5
(a)u

v

x

–20 0 20
–0.5

0

0.5

1

1.5
(b)u

v

x
–20 0 20

–0.5

0

0.5

1

1.5

x

(c)u

v

Figure 3. Vector solitons of the second family in the cubic model (13) at β = 0.36 and three
χ values. Notations ω, u, and v are the same as in Figure 1.

Ncomp = 1 for all χ1 < χ < χ2, Nreal =
{

1, χ1 < χ < 1

0, 1 < χ < χ2
(42)

and the closure relation (9) is thus satisfied.
Figures 3 and 4 show similar results for the second family of multihump

vector solitons. When parameter ω = 0.6 is fixed, the local bifurcation boundary
is χ2 = 4.68 and the nonlocal bifurcation boundary is χ1 = 1.68. Again,
the one-sided domain β ∈ B2 is located to the left of the local bifurcation
boundary, such that sign(C2) = 1. However, such solitons exist on both sides

2 3 4
–0.1

0

0.1

0.2

0.3

0.4

0.5

χ

R
e(

σ)

σ
2

σ
3σ

3

σ
4

σ
1

(a)

2 3 4
–1

0

1

2

3

4

5

6

7

χ

Im
(σ

)

σ
2

σ
3

σ
4

σ
1

(b)

Figure 4. Eigenvalue spectrum of the second family of vector solitons in the cubic model
(13) at β = 0.36. The solid (dashed) lines are the real (imaginary) parts of the eigenvalues.
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of the nonlocal bifurcation boundary χ = χ1. As χ moves leftward from
χ = χ2, it first crosses the nonlocal bifurcation boundary χ = χ1, then turns
around, and approaches the nonlocal bifurcation boundary from the left side
(see point a in Figure 3). This behavior has been explained both analytically
and numerically in [9].

Using the same shooting algorithm, we have obtained the unstable eigenvalues
of the linearized problem (4) and displayed them in Figure 4. In the domain
β ∈ B2, there exist two pairs of unstable complex eigenvalues, such that the
pair λ = Re(σ 4) ± iIm(σ 4) bifurcates from the pair of embedded eigenvalues
λ = ±i(λ2

0 − λ2
2), while the pair λ = Re(σ 3) ± iIm(σ 3) bifurcates from the

pair of embedded eigenvalues λ = ±i(λ2
1 − λ2

2). Figure 4 also shows that the
pair λ = Re(σ 3) ± iIm(σ 3) approaches the imaginary axis and becomes a pair
of embedded eigenvalues at χ = χa ≈ 2.49, but then reappears as a pair of
complex unstable eigenvalues for χ < χa , in agreement with Appendix A.4.

There are two more instability bifurcations in Figure 4. At χ = χb ≈ 2.44,
the zero eigenvalue bifurcates into a pair of imaginary eigenvalues λ = ±iσ 2

for χ > χb, which then merges into the end points λ = ±iω2 of the continuous
spectrum at χ ≈ 2.72. When χ < χb, this zero eigenvalue bifurcates into a pair
of real unstable eigenvalues λ = ±σ 2. At yet another point χ = χ c = 2.17, the
zero eigenvalue bifurcates into a pair of imaginary eigenvalues λ = ±iσ1

for χ > χ c, which merges into the end points λ = ±iω2 of the continuous
spectrum at χ ≈ 3.01. When χ < χ c, this zero eigenvalue bifurcates into a
pair of real unstable eigenvalues λ = ±σ1.

To relate the numerical results of Figure 4 to the closure relation (9), we
have again determined the indices n(L1) and p(U) by the numerical algorithm,
while n(L0) = 2 everywhere in the existence domain of the second family of
vector solitons. For ω = 0.6, we have found numerically that

n(L1) =
{

5, χ1 < χ < χb,

4, χb < χ < χ2,
p(U) =

{
1, χ1 < χ < χc,

2, χc < χ < χ2,
(43)

such that

n(L1) + n(L0) − p(U) =




6, χ1 < χ < χc,

5, χc < χ < χb,

4, χb < χ < χ2.

(44)

On the other hand, Figure 4 shows that

Ncomp = 2 for all χ1 < χ < χ2, Nreal =




2, χ1 < χ < χc,

1, χc < χ < χb,

0, χb < χ < χ2.

(45)

Hence, the closure relation (9) is satisfied. In particular, the instability bifurcation
at χ = χb is due to a jump in the index n(L1) (similar to the first family),
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while the instability bifurcation at χ = χ c is due to a jump in the index p(U).
These two bifurcations occur in agreement with Appendices A.1 and A.2.

Although our results were obtained here for a particular value ω = 0.6,
we expect that similar results hold for other values of ω, when 0 < ω < 1.
We conclude that the first and second families of multihump vector solitons
in the coupled cubic NLS equations are all linearly unstable (except for the
integrable Manakov system χ = 1, where the first family is neutrally stable).

It is remarkable that the main features of instability bifurcations for the first
family of multihump vector solitons are repeated for the second family of
vector solitons, irrelevant whether the coupled NLS equations are integrable or
not. This allows us to conjecture that a similar pattern of unstable eigenvalues
persists for a general nth family of multihump vector solitons, with more
unstable eigenvalues and additional instability bifurcations appearing as n
increases.

4. Two coupled saturable NLS equations

We consider the system of two coupled saturable NLS equations [11, 16]:

iψ1z + ψ1xx + |ψ1|2 + |ψ2|2
1 + s(|ψ1|2 + |ψ2|2)

ψ1 = 0,

iψ2z + ψ2xx + |ψ1|2 + |ψ2|2
1 + s(|ψ1|2 + |ψ2|2)

ψ2 = 0,

(46)

where s > 0. This system is a particular example of (1) with N = 2, d1 =
d2 = 1, and

U = 1

s

(|ψ1|2 + |ψ2|2
) − 1

s2
log

(
1 + s

(|ψ1|2 + |ψ2|2
))

. (47)

We consider again the nth family of vector solitons Φ = (�1, �2)T with nodal
index i = (0, n)T, n ∈ N, and convenient parameterization β1 = 1 and β2 = β.
The nth family bifurcates from the scalar solution Φ = (�0, 0)T, where �0(x)
satisfies the ODE:

�′′
0 − �0 + �3

0

1 + s�2
0

= 0. (48)

The local bifurcation occurs at β = βn(s), when there exists a n-nodal bound
state �n(x) in the linear eigenvalue problem:

�′′
n − βn�n + �2

0�n

1 + s�2
0

= 0. (49)
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Vector solitons in the nth family disappear at the nonlocal bifurcation boundary.
The domain of existence for the first three families n = 0, 1, 2 has been
obtained numerically in [9, 26]. We trace analytically unstable eigenvalues and
show that N real + 2N comp + 2N−

imag = 2n for small |β − βn(s)| � 1. At β =
βn(s), the stability problem (4) can be decoupled as follows:

L1u1 = −λw1, L0w1 = λu1 (50)

and

Ls(u2 ± iw2) = ±iλ(u2 ± iw2), (51)

where

L0 = − d2

dx2
+ 1 − �2

0

1 + s�2
0

, (52)

L1 = − d2

dx2
+ 1 − �2

0

(
3 + s�2

0

)
(
1 + s�2

0

)2 , (53)

Ls = − d2

dx2
+ βn(s) − �2

0

1 + s�2
0

. (54)

The first problem (50) is the linearized stability problem in the scalar saturable
NLS equation (46) for �0(x). Based on numerical data in [25, 26], we assume
that the bound state �0(x) is spectrally stable in the scalar saturable NLS
equation and the problem (50) does not have any eigenvalues of negative
energy h[u, w]. It has the continuous spectrum at Re(λ) = 0 and |Im(λ)| ≥ 1,
the zero eigenvalue λ = 0 of algebraic multiplicity 4 and geometric multiplicity
2, and possibly isolated eigenvalues λ ∈ iR of positive energy.

The second problem (51) has the continuous spectrum at Re(λ) = 0 and
|Im(λ)| ≥ βn(s), zero eigenvalue λ = 0 of geometric and algebraic multiplicity
2, and 2n isolated eigenvalues λ = ±i[βk(s) − βn(s)], where k = 0, 1, . . . , n −
1. By the Sturm Nodal Theorem, eigenvalues βk(s) (k = 0, . . . , n) are ordered
in the decreasing order and are characterized by eigenfunctions �k(x) with k
nodes, such that the ground state �0(x) corresponds to β0(s) = 1 and the nth
excited state �n(x) corresponds to βn(s). The 2n eigenvalues have negative
energy h[u, w], because

〈uk,L1uk〉 = 〈wk,L0wk〉 = −[βk(s) − βn(s)]〈�k, �k〉 < 0, 0 ≤ k < n,

(55)

where uk = (0, �k)T and wk = (0, ∓i�k)T at β = βn(s). Therefore, 2N−
imag = 2n

at β = βn(s). Because the zero eigenvalue has the generic algebraic multiplicity
6, no negative eigenvalues of L1 and L0 arise from the zero eigenvalue, such
that we have N real + 2N comp + 2N−

imag = 2n for |β − βn(s)| � 1 by continuity
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of the negative index n(h). The ground state with n = 0 is therefore spectrally
stable in the existence domain (which is β = 1, s > 0 for n = 0).

We show that the nodal bound state with n ≥ 1 may have at most Nunst

unstable eigenvalues, where 0 ≤ N unst ≤ 2n − 2. The number of unstable
eigenvalues is reduced by two, because there are two eigenvalues λ = ±i(1 − β)
of negative energy, which exist for all vector solitons with n ≥ 1 due to the
polarizational-rotation symmetry in the potential function U = U (|ψ1|2 +
|ψ2|2). This pair of eigenvalues is similar to the one that occurs in the
coupled NLS equations (13) with χ = 1, such that the stability problem (4)
has exactly the same solution (36) for β = ω2. These eigenvalues have
negative energy h[u, w] due to (37), where the inequality remains true in the
entire existence domain, as follows from numerical data in [26]. If β < 1/2,
these eigenvalues λ = ±i(1 − β) are embedded in the continuous spectrum
of the problem (4), but never bifurcate off the continuous spectrum as the
parameters vary. Therefore, 2N−

imag ≥ 2 and 0 ≤ N unst ≤ 2n − 2 for n ≥ 1. As
a result, the first family of vector solitons is spectrally stable when β is near
the local bifurcation boundary β = βn(s).

When β = β2(s), the eigenvalues λ = ±i[β1(s) − β2(s)] are embedded into
the continuous spectrum if β1(s) > 2β2(s), and are isolated from the continuous
spectrum if β1(s) < 2β2(s). In the first case, the embedded eigenvalues bifurcate
generally to complex unstable eigenvalues for 0 < |β − β2(s)| � 1, according
to Appendix A.4. In the second case, the isolated eigenvalues do not bifurcate
to complex unstable eigenvalues for 0 < |β − β2(s)| � 1. Because these
eigenvalues have negative energy [see Equation (55)], the number of unstable
eigenvalues Nunst is then 0. In other words, vector solitons of the second family
near the local bifurcation boundary with β1(s) < 2β2(s) are spectrally stable.

We compare the above theoretical results with numerical results in [26],
where unstable eigenvalues in the linearized problem (4) were obtained for the
first and second families (see Figures 2 and 3 in [26], where (λ, β) correspond
to our parameters (β, σ )). It was shown in [26] that the first family of vector
solitons is stable in the domain β1(s) < β < β

(1)
stab(s), in agreement with our

prediction of linear stability near the first local bifurcation boundary β =
β1(s). At β = β

(1)
stab(s), the bifurcation z(U) = 1 occurs, which generates a pair

of real eigenvalues for β > β
(1)
stab(s) and a pair of imaginary eigenvalues for

β < β
(1)
stab(s), in agreement with Appendix A.2. Therefore,

n(L1) + n(L0) − p(U) =
{

3, β
(1)
stab < β < 1,

2, β1 < β < β
(1)
stab,

(56)

and

N−
imag = 1 for all β, Nreal =

{
1, β

(1)
stab < β < 1,

0, β1 < β < β
(1)
stab.

(57)
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Figure 5. Eigenvalue spectrum of the second family of vector solitons in the saturable model
(46) at β = 0.16. The solid (dashed) lines are the real (imaginary) parts of the eigenvalues.

For the second family, the eigenvalues λ = ±i[β1(s) − β2(s)] are embedded
when 0.646 < s < 0.857 and isolated when s > 0.857. According to our
prediction, the embedded eigenvalues should bifurcate to the complex unstable
eigenvalues for 0 < |β − β2(s)| � 1. However, it was claimed in [26] that
vector solitons in the second family were stable near the local bifurcation
boundary 0 < |β − β2(s)| � 1 for all values of s. To resolve this discrepancy,
we have numerically determined the eigenvalue spectrum for vector solitons in
the second family by the shooting method. Figures 5 and 6 present numerical
results for β = 0.16 and β = 0.49, respectively.

For β = 0.16, the local bifurcation boundary of the second family occurs at
s = 0.785 and the eigenvalues λ = ±i[β1(s) − β2(s)] are embedded, such
that a pair of unstable complex eigenvalues λ = Re(σ 2) ± iIm(σ 2) bifurcates
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Figure 6. Eigenvalue spectrum of the second family of vector solitons in the saturable model
(46) at β = 0.49. The solid (dashed) lines are the real (imaginary) parts of the eigenvalues.
The right figure is a zoom-in of the left figure.
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for s < 0.785. These complex eigenvalues indicate the oscillatory instability
of vector solitons near the local bifurcation boundary |β − β2(s)| � 1 for
β = 0.16. Thus, the claim in [26] on the stability of second family vector
solitons anywhere near the local bifurcation boundary is incorrect. Note that
the complex eigenvalues λ = Re(σ 2) ± iIm(σ 2) persist throughout the entire
existence domain of the second family, which is 0.513 < s < 0.785 at β = 0.16.

Furthermore, a pair of purely imaginary eigenvalues λ = ±i |σ1| bifurcates
from the end points λ = ±iβ of the continuous spectrum at s = 0.763, merges
into the origin at s = 0.696, and then bifurcates into a pair of real eigenvalues
λ = ±σ1 for s < 0.696. This exponential instability induced by the real
eigenvalue λ = σ1 has been reported in [26]. Because it was claimed in [26]
that z(U) = 0 in the entire existence domain of the second family of vector
solitons, we conclude that the instability bifurcation at s = 0.696 falls into the
scenario of Appendix A.1 with z(L1) = 2. In the interval 0.513 < s < 0.696,
the oscillatory instability is overshadowed by the exponential instability from
the eigenvalue λ = σ1. However, in the interval 0.696 < s < 0.785, this
oscillatory instability is the only instability experienced by vector solitons.
Because Re(σ 2) is less than 0.011 in the interval 0.696 < s < 0.785, it may
explain why this oscillatory instability was missed in the numerical results of
[26].

For β = 0.49, the local bifurcation boundary of the second family occurs
at s = 0.894, and the eigenvalues λ = ±i[β1(s) − β2(s)] are isolated,
such that vector solitons near the local bifurcation boundary are spectrally
stable. This is indeed confirmed in Figure 6, where the spectrum diagram is
displayed for all values of s. It is seen that at the local bifurcation boundary
s = 0.894, there are two pairs of isolated imaginary eigenvalues. The pair
λ = ±i[β1(s) − β2(s)] = ±0.292i has the negative energy, while the pair
λ = ±0.310i has the positive energy. The second pair corresponds to the
positive eigenvalue of Ls in (54). As s moves leftward from the boundary
point 0.894, these two imaginary eigenvalues move toward each other. At
s = 0.891, they coalesce and create a quadruple of complex eigenvalues, in
agreement with Appendix A.3. However, this instability persists only in a tiny
interval 0.882 < s < 0.891, and it is very weak, with growth rates below 0.01.
At s = 0.882, these complex eigenvalues coalesce and bifurcate back into two
pairs of purely imaginary eigenvalues again. When s decreases further, one pair
of these imaginary eigenvalues (denoted as ±σ1 in Figure 6) always remain
imaginary, but the other pair of imaginary eigenvalues (±σ 2 in Figure 6) move
toward 0 and become real for s < 0.80, in agreement with Appendix A.1.
There is one more eigenvalue (σ 3) in Figure 6, which bifurcates from the edge
of the continuous spectrum at s = 0.718, and always stays imaginary. The
pattern of Figure 6 differs from that of Figure 5 in that complex instability is
not set in at the local bifurcation boundary β = β2(s), and, once it is set
in, it is confined in a narrow interval of s. Similar to the β = 0.16 case
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Figure 7. Regions (shaded) of exponential and oscillatory instabilities of the second family
of vector solitons in the saturable model (46).

above, this narrow interval of oscillatory instability was missed in [26], but the
exponential instability was captured there.

Finally, we have mapped out the regions of exponential and oscillatory
instabilities in the entire domain of existence for the second family of vector
solitons. The results are shown in Figure 7. The almost-straight boundary lines
show the local and nonlocal bifurcation boundaries [9]. The large domain of
exponential instability away from the local bifurcation boundary corresponds
to the one computed in Figure 2 of [26]. The domain of oscillatory instability
consists of two subdomains. The larger subdomain originates from the local
bifurcation boundary for s < 0.857, where the eigenvalues λ = ±i[β1(s) −
β2(s)] are embedded. The smaller subdomain originates from the local
bifurcation boundary for s > 0.857, where the eigenvalues λ = ±i[β1(s) −
β2(s)] are isolated but bifurcate to complex eigenvalues away from the local
bifurcation boundary β = β2(s). Both subdomains of oscillatory instability
were missed in [26].

5. Summary

We have applied the Closure Theorem for the negative index of the
linearized Hamiltonian to multihump vector solitons in the general coupled
NLS equations (1). Unstable eigenvalues of the linearized problem (4) are
approximated with the perturbation series expansions and found numerically
with the shooting method. Not only the numerical results are in excellent
agreement with the closure relation (9), but also the closure relation (9)
shows that all unstable eigenvalues are recovered with the numerical shooting
method. These analytical and numerical results establish that all multihump
vector solitons in the nonintegrable coupled cubic NLS equations are linearly
unstable, while multihump vector solitons in the coupled saturable NLS
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equations can be linearly stable in certain regions of the parameter space. In
the latter case, we have also discovered a new oscillatory instability that was
missed before. This oscillatory instability significantly reduces the stability
domains of vector solitons.

We note that the Closure Theorem is applied differently in Sections 3 and 4.
For coupled cubic NLS equations, we compute the closure relation (9) from
the right-hand side n(L1) − p(U) + n(L0) at the local bifurcation boundary
and then match it with the number of unstable eigenvalues of the linearized
problem (4). For coupled saturable NLS equations, we compute the closure
relation (9) directly from the left-hand side N real + 2N comp + 2N−

imag at the
local bifurcation boundary and continue it in the entire existence domain.

While the negative index theory is well understood in [27] and well illustrated
in [17, 18] and this paper, the following problem still remains a challenge:
“How do we understand the stability of vector solitons in sign-indefinite
coupled-mode equations, such as the nonlinear Dirac equations?” The Closure
Theorem is obviously invalid for the Dirac equations as the continuous spectrum
has both positive and negative energies. Thus, a generalization of the Closure
Theorem to such systems is highly desirable for future advances.
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Appendix: Bifurcations of unstable eigenvalues

Here, we classify the four special cases, when one of the assumptions (i)–(iv)
of the Closure Theorem fails. We derive sufficient conditions, when new
unstable eigenvalues with Re(λ) > 0 bifurcate in the linearized problem (4)
from eigenvalues with Re(λ) = 0. For the clarity of notations, we use an
equivalent form of the spectral problem (4):

L1u = γL−1
0 u, u ∈ X (u)

c (R), (A.1)

where γ = −λ2 and X (u)
c (R) is the constrained subspace of L2(R):

X (u)
c = {

u ∈ L2 : 〈�nen, u〉 = 0, n = 1, . . . , N
}
. (A.2)

Here, e1, . . . , eN are unit vectors in R
N and none of the components �n(x) is

assumed to vanish identically on x ∈ R. Operator L0 is always invertible in
X (u)

c (R), because eigenvectors {�n(x) en}N
n=1 form a basis in the kernel of L0.

In the domain Dε = {λ ∈ C : |λ| > ε} for any ε > 0, there exists a relation
between u(x) and w(x):

w = λL−1
0 u, λ ∈ Dε, (A.3)
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such that two eigenvectors (u, w)T and (u, −w)T of the linearized problem (4)
for λ and (−λ) correspond to a single eigenvector u(x) of the problem (A.1)
for γ = −λ2.

A.1. Zero eigenvalues of L1 and L0

The kernel of L0 has a basis of N eigenvectors {�n(x) en}N
n=1. Therefore, the

existence domain of the vector solitons (2) is confined by the boundaries,
where �n(x) ≡ 0 for some n = 1, . . . , N . Let B be an open simply connected
domain in the parameter space (β1, . . . , βN ), where the vector solitons (2)
exist. No bifurcations of zero eigenvalues of L0 occur in β ∈ B.

The kernel of L1 has always the eigenvector Φ′(x). When z(L1) = 1, this
is the only eigenvector in the kernel of L1. When z(L1) > 1, additional
linearly independent eigenvectors u0(x) exist in the kernel of L1, such that
the geometric multiplicity of λ = 0 in the linearization problem (4) exceeds
(N + 1). Under parameter continuation, the zero eigenvalue λ = 0 generally
moves either to the real or purely imaginary axes of λ. We study this bifurcation
in the case when z(L1) = 2, z(U) = 0, and β ∈ B.

PROPOSITION A.1. Let ε be the bifurcation parameter and, at ε = 0, there
exists a nonzero eigenvector u0 ∈ X (u)

c (R), such that L1u0 = 0 and u0 is
linearly independent of Φ′(x). Assume that L1(ε) and L0(ε) are C1-functions
at ε = 0, such that l0 = 〈u0,L−1

0 (0)u0〉 
= 0 and δl1 = 〈u0,L′
1(0)u0〉 
= 0.

Then, there exists ε0 > 0 such that the linearized problem (4) has a real
positive eigenvalue λ in the domain:

Dε = {ε : 0 < |ε| < ε0, sign (ε) = −sign (l0δl1)}.

Proof : We expand solutions of (A.1) in power series of ε:

u(x) = u0(x) + εu1(x) + O(ε2), γ = εγ1 + O(ε2). (A.4)

The function u1(x) solves the nonhomogeneous problem in X (u)
c (R):

L1(0)u1 + L′
1(0)u0 = γ1L−1

0 (0)u0. (A.5)

Using the Fredholm Alternative Theorem, we find from (A.5) that δl1 = γ1l0.
If δl1 
= 0, l0 
= 0, and sign(ε) = −sign(l0δl1), the eigenvalue γ is negative in
the first order of ε, such that λ = ±√−γ are real. �

COROLLARY A.1. Let L0 be positive definite, such that l0 > 0. A new
negative eigenvalue µ(ε) of L1 as ε 
= 0 results in a new negative eigenvalue
γ (ε) of the problem (A.1), such that
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lim
ε→0

γ

µ
= 〈u0, u0〉〈

u0,L−1
0 (0)u0

〉 . (A.6)

Bifurcation z(L1) > 1 may occur only if N > 1 in the system (1). Analysis of
this bifurcation with the Lyapunov–Schmidt reduction method is reported in a
similar content in [17, 18, 30].

A.2. Zero eigenvalues of U
When z(U) > 0, algebraic multiplicity of λ = 0 exceeds (2N + 2). Under a
parameter continuation, the zero eigenvalue λ = 0 generally moves either to
the real or purely imaginary axis of λ. We study this bifurcation in the case
when z(U) = 1, z(L1) = 1, and β ∈ B.

PROPOSITION A.2. Let ε be the bifurcation parameter and, at ε = 0,
there exists a nonzero eigenvector ν ∈ R

N ,Uν = 0, such that the eigenvector
u0 ∈ X (u)

c (R) solves the problem:

L1u0 = −
N∑

n=1

νn�n(x)en. (A.7)

Assume that L1(ε),L0(ε), and U(ε) are C1-functions at ε = 0, such that
l0 = 〈u0,L−1

0 (0)u0〉 
= 0 and δu = 〈ν,U ′(0)ν〉 
= 0. Then, there exists ε0 > 0
such that the linearized problem (4) has a real positive eigenvalue λ in the
domain:

Dε = {ε : 0 < |ε| < ε0, sign(ε) = −sign(l0δu)}.

Proof : If there exists ν ∈ R
N , such that U(0)ν = 0, then the eigenvector

u0(x) for the problem (A.7) is given explicitly as

u0(x) =
N∑

n=1

νn
∂Φ(x)

∂βn
. (A.8)

Using L1∂Φ/∂βn = −�nen and L0�nen = 0 for any ε, we obtain the following
derivative relations:

L1(0)
∂Φ′(0)

∂βn
+ L′

1(0)
∂Φ
∂βn

= −�′
n(0)en, (A.9)

L0(0)�′
n(0)en + L′

0(0)�nen = 0, (A.10)

where Φ′(0) stands for derivative of Φ(ε) in ε. We expand solutions of (A.1)
in power series of ε:

u(x) = u0(x) + εu1(x) + O(ε2), γ = εγ1 + O(ε2). (A.11)
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Because the eigenvector u0(x) solves the nonhomogeneous problem (A.7), the
relation between u(x) and w(x) is modified as follows:

w = λL−1
0 u + 1

λ

N∑
n=1

νn�n(x)en. (A.12)

As a result, the function u1(x) solves the nonhomogeneous problem:

L1(0)u1 + L′
1(0)u0 = γ1L−1

0 (0)u0 −
N∑

n=1

νn�
′
n(0)en, (A.13)

subject to the constraints:

〈�n(0)en, u1〉 + 〈�′
n(0)en, u0〉 = 0. (A.14)

Using the Fredholm Alternative Theorem, we find from (A.13) and (A.14) that

〈u0,L′
1(0)u0〉 = γ1

〈
u0,L−1

0 (0)u0
〉 − 2

N∑
n=1

νn〈�′
n(0)en, u0〉. (A.15)

As a result,

γ1
〈
u0

∣∣L−1
0 (0)u0

〉 =
N∑

n=1

N∑
m=1

νnνm
∂

∂ε

〈
�m(ε)em,

∂Φ(ε)

∂βn

〉∣∣∣∣
ε=0

= 1

2
〈ν,U ′(0)ν〉,

(A.16)

such that δu = 2γ1l0. When δu 
= 0, l0 
= 0, and sign(ε) = −sign(l0δu), the
eigenvalue γ is negative in the first order of ε, such that λ = ±√−γ are
real. �

COROLLARY A.2. Let L0 be positive definite, such that l0 > 0. A new
negative eigenvalue µ(ε) of U as ε 
= 0 results in a new negative eigenvalue
γ (ε) of the problem (A.1).

Bifurcation z(U) > 0 was analyzed in [28, 31] with power series expansions
of the problem (4) near λ = 0 and in [5, 19] with Taylor series expansions of
the Evans function.

A.3. Multiple nonzero eigenvalues of zero energy

When the problem (4) has a multiple eigenvalue λ = λ0 ∈ iR+ of zero energy,
the corresponding eigenvector (u0, w0)T satisfies the conditions of the Fredholm
Alternative Theorem: 〈u0,L1u0〉 = 0, 〈w0,L0w0〉 = 0, such that h[u0, w0] = 0
and l0 = 〈u0,L−1

0 u0〉 = 0. Under parameter continuations, multiple eigenvalues
are generally destroyed and new complex eigenvalues λ may arise in the problem
(4). We study this bifurcation in the case, when a multiple eigenvalue λ = λ0

has algebraic multiplicity 2 and geometric multiplicity 1, while β ∈ B ∪ ∂B.
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PROPOSITION A.3. Let ε be the bifurcation parameter and, at ε = 0, there
exist nonzero eigenvectors u0, u′

0 ∈ X (u)
c (R) for γ0 ∈ R and γ 0 < β2

min, such
that

L1u0 = γ0L−1
0 u0, (A.17)

L1u′
0 = γ0L−1

0 u′
0 + L−1

0 u0, (A.18)

and l0 = 〈u0,L−1
0 u0〉 = 0. Assume that L1(ε) and L0(ε) are C1-functions

at ε = 0, such that l ′0 = 〈u0,L−1
0 (0)u′

0〉 
= 0 and δh = 〈u0, (L′
1(0) −

γ0L−1′
0 (0))u0〉 
= 0. Then, there exists ε0 > 0 such that the linearized problem

(4) has two complex eigenvalues λ with Re(λ) > 0 in the domain:

Dε = {ε : 0 < |ε| < ε0, sign(ε) = −sign(l ′0δh)}.

Proof : We expand solutions of (A.1) in power series of ε1/2:

u(x) = u0(x) + ε1/2γ1u′
0(x) + εu2(x) + O(ε3/2), (A.19)

γ = γ0 + ε1/2γ1 + εγ2 + O(ε3/2). (A.20)

The function u2(x) solves the nonhomogeneous problem in X (u)
c (R):

L1(0)u2 + L′
1(0)u0 = γ0L−1

0 (0)u2 + γ0L−1′
0 (0)u0

+ γ 2
1 L−1

0 (0)u′
0 + γ2L−1

0 (0)u0. (A.21)

Using the Fredholm Alternative Theorem, we find from (A.21) that δh = γ 2
1l ′0.

Because (γ − γ 0)2 = εγ 2
1 + O(ε3/2), the eigenvalues γ bifurcate into the

complex plane if l ′0 
= 0, δh 
= 0, and sign(ε) = −sign(l ′0δh). �

COROLLARY A.3. Let l ′0 
= 0 and δh 
= 0. There exists ε0 > 0 such that the
problem (A.1) has two real eigenvalues γ in the domain:

Dε = {ε : 0 < |ε| < ε0, sign(ε) = sign(l ′0δh)}

with oppositely signed quadratic forms〈
u,L−1

0 u
〉 = 2ε1/2γ1l ′0 + O(ε).

When 0 < γ 0 < βmin, multiple eigenvalue λ = λ0 is purely imaginary, and
the bifurcation of Proposition A.3 is the instability bifurcation. When γ 0 < 0,
the eigenvalue λ = λ0 is purely real and is thus already unstable. Characteristic
features of bifurcation of multiple eigenvalues were analyzed in [12]. This
bifurcation is generic when purely imaginary eigenvalues of positive and
negative energies h[u, w] coalesce, according to Corollary A.3 [32]. General
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results on the collisions of purely imaginary eigenvalues of different energies
and the concept of so-called Krein signatures can be found in [22].

A.4. Embedded eigenvalues

When the problem (4) has an embedded eigenvalue λ = λ0 ∈ iR with
|Im(λ0)| > βmin, it is generically unstable under parameter continuation [12,
20, 21]. When it has a positive energy, it disappears from the continuous
spectrum, while when it has a negative energy, it bifurcates as complex unstable
eigenvalues with Re(λ) > 0 [8]. We study this bifurcation in the case, when an
embedded eigenvalue has the geometric and algebraic multiplicities 1, while
β ∈ B ∪ ∂B.

PROPOSITION A.4. Let ε be the bifurcation parameter and, at ε = 0, there
exist a nonzero eigenvector u0 ∈ X (u)

c (R) for γ0 ∈ R, γ0 > β2
min, such that

L1u0 = γ0L−1
0 u0. (A.22)

Assume that L1(ε) and L0(ε) are C1-functions at ε = 0, such that
l0 = 〈u0,L−1

0 (0)u0〉 < 0 and 
 
= 0 in (A.29). Then, there exists ε0 > 0 such
that the linearized problem (4) has two complex eigenvalues λ with Re(λ) > 0.

Proof : For embedded eigenvalues, we use the linearized problem in the
original form (4). Consider perturbation series expansions near the embedded
eigenvalue λ = λ0, with Im(λ0) > βmin:

u(x) = u0(x) + εu1(x) + ε2u2(x) + O(ε3), (A.23)

w(x) = w0(x) + εw1(x) + ε2w2(x) + O(ε3), (A.24)

and

λ = λ0 + ελ1 + ε2λ2 + O(ε3). (A.25)

Corrections of the perturbation series (A.23) and (A.24) satisfy linear
nonhomogeneous equations following from the linearized problem (4):

L1(0)u1 + λ0w1 = −L′
1(0)u0 − λ1w0,

L0(0)w1 − λ0u1 = −L′
0(0)w0 + λ1u0,

(A.26)

and

L1(0)u2 + λ0w2 = −L′
1(0)u1 − 1

2L′′
1(0)u0 − λ1w1 − λ2w0,

L0(0)w2 − λ0u2 = −L′
0(0)w1 − 1

2L′′
0(0)w0 + λ1u1 + λ2u0.

(A.27)
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Bounded solutions of the problem (A.26) exist only if the right-hand side is
orthogonal to the eigenvector (u0, w0). The solvability condition results in the
equation:

λ1(〈w0, u0〉 − 〈u0, w0〉) = 〈u0,L′
1(0)u0〉 + 〈w0,L′

0(0)w0〉,

such that Re(λ1) = 0. Because the eigenvalue λ = λ0 belongs to the continuous
spectrum of the problem (4), the correction terms (u1, w1) have nonvanishing
tails in the limit |x | → ∞. Assuming that β1 ≤ β2 ≤ · · · ≤ βN , we add the
Sommerfeld radiation conditions to uniquely determine the correction terms
(u1, w1): (

u1

w1

)
→

Kλ0∑
j=1

g±
j

(
e j

ie j

)
e∓ik j x , x → ±∞, (A.28)

where g±
j are some constants, k j = √

(Im(λ0) − β j )/d j , and Kλ0 is the number
of branches with k j ∈ R. It follows from (A.26) that

Im(〈u1,L′
1(0)u0〉 + 〈w1,L′

0(0)w0〉 + λ1〈u1, w0〉 − λ1〈w1, u0〉)

= − 1

2i
(〈u1,L1u1〉 + 〈w1,L0w1〉 − 〈L1u1, u1〉 − 〈L0w1, w1〉)

= −2
Kλ0∑
j=1

d j k j

(∣∣g+
j

∣∣2 + ∣∣g−
j

∣∣2) ≡ 
 ≤ 0. (A.29)

Again, bounded solutions of the problem (A.27) exist only if

λ2(〈w0, u0〉 − 〈u0, w0〉) + λ1(〈w0, u1〉 − 〈u0, w1〉)
= 〈u0,L′

1(0)u1〉 + 〈w0,L′
0(0)w1〉 + 1

2〈u0,L′′
1(0)u0〉 + 1

2〈w0,L′′
0(0)w0〉,

(A.30)

such that

Re(λ2) = Im(〈u1,L′
1(0)u0〉 + 〈w1,L′

0(0)w0〉)
2Im(λ0)

〈
u0,L−1

0 u0
〉

= −
Kλ0∑
j=1

d j k j

(∣∣g+
j

∣∣2 + ∣∣g−
j

∣∣2)
Im(λ0)

〈
u0,L−1

0 u0
〉 . (A.31)

When 
 
= 0 and l0 = 〈u0,L−1
0 (0)u0〉 < 0, the embedded eigenvalue λ = λ0

becomes a complex unstable eigenvalue λ with Re(λ) > 0. �

COROLLARY A.4. The linearized problem (4) does not have complex or
embedded eigenvalues λ if l0 = 〈u0,L−1

0 (0)u0〉 > 0 and 
 
= 0.
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Proof : The formal computation in (A.31) predicts that Re(λ2) < 0, when

 
= 0 and l0 > 0. However, the correction terms (u1, w1)T in (A.28) grow
exponentially in x, because k j (λ) = √

(Im(λ) − iRe(λ) − β j )/d j implies that
Im(kj) > 0. The embedded eigenvalue λ = λ0 becomes a resonant pole with
Re(λ) < 0. �

Characteristic features of bifurcations of embedded eigenvalues were
analyzed in [8, 12]. This bifurcation is generic for multihump vector solitons
at the boundaries of the existence domain β ∈ ∂B [35].

Summarizing, there exist four bifurcations, which may lead to unstable
eigenvalues in the spectral problem (4): (i) z(L1) > 1, (ii) z(U) > 0, (iii)
multiple eigenvalue λ0 ∈ iR, |Im(λ0)| < βmin, and (iv) embedded eigenvalue
λ0 ∈ iR, |Im(λ0)| > βmin. Let nX (h) be the negative index of the linearized
Hamiltonian in the constrained space X (u)

c (R), i.e., the number of negative
eigenvalues ofL1 andL0 in X (u)

c (R). It is known from [13] (see also [27, 28]) that

nX (h) = n(L1) − p(U) + n(L0). (A.32)

The closure relation (9) gives then:

nX (h) = Nreal + 2N−
imag + 2Ncomp. (A.33)

It is clear from (A.33) that bifurcations (i) and (ii) change the negative index
nX (h) due to a change in N real, while bifurcations (iii) and (iv) do not change
the negative index nX (h) due to an exchange in N−

imag and N comp.
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