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Block-Diagonalization of the Symmetric First-Order Coupled-Mode System∗
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Abstract. We consider the Hamiltonian first-order coupled-mode system that occurs in nonlinear optics, pho-
tonics, and atomic physics. Spectral stability of gap solitons is determined by eigenvalues of the lin-
earized coupled-mode system, which is equivalent to a four-by-four Dirac system with sign-indefinite
metric. In the special class of symmetric nonlinear potentials, we construct a block-diagonal repre-
sentation of the linearized equations, when the spectral problem reduces to two coupled two-by-two
Dirac systems. The block-diagonalization is used in fast numerical computations of eigenvalues with
the Chebyshev interpolation algorithm.
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1. Introduction. Various applications in nonlinear optics [1], photonics band-gap engi-
neering [2], and atomic physics [3] call for systematic studies of the coupled-mode system, which
is expressed by two first-order semilinear PDEs in one space and one time dimensions. In non-
linear optics, the coupled-mode system describes counter-propagating light waves, which inter-
act with a linear grating in an optical waveguide [4]. In photonics, the coupled-mode system is
derived for coupled resonant waves in stop bands of a low-contrast three-dimensional photonic
crystal [5]. In atomic physics, the coupled-mode system describes matter-wave Bose–Einstein
condensates trapped in an optical lattice [6]. Existence, stability, and nonlinear dynamics
of gap solitons, which are localized solutions of the coupled-mode system, are fundamental
problems of interest in the aforementioned physical disciplines.

In the context of spectral stability of gap solitons, it has been discovered that the lin-
earized coupled-mode system is equivalent to a four-by-four Dirac system with sign-indefinite
metric, where numerical computations of eigenvalues represent a difficult numerical task. The
pioneer work in [7, 8] showed that spurious unstable eigenvalues originate from the continuous
spectrum in the Fourier basis decomposition and the Galerkin approximation. A delicate but
time-consuming implementation of the continuous Newton method was developed to differen-
tiate true unstable eigenvalues from the spurious ones [8]. Similar problems were discovered
in the variational method [9, 10] and in the numerical finite-difference method [11, 12].

While some conclusions on instability bifurcations of gap solitons in the coupled-mode
equations can be drawn on the basis of perturbation theory [7] and Evans function methods
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[13, 14], the numerical approximation of eigenvalues was an open problem until recently. New
progress was made with the use of exterior algebra in the numerical computations of the Evans
function [15], when the results of [7] on instability bifurcations of gap solitons were recovered.
A similar shooting method was also applied to gap solitons in a more general model of a
nonlinear Schrödinger equation with a periodic potential [6].

Our work addresses the problem of numerical approximations of eigenvalues in the lin-
earized coupled-mode system with a different objective. We will show that the linearized
system with a symmetric potential function can be block-diagonalized into two coupled two-
by-two Dirac systems. The two Dirac systems represent the linearized Hamiltonian of the
coupled-mode equations and determine instability bifurcations and unstable eigenvalues of
gap solitons.

The main purpose of block-diagonalization is to optimize a numerical algorithm based on
Chebyshev interpolation (see a recent application of Chebyshev interpolation to a system of
coupled nonlinear Schrödinger equations in [16]). The algorithm computes the entire spectrum
of the linearized coupled-mode system. It also allows us to control the spurious eigenvalues
at least near the end points of continuous spectrum, where instability bifurcations occur
[7, 15]. Due to block-diagonalization, the algorithm requires two times less memory compared
to the standard discretization of the full linearized system, and computations of eigenvalues
within the same tolerance bound are accelerated approximately twice as much. We report
applications of the numerical algorithm to an example of the linearized coupled-mode system
with a symmetric quartic potential function.

The paper is organized as follows. Section 2 describes the model and its symmetries.
Section 3 gives the construction and properties of gap solitons in the nonlinear coupled-
mode system. Section 4 presents block-diagonalization of the linearized coupled-mode system.
Section 5 contains numerical computations of the spectrum of the block-diagonalized system.
The appendix deals with exact solutions for gap solitons in the coupled-mode system with
symmetric homogeneous potential functions.

2. Coupled-mode system. We consider the Hamiltonian first-order coupled-mode system
in the form {

i(ut + ux) + v = ∂ūW (u, ū, v, v̄),
i(vt − vx) + u = ∂v̄W (u, ū, v, v̄),

(2.1)

where (u, v) ∈ C
2, x ∈ R, t ≥ 0, and W (u, ū, v, v̄) is real-valued. We assume that the potential

function satisfies the following three conditions:
1. W is invariant with respect to the gauge transformation (u, v) �→ eiα(u, v) for all
α ∈ R.

2. W is symmetric with respect to the interchange (u, v) �→ (v, u).
3. W is analytic in its variables near u = v = 0, such that W = O(4).

The first condition is justified by the standard derivation of the coupled-mode system
(2.1) with an envelope approximation [5]. The second condition defines a class of symmetric
nonlinear potentials. Although it is somewhat restrictive, symmetric nonlinear potentials are
commonly met in physical applications of the system (2.1). The third condition is related
to the normal form analysis [17], where the nonlinear functions are approximated by Taylor
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polynomials. Since the quadratic part of the potential function W is accounted for in the
left-hand side of the system (2.1) and the cubic part of W violates the gauge transformation
and analyticity assumptions, the Taylor polynomials of W start with quartic terms denoted
as O(4).

We find a general representation of the function W (u, ū, v, v̄) that satisfies the conditions
1–3 and list all possible (four-parameter) quartic terms of W .

Lemma 2.1. If W ∈ R and condition 1 is satisfied, such that

W (u, ū, v, v̄) = W
(
ueiα, ūe−iα, veiα, v̄e−iα

)
∀α ∈ R,(2.2)

then W = W (|u|2, |v|2, ūv + uv̄).
Proof. The statement is a special case of Theorem 1.2 on page 450 of [18]. For the

readers’ convenience, we give a simplified proof based on the symmetry generator for the
gauge transformation. By differentiating (2.2) in α and setting α = 0, we derive the relation
on W ∈ R:

DW ≡ i

(
u
∂

∂u
− ū

∂

∂ū
+ v

∂

∂v
− v̄

∂

∂v̄

)
W (u, ū, v, v̄) = 0.(2.3)

Consider the set of quadratic variables

z1 = |u|2, z2 = |v|2, z3 = ūv + uv̄, z4 = u2 + v2,

which is independent for any u �= 0 and v �= 0 in the sense that the Jacobian is nonzero.
It is clear that Dz1,2,3 = 0 and Dz4 = 2iz4. Therefore, DW = 2iz4∂z4W = 0, such that
W = W (z1, z2, z3).

Lemma 2.2. If W ∈ R and conditions 1–3 are satisfied, then W = W (|u|2 + |v|2, |u|2|v|2,
uv̄ + vū).

Proof. By Lemma 2.1 and condition 2, we can reorder the arguments of W as W =
W (|u| + |v|, |u||v|, uv̄ + vū). By analyticity in condition (3), W may depend only on |u|2 and
|v|2 rather than on |u| and |v|.

Corollary 2.3. The only quartic potential function W ∈ R that satisfies conditions 1–3 is
given by

W =
a1

2
(|u|4 + |v|4) + a2|u|2|v|2 + a3(|u|2 + |v|2)(vū+ v̄u) +

a4

2
(vū+ v̄u)2,(2.4)

where (a1, a2, a3, a4) are real-valued parameters. It follows then that{
∂uW = a1|u|2u+ a2u|v|2 + a3

[
(2|u|2 + |v|2)v + u2v̄

]
+ a4

[
v2ū+ |v|2u] ,

∂vW = a1|v|2v + a2v|u|2 + a3
[
(2|v|2 + |u|2)u+ v2ū

]
+ a4

[
u2v̄ + |u|2v] .

The potential function (2.4) with a1, a2 �= 0, and a3 = a4 = 0 represents a standard
coupled-mode system for a subharmonic resonance, e.g., in the context of optical gratings
with constant Kerr nonlinearity [1]. When a1 = a3 = a4 = 0, this system is integrable with
inverse scattering and is referred to as the massive Thirring model [19]. When a1 = a2 = 0
and a3, a4 �= 0, the coupled-mode system corresponds to an optical grating with varying,
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mean-zero Kerr nonlinearity, where a3 is the Fourier coefficient of the resonant subharmonic
and a4 is the Fourier coefficient of the nonresonant harmonic [5] (see also [4]).

We rewrite the coupled-mode system (2.1) as a Hamiltonian system in complex-valued
matrix-vector notation:

du

dt
= J∇H(u),(2.5)

where u = (u, ū, v, v̄)T ,

J =

⎡
⎢⎢⎢⎣

0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

⎤
⎥⎥⎥⎦ = −JT ,

and H(u, ū, v, v̄) =
∫
R
h(u, ū, v, v̄)dx is the Hamiltonian functional with the density

h = W (u, ū, v, v̄) − (vū+ uv̄) +
i

2
(uūx − uxū) − i

2
(vv̄x − vxv̄).

The Hamiltonian H(u, ū, v, v̄) is constant in time t ≥ 0. Due to the gauge invariance, the
coupled-mode system (2.1) has another constant of motion Q(u, ū, v, v̄), where

Q =

∫
R

(
|u|2 + |v|2

)
dx.(2.6)

Conservation of Q can be checked by direct computation:

∂

∂t
(|u|2 + |v|2) +

∂

∂x
(|u|2 − |v|2) = DW = 0,(2.7)

where the operatorD is defined in (2.3). Due to the translational invariance, the coupled-mode
system (2.1) has yet another constant of motion P (u, ū, v, v̄), where

P =
i

2

∫
R

(uūx − uxū+ vv̄x − vxv̄) dx.(2.8)

In applications, the quantities Q and P are referred to as the power and momentum of the
coupled-mode system.

3. Existence of gap solitons. Stationary solutions of the coupled-mode system (2.1) take
the form {

ust(x, t) = u0(x+ s)eiωt+iθ,
vst(x, t) = v0(x+ s)eiωt+iθ,

(3.1)

where (s, θ) ∈ R
2 are arbitrary parameters, while the solution (u0, v0) ∈ C

2 on x ∈ R and the
domain for parameter ω ∈ R are to be found from the nonlinear ODE system{

iu′0 = ωu0 − v0 + ∂ū0W (u0, ū0, v0, v̄0),
−iv′0 = ωv0 − u0 + ∂v̄0W (u0, ū0, v0, v̄0).

(3.2)
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Stationary solutions are critical points of the Lyapunov functional

Λ = H(u, ū, v, v̄) + ωQ(u, ū, v, v̄),(3.3)

such that variations of Λ produce the nonlinear ODE system (3.2).
Lemma 3.1. Assume that there exists a decaying solution (u0, v0) of the system (3.2) on

x ∈ R. If W ∈ R and conditions 1–3 are satisfied, then u0 = v̄0 (modulo to an arbitrary
phase).

Proof. It follows from the balance equation (2.7) for the stationary solutions (3.1) that

|u0|2 − |v0|2 = C0 = 0 ∀x ∈ R,

where the constant C0 = 0 is found from decaying conditions at infinity. Let us represent the
solutions (u0, v0) in the form {

u0(x) =
√
Q(x)eiΘ(x)+iΦ(x),

v0(x) =
√
Q(x)e−iΘ(x)+iΦ(x),

(3.4)

such that {
iQ′ − 2Q(Θ′ + Φ′) = 2ωQ− 2Qe−2iΘ + 2ū0∂ū0W (u0, ū0, v0, v̄0),
−iQ′ − 2Q(Θ′ − Φ′) = 2ωQ− 2Qe2iΘ + 2v̄0∂v̄0W (u0, ū0, v0, v̄0).

(3.5)

Separating the real parts, we obtain{
Q(cos(2Θ) − ω − Θ′ − Φ′) = Re [ū0∂ū0W (u0, ū0, v0, v̄0)] ,
Q(cos(2Θ) − ω − Θ′ + Φ′) = Re [v̄0∂v̄0W (u0, ū0, v0, v̄0)] .

(3.6)

It follows from Lemma 2.2 that(
u
∂

∂u
+ ū

∂

∂ū
− v

∂

∂v
− v̄

∂

∂v̄

)
W (u, ū, v, v̄)

∣∣∣∣
|u|2=|v|2

= 0.(3.7)

As a result, we have Φ′ ≡ 0, such that Φ(x) = Φ0.
Corollary 3.2. Let u0 = v̄0. The ODE system (3.2) reduces to the planar Hamiltonian form

d

dx

(
p
q

)
=

(
0 −1

+1 0

)
∇h(p, q),(3.8)

where p = 2Θ, q = Q, and

h = W̃ (p, q) − 2q cos p+ 2ωq, W̃ (p, q) = W (u0, ū0, v0, v̄0).(3.9)

Proof. In variables (Q,Θ) defined by (3.4) with Φ(x) = Φ0 ≡ 0, we rewrite the ODE
system (3.5) as follows:{

Q′ = 2Q sin(2Θ) + 2Im [ū0∂ū0W (u0, ū0, v0, v̄0)] ,
QΘ′ = −ωQ+Q cos(2Θ) − Re [ū0∂ū0W (u0, ū0, v0, v̄0)] .

(3.10)
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The system (3.10) is equivalent to the Hamiltonian system (3.8)–(3.9) if{
∂pW̃ (p, q) = i [u0∂u0 − ū0∂ū0 ]W (u0, ū0, v0, v̄0),

q∂qW̃ (p, q) = [u0∂u0 + ū0∂ū0 ]W (u0, ū0, v0, v̄0).
(3.11)

The latter equation follows from (2.3), (3.4), and (3.7) with the chain rule.
Remark 3.3. The family of stationary solutions (3.1) can be extended to the family of

traveling solutions of the coupled-mode system (2.1) by means of the Lorentz transformation
[15]. When the boosted variables are applied to the form (3.1),

X =
x− ct√
1 − c2

, T =
t− cx√
1 − c2

, U =

(
1 − c

1 + c

)1/4

u, V =

(
1 + c

1 − c

)1/4

v,

where c ∈ (−1, 1), the family of traveling solutions (U0, V0) satisfies the constraint |U0|2 = |V0|2
from the balance equation (2.7). However, the representation (3.4) results no longer in the
relation U0 = V̄0, since the relation (3.7) fails for the potential function W in boosted variables
(U, Ū , V, V̄ ).

Decaying solutions of the system (3.2) with a homogeneous polynomial functionW (u, ū, v, v̄)
are analyzed in the appendix. Conditions for their existence are identified for the quartic po-
tential function (2.4). Decaying solutions may exist in the gap of the continuous spectrum of
the coupled-mode system (2.1) for ω ∈ (−1, 1). We introduce two auxiliary parameters

μ =
1 − ω

1 + ω
, β =

√
1 − ω2,(3.12)

such that 0 < μ < ∞ and 0 < β ≤ 1. When a1 = 1, a2 = ρ ∈ R, and a3 = a4 = 0, we obtain
in the appendix the decaying solution u0(x) in the explicit form

u0 =

√
2(1 − ω)

1 + ρ

1

(coshβx+ i
√
μ sinhβx)

.(3.13)

When ω → 1 (such that μ → 0 and β → 0), the decaying solution (3.13) becomes small
in absolute value and approaches the limit of sech-solutions sech(βx). When ω → −1 (such
that μ → ∞ and β → 0), the decaying solution (3.13) remains finite in absolute value and
approaches the limit of the algebraically decaying solution:

u0 =
2√

1 + ρ(1 + 2ix)
.

When a1 = a2 = 0, a3 = 1, and a4 = s ∈ R, the decaying solution u0(x) exists in two sub-
domains: 0 < ω < 1, s > −1 and −1 < ω < 0, s < 1. When 0 < ω < 1, s > −1, the solution
takes the form

u0 =

√
1 − ω

2

(coshβx− i
√
μ sinhβx)√

Δ+(x)
,(3.14)

where

Δ+ = [(s− 1)μ2 − 2sμ+ (s+ 1)] cosh4(βx) + 2[sμ− (s− 1)μ2] cosh2(βx) + (s− 1)μ2.
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When −1 < ω < 0, s < 1, the solution takes the form

u0 =

√
1 − ω

2

(sinhβx− i
√
μ coshβx)√

Δ−(x)
,(3.15)

where

Δ− = [(s+ 1) − 2sμ− (s− 1)μ2] cosh4(βx) + 2[s+ 1 − sμ] cosh2(βx) − (s+ 1).

In both limits ω → 1 and ω → −1, the decaying solutions (3.14) and (3.15) approach the
small-amplitude sech-solution sech(βx). In the limit ω → 0, the decaying solutions (3.14) and
(3.15) degenerate into a nondecaying bounded solution with |u0(x)|2 = 1

2 .

4. Block-diagonalization of the linearized system. Linearization of the coupled-mode
system (2.1) at the stationary solutions (3.1) with s = θ = 0 is defined as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u(x, t) = eiωt
(
u0(x) + U1(x)e

λt
)
,

ū(x, t) = e−iωt
(
ū0(x) + U2(x)e

λt
)
,

v(x, t) = eiωt
(
v0(x) + U3(x)e

λt
)
,

v̄(x, t) = e−iωt
(
v̄0(x) + U4(x)e

λt
)
,

(4.1)

where v0 = ū0, according to Lemma 3.1. Let (f ,g) be a standard inner product for f ,g ∈
L2(R,C4). Expanding the Lyapunov functional (3.3) into Taylor series near u0 = (u0, ū0, v0, v̄0)

T ,
we have

Λ = Λ(u0) + (U,∇Λ|u0) +
1

2
(U, HωU) + · · · ,(4.2)

where U = (U1, U2, U3, U4)
T ,∇Λ|u0 = 0, and Hω is the linearized energy operator in the

explicit form

Hω = D(∂x) + V (x),(4.3)

where

D =

⎛
⎜⎜⎜⎝
ω − i∂x 0 −1 0

0 ω + i∂x 0 −1
−1 0 ω + i∂x 0
0 −1 0 ω − i∂x

⎞
⎟⎟⎟⎠(4.4)

and

V =

⎛
⎜⎜⎜⎜⎜⎝

∂2
ū0u0

∂2
ū2
0

∂2
ū0v0

∂2
ū0v̄0

∂2
u2
0

∂2
u0ū0

∂2
u0v0

∂2
u0v̄0

∂2
v̄0u0

∂2
v̄0ū0

∂2
v̄0v0

∂2
v̄2
0

∂2
v0u0

∂2
v0ū0

∂2
v2
0

∂2
v0v̄0

⎞
⎟⎟⎟⎟⎟⎠W (u0, ū0, v0, v̄0).(4.5)
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The linearization (4.1) reduces the nonlinear coupled-mode system (2.1) to the linear eigen-
value problem in the form

HωU = iλσU,(4.6)

where σ is a diagonal matrix of (1,−1, 1,−1). Due to the gauge and translational symmetries,
the energy operator Hω has a two-dimensional kernel with the eigenvectors:

U1 = σu0(x), U2 = u′
0(x).(4.7)

The eigenvectors U1,2 represent derivatives of the stationary solutions (3.1) with respect to
parameters (θ, s).

Due to the Hamiltonian structure, the linearized operator σHω has at least a four-
dimensional generalized kernel with the eigenvectors (4.7) and two generalized eigenvec-
tors (see [20] for details). The eigenvectors of the linearized operator σHω satisfy the σ-
orthogonality constraints

(σu0, σU) =

∫
R

(ū0U1 + u0U2 + v̄0U3 + v0U4) dx = 0,(4.8)

(u′
0, σU) =

∫
R

(
ū′0U1 − u′0U2 + v̄′0U3 − v′0U4

)
dx = 0.(4.9)

The constraints (4.8) and (4.9) represent first variations of the conserved quantities Q and P
in (2.6) and (2.8) at the linearization (4.1).

When the constraint u0 = v̄0 holds, the potential part (4.5) has additional symmetry
relations:

∂2
u0ū0

W = ∂2
v0v̄0

W, ∂2
ū2
0
W = ∂2

v2
0
W, ∂2

u0v0
W = ∂2

ū0v̄0
W.(4.10)

It follows from the explicit form of Hω and the relations (4.10) that the eigenvalue problem
HωU = μU has two reductions:

(i) U1 = U4, U2 = U3, (ii) U1 = −U4, U2 = −U3.(4.11)

Our main result on the block-diagonalization of the energy operator Hω and the linearized
operator σHω is based on the reductions (4.11).

Theorem 4.1. Let W ∈ R and conditions 1–3 are satisfied. Let (u0, v0) be a decaying
solution of the system (3.2) on x ∈ R with the constraint v0 = ū0. There exists an orthogonal
similarity transformation S, such that S−1 = ST , where

S =
1√
2

⎛
⎜⎜⎜⎝

1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

⎞
⎟⎟⎟⎠ ,

that simultaneously block-diagonalizes the energy operator Hω,

S−1HωS =

(
H+ 0
0 H−

)
≡ H,(4.12)
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and the linearized operator σHω

S−1σHωS = σ

(
0 H−
H+ 0

)
≡ iL,(4.13)

where H± are two-by-two Dirac operators:

H± =

(
ω − i∂x ∓1
∓1 ω + i∂x

)
+ V±(x)(4.14)

and

V± =

(
∂2
ū0u0

± ∂2
ū0v̄0

∂2
ū2
0
± ∂2

ū0v0

∂2
u2
0
± ∂2

u0v̄0
∂2
ū0u0

± ∂2
u0v0

)
W (u0, ū0, v0, v̄0).(4.15)

Proof. Applying the similarity transformation to the operator D(∂x) in (4.4), we have
the first term in Dirac operators H±. Applying the same transformation to the potential
V (x) in (4.5) and using the relations (4.10), we have the second term in Dirac operators H±.
The same transformation is applied similarly to the linearized operator σHω with the result
(4.13).

Corollary 4.2. (a) The coupled eigenvalue problem (4.6) is equivalent to the block-diagonalized
eigenvalue problems

σ3H−σ3H+V1 = γV1, σ3H+σ3H−V2 = γV2, γ = −λ2,(4.16)

where V1,2 ∈ C
2 and σ3 is Pauli’s diagonal matrix of (1,−1).

(b) Let u0 = (u0, ū0) ∈ C
2 and (f ,g) be a standard inner product for f ,g ∈ L2(R,C2).

Dirac operators H± have simple kernels with the eigenvectors

H+u′
0 = 0, H−σ3u0 = 0,(4.17)

while the vectors V1,2 satisfy the constraints

(σ3u0, σ3V1) = 0, (u′
0, σ3V2) = 0.(4.18)

Remark 4.3. Block-diagonalization described in Theorem 4.1 has nothing in common
with the explicit diagonalization used in the reduction (9.2) of [14] for the particular po-
tential function (2.4) with a1 = a2 = a4 = 0 and a3 = 1. Moreover, the reduction (9.2) of [14]
does not work for ω �= 0, while gap solitons do not exist in this particular model for ω = 0.

We apply Theorem 4.1 to the linearized coupled-mode system with the quartic potential
function (2.4). When a1 = 1, a2 = ρ, and a3 = a4 = 0, the decaying solution u0(x) is given by
(3.13) and the potential matrices V±(x) in the Dirac operators H± in (4.14)–(4.15) are found
in the explicit form

V+ = (1 + ρ)

(
2|u0|2 u2

0

ū2
0 2|u0|2

)
, V− =

(
2|u0|2 (1 − ρ)u2

0

(1 − ρ)ū2
0 2|u0|2

)
.(4.19)
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When a1 = a2 = 0, a3 = 1, and a4 = s, the decaying solution u0(x) is given by either (3.14)
or (3.15) and the potential matrices V±(x) take the form

V+ = 3

(
u2

0 + ū2
0 2|u0|2

2|u0|2 u2
0 + ū2

0

)
+ s

(
2|u0|2 u2

0 + 3ū2
0

ū2
0 + 3u2

0 2|u0|2
)
,(4.20)

V− =

(
u2

0 + ū2
0 −2|u0|2

−2|u0|2 u2
0 + ū2

0

)
+ s

(
0 −u2

0 − ū2
0

−u2
0 − ū2

0 0

)
.(4.21)

Numerical computations of eigenvalues of the Dirac operators H± and the linearized operator
L in (4.12) and (4.13) are developed for the explicit examples (4.19) and (4.20)–(4.21).

5. Numerical computations of eigenvalues. Numerical discretization and truncation of
the linearized system (4.6) leads to an eigenvalue problem for large matrices [21]. Parallel
software libraries were recently developed for computations of large eigenvalue problems [22].
We shall use the Scalapack library and distribute computations of eigenvalues of the system
(4.6) for different parameter values between parallel processors of the SHARCnet cluster Idra
using Message Passing Interface.1

We implement a numerical discretization of the linearized system (4.6) using the Cheby-
shev interpolation method [23]. Given a function u(z) defined on the discrete grid of Cheby-
shev points zj = cos(jπ/N), j = 0, 1 . . . N, we obtain a discretization of the first derivative
u′(z) as a multiplication of the vector for values of u(z) on the discrete grid by an (N + 1)-

by-(N + 1) matrix, which we denote by D
(1)
N . If the rows and columns of the differentiation

matrix D
(1)
N are indexed from 0 to N , the entries of D

(1)
N are (see [24] for details)

(D
(1)
N )00 =

2N2 + 1

6
, (D

(1)
N )NN = −2N2 + 1

6
,

(D
(1)
N )jj =

−zj
2(1 − z2

j )
, j = 1, . . . , N − 1,

and

(D
(1)
N )ij =

ci
cj

(−1)i+j

(zi − zj)
, i �= j, i, j = 0, . . . , N,

where c0 = cN = 2 and ci = 1, i = 1, . . . , N − 1. To transform the Chebyshev grid from
the interval z ∈ [−1, 1] to the infinite domain x ∈ R we will use the exponential map f(z) =
L tanh−1 z, such that xj = f(zj), j = 0, 1, . . . , N . This map is efficient in our case because
the potential matrices V±(x) decay exponentially as |x| → ∞. The constant L sets the length
scale of the map and we pick up the values of L such that the localization of matrix potentials
V±(x) has a sufficient resolution on the discrete grid points.

Using the chain rule, we represent differentiation of u(x) on the discrete grid with the
matrix multiplication

p =

[(
∂f−1(xi)

∂x
D

(1)
N

)
u(zj), j = 0, 1, . . . , N

]
≡ DN+1u,

1Cluster Idra is a part of the SHARCnet network of parallel processors distributed between eight universities
in southern Ontario, including McMaster University.
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Table 1
Maximum real part of eigenvalues M = max |Re(λ)| versus the number of Chebyshev polynomials N for

two computational intervals |Im(λ)| < 2 and |Im(λ)| < 10.

N M|Imλ|<2 M|Imλ|<10

100 0.085 0.75
200 0.0095 0.52
400 0.0053 0.21
800 7.12 · 10−4 0.12
1200 2.34 · 10−4 0.09
2500 3.91 · 10−5 0.06

where u is the vector for values of u(x) and p is the vector for values of u′(x) on the discrete
grid. The discretization of the Dirac operators H± is defined by

H± =

(
ωIN+1 − iDN+1 ∓IN+1

∓IN+1 ωIN+1 + iDN+1

)
+ diagV±(xi),(5.1)

where IN+1 is the identity (N + 1)-by-(N + 1) matrix.
The continuous spectrum for the linearized coupled-mode system (4.6) can be found from

the no-potential case V (x) ≡ 0. It consists of two pairs of symmetric branches on the imaginary
axis λ ∈ iR for |Im(λ)| > 1 − ω and |Im(λ)| > 1 + ω [7, 15]. In the potential case V (x) �= 0,
the continuous spectrum does not move, but the discrete spectrum appears. The discrete
spectrum is represented by symmetric pairs or quartets of isolated nonzero eigenvalues and a
zero eigenvalue of algebraic multiplicity four for the generalized kernel of σHω [7, 15]. We note
that symmetries of the Chebyshev grid preserve symmetries of the linearized coupled-mode
system (4.6).

The main advantage of the Chebyshev grid is the clustering distribution of the grid points
that enables us to control spurious complex eigenvalues. If the eigenvector is analytic in a strip
near the interpolation interval, the corresponding Chebyshev spectral derivatives converge
geometrically, with an asymptotic convergence factor determined by the size of the largest
ellipse in the domain of analyticity [23].

Spurious complex eigenvalues arise from the discretization of the continuous spectrum.
When the number of Chebyshev polynomials increases, the real parts of spurious eigenvalues
get smaller. Convergence of real parts of eigenvalues to zero is better near the end points of
the continuous spectrum λ = ±i(1 − ω) and λ = ±i(1 + ω), from which bifurcations of true
unstable eigenvalues are expected to occur (due to analytical results in [7, 13] and numerical
results in [7, 15]). Table 1 shows the maximum real part M = max |Re(λ)| versus N in two
computational intervals |Im(λ)| < 2 and |Im(λ)| < 10 for the linear eigenvalue problem (4.6)
with no true unstable eigenvalues. When N = 2500, the real parts of spurious eigenvalues in
the interval |Im(λ)| < 2 are of the order of 10−5. Using more polynomials, we can make the
real parts of the eigenvalues of continuous spectrum negligibly small, so that edge bifurcations
of unstable eigenvalues can be studied numerically within any required accuracy.

We compute eigenvalues of the energy operator Hω and the linearized operator σHω.
It is well known [21, 23] that Hermitian matrices have condition number one, while non-
Hermitian matrices may have a large condition number. As a result, numerical computations
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Table 2
CPU time T for block-diagonal and full matrices versus the number of Chebyshev points N .

N Tblock Tfull

100 1.656 1.984
200 11.219 12.921
400 130.953 207.134
800 997.843 1.583 · 103

1200 3.608 · 103 6.167 · 103

2500 7.252 · 103 12.723 · 103

for eigenvalues and eigenvectors have better accuracy and faster convergence for self-adjoint
operators [21, 23]. We will use the block-diagonalizations (4.12) and (4.13) and compute
eigenvalues ofH+, H−, and L. The block-diagonalized matrix can be stored in a special format
which requires two times less memory than a full matrix and it accelerates computations of
eigenvalues approximately twice as much. Table 2 shows CPU time T for computations of
eigenvalues of σHω for block-diagonal and full matrices versus the number of Chebyshev points
N . When N = 2500, Tfull is almost twice as large as Tblock.

Figure 1 displays the pattern of eigenvalues and instability bifurcations for the symmetric
quartic potential (2.4) with a1 = 1 and a2 = a3 = a4 = 0. The decaying solution u0(x)
and the potential matrices V±(x) are given by (3.13) and (4.19) with ρ = 0. Parameter ω
of the decaying solution u0(x) is defined in the interval −1 < ω < 1. The six pictures of
Figure 1 show the entire spectrum of L, H+, and H− for different values of ω (the continuous
multimedia animations that show the transformation of eigenvalues when ω decreases are
available as 62978 01.avi and 62978 02.avi).

When ω is close to 1 (the gap soliton is close to a small-amplitude sech-soliton), there exists
a single nonzero eigenvalue for H+ and H− and a single pair of purely imaginary eigenvalues
of L (see subplot (1) on Figure 1). The first set of arrays on the subplot (1) indicates that the
pair of eigenvalues of L becomes visible at the same value of ω as the eigenvalue of H+. This
correlation between eigenvalues of L and H+ can be traced throughout the entire parameter
domain on the subplots (1)–(6).

When ω decreases, the operator H− acquires another nonzero eigenvalue by means of the
edge bifurcation [13], with no changes in the number of isolated eigenvalues of L (see subplot
(2)). The first complex instability occurs near ω ≈ −0.18, when the pair of purely imaginary
eigenvalues of L collides with the continuous spectrum and emerges as a quartet of complex
eigenvalues, with no changes in the number of isolated eigenvalues for H+ and H− (see subplot
(3)).

The second complex instability occurs at ω ≈ −0.54, when the operator H− acquires a
third nonzero eigenvalue and the linearized operator L acquires another quartet of complex
eigenvalues (see subplot (4)). The second set of arrays on the subplots (4)–(6) indicates a
correlation between these eigenvalues of L and H−.

When ω decreases further, the operators H+ and H− acquire one more isolated eigenvalue,
with no change in the spectrum of L (see subplot (5)). Finally, when ω is close to −1 (the
gap soliton is close to the large-amplitude algebraic soliton), the third complex instability
occurs, correlated with another edge bifurcation in the operator H− (see subplot (6)). The

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/62978_01.avi
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/62978_02.avi
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Figure 1. Eigenvalues and instability bifurcations for the symmetric quartic potential (2.4) with a1 = 1 and
a2 = a3 = a4 = 0. See also the accompanying animations (62978 01.avi [724KB] and 62978 02.avi [275KB]).

third set of arrays on subplot (6) indicates this correlation. The third complex instability was
not detected in the previous numerical studies of the same coupled-mode system [7, 15] (since
the previous works did not consider eigenvalues of gap solitons near the limit ω = −1). In a
narrow domain near ω = −1, the operator H+ has two nonzero eigenvalues, the operator H−
has five nonzero eigenvalues, and the operator L has three quartets of complex eigenvalues.

Figure 2 displays the pattern of eigenvalues and instability bifurcations for the symmetric

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/62978_01.avi
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/62978_02.avi
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Figure 2. Eigenvalues and instability bifurcations for the symmetric quartic potential (2.4) with a3 = 1 and
a1 = a2 = a4 = 0.

quartic potential (2.4) with a1 = a2 = a4 = 0 and a3 = 1. The decaying solution u0(x)
and the potential matrices V±(x) are given by (3.14) and (4.20) with 0 < ω < 1 and s = 0.
Eigenvalues in the other case −1 < ω < 0 can be found from those in the case 0 < ω < 1 by
reflections.

When ω is close to 1 (the gap soliton is close to a small-amplitude sech-soliton), there
exist one nonzero eigenvalue of H− and no nonzero eigenvalues of L and H+ (see subplot
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(1)). When ω decreases, two more nonzero eigenvalues bifurcate in H− from the left and right
branches of the continuous spectrum, with no change in the nonzero eigenvalues of L (see
subplot (2)). The first complex bifurcation occurs at ω ≈ 0.45, when a quartet of complex
eigenvalues occurs in L, in correlation with two symmetric edge bifurcations of H+ from the
left and right branches of the continuous spectrum (see subplots (3) and (4)). The first and
only set of arrays on the subplots (3)–(6) indicates a correlation between eigenvalues of L
and H+, which is traced through the domain of ω. The inverse complex bifurcation occurs
at ω ≈ 0.15, when the quartet of complex eigenvalues merges at the edge of the continuous
spectrum into a pair of purely imaginary eigenvalues (see subplot (5)). No new eigenvalues
emerge for smaller values of ω. When ω is close to 0 (the gap soliton is close to the nondecaying
bounded solution), the operator H+ has two nonzero eigenvalues, the operator H− has three
nonzero eigenvalues, and the operator L has one pair of purely imaginary eigenvalues (see
subplot (6)).

We add remarks on two other limiting cases of the symmetric quartic potential (2.4).
When a1 = a3 = a4 = 0 and a2 = 1, the coupled-mode system is an integrable model and no
nonzero eigenvalues of L exist, according to the exact solution of the linearization problem [9].
When a1 = a2 = a3 = 0 and a4 = ±1, one branch of decaying solutions u0(x) exists for either
sign, according to (3.14) and (3.15). The pattern of eigenvalues and instability bifurcations
repeats those in Figure 2.

Our numerical results imply that there exists a correlation between edge bifurcations in
the operator L and those in the Dirac operators H+ and H−. Analysis of such correlations is
beyond the scope of the present paper.

Appendix. Conditions for existence of gap solitons in the homogeneous potential
function.

We shall consider the homogeneous potential function W ∈ R of the monomial order 2n
that satisfies conditions 1–3. The general representation of W (u, ū, v, v̄) is given by

W =
n∑

s=0

n−s∑
k=0

ak,s (usv̄s + ūsvs) |u|2n−2k−2s|v|2k,(A.1)

where ak,s are real-valued coefficients such that ak1,s = ak2,s if k1 + k2 = n − s for s =
0, 1, . . . , n− 1. Let us introduce new parameters

As =
n−s∑
k=0

ak,s, s = 0, 1, . . . , n.

Using the variables (Q,Θ) defined in (3.4) with Φ(x) = Φ0 ≡ 0, we rewrite the ODE system
(3.10) in the explicit form{

Q′ = 2Q sin(2Θ) − 2Qn∑n
s=0 sAs sin(2sΘ),

Θ′ = −ω + cos(2Θ) − nQn−1∑n
s=0As cos(2sΘ).

(A.2)

There exists a first integral of the system (A.2),

−ωQ+ cos(2Θ)Q−Qn
n∑

s=0

As cos(2sΘ) = C0,
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where C0 = 0 from the zero boundary conditions Q(x) → 0 as |x| → ∞. As a result, the
second-order system (A.2) is reduced to the first-order ODE

Θ′(x) = (n− 1)(ω − cos(2Θ)),(A.3)

while the function Q(x) ≥ 0 can be found from Θ(x) as follows:

Qn−1 =
(cos(2Θ) − ω)∑n
s=0As cos(2sΘ)

.(A.4)

We consider the quartic potential function W given by (2.4). Using (A.3) for the case
n = 2 we obtain

Θ′(x) = ω − cos(2Θ)(A.5)

and the correspondence

A0 =
a1 + a2 + a4

2
, A1 = 2a3, A2 =

a4

2
.

We rewrite the representation (A.4) for Q(x) as

Q =
(t− ω)

φ(t)
, Q ≥ 0,(A.6)

where

t = cos(2Θ), φ(t) = a4t
2 + 2a3t+

a1 + a2

2
,

such that t ∈ [−1, 1]. Let us consider two cases:{
t ≥ ω; φ(t) ≥ 0 ⇒ Q+,
t ≤ ω; φ(t) ≤ 0 ⇒ Q−.(A.7)

We can solve the first-order ODE (A.5) using the substitution z = tan(Θ), such that

t =
1 − z2

1 + z2
, z2 =

1 − t

1 + t
.

After integration with the symmetry constraint Θ(0) = 0, we obtain the solution∣∣∣∣∣(z −
√
μ)

(z +
√
μ)

∣∣∣∣∣ = e2βx,(A.8)

where

β =
√

1 − ω2, μ =
1 − ω

1 + ω
,

and −1 < ω < 1. Two separate cases are considered:

|z| ≤ √
μ : z = −√

μ
sinh(βx)

cosh(βx)
, t =

cosh2(βx) − μ sinh2(βx)

cosh2(βx) + μ sinh2(βx)
,(A.9)
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where t ≥ ω, and

|z| ≥ √
μ : z = −√

μ
cosh(βx)

sinh(βx)
, t =

sinh2(βx) − μ cosh2(βx)

sinh2(βx) + μ cosh2(βx)
,(A.10)

where t ≤ ω. Let us introduce new parameters

A = −2a3 + a4 +
a1 + a2

2
,

B = −2a4 + a1 + a2,

C = 2a3 + a4 +
a1 + a2

2
.

It is clear that A = φ(−1) and C = φ(1). If t ≥ ω and φ(t) ≥ 0, it follows from (A.7) and
(A.9) that

Q+(x) =
(1 − ω)((μ+ 1) cosh2(βx) − μ)

(Aμ2 +Bμ+ C) cosh4(βx) − (Bμ+ 2Aμ2) cosh2(βx) +Aμ2
.(A.11)

If t ≤ ω and φ(t) ≤ 0, it follows from (A.7) and (A.10) that

Q−(x) =
(ω − 1)((μ+ 1) cosh2(βx) − 1)

(Aμ2 +Bμ+ C) cosh4(βx) − (Bμ+ 2C) cosh2(βx) + C
.(A.12)

The asymptotic behavior of the function Q(x) at infinity depends on the location of the zeros
of the function ψ(μ) = Aμ2 +Bμ+C. The function ψ(μ) is related to the function φ(t); e.g.,
if ψ(μ) = 0 then φ(ω) = 0.

A.1. Case A < 0, C > 0. The quadratic polynomial φ(t) has exactly one root φ(t1) = 0
such that t1 ∈ (−1, 1). Two branches of decaying solutions with the positive amplitude Q(x)
exist. One branch occurs for t1 < ω ≤ 1 with Q(x) = Q+(x) and the other one occurs for
−1 ≤ ω < t1 with Q(x) = Q−(x). At the point ω = t1, the solution is bounded and decaying.

A.2. Case A > 0, C > 0. The quadratic polynomial φ(t) has no roots or has exactly
two roots on (−1, 1). If φ(t) does not have any roots on (−1, 1), a decaying solution with the
positive amplitude Q(x) exists for any −1 < ω < 1 with Q(x) = Q+(x). If φ(t) has two roots
φ(t1) = 0 and φ(t2) = 0 such that t1, t2 ∈ (−1, 1), a decaying solution with Q(x) = Q+(x)
exists only on the interval max(t1, t2) < ω ≤ 1. At the point ω = max(t1, t2), the solution
becomes bounded but nondecaying if t1 �= t2 and unbounded if t1 = t2.

A.3. Case A < 0, C < 0. The quadratic polynomial φ(t) has no roots or has exactly
two roots on (−1, 1). If φ(t) does not have any roots on (−1, 1), a decaying solution with the
positive amplitude Q(x) exists for any −1 < ω < 1 with Q(x) = Q−(x). If φ(t) has two roots
φ(t1) = 0 and φ(t2) = 0 such that t1, t2 ∈ (−1, 1), a decaying solution with Q(x) = Q−(x)
exists only on the interval −1 ≤ ω < min(t1, t2). At the point ω = min(t1, t2), the solution
becomes bounded but nondecaying if t1 �= t2 and unbounded if t1 = t2.

A.4. Case A > 0, C < 0. No decaying solutions with positive amplitude Q(x) exist.
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A.5. Special cases. Two special cases occur when φ(1) = 0 or φ(−1) = 0. If φ(1) = 0,
then Q+(x) has a singularity at x = 0 for any −1 < ω < 1. If φ(−1) = 0, then Q−(x) has a
singularity at x = 0 for any −1 < ω < 1.
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