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Abstract
We consider the dependence of the capacitance C of the semiconductor
depletion layer versus the contact bias V . When the concentration of doping
impurities varies in the plane parallel to the contact, we show that the
standard Schottky dependence C−2(V ) is no longer a straight line. We
compute the effective concentration Neff from the slope of the dependence
C−2(V ) by using the perturbation and variation methods and compare Neff
with previous theoretical and experimental data.

1. Introduction

The concentration of doping impurities N in a reverse biased
Schottky contact is often deduced from the slope of the
capacitance–voltage characteristic (CVC). If the doping is non-
uniform and varies along the direction normal to the sample
surface provided with a Schottky contact (z-axis), the effective
concentration can be recovered from the experimental CVC
measurements [1]. However, in practice, semiconductors
contain different kinds of inhomogeneities so that the
impurity concentration varies not only along the z-axis but
in the (x, y)-plane as well. These inhomogeneities are
especially pronounced in strongly compensated, irradiated
and polycrystalline semiconductors, and they can change
dramatically their transport and photoelectric properties [2].

In this paper we discuss the CVC properties of
semiconductors with doping concentration varying in the
plane parallel to the surface. We answer the following key
question: if standard CVC measurements are performed in an
inhomogeneous semiconductor with spatially varying doping
level N(r), how is the effective concentration Neff (defined
from the slope of CVC) related to N(r)? The question is
especially interesting when different experimental methods
of concentration measurements, which give the same result
in homogeneous samples, result in dramatically different
measurement of Neff for the same inhomogeneous sample.
For instance, in the case of high-frequency and Hall effect
measurements, Neff is close to the spatially averaged N(r),
which in strongly non-uniform samples may be up to several
orders of magnitude higher than the effective (percolation)
concentration determining the static conductivity [2].

The structure of the paper is as follows. In section 2, we
give a mathematical formulation of the problem and discuss
preliminary estimates on how the effective concentration
depends on the characteristic parameters of the inhomogeneity,
including the mean and standard deviation of fluctuations,
their correlation length and the effective thickness of the
depletion layer. In section 3, we solve the problem using
the perturbation series, provided the standard deviation of the
fluctuations is small. In section 4, we give an independent
analysis of the same problem by using a variational method,
when the inhomogeneity has a stepwise constant profile.
Section 5 concludes the paper by comparing our results with
experimental data.

2. Formulation of the problem and general estimates

The problem of finding the CVC for an inhomogeneous
semiconductor can be formulated as a nonlinear boundary-
value problem for the Poisson equation. We assume that
the semiconductor with an inhomogeneous doping level N(r)
occupies the half-space z > 0. The plane z = 0 is an
equipotential metallic contact with some applied voltage V

such that
ϕ(z = 0) = V, (1)

whereas in the bulk of semiconductor the potential vanishes:
ϕ(z → ∞) = 0. These requirements represent boundary
conditions for the Poisson equation �ϕ = (4πe/ε)[n(ϕ) −
N(r)], where e is the electron charge, ε is the dielectric
susceptibility, and n(ϕ) is the concentration of free electrons
depending on the local value of potential.
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The presence of the nonlinear function n(ϕ) makes the
problem in its general form extremely complicated. We
will consider the case of a strong depletion (which for
n-type semiconductors corresponds to large negative V ),
where the problem can be essentially simplified by using
the so-called Schottky approximation, which is adequate if
e|V | considerably exceeds the thermal energy kT . The latter
assumes that in all points with ϕ < 0, the concentration n(ϕ) is
negligible. Let the surface z = η(x, y) be the boundary of this
completely depleted region E = {(x, y, z) : ϕ � 0, z � 0}
and make the principal assumption that n(ϕ) = 0 in E. By
the maximum principle, we conclude that ϕ = 0 in E and, in
particular,

ϕ(z = η(x, y)) = 0. (2)

As a result, instead of solving the Poisson equation in the
whole half-space, we may restrict ourselves only to the region
0 < z < η(x, y) where the linear Poisson equation,

�ϕ = ∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2
= −e∗N(x, y, z), e∗ = 4πe

ε
,

(3)

is to be solved with the boundary conditions equations (1)
and (2). The function η(x, y) defines the boundary of the
completely depleted region. Since the function η(x, y) is
unknown, an additional boundary condition makes the problem
well-posed. If ϕ = 0 for all z � η(x, y) and ϕ is smooth, then
the normal derivative of ϕ vanishes at the surface, which results
in the following boundary condition on the free boundary:

∂ϕ

∂z
(z = η(x, y)) = 0. (4)

The resulting free surface z = η(x, y) is the surface of zero
potential and zero electric field flux.

Once the Poisson equation with the given boundary
conditions is solved and η(x, y) determined, the capacitance
C of the structure can be easily found. By definition, C =
dQ/d|V |, where Q = Q(V ) is the electric charge per unit
area depending on the applied voltage V :

Q = e∗

S

∫
S

dx dy

∫ η(x,y)

0
N(x, y, z) dz (5)

with S being a region in the (x, y)-plane with dimensions
considerably exceeding the typical size L of inhomogeneities
of N(r). For uniform doping, N(r) = N̄ = const., the
problem has a well-known parabolic solution:

ϕ = �0(z) = −e∗N̄
2

(η0 − z)2, η = η0 =
√

2|V |
e∗N̄

,

(6)

where V < 0. The parabolic solution results in the classical
formula for CVC:

C0 = dQ0

d|V | = e∗N̄
dη0

d|V | =
(

e∗N̄
2|V |

)1/2

. (7)

The goal of this paper is to study possible modifications of
CVC due to spatial inhomogeneity of the doping concentration
in the plane parallel to the semiconductor surface, described

by N = N(x, y). In particular, we compute an effective
concentration defined as:

Neff = 2

e∗ |V |C2(V ). (8)

Measured from experiment, the effective concentration Neff

is typically interpreted to be the doping level of the
semiconductor. In uniform samples, it is true since Neff =
N̄ and Neff is independent of V . In the presence of
inhomogeneities, the effective concentration Neff defined in
equation (8) may depend on the mean value N̄ and the variance

(N − N)2 of N = N(r), its correlation length L and the
average thickness of the depletion layer η0 (i.e. on the applied
voltage V ).

Some general results can be derived from elementary
considerations (see also [3, 4]). For L � η0, spatial
fluctuations of concentration N(r) are not relevant at the length
scale η0, so that the screening is determined by an average
concentration: Neff = N̄ . In the opposite limit L � η0

the depletion layer can be considered as the parallel array of
microscopically, uniformly doped regions, with capacitances
proportional to the square root of the local N and, hence,

Neff = (
√

N)2. Since, for any inhomogeneity, (
√

N)2 <

N̄ , we may expect that for inhomogeneities with the same
mean value and standard deviation of fluctuations N(r), the
effective concentration Neff decreases with their correlation
length L and increases with the depleting voltage V , due to
the increase in the ratio η0/L. We confirm these general
estimates by analysing the perturbation theory and variational
methods for the problem equation (3) with the boundary
conditions equations (1), (2) and (4) and show that the effective
concentration Neff increases with η0/L from below N̄ , exceeds
the value N̄ at a finite η0/L and approaches N̄ from above
in the limit of large η0/L. In our further calculations we
restrict ourselves to the case of one-dimensional fluctuations,
N = N(x), and reduce the problem to a planar geometry:
ϕ = ϕ(x, z) and η = η(x).

3. Perturbation series results

Let N(x) = N̄ + εM(x), where non-uniform perturbation
M(x) has the properties: M(x + 2L) = M(x), M̄ = 0, and
M̄2 = 1. Here and henceforth, the overline denotes the mean
value of a function on the interval x ∈ [−L, L]. The parameter

ε =
√

(N(x) − N̄)2

measures a small standard deviation of the perturbation term
M(x). The periodic function M(x) can be expanded into
complex Fourier series:

M(x) =
∞∑

n=−∞
mneiknx, kn = πn

L
,

mn = m−n = 1

2L

∫ L

−L

M(x)e−iknx dx

(9)

with the Fourier coefficients mn satisfying the constraints:
m0 = 0 and

∑∞
n=−∞ |mn|2 = 1. Solution of the problem,

equations (1)–(4), can be found in a formal perturbation series:

ϕ(x, z) = �0(z) + ε�1(x, z) + ε2�2(x, z) + O(ε3), (10)

η(x) = η0 + εη1(x) + ε2η2(x) + O(ε3), (11)

2989



A Shik et al

where the zero-order term is given by equation (6), while the
first-order and second-order terms for the potential ϕ(x, z) are
to be determined from the equations

��1 = −e∗M(x), �1(x, 0) = 0,

�1(x, η0) = 0,
(12)

��2 = 0, �2(x, 0) = 0,

�2(x, η0) = −e∗N̄
2

η2
1(x).

(13)

The terms for the potential are then used to find the depletion
layer profile:

η1 = 1

e∗N̄
∂�1

∂z
(x, η0), (14)

η2 = −M(x)

N̄
η1(x) +

1

e∗N̄
∂�2

∂z
(x, η0). (15)

Solutions of the first-order problem, equations (12) and
(14), can be obtained from the Fourier series expansions:

�1 = − e∗
∞∑

n=−∞

mn

k2
n

[
cosh knz − 1

+
sinh knz

sinh knη0
(1 − cosh knη0)

]
eiknx, (16)

η1 =
∞∑

n=−∞

mn (1 − cosh knη0)

N̄kn sinh knη0
eiknx . (17)

Solution of the second-order problem equation (13) has
the form

�2 = −e∗N̄
2

∞∑
n=−∞

an

sinh knz

sinh knη0
eiknx, (18)

where an are the Fourier coefficients of η2
1(x):

an =
∞∑

l=−∞

mlm̄l−n (1 − cosh klη0) (1 − cosh kl−nη0)

N̄2klkl−n sinh klη0 sinh kl−nη0
.

We compute the charge Q = Q(V ) by averaging η(x)N(x):

Q = e∗

2L

∫ L

−L

η(x)N(x) dx = Q0 + ε2Q2 + O(ε4), (19)

where odd terms of the series in ε have zero mean and therefore
do not contribute to Q, while Q0 = e∗η0N̄ and Q2 takes
the form

Q2 = e∗

2L

∫ L

−L

dx(η2N̄ + η1M) = 1

2L

∫ L

−L

∂�2

∂z
(x, η0) dx,

or, explicitly,

Q2 = −e∗N̄a0

2η0
= −

∞∑
n=−∞

e∗|mn|2 [1 − cosh knη0]2

2N̄k2
nη0 sinh2 knη0

. (20)

The resulting CVC defined from C = dQ/d|V | can
be represented in the form equation (8), where the effective
concentration

Neff = N̄

[
1 + ε2

∞∑
n=−∞

×|mn|2 [1 − cosh knη0]2 [sinh knη0 − 2knη0]

N̄2k2
nη

2
0 sinh3 knη0

+ O(ε4)

]
.

(21)

The asymptotic limits of small and large η0/L correspond
to the general predictions described in section 2. Consider, for
example, a finite Fourier series in equation (9) for |n| � nmax

and take the limit knη0 = πnη0/L → 0 for any n � nmax.
Then, equation (21) reduces to the simple formula:

Neff(N̄, ε, L, η0) = N̄

[
1 − ε2

4N̄2

nmax∑
n=−nmax

|mn|2

+ O

(
ε2η2

0

L2
, ε4

) ]
� N̄ . (22)

Since
∑∞

n=−∞ |mn|2 = 1, then

(√
N̄ + εM(x)

)2

= N̄

[
1 − ε2

4N̄2
+ O(ε4)

]
,

and it follows from equation (22) that Neff = (
√

N(x))2 < N̄

in the limit of small η0/L. In the opposite limit of large η0/L,
all terms of the complex Fourier series equation (9) can be
uniformly simplified as

Neff(N̄, ε, L, η0) = N̄

[
1 +

ε2L2

N̄2π2η2
0

∞∑
n=−∞

|mn|2
n2

+O

(
ε2L4

η2
0

, ε4

) ]
� N̄ . (23)

Again, the perturbation series confirm the general prediction
that Neff = N̄ in the limit of large η0/L. A new property, which
is not predicted from simple qualitative arguments, consists
in the fact that the effective concentration Neff approaches
N̄ from above, i.e. Neff � N̄ for large η0/L. It means that
the dependence of Neff/N̄ versus η0/L has a non-monotonic
character.

We illustrate the behaviour of Neff for an arbitrary spatial
scale η0/L by considering the piecewise constant profile for
the doping concentration: N(x) = N+ for 0 < x < L and
N(x) = N− for −L < x < 0. We set N+ > N− for
convenience and define

N̄ = N+ + N−
2

, ε = N+ − N−
2

. (24)

Then, the perturbation term is M(x) = sign(x) with the
Fourier series equation (9) with mn = 2/(iπn) for odd n

and mn = 0 for even n. The ratio of the effective and mean
concentrations Neff/N̄ versus η0/L is shown on figure 1 by
the dotted curve. All properties described above are well
illustrated by this dependence.

4. Variational results

In the previous section, we described perturbation results that
show the main tendencies in the dependence of the effective
concentration Neff on the spatial scale of inhomogeneities
η0/L. However, the perturbation results may not be relevant
for many applications since they are limited by low-amplitude
fluctuations of the doping concentration N = N(r). Here, we
develop a variational approach to the problem in order to study
inhomogeneities of arbitrary amplitude.

We assume again that the doping profile N(x), the
Schottky surface η(x), and the potential ϕ(x, z) are periodic
in x with period 2L. Solution of the Poisson equation,
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Figure 1. The dependence of Neff/N̄ versus η0 for a piecewise
approximation of the doping concentration with N+ = 1.25N and
N− = 0.75N̄ . η0 is measured in units of L. The upper horizontal

dotted line corresponds to Neff = N̄ , the lower one to Neff = (
√

N)2.
The dotted curve is the result of the perturbation theory, while the
solid curve gives the result of the variational method.

equation (3), can be derived as a variational (minimization)
problem for the electrostatic energy functional:

W [ϕ, η] =
∫ L

−L

dx

∫ η(x)

0
dz

[
1

2

(
∂ϕ

∂x

)2

+
1

2

(
∂ϕ

∂z

)2

− e∗N(x)ϕ

]
. (25)

An arbitrary variations of W [ϕ, η] in ϕ and η vanish if ϕ(x, z)

and η(x) satisfy the Poisson equation, equation (3), with the
boundary conditions equations (1), (2) and (4). We consider
the following class of trial functions for the potential

ϕ = V
[η(x) − z]2

η2(x)
, η(x) > 0. (26)

The trial function equation (26) satisfies all the boundary
conditions equations (1), (2) and (4) but does not solve the
Poisson equation, equation (3), unless N(x) and η(x) are
constant in x. Nonetheless, we recover an approximation to
the free surface η(x) by minimizing the energy functional
equation (25) with the trial function equation (26). After
substitution of equation (26), the functional takes the form

W [η] =
∫ L

−L

dx

[
V 2(η′)2

15η
+

2V 2

3η
+

e∗|V |
3

N(x)η

]
, (27)

and its minimization results in the differential equation
for η(x),

2

5η
η′′ − 1

5η2
(η′)2 +

2

η2
= e∗N(x)

|V | , (28)

with the periodic boundary conditions η(x) = η(x + 2L).
We use again the piecewise approximation of the doping

concentration N(x) such that N(x) = N+ for 0 < x < L and
N(x) = N− for −L < x < 0. This allows us to integrate
equation (28) once:

H± = 1

10η

(
dη

dx

)2

− 1

η
− η

η2±
, (29)

where η± = (2|V |/e∗N±)1/2. Periodic solutions of
equation (28) with this piecewise constant function N(x)

satisfy the symmetry conditions η′(±L/2) = 0. We denote
η±

0 = η(±L/2) and express the constants H± in terms of
η±

0 and η±. Then, the problem, equation (29), reduces to
integration of two first-order equations:

(
dη

dx

)2

= 10

η2±

(
η − η±

0

) (
η − η2

±
η±

0

)
, (30)

with the boundary conditions η(±L/2) = η±
0 . At the interface

x = 0 between two solutions, we require continuity of η(0)

and η′(0). These matching conditions define parameters η±
0 of

the solutions. If N+ > N−, then η+ < η−. Solutions of this
problem can be viewed qualitatively by using the phase plane
for (η, η′). The points η = η± are critical (saddle) points of
the dynamical system equation (28) with N(x) = N±. They
are the only critical points in the right-half-plane of η(x) > 0
and it can be shown that there exists a unique periodic solution
η(x) that is a decreasing function of x for x ∈ [−L/2, L/2]
between η− > η−

0 � η(x) � η+
0 > η+.

More quantitatively, the differential equations,
equation (30), have the exact analytical solutions

η(x) = 1

2

(
η±

0 +
η2

±
η±

0

)
+

1

2

(
η±

0 − η2
±

η±
0

)
cosh

√
10

η±

(
x ∓ L

2

)
(31)

Matching them at x = 0 with η(0) and η′(0) being continuous,
we derive a system of two algebraic equations for η±

0 . Once
the system for η±

0 is solved, the charge Q = Q(V ) can be
computed from the formula

Q = e∗N+

4

(
η+

0 +
η2

+

η+
0

)
+

e∗N−
4

(
η−

0 +
η2

−
η−

0

)

+
e∗N+

4

(
η+

0 − η2
+

η+
0

)
sinh θ+

θ+

+
e∗N−

4

(
η−

0 − η2
−

η−
0

)
sinh θ−

θ−
, (32)

where θ± = √
10L/(2η±). The effective concentration Neff

is computed from the derivative C = dQ/d|V | according to
equation (8). The dependence of Neff/N̄ versus η0/L is shown
in figure 1 by the solid curve. Both the solid (variational) and
dotted (perturbation) curve agree well and demonstrate similar
behaviour of the effective concentration: the ratio Neff/N̄ is
less than one for small values of η0/L, greater than one for
finite values of η0/L and approaches one from above for large
values of η0/L.

Figure 2 shows the CVC C−2(|V |) for one particular
example of inhomogeneity. Being compared with the straight
line describing CVC in a uniformly doped sample (dotted line),
it shows slight deviations in the form of initial sublinear part
followed by an inflection point. If we express this dependence
in terms of Neff , rather than C (figure 3), the deviation becomes
much more noticeable.

The asymptotic limits of small and large values of
η0/L can be computed analytically from the exact solutions
equations (31) and (32). In the limit of small values of η0/L,
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8

|V|

C
–2

Figure 2. The CVC C−2(|V |) calculated by the variational method
for a piecewise approximation of the doping concentration, with
N+ = 10, N− = 0.1. C is measured in units of 1/L and V is
measured in units of e∗NL2/2. The dotted line corresponds to a
uniformly doped sample.
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|V|
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1.1

Figure 3. The dependence of Neff versus |V | for a piecewise
approximation of the doping concentration, with N+ = 10 and
N− = 0.1. The solid curve shows Neff for the differential
capacitance C = dQ/d|V | and the dotted curve shows Neff for the
static capacitance C = Q/|V |. The concentration Neff is measured
in units of N̄ and the voltage V is measured in units of e∗N̄L2/2.

the solution η(x) connects the stable and unstable manifolds
of the saddle points η±, when η±

0 = η± and

η = η−

(
1 +

η+ − η−
η+ + η−

e(
√

10/η−)x

)
, x < 0, (33)

η = η+

(
1 − η+ − η−

η+ + η−
e(−√

10/η+)x

)
, x > 0 (34)

so that the electric charge Q is given by

Q = e∗

2
(N+η+ + N−η−) + O

(
η2

0

L2

)
. (35)

Using this expression, we confirm the general estimate that

Neff = 1
4

(√
N+ +

√
N−

)2
=

(√
N

)2
< N̄

in the limit of small η0/L. In the limit of large values of η0/L,
we find an asymptotic solution for η±

0 in the form

η±
0 = η0

[
1 +

L2

η2
0

δ±
2 + O

(
L4

η4
0

)]
,

where η0 is given by equation (6), and

δ+
2 = −5(N+ − N−)(N+ + 3N−)

64N̄2
,

δ−
2 = 5(N+ − N−)(3N+ + N−)

64N̄2
.

As a result, in this limit the electric charge is given by

Q = e∗η0N̄

[
1 − 5L2

192N̄2η2
0

(N+ − N−)2 + O

(
L4

η4
0

)]
. (36)

We confirm again the general estimate in the limit of large
η0/L:

Neff = N̄

[
1 +

5ε2L2

24N̄2η2
0

+ O

(
L4

η4
0

)]
� N̄, (37)

in the limit of large η0/L, where ε is defined by equation (24).
Formulae equations (23) and (37) are obtained in the same limit
of large η0/L by the perturbation theory and by the variation
method, respectively. They agree well, except for numerical
coefficients.

In defining the effective concentration Neff as the slope
of the curve C−2(|V |), we have found that Neff exceeds
the average concentration N̄ for large values of η0/L, if
the capacitance is defined as the differential capacitance:
C = dQ/d|V |. However, in the limit of large values of
η0/L, equations (20) and (36) imply that Q � e∗η0N̄ . The
phenomenon is that Neff > N̄ not because of large levels of
induced charge but rather from rapid variation of this charge
with respect to applied voltage. Using an alternative definition
of the capacitance C as the static approximation: C = Q/|V |,
we obtain that the effective concentration equation (8) will be
a monotonic function of η0/L, bounded by N̄ and approaching
this value in the limit of large values of η0/L (see the dotted
curve in figure 3).

5. Discussion and conclusions

We have shown that the presence of lateral doping
inhomogeneities may influence noticeably the CVC of a
Schottky depletion layer. General considerations supported
by perturbation and variational analysis demonstrate that the
standard C−2(V ) dependence in non-uniform samples is no
longer a straight line. Its slope, for uniform samples inversely
proportional to the doping level (see equation (7)), varies from
higher values at low |V | to lower values corresponding to
N̄ at |V | → ∞, with some minimum in between. Similar
characteristics have been experimentally observed in different
types of inhomogeneous materials, such as polycrystalline Ge
[5], nanocrystalline CdS [6], porous SiC [7], TiO2 [8] and GaP
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[9], in GaAs subjected to high energy ion irradiation [10] and in
InSe(:Er) [11] where the authors themselves point at a possible
non-uniformity caused by the surface melting. In particular,
the C−2(V ) curves of [6, 7, 10] demostrate a noticeable
decrease of slope at large |V | and in [11] a minimum of the
slope at intermediate voltages is revealed especially distinctly.

In our calculations we used the Schottky approximation
assuming a sharp boundary between the complete depletion
and quasi-neutral regions, without any intermediate layer. This
approximation is known to be adequate at e|V | � kT , which
is the main assumption in our calculations. This inequality is
the standard requirement for the CVC experiments fulfilled in
all experimental works cited above.

It is worth noting that another possible type of
inhomogeneity in Schottky barriers—fluctuations of the
barrier height (the parameter V in our notation)—does not
result in noticeable deviation of C−2(V ) from the linear
dependence (see, e.g. [12]). Thus, the nonlinear character of
the dependence of C−2(V ) indicates that the inhomogeneities
in a Schottky barrier are of a particular type, namely, are
produced by spatial variations of the doping level.

In this connection we add that C−2(V ) of the type
of figure 2 can be observed not only for lateral doping
variations described in our paper but also in layered doping
inhomogeneity N(z) with N increasing with z (from surface
to the bulk). To distinguish between these two types of doping
inhomogeneities, the results should be compared with the data
on Neff obtained by some other method (e.g. Hall effect).

As a conclusion, we would like to emphasize once
more that both our calculations and the experiments cited
correspond to the case of macroscopic contacts with the
dimensions considerably exceeding the characteristic size

of inhomogeneities when the measured capacity results from
some kind of surface averaging. The real pattern of doping
profile could be, in principle, obtained by scanning capacitance
microscopy [13]. However, in the geometry of this method the
measured local CVC completely differs from C ∼ |V |−1/2 [14]
and still has got no adequate theoretical description suitable for
extracting quantitative information.

References

[1] Schroder D K 1998 Semiconductor Material and Device
Characterization 2nd edn (New York: Wiley)

[2] Shik A Y 1995 Electronic Properties of Inhomogeneous
Semiconductors (London: Gordon and Breach)

[3] Krukovskaya L P, Berman L S, Vul A Y and Shik A Y 1977
Sov. Phys. Semicond. 11 1109

[4] Lebedev A A 1996 Semiconductors 30 403
[5] Jones K S and Pearton S J 1984 Phys. Status. Solidi. 82 K101
[6] Patel B K, Nanda K K and Sahu S N 1999 J. Appl. Phys. 85

3666
[7] Konstantinov A O, Harris C I and Janzen E 1994 Appl. Phys.

Lett. 65 2699
[8] Cao F, Oskam G, Searson P C, Stipkala J M, Heimer T A,

Farzad F and Meyer G J 1995 J. Phys. Chem. 99
11974

[9] Vanmaekelbergh D, Koster A and Marin F I 1997 Adv. Mater.
9 575

[10] Jayavel P, Udhayasankar M, Kumar J, Asokan K and
Kanjilal D 1999 Nucl. Instrum. Methods B 156 110

[11] Abay B, Onganer Y, Saglam M, Efeoglu H, Turut A and
Yogurtcu Y K 2000 Microelectr. Eng. 51–52 689

[12] Sullivan J P, Tung R T, Pinto M R and Graham W R 1991
J. Appl. Phys. 70 7403

[13] Williams C C 1999 Annu. Rev. Mater. Sci. 29 471
[14] Shik A and Ruda H E 2002 Surf. Sci. at press

2993


