
Proc. R. Soc. A (2005) 461, 783–812
doi:10.1098/rspa.2004.1345

Published online 18 January 2005

Inertia law for spectral stability of solitary waves
in coupled nonlinear Schrödinger equations

By Dmitry E. Pelinovsky
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Spectral stability analysis for solitary waves is developed in the context of the
Hamiltonian system of coupled nonlinear Schrödinger equations. The linear eigen-
value problem for a non-self-adjoint operator is studied with two self-adjoint matrix
Schrödinger operators. Sharp bounds on the number and type of unstable eigen-
values in the spectral problem are found from the inertia law for quadratic forms,
associated with the two self-adjoint operators. Symmetry-breaking stability analysis
is also developed with the same method.
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1. The problem

This paper addresses spectral stability of solitary waves in the system of N coupled
nonlinear Schrödinger (NLS) equations,

i
∂ψn

∂z
+ dn

∂2ψn

∂x2 + fn(|ψ1|2, . . . , |ψN |2)ψn = 0, n = 1, . . . , N, (1.1)

where ψn(z, x) : R+ × R → C, fn : R
N → R and dn ∈ R. We assume that dn > 0,

fn(0, . . . , 0) = 0, n = 1, . . . , N and
∂fn

∂|ψm|2 =
∂fm

∂|ψn|2 , n, m = 1, . . . , N. (1.2)

The system (1.1) has the following properties.

(i) The linear spectrum of (1.1) with fn ≡ 0 is uncoupled:

ψn(z, x) =
∫ ∞

−∞
αn(kn)ei(knx+ωn(kn)z) dkn, (1.3)

where ωn = −dnk2
n � 0.

(ii) Any solution of (1.1) is invariant with respect to N phase rotations:

ψn(z, x) �→ eiθnψn(z, x), θn ∈ R, n = 1, . . . , N, (1.4)

which are associated with N conserved charge functionals,

Qn[ψ] =
∫

R

|ψn|2 dx, ψ ∈ L2(R). (1.5)
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(iii) Any solution of (1.1) is invariant with respect to space translation:

ψn(z, x) �→ ψn(z, x − s), s ∈ R. (1.6)

(iv) Any solution of (1.1) is invariant with respect to Galileo translation:

ψn(z, x) �→ ψn(z, x − 2vz)eid−1
n (vx−v2z), v ∈ R. (1.7)

(v) Under the condition (1.2), the system (1.1) conserves the Hamiltonian:

H[ψ] =
∫

R

[ N∑
n=1

dn

∣∣∣∣∂ψn

∂x

∣∣∣∣
2

− U(|ψ1|2, . . . , |ψN |2)
]

dx, ψ ∈ H1(R), (1.8)

where fn = ∂U/∂|ψn|2, and the momentum associated with the symmetry (1.6)
is given by

P [ψ] = i
∫

R

[ N∑
n=1

(
ψ̄n

∂ψn

∂x
− ψn

∂ψ̄n

∂x

)]
dx. (1.9)

Under the condition (1.2), the system (1.1) takes the Hamiltonian form in canonical
variables u = (u1, . . . , uN )T and w = (w1, . . . , wN )T:

d
dz

(
u
w

)
= 1

2J H ′[u,w], J =
(

ON IN

−IN ON

)
, (1.10)

where (u,w)T : R+ × R → R
2N , IN and ON are identity and zero matrices in R

N ,
J T = −J and the Hamiltonian H[u,w] follows from H[ψ] with ψn = un + iwn and
ψ̄n = un − iwn, n = 1, . . . , N .

2. The formalism

Stationary solutions of the coupled NLS equations (1.1) are defined by the standard
ansatz:

ψn(z, x) = Φn(x)eiβnz, (2.1)

where Φn : R → R. Components Φn(x) satisfy the system of equations

dn
d2Φn

dx2 − βnΦn + fn(Φ2
1, . . . , Φ

2
N )Φn = 0, lim

|x|→∞
Φn(x) = 0. (2.2)

Throughout the paper, we assume that the existence problem has a solution with
the following properties.

Assumption 2.1. There exists an exponentially decaying solution Φ(x) =
(Φ1, . . . , ΦN )T ∈ R

N , Φ ∈ H1(R) in an open domain β = (β1, . . . , βN )T ∈ B ⊂ R
N .

The stationary solution is not degenerate, such that Φn(x) = 0 only in a finite num-
ber of points x ∈ R, n = 1, . . . , N . The functions H[Φ] and Qn[Φ], n = 1, . . . , N are
C1 on β ∈ B.
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Exponentially decaying solutions of (2.2) may exist only if βn > 0 (assuming
dn > 0), n = 1, . . . , N , when components Φn(x) decay asymptotically as

lim
x→±∞

|Φn(x)ean|x| − c±
n | = 0, an =

√
βn

dn
(> 0), (2.3)

where c±
n are some non-zero constants. The constraint βn > 0 is related to the con-

straint ωn � 0 in the linear spectrum (1.3). The spectrum of exponentially decaying
stationary solutions (2.1) is isolated from the linear spectrum (1.3), when βn > 0.
Otherwise, as for other systems of coupled NLS equations (Pelinovsky & Yang
2002), the exponentially decaying solutions become embedded into the linear spec-
trum (embedded solitons). Such solutions are semi-stable due to nonlinearity-induced
radiative decay, even if they are linearly stable (Pelinovsky & Yang 2002). We note
that the algebraically decaying solutions may also exist in the system (2.2) for βn = 0
and they are embedded into the edge of the linear spectrum at ωn = 0. We do not
consider algebraically decaying solutions in this paper.

Definition 2.2. Families of stationary solutions Φ(x) are classified by the nodal
index i = (i1, . . . , iN )T, where in is the number of zeros of Φn(x) for x ∈ R. The
stationary solution Φ(x) with i = 0 is called the ground state.

Lemma 2.3. Stationary solutions Φ(x) are critical points of the Lyapunov func-
tional

Λ[ψ] = H[ψ] +
N∑

n=1

βnQn[ψ], (2.4)

where Qn[ψ] and H[ψ] are given by (1.5) and (1.8).

Proof . The first variation of Λ[ψ] vanishes if ψ = Φ(x) satisfies the system (2.2).
�

Let Λs(β) be the energy surface of the stationary solutions,

Λs(β) = Hs(β) +
N∑

n=1

βnQns(β), (2.5)

where Hs(β) = H[Φ] and Qns(β) = Qn[Φ]. The Hessian matrix U of the energy
surface Λs(β) is a symmetric matrix with the elements

Un,m =
∂2Λs

∂βn∂βm
. (2.6)

Lemma 2.4. Let assumption 2.1 be satisfied. Matrix elements of the Hessian
matrix U are continuous functions of β in B, computed as

Un,m =
∂Qns

∂βm
= 2
〈

Φnen,
∂Φ

∂βm

〉
. (2.7)

Matrix U has N real bounded eigenvalues in the domain β ∈ B.
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Proof . By lemma 2.3, we have

∂Λs

∂βn
= Qns +

(
∂Hs

∂βn
+

N∑
m=1

βm
∂Qms

∂βn

)
= Qns. (2.8)

By assumption 2.1, the second derivatives of Λs(β) are continuous in β ∈ B. There-
fore, U is a matrix with bounded eigenvalues in β ∈ B. Since U is symmetric, all
eigenvalues of U are real. �

Let n(U), z(U) and p(U) be the numbers of negative, zero and positive eigenvalues
of U , respectively, such that n(U) + z(U) + p(U) = N .

Linearization at the stationary solutions (2.1) is defined by the expansion

ψn(z, x) = [Φn(x) + Un(z, x) + iWn(z, x)]eiβnz, (2.9)

where (Un, Wn)T ∈ R
2 are perturbations functions. Neglecting nonlinear terms, we

find that the perturbation vectors U = (U1, . . . , UN )T and W = (W1, . . . , WN )T sat-
isfy the linearized system in Hamiltonian form,

d
dz

(
U
W

)
= 1

2J h′[U ,W ], (2.10)

where the linearized Hamiltonian h[U ,W ] is the second variation of the Lyapunov
functional (2.4),

h = 〈U ,L1U〉 + 〈W ,L0W 〉, (2.11)

and L0 and L1 are matrix Schrödinger operators with the elements

(L0)n,m =
(

−dn
d2

dx2 + βn − fn(Φ2
1, . . . , Φ

2
N )
)

δn,m, (2.12)

(L1)n,m =
(

−dn
d2

dx2 + βn − fn(Φ2
1, . . . , Φ

2
N )
)

δn,m − 2
∂fn

∂Φ2
m

ΦnΦm. (2.13)

The diagonal operator L0 is a composition of N scalar Schrödinger operators. The
matrix operator L1 is symmetric in the Hamiltonian case (1.2). Both quadratic forms
in (2.11) are real valued. The linearized problem (2.10) reduces to a linear eigenvalue
problem after separation of variables: U = u(x)eλz, W = w(x)eλz. Eigenvalues λ
are defined by the spectrum of the non-self-adjoint operator A:

A
(

u
w

)
= λ

(
u
w

)
, A =

(
ON L0
−L1 ON

)
. (2.14)

The operator A is defined on L2(R), equipped with the inner product

〈f , g〉 =
∫

R

( N∑
n=1

f̄n(x)gn(x)
)

dx. (2.15)

We use standard definitions of eigenvalues of A from (Hislop & Sigal 1996, defini-
tion 1.4).
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Definition 2.5. The value λ is an eigenvalue of A if ker(A − λ) �= {0} in L2(R),
such that there exists a non-zero vector function (u,w)T ∈ ker(A − λ) called an
eigenvector of A. The dimension of ker(A − λ) is called the geometric multiplicity
of λ.

Definition 2.6. The discrete spectrum of A, σdis(A), is the set of all eigen-
values of A with finite algebraic multiplicity which are isolated from the contin-
uous spectrum of A, σcon(A). The embedded spectrum of A, σemb(A), is the set
of all eigenvalues with finite algebraic multiplicity which belong to the continu-
ous spectrum of A, including the boundary points. The essential spectrum of A
is σess(A) = σcon(A) ∪ σemb(A) and the point spectrum of A is σp(A) = σdis(A) ∪
σemb(A). The total spectrum of A is σ(A) = σdis(A) ∪ σess(A) = σp(A) ∪ σcon(A).

Remark 2.7. The continuous spectrum σcon(A) may contain resonances, corre-
sponding to bounded non-decaying eigenvectors, and semi-eigenvalues, corresponding
to eigenvectors, which are decaying at one infinity and bounded at the other infinity.
Definitions of resonances and semi-eigenvalues will be given in terms of the scattering
matrix for the problem (2.14) (see definition 7.1).

The non-self-adjoint linear eigenvalue problem (2.14) is formulated as a coupled
system for two symmetric matrix Schrödinger operators L0 and L1. The spectrum
of these operators is reviewed in the following statements.

Lemma 2.8. Let L be a symmetric matrix Schrödinger operator, either L0 or L1.
The continuous spectrum of L has N branches located at

σcon(L) =
⋃

1�n�N

{λ ∈ R : λ � βn}. (2.16)

The discrete and embedded spectrum of L has a finite number of eigenvalues located
at

σdis(L) =
⋃
m

{λm : λm ∈ R, λ < βmin}, (2.17)

σemb(L) =
⋃
m

{λm : λm ∈ R, βmin � λm < βmax}, (2.18)

where βmin = min1�n�N (βn) and βmax = max1�n�N (βn). The algebraic multiplicity
of eigenvalues coincides with their geometric multiplicity and is at most N .

Proof . The matrix Schrödinger operator L has exponentially decaying potentials
and becomes a diagonal differential operator in the limit |x| → ∞. As a result, the
continuous spectrum of L is defined by the Weyl criterion and the point spectrum
of L is finite dimensional (Hislop & Sigal 1996, theorem 7.2). Furthermore, since L
is self-adjoint, the algebraic multiplicity of eigenvalues always coincides with their
geometric multiplicity (Hislop & Sigal 1996, theorem 6.7).

Exponentially decaying solutions of the spectral problem Lu = λu are superposed
in the limit |x| → ∞ over a basis of N vector functions ene−bn|x|, n = 1, . . . , N ,
where

bn =
√

βn − λ

dn
.
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For λ < βmin, all vector functions are exponentially decaying and there exist no
more than N linearly independent eigenvectors u(x) for some (isolated) values of
λ. This contributes to eigenvalues of the discrete spectrum (2.17). For λ � βmax,
all vector functions are non-decaying and no embedded eigenvalues may exist. For
βmin � λ � βmax, some components un(x) are decaying, while the other components
un(x) are non-decaying. Let N1 be the number of non-decaying components. Then,
there exist N1 branches of the continuous spectrum of L at this value of λ, and an
embedded eigenvalue (if it exists) corresponds to at most N−N1 linearly independent
decaying eigenvectors. �

Lemma 2.9. Let assumption 2.1 be satisfied. The kernel of L0 has a basis of N
eigenvectors {Φn(x)en}N

n=1. The kernel of L1 has at least one eigenvector Φ′(x).

Proof . The eigenvectors of the kernels of L0 and L1 are generated by the rotational
and translational invariance (1.4) and (1.6), respectively. By assumption 2.1 and
lemma 2.8, the set of non-empty eigenvectors {Φn(x)en}N

n=1 forms a basis in the
kernel of L0. �

Definition 2.10. Denote the number of negative and zero eigenvalues of σdis(L)
as n(L) and z(L), respectively. The Morse index for stationary solutions is

n(h) = n(L1) + n(L0). (2.19)

Lemma 2.11. Let assumption 2.1 be satisfied. The negative index of L0 is

n(L0) =
N∑

n=1

in, (2.20)

where in is the number of zeros of Φn(x) for x ∈ R. The negative index n(L0) and
the nodal index i = (i1, . . . , iN )T remain fixed in the open domain β ∈ B.

Proof . Since L0 is a diagonal composition of scalar Schrödinger operators, the
Sturm oscillation theorem applies. Each operator (L0)n,n has a zero bound state
Φn(x), such that n((L0)n,n) = in. By assumption 2.1, the set of non-empty eigenvec-
tors {Φn(x)en}N

n=1 forms a basis in the kernel of L0 in β ∈ B. Therefore, the index
n(L0) remains fixed for any continuous deformations of Φ(x) in β ∈ B. �

We finish this section with some general properties of the eigenvalue prob-
lem (2.14).

Lemma 2.12. If λ is an eigenvalue of (2.14), so are (−λ), λ̄, and (−λ̄).

Proof . This standard result for linear Hamiltonian systems follows from the fact
that, if (u,w) is the eigenvector of (2.14) with λ, then (u,−w), (ū, w̄), and (ū,−w̄)
are eigenvectors of (2.14) with (−λ), λ̄, and (−λ̄), respectively. �

Definition 2.13. The stationary solution (2.1) is spectrally unstable if there exists
at least one eigenvalue λ such that Re(λ) > 0. It is weakly spectrally stable if all
eigenvalues λ are zero or purely imaginary.
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Spectral instability occurs when the eigenvalue problem (2.14) has a pair of real
eigenvalues (λ, −λ) or a quadruple of complex eigenvalues (λ, λ̄, −λ, −λ̄). Weak spec-
tral stability does not yet guarantee strong spectral stability, since there may exist
eigenvalues of higher algebraic multiplicity with Re(λ) = 0, which lead to nonlin-
ear instability of stationary solutions (Comech & Pelinovsky 2003). We shall study
here the generic case, when no structurally unstable eigenvalues exist in the problem
(2.14).

Assumption 2.14.

(i) σess(A) does not include semi-eigenvalues or embedded eigenvalues;

(ii) σdis(A) does not include non-zero eigenvalues of higher algebraic multiplicity;

(iii) z(L1) = 1 and z(U) = 0.

Bifurcations in the spectrum of A may occur when assumption 2.14 is violated.
Bifurcations in the eigenvalue problem (2.14) will be studied elsewhere.

Lemma 2.15. Define the constrained function space Xc(R) = X
(u)
c ⊕ X

(w)
c , where

X(u)
c = {u ∈ L2(R) : 〈Φnen,u〉 = 0, n = 1, . . . , N}, (2.21)

X(w)
c = {w ∈ L2(R) : 〈Φ′,w〉 = 0}. (2.22)

Eigenvectors (u,w)T in the problem (2.14) for λ �= 0 belong to the space Xc(R).

Proof . The linear eigenvalue problem (2.14) is written as a coupled system:

L1u = −λw, L0w = λu. (2.23)

The constraints in (2.21), (2.22) follow from the Fredholm alternative theorem
applied to (2.23) for λ �= 0, since the kernel of L0 has the set of eigenvectors
{Φn(x)en}N

n=1 and the kernel of L1 has the eigenvector Φ′(x). �

Lemma 2.16. Let assumptions 2.1 and 2.14(iii) be satisfied. The geometric mul-
tiplicity of the null eigenvalue of A is exactly (N + 1) and the algebraic multiplicity
of the null eigenvalue of A is exactly (2N + 2).

Proof . The null space of A is spanned by at least (N + 1) eigenvectors:(
u
w

)
=
{{(

0N

Φn(x)en

)}N

n=1
,

(
Φ′(x)
0N

)}
. (2.24)

The generalized null space of A includes at least (N + 1) generalized eigenvectors:(
u
w

)
=
{{(

∂Φ/∂βn

0N

)}N

n=1
,

(
0N

−1
2xD−1Φ(x)

)}
, (2.25)

where D is a diagonal matrix of (d1, . . . , dN ). By lemma 2.9, the (N +1) eigenvectors
(2.24) form a basis for null space of A, when z(L1) = 1. Fredholm’s alternative the-
orem applied to the first N generalized eigenvectors in (2.25) fails when z(U) = 0.
The Fredholm theorem always fails for the last generalized eigenvector in (2.25). �

Corollary 2.17. When z(L1) = 1 and z(U) = 0, the generalized eigenvectors
(2.25) do not belong to the constrained space Xc(R), defined by (2.21), (2.22).
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3. Main results

Stability of solitary waves in NLS equations has been studied extensively in the recent
past. The first stability–instability theorem for a scalar NLS equation (1.1) with
N = 1 was proven by Shatah & Strauss (1985) and Weinstein (1986). Only positive
stationary solutions (ground states) were considered in one, two and three spatial
dimensions. Ground states have the nodal index i = 0 and the Morse index n(h) = 1.
A single negative eigenvalue of h does not necessary lead to spectral instability in the
linearized problem (2.14) because of the constraints in (2.21), (2.22). If p(U) = 0, the
stationary solution Φ(x) is spectrally unstable and the linearized problem (2.14) has
a single real positive eigenvalue λ. If p(U) = 1, the solitary wave is weakly spectrally
stable and all eigenvalues λ are purely imaginary (Shatah & Strauss 1985; Weinstein
1986).

A more formal and general analysis was developed by Grillakis et al. (1987, 1990)
by using multi-dimensional Lie groups and spectral decompositions. The following
theorems were proven for an abstract Hamiltonian system with symmetries, which
includes the system of coupled NLS equations (1.10).

Theorem 3.1 (Grillakis et al. 1990). Let z(U) = 0. Then p(U) � n(h). A
stationary solution (2.1) is weakly spectrally stable if n(h) = p(U) and it is spectrally
unstable if n(h) − p(U) is odd. The linearized problem (2.14) has at least one real
positive eigenvalue λ if n(h) − p(U) is odd.

Theorem 3.2 (Grillakis et al. 1990). The linearized problem (2.14) has at
most n(h) unstable eigenvalues λ such that Re(λ) > 0.

Theorem 3.3 (Grillakis et al. 1990). The linearized Hamiltonian h in con-
strained space Xc(R) has the negative index n(h|Xc) = n(h) − p(U) − z(U) and the
null index z(h|Xc) = z(h) + z(U).

Theorem 3.1 is the main stability–instability theorem in Grillakis et al. (1990).
Theorem 3.2 is formulated in Grillakis et al. (1990, theorem 5.8) for a quadrant:
Re(λ) < 0, Im(λ) � 0. The method of the proof can, however, be applied to the left
half-plane Re(λ) < 0, or equivalently, to the right half-plane Re(λ) > 0. Theorem 3.3
is formulated in Grillakis et al. (1990, theorem 3.1) as a more general statement,
which is equivalent to theorem 3.3 under assumption 2.1 (z0 = 0 in the notation of
Grillakis et al. (1990)).

Theorem 3.1 generalizes stability–instability theory in finite-dimensional Hamilto-
nian systems with symmetries (Maddocks 1985). Since the positive ground state (2.1)
with N = 1 always has indices n(L1) = 1 and n(L0) = 0, its stability and instability
are uniquely described by theorem 3.1. However, many examples showed insufficiency
of theorem 3.1 for complete stability–instability analysis. For instance, a scalar NLS
equation in two dimensions has radially symmetric excited states with the nodal
index i > 0 and the Morse index n(h) � 1 + 2i (Jones 1988a). When p(U) = 1 and
n(h) − p(U) � 2i is even, theorem 3.1 cannot be applied.

While a simple application of theorem 3.1 to the case of multi-component station-
ary solutions (2.1) with N > 1 is given in Grillakis et al. (1990, theorem 9.1), we
note that theorem 9.1 in Grillakis et al. (1990) derives a scalar stability criterion,
computed from the minimal value βmin = min1�n�N (βn). The scalar criterion gen-
erally fails for N > 1, since the Morse index n(h) of the stationary solution (2.1) is
not necessarily one, unlike the assumption used in Grillakis et al. (1990).
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More special instability theorems were found by Jones (1988a,b) and Grillakis
(1988, 1990) for the scalar NLS equation (1.1) with N = 1. Jones (1988a,b) used
topological and shooting methods of dynamical systems theory. When n(L1)−p(U) >
n(L0), theorems in Jones (1988a,b) predict an unstable eigenvalue, no matter whether
n(h) is odd or even. The results apply to instability of radially symmetric solutions
with nodal index i > 0 in two spatial dimensions (Jones 1988a), as well as to stability–
instability of symmetric and antisymmetric solutions in the NLS equation with x-
dependent nonlinear function f = f(x; |ψ|2) (Jones 1988b).

Theorem 3.4 (Jones 1988a,b). The linearized problem (2.14) with N = 1 has
a real positive eigenvalue λ if |n(L1) − n(L0)| > 1.

Grillakis (1988, 1990) used the theory of linear operators, orthogonal projections
and quadratic forms and proved some general results for the linearized problem
(2.14). In this context, the problem (2.14) is reformulated as a generalized eigenvalue
problem for operators L1 and L−1

0 . When n(L0) = 0, unstable eigenvalues λ may
occur only as real positive eigenvalues (Grillakis 1988). When n(h) − p(U) > 1 and
n(L0) �= 0, complex unstable eigenvalues λ may also occur in the linearized problem
(2.14) (Grillakis 1990).

Theorem 3.5 (Grillakis 1988). Let n(L1|X(u)
c

) and n(L0|X(u)
c

) be the negative
indices of operators L1 and L0 in X

(u)
c (R). The linearized problem (2.14) has at least

|n(L1|X(u)
c

) − n(L0|X(u)
c

)| real positive eigenvalues λ. If n(L0|X(u)
c

) = 0, the linearized
problem has exactly n(L1|X(u)

c
) real positive eigenvalues λ.

Theorem 3.5 is formulated in Grillakis (1988, theorem 1.2). The theorem is more
precise and general than theorem 3.4; the latter takes the worst case, when p(U) = 1
for N = 1. It remains unclear how theorem 3.5, which exploits a special structure of
the linearized problem (2.14), is related to general theorem 3.1 for an abstract Hamil-
tonian system. It also remains unclear how the bounds on the number of unstable
eigenvalues can be extended in the case of complex eigenvalues in the linearized
problem (2.14).

We shall revisit here the problem of spectral stability of stationary solutions (2.1)
in the coupled NLS equations (1.1) with N � 1. We develop two new methods of
analysis: (i) negative eigenvalues of a constrained spectral problem are counted from
matrix analysis; (ii) the negative subspace of a linear differential matrix operator
with positive continuous spectrum is proved to be invariant in two block-diagonal
representations. The first method develops the matrix variant of the Vakhitov–
Kolokolov method, previously studied in Pelinovsky & Kivshar (2000). The second
method develops Sylvester’s inertia theorem for quadratic forms associated with
finite-dimensional (matrix) operators (Gelfand 1961), applied to finite-dimensional
Hamiltonian systems in Maddocks (1988). The new methods of analysis are used to
prove the following main results.

Theorem 3.6 (negative index of constrained operators). Let assump-
tion 2.1 be satisfied. Operator L1 in constrained space X

(u)
c (R) has exactly

n(L1|X(u)
c

) = n(L1) − p(U) − z(U)

negative eigenvalues and

z(L1|X(u)
c

) = z(L1) + z(U)
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792 D. E. Pelinovsky

zero eigenvalues. Operator L0 in the constrained space X
(u)
c (R) has exactly

n(L0|X(u)
c

) = n(L0) negative eigenvalues.

Corollary 3.7. Let z(U) = 0. Then p(U) � n(L1).

Theorem 3.8 (closure relation for negative index). Let assumptions 2.1
and 2.14 be satisfied. Let Nreal be the number of real positive eigenvalues λ of the
problem (2.14), 2Ncomp be the number of complex eigenvalues λ with Re(λ) > 0, and
2N−

imag be the number of purely imaginary eigenvalues λ with 〈u,L1u〉 = 〈w,L0w〉 <
0. The dimension of the negative subspace of the linearized Hamiltonian h in Xc(R)
is invariant as

n(h|Xc) = n(L1) − p(U) + n(L0) = Nreal + 2Ncomp + 2N−
imag. (3.1)

Theorem 3.9 (bounds on unstable eigenvalues). Let assumptions 2.1 and
2.14 be satisfied. The linearized problem (2.14) has Nunst = Nreal + 2Ncomp unstable
eigenvalues λ with Re(λ) > 0, such that

(i) |n(L1) − p(U) − n(L0)| � Nunst � (n(L1) − p(U) + n(L0)), (3.2)
(ii) Nreal � |n(L1) − p(U) − n(L0)|, (3.3)
(iii) Ncomp � min(n(L0), n(L1) − p(U)). (3.4)

Corollary 3.10. Let z(U) = 0. When n(L0) = 0, the linearized problem (2.14)
has exactly Nreal = n(L1) − p(U) real positive eigenvalues λ. If both n(L0) = 0 and
n(L1) = p(U), the stationary solution (2.1) is weakly spectrally stable.

Theorem 3.6 decomposes general theorem 3.3 in the case when h is a sum of two
quadratic forms for L1 and L0 as in (2.11). As a result, the upper bound on p(U)
of theorem 3.1 is improved as p(U) � n(L1) � n(h), as in corollary 3.7. Also the
stability criterion of theorem 3.1 decomposes into two conditions: n(L1) = p(U) and
n(L0) = 0, as in corollary 3.10.

Theorem 3.8 gives a precise statement of the closure relation between indices n(L0),
n(L1) and p(U) on one side and Nreal, Ncomp and N−

imag on the other side. This
theorem generalizes earlier results for

n(L1|X(u)
c

) = n(L0|X(u)
c

)

formulated in Grillakis (1988, theorem 1.3) (when Ncomp = N−
imag = 0) and in Gril-

lakis (1990, theorem 2.3) (when Nreal = N−
imag = 0).

Theorem 3.9 is a corollary of theorems 3.5, 3.6 and 3.8. The lower bound in (3.2)
is identical to that in theorem 3.5 in view of theorem 3.6. The upper bound in
(3.2) improves theorem 3.2. Theorem 3.9 also agrees with the instability criterion of
theorem 3.1. Let z(U) = 0 and m = n(L1)−p(U)+n(L0) be odd. Then |n(L1)−p(U)−
n(L0)| = |m − 2n(L0)| > 0 and Nunst > 0. Therefore, theorem 3.9 also guarantees
instability for odd m, as theorem 3.1. Corollary 3.10 of theorems 3.8 and 3.9 is
equivalent to the second statement of theorem 3.5.

When L1 and L0 are finite-dimensional operators, theorems 3.6–3.9 reduce to
stability–instability theorems for critical points in finite-dimensional Hamiltonian
systems with symmetry constraints (Maddocks 1985, 1988). When n(L0) = 0,
the quadratic form 〈W ,L0W 〉 in (2.11) is equivalent to a positive-definite kinetic
energy, while the quadratic form 〈U ,L1U〉 in (2.11) is equivalent to a sign indefinite
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potential energy. The Morse index of L1 under constraints (2.21) is n(L1|X(u)
c

) =
n(L1) − p(U) − z(U). When n(L0) = 0, the Morse index defines uniquely the unsta-
ble subspace of the linearized system according to corollary 3.10. When both L0 and
L1 are not positive definite, complex instabilities may occur and they are defined by
theorems 3.8 and 3.9.

In the end of this section, we show that the constraint (2.22) does not appear in
theorems 3.6–3.9, due to the Galileo invariance (1.7). A general family of stationary
solutions is defined as

ψn(z, x) = Ψn(x − 2vz − s)eiωnz+iθn . (3.5)

The general stationary solutions (3.5) are critical points of the Lyapunov functional
in the form:

Λ[ψ] = H[ψ] +
N∑

n=1

ωnQn[ψ] + vP [ψ], (3.6)

where Qn[ψ], H[ψ] and P [ψ] are given by (1.5), (1.8) and (1.9). The general Hessian
matrix UH has the structure

UH =

⎡
⎢⎢⎣

U ∂Qs

∂v

∂QT
s

∂v

∂Ps

∂v

⎤
⎥⎥⎦ , (3.7)

where Qs = (Q1s, . . . , QNs)T, Qns(ω, v) = Qn[Ψ ] and Ps(ω, v) = P [Ψ ]. It follows
from the Galileo invariance (1.7) that a transformation,

Ψn(x) = Φn(x)eid−1
n vx, ωn = βn +

v2

dn
, (3.8)

expresses Qns(ω, v), Ps(ω, v) as functions of β:

∂Qns

∂v
(ω, v) = −

N∑
m=1

2v

dm

∂Qms

∂βn
(β), (3.9)

∂Ps

∂v
(ω, v) = −

N∑
n=1

2
dn

Qns(β) +
N∑

n=1

N∑
m=1

4v2

dndm

∂Qms

∂βn
(β). (3.10)

As a result, the quadratic form for x ∈ C
N+1 transforms to a quadratic form for

y ∈ C
N as

〈x,UHx〉CN+1 = 〈y,Uy〉CN −
( N∑

n=1

2Qns

dn

)
|xN+1|2, (3.11)

where
yn = xn − 2v

dn
xN+1, n = 1, . . . , N,

and 〈a, b〉CN =
∑N

n=1 ānbn. The additional eigenvalue for xN+1 is always negative,
such that p(UH) = p(U) and z(UH) = z(U). Therefore, stability theorems are not
affected by the constraint (2.22), due to the Galileo invariance (1.7).
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4. Eigenvalues of constrained spectral problems for L1 and L0

Here we prove theorem 3.6 by counting eigenvalues of constrained spectral problems
for L1 and L0 from matrix analysis. This method was first used in Pelinovsky &
Kivshar (2000). Constrained spectral problems were also considered in Buslaev &
Perelman (1993) and Grillakis (1988).

Given the spectrum of L1 and L0 in L2(R), we study the spectrum of operators
L1 and L0 in X

(u)
c (R), defined by (2.21). The constrained space X

(u)
c (R) is an orthog-

onal complement of the kernel of L0 in L2(R). The spectrum of L1 and L0 is complete
in X

(u)
c (R), due to the abstract result in Hislop & Sigal (1996, proposition 2.7).

Proposition 4.1 (Hislop & Sigal 1996). Let M be a closed subspace of a
Hilbert space H and M⊥ be the orthogonal complement of M in H, such that
M⊥ = {x ∈ H : 〈x, m〉 = 0 ∀m ∈ M}. The subset M⊥ is a closed subspace of H and
is therefore a Hilbert space.

Proposition 4.2. Let negative eigenvalues of L0 in X
(u)
c (R) be defined by the

problem
L0u = λu, u ∈ X(u)

c (R), λ < 0. (4.1)

Then, n(L0|X(u)
c

) = n(L0).

Proof . Eigenvectors of L0 for negative eigenvalues λ are orthogonal to the eigen-
vectors {Φn(x)en}N

n=1 of the kernel of L0. Therefore, they belong to X
(u)
c (R). �

Proposition 4.3. Let z(L1) = 1. Let negative and zero eigenvalues of L1 in
X

(u)
c (R) be defined by the problem

L1u = λu −
N∑

m=1

νmΦm(x)em, u ∈ X(u)
c (R), λ � 0, (4.2)

where ν1, . . . , νN are Lagrange multipliers. Then, n(L1|X(u)
c

) = n(L1) − p(U) − z(U)
and z(L1|X(u)

c
) = 1 + z(U).

In order to prove proposition 4.3, we introduce some notation. We denote negative
eigenvalues of L1 in L2(R) as λ−k with orthonormal eigenvectors u−k(x), accounting
for their multiplicity. We order negative eigenvalues from the minimal eigenvalue
λ−n(L1) to the maximal eigenvalue λ−1 < 0. We also write spectral decomposition
in L2(R) as a sum of three terms,

∑
λ−k<0,

∑
λ−k=0 and

∑
λ−k>0, where

∑
λ−k<0

denotes n(L1) terms from the negative discrete spectrum of L1,
∑

λ−k=0 denotes
the z(L1) = 1 term from the kernel of L1, and

∑
λk>0 denotes infinite-dimensional

positive spectrum of L1, which includes isolated and embedded eigenvalues and N
branches of the continuous spectrum.

When ker(L1 − λ) = {0} in L2(R), the constrained spectral problem (4.2) has a
solution only if there exists a non-zero solution of the homogeneous linear system for
ν1, . . . , νN :

N∑
m=1

〈Φnen, (λ − L1)−1Φmem〉νm = 0, n = 1, . . . , N. (4.3)
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By spectral calculus (Reed & Simon 1978), the linear system (4.3) is equivalent to
zero eigenvalues of the matrix A(λ) with the elements

An,m(λ) =
∑

λ−k<0

〈Φnen,u−k〉〈u−k, Φmem〉
λ − λ−k

+
∑

λk>0

〈Φnen,uk〉〈uk, Φmem〉
λ − λk

, (4.4)

where we have used that
〈Φ′(x), Φmem〉 = 0.

When there exists a zero eigenvalue of A(λ), there exists a solution u ∈ X
(u)
c (R),

which is represented with the spectral decomposition in L2(R):

u(x) =
N∑

m=1

νm

[ ∑
λ−k<0

〈u−k, Φmem〉
λ − λ−k

u−k(x) +
∑

λk>0

〈uk, Φmem〉
λ − λk

uk(x)
]
. (4.5)

The following results follow from analysis of eigenvalues of A(λ).

Lemma 4.4. The matrix eigenvalue problem A(λ)ν = α(λ)ν, λ ∈ R has N real
eigenvalues α1(λ), . . . , αN (λ), which are meromorphic functions of λ for λ � 0.

Proof . The matrix A(λ) has N real eigenvalues α(λ), since it is Hermitian
for λ ∈ R and λ � 0. Coefficients of A(λ) have pole singularities at λ = λ−k for
λ � 0, unless 〈Φnen,u−k〉 = 0, n = 1, . . . , N . Since Φn ∈ L2(R), u ∈ L2(R) and
〈Φnen,u〉 < ∞, the series for An,m(λ) are bounded and converge for λ �= λ−k. In
the limit λ → −∞, An,m(λ) converges to zero uniformly. As a result, all eigenvalues
αn(λ), n = 1, . . . , N are meromorphic functions for λ � 0, which may have only pole
singularities at λ = λ−k. �

Lemma 4.5. Eigenvalues α1(λ), . . . , αN (λ) are decreasing functions of λ in the
domain D = {λ � 0 : λ �= λ−k, k = 1, . . . , n(L1)}. All eigenvalues αn(λ), n =
1, . . . , N are negative for λ < λ−n(L1).

Proof . For Hermitian matrices, the set of eigenvalues {αn(λ)}N
n=1 corresponds

to the set of orthonormal eigenvectors {ν(n)}N
n=1 such that 〈ν(n′),ν(n)〉CN = δn′,n,

where 〈f , g〉CN =
∑N

n=1 f̄ngn. We construct quadratic forms associated to the
eigenvalue-eigenvector pairs (αn,ν(n)), n = 1, . . . , N :

αn(λ) = 〈ν(n),A(λ)ν(n)〉CN , α′
n(λ) = 〈ν(n),A′(λ)ν(n)〉CN . (4.6)

Computing the derivative of A′(λ), we rewrite the second equality in (4.6) as

α′
n(λ) = −

( ∑
λ−k<0

b−k

(λ − λ−k)2
+
∑

λk>0

bk

(λ − λk)2

)
= −〈u(n),u(n)〉 < 0, (4.7)

where u(n) is given by (4.5) with ν = ν(n) and

b±k =
∣∣∣∣

N∑
m=1

〈Φmem,u±k〉ν(n)
m

∣∣∣∣
2

� 0. (4.8)
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As a result, all eigenvalues αn(λ), n = 1, . . . , N , are decreasing functions of λ in the
domain D. In order to prove that all eigenvalues αn(λ), n = 1, . . . , N , are negative
for λ < λ−n(L1), we find from (4.3) and (4.4) that

lim
λ→−∞

(λAn,m(λ)) = 〈Φnen, Φmem〉 = Qnsδn,m, (4.9)

where Qns(β) = Qn(Φ) is defined by (1.5). It follows from the first equality in (4.6)
and (4.9) that

lim
λ→−∞

λαn(λ) = Qns(β) > 0, n = 1, . . . , N,

such that limλ→−∞ αn(λ) = −0, n = 1, . . . , N . Since eigenvalues α(λ) are continuous
and decreasing for λ < λ−n(L1), they remain negative for all values of λ < λ−n(L1).

�

Lemma 4.6. Let λ−k be a negative eigenvalue of L1 in L2(R) with multiplicity
q−k, such that at most q

‖
−k linearly independent eigenvectors u−k(x) belong to the

constrained space X
(u)
c (R) and q⊥

−k = q−k − q
‖
−k. There exist (N − q⊥

−k) eigenvalues
αn(λ) that are continuous at λ = λ−k and q⊥

−k eigenvalues αn(λ) that have infinity
discontinuities, jumping from negative infinity for λ = λ−k − 0 to positive infinity
for λ = λ−k + 0.

Proof . In the limit λ → λ−k, we find that

lim
λ→λ−k

(λ − λ−k)An,m(λ) =
q−k∑
r=1

〈Φnen,u−kr〉〈u−kr , Φmem〉

=
q⊥

−k∑
r=1

〈Φnen,u−kr〉〈u−kr , Φmem〉. (4.10)

Denote B−k = limλ→λ−k
(λ − λ−k)A(λ). The quadratic form 〈ν,B−kν〉CN is diago-

nalized in normal variables,

xr =
N∑

m=1

〈u−kr , Φmem〉νm,

such that

〈ν,B−kν〉CN =
q⊥

−k∑
r=1

|xr|2.

Therefore, the matrix B−k has exactly q⊥
−k positive eigenvalues and (N − q⊥

−k) zero
eigenvalues. Positive eigenvalues of B−k correspond to q⊥

−k eigenvalues αn(λ) jump-
ing from negative infinity for λ = λ−k − 0 to positive infinity for λ = λ−k + 0. Zero
eigenvalues of B−k correspond to (N − q⊥

−k) eigenvalues αn(λ) that are continuous
and have convergent Taylor series at λ = λ−k. �

Lemma 4.7. At λ = 0, there exist p(U) positive, z(U) zero and n(U) negative
eigenvalues αn(0), n = 1, . . . , N .
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Proof . At λ = 0, the constrained eigenvalue problem (4.2) has an exact solution
in L2(R):

uλ=0(x) =
N∑

m=1

νm
∂Φ(x)
∂βm

+ c0Φ
′(x), (4.11)

where c0 is not defined and

L1
∂Φ

∂βm
= −Φm(x)em. (4.12)

Substituting (4.11) into (2.21), we find that A(0) = 1
2U , where U is defined in (2.7).

�

Proof of proposition 4.3. We consider eigenvalues αn(λ), n = 1, . . . , N , as mero-
morphic functions of λ for λ � 0. Starting with small negative values at λ → −∞,
eigenvalues αn(λ), n = 1, . . . , N , decrease as λ increases toward n(L1) pole singular-
ities at λ = λ−k. At each pole singularity, q⊥

−k eigenvalues α(λ) jump and pop up to
the positive half-plane. The total number of jumping eigenvalues for λ < 0 is∑

λ−k<0

q⊥
−k.

Only jumping eigenvalues may cross the value α(λ) = 0, which corresponds to a neg-
ative eigenvalue λ of the constrained problem (4.2) in space X

(u)
c (R). By lemma 4.7,

the total number of zeros of α(λ) for λ � 0 is∑
λ−k<0

q⊥
−k − p(U).

At each λ = λ−k, there are q
‖
−k eigenfunctions u−k(x) that lie in the constrained

space X
(u)
c (R). Therefore, the total number of eigenvalues λ in X

(u)
c (R) for λ � 0 is∑

λ−k

q⊥
−k − p(U) +

∑
λ−k

q
‖
−k =

∑
λ−k

q−k − p(U) = n(L1) − p(U).

The lemma is proved by subtracting the number z(U) of zero eigenvalues for λ = 0.
�

Proposition 4.8. Let assumption 2.1 apply. The kernel of L1 in L2(R) lies in
X

(u)
c (R) for any 1 � z(L1) � N .

Proof . By lemma 2.4, the Hessian matrix U has only bounded eigenvalues. Suppose
there exists an eigenvector u0(x) of the kernel of L1 in L2(R) such that u0 /∈ X

(u)
c (R).

By lemma 4.6, there exists an eigenvalue αn(λ) that diverges at λ → −0. The
eigenvalue contradicts lemma 4.7 since all eigenvalues of U are bounded. �

Theorem 3.6 is proved with propositions 4.2, 4.3 and 4.8. Using theorem 3.6 and
proposition 4.1, we formulate the following main result of this section.
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Proposition 4.9. Let L be a symmetric matrix Schrödinger operator, either L0
or L1. There exists L-invariant decomposition in X

(u)
c (R), such that

∀u ∈ X(u)
c (R), u(x) =

nc∑
m=1

amum(x) +
zc∑

m=0

bmum(x) + u+(x), (4.13)

where um(x) are eigenvectors of L in X
(u)
c (R) for negative and zero eigenvalues,

nc = n(L|
X

(u)
c

), zc = z(L|
X

(u)
c

), 〈u+,Lu+〉 � c〈u+,u+〉, c > 0.

The quadratic form for L is diagonalized as follows:

〈u,Lu〉 =

n(L|
X

(u)
c

)∑
m=1

λm|am|2 + 〈u+,Lu+〉. (4.14)

5. Eigenvalues of the linearized problem for A

Here we study the spectrum of the non-self-adjoint linearized problem (2.14) with
the simultaneous block-diagonalization of two self-adjoint operators L1 and L0. A
similar generalized eigenvalue problem for L1 and L−1

0 was used in Grillakis (1988,
1990). We analyse this problem in order to establish the inertia law for spectral
stability. The inertia law was not considered in Grillakis (1988, 1990).

Lemma 5.1. There exists a mapping γ = −λ2 of the non-zero spectrum of A in
Xc(R) to the non-zero spectrum of the problem

L1u = γL−1
0 u, u ∈ X(u)

c (R). (5.1)

Proof . Eigenvectors {Φn(x)en}N
n=1 form a basis in the kernel of L0. The operator

L0 is invertible on the subspace u ∈ X
(u)
c (R). It follows from (2.23) that w = λL−1

0 u
for any λ �= 0, such that the problem (2.23) is equivalent to (5.1) for any γ �= 0. Two
eigenvectors (u,w)T and (u,−w)T of A in Xc(R) corresponds to a single eigenvector
u of the problem (5.1) in X

(u)
c (R). �

Corollary 5.2. Let γ = γm be a non-zero eigenvalue of (5.1) with the eigenvector
u = um(x) in X

(u)
c (R), such that

〈um,L1um〉 = γm〈um,L−1
0 um〉. (5.2)

Eigenvalue γm is real if either L1 or L0 is positive definite.

Problem (5.1) is a classical problem of simultaneous block-diagonalization of two
self-adjoint operators L1 and L−1

0 . Each operator can be orthogonally diagonalized
due to proposition 4.9. However, the orthogonal diagonalization (4.14) is relevant
for the problem (5.1) only if the operators L1 and L−1

0 commute, such that there
exists a common basis for 〈u,L1u〉 and 〈u,L−1

0 u〉 (Gelfand 1961). Since operators
L1 and L−1

0 do not commute, eigenvectors of L1 and L−1
0 in X

(u)
c (R) are not related

to eigenvectors of problem (5.1). Moreover, complex eigenvalues and multiple eigen-
values with higher algebraic multiplicity may generally occur in problem (5.1).
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Lemma 5.3. The spectrum of (5.1) is real if Φ(x) is the ground state with Φn(x) >
0 ∀x ∈ R, n = 1, . . . , N . Moreover, the positive-definite operator L0 can be factorized
as L0 = S+S−, where S± are diagonal operators with the elements

S±
n,m =

√
dn

(
Φ′

n(x)
Φn(x)

± d
dx

)
δn,m. (5.3)

Proof . The factorization formula (5.3) follows from explicit computations:

S+
n,nS−

n,n = dn

(
Φ′′

n

Φn
− d2

dx2

)
= (L0)n,n.

Using the transformation u = S+v, we rewrite (5.1) in the form

S−L1S+v = γv.

Since S−L1S+ is a self-adjoint operator, all eigenvalues γ are real. It is also clear
from (5.3) that the kernel of S+ is empty, such that the transformation u = S+v is
invertible. �

Lemma 5.4. Let γ = γk = γRk + iγIk be a complex eigenvalue of (5.1) such that
γRk, γIk �= 0, with a complex-valued eigenvector uk(x) = uRk(x) + iuIk(x). A linear
combination of two real-valued eigenvectors u(x) = akuRk(x) + bkuIk(x) diagonal-
izes the quadratic forms 〈u,L1u〉 and 〈u,L−1

0 u〉 with respect to Jordan blocks,

〈u,L1u〉 = aT
k γ̂k l̂kak, 〈u,L−1

0 u〉 = aT
k l̂kak, (5.4)

where ak = (ak, bk)T,

γ̂k =
(

γRk −γIk
γIk γRk

)
, l̂k =

(
lRk lIk
lIk −lRk

)
(5.5)

and

lRk = 〈uRk,L−1
0 uRk〉 = −〈uIk,L−1

0 uIk〉, (5.6)

lIk = 〈uIk,L−1
0 uRk〉 = 〈uRk,L−1

0 uIk〉. (5.7)

Proof . Since the quadratic forms 〈uk,L1uk〉 and 〈uk,L−1
0 uk〉 in (5.2) are real

valued, the eigenvalues γk can be complex only if

〈uk,L1uk〉 = 〈uk,L−1
0 uk〉 = 0. (5.8)

The zero inner product (5.8) for L−1
0 results in relations (5.6) and (5.7). The Jordan

blocks (5.4) and (5.5) follow from direct computations. �

Lemma 5.5. Let γ = γm be a real eigenvalue of (5.1) with a single real-valued
eigenvector um(x) in X

(u)
c (R). The eigenvalue γ = γm is a multiple eigenvalue of

higher algebraic multiplicity if and only if

lm = 〈um,L−1
0 um〉 = 0. (5.9)

Proof . The eigenvalue γ = γm is a degenerate eigenvalue of higher algebraic mul-
tiplicity if and only if there exists a solution of the derivative problem:

L1u
′
m = γmL−1

0 u′
m + L−1

0 um, u′
m ∈ X(u)

c (R). (5.10)

The condition (5.9) follows by the Fredholm alternative theorem. �
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A complex eigenvalue γ = γk = γRk + iγIk, such that γRk, γIk �= 0, with a single
complex-valued eigenvector uk(x) = uRk(x) + iuIk(x) is a multiple eigenvalue of
higher algebraic multiplicity if and only if lRk = lIk = 0 in (5.6) and (5.7). According
to assumption 2.14(ii), we consider the generic case when non-zero eigenvalues of
higher algebraic multiplicity do not occur in the problem (5.1).

Lemma 5.6. Let assumption 2.14(ii) be satisfied. Eigenvectors um(x) for real
eigenvalues γm and (uRk(x),uIk(x)) for complex eigenvalues γk = γRk + iγIk are
orthogonal with respect to operator L−1

0 ,

〈um′ ,L−1
0 um〉 = lmδm′,m, (5.11)

and
〈uRk′ ,L−1

0 uRk〉 = −〈uIk′ ,L−1
0 uIk〉 = lRkδk′,k,

〈uIk′ ,L−1
0 uRk〉 = 〈uRk′ ,L−1

0 uIk〉 = lIkδk′,k,

}
(5.12)

where lm �= 0 and |lRk|2 + |lIk|2 �= 0.

Proof . Orthogonality relations (5.11) and (5.12) for eigenvectors of the problem
(5.1) follow from the identity

(γm′ − γm)〈um′ ,L−1
0 um〉 = 0. (5.13)

By assumption 2.14(ii) and lemma 5.5, coefficients lm and |lRk|2 + |lIk|2 are non-zero,
since γm and γk = γRk + iγIk are not eigenvalues of higher algebraic multiplicity. �

Corollary 5.7. The set of eigenvectors um(x) and (uRk(x),uIk(x)) is also orthog-
onal with respect to operator L1.

We shall also consider the quadratic forms 〈u,L1u〉 and 〈u,L−1
0 u〉 for eigenvectors

of the continuous spectrum of the problem (5.1). Let us introduce the A-invariant
decomposition of X

(u)
c (R) into the discrete part for σp(A) and the continuous part

Y
(u)
c (A) for σcon(A):

X(u)
c (R) =

∑
λ∈σp(A)

Ng(A − λ) ⊕ Y (u)
c (A), Y (u)

c (A) =
[ ∑

λ∈σp(A)

Ng(A∗ − λ)
]⊥

,

(5.14)
where A∗ is the adjoint operator and σp(A∗) = σp(A). According to assumption
2.14(i), we consider the general case, when σess(A) does not include semi-eigenvalues
nor embedded eigenvalues.

Proposition 5.8. Let assumption 2.14(i) be satisfied. The quadratic forms
〈u,L1u〉 and 〈u,L−1

0 u〉 are strictly positive in Y
(u)
c (A), such that

∀u+ ∈ Y (u)
c (A) : 〈u+,L1u

+〉 � c1〈u+,u+〉, 〈u+,L−1
0 u+〉 � c0〈u+,u+〉,

(5.15)
where c1 > 0, c0 > 0.

Proof of proposition 5.8 is given in § 7 with the use of wave functions of the
problem (2.14). Wave functions of A with N = 1 were introduced in Buslaev &
Perelman (1993), where orthogonality and completeness relations between the wave
functions were derived by spectral analysis.
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Remark 5.9. By assumption 2.14(iii), lemma 2.16 and corollary 2.17, the zero
eigenvalue is simple in u ∈ X

(u)
c (R).

Combining lemmas 5.4 and 5.6 and proposition 5.8, we formulate the following
main result of this section.

Proposition 5.10. Let assumption 2.14 be satisfied. There exists A-invariant
decomposition in X

(u)
c (R) such that

∀u ∈ X(u)
c (R) : u(x) =

∑
k

[akuRk(x) + bkuIk(x)] +
∑
m

cmum(x) + u+(x), (5.16)

where um(x) are eigenvectors for real and zero eigenvalues γm, (uRk(x),uIk(x)) are
eigenvectors for complex eigenvalues

γk = γRk + iγIk,

and u+ ∈ Y
(u)
c (A), such that (5.15) holds. The quadratic forms for L1 and L−1

0 are
simultaneously block-diagonalized as follows:

〈u,L1u〉 =
∑

k

aT
k γ̂k l̂kak +

∑
m

γmlm|cm|2 + 〈u+,L1u
+〉, (5.17)

〈u,L−1
0 u〉 =

∑
k

aT
k l̂kak +

∑
m

lm|cm|2 + 〈u+,L−1
0 u+〉, (5.18)

where ak = (ak, bk)T and the Jordan blocks γ̂k and l̂k are defined by (5.5).

6. Proof of theorems 3.8 and 3.9

Eigenvalues γ of the diagonalization problem (5.1) correspond to three different types
of eigenvalues λ of the linear stability problem (2.14). When γ = γm > 0, the linear
problem (2.14) has two purely imaginary eigenvalues λ, which are weakly spectrally
stable. When γ = γm < 0, the linear problem (2.14) has two real eigenvalues λ, which
include an unstable positive eigenvalue. When γ = γk = γRk + iγIk is complex, the
linear problem (2.14) has four complex eigenvalues λ, which include two unstable
eigenvalues with Re(λ) > 0. We trace the unstable eigenvalues λ of the stability
problem (2.14) from negative and complex eigenvalues γ of the diagonalization prob-
lem (5.1), according to the following proposition.

Proposition 6.1. Let L be a symmetric matrix Schrödinger operator, either L1
or L−1

0 . The negative index n(L|
X

(u)
c

) of the quadratic form 〈u,Lu〉 in Hilbert space
X

(u)
c (R) remains invariant in the diagonal representation (4.14) and the block-diag-

onal representation (5.17), (5.18).

Proof . By proposition 4.9, operator L has the basis

Su = E−
u ∧ E0 ∧ E+

u ,

where E−
u is the negative subspace spanned by eigenvectors {um}Mu

m=1 such that λm =
〈um,Lum〉 < 0, E0 is the kernel of L in X

(u)
c (R), and E+

u is the positive subspace of L
in X

(u)
c (R). The negative index of 〈u,Lu〉 is nu(L|

X
(u)
c

) = Mu. By proposition 5.10,
operator L has also another basis

Sv = Ec
v ∧ E−

v ∧ E0 ∧ E+
v ,
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where E−
v is the real negative subspace spanned by eigenvectors {vm}Mv

m=1, such
that lm = 〈vm,Lvm〉 < 0, Ec

v is the complex subspace spanned by eigenvectors
{vRk,vIk}Kv

k=1 such that lRk = 〈vRk,LvRk〉, lIk = 〈vIk,LvRk〉, and E+
v is the posi-

tive subspace of L in X
(u)
c (R). The Jordan block l̂k in (5.5) has one positive and one

negative eigenvalue

±lk = ±
√

l2Rk + l2Ik.

The eigenvectors vRk(x) and vIk(x) can be orthogonalized with respect to operator
L in the linear combination

v±
k = lIkvRk(x) + (±lk − lRk)vIk(x).

The negative index of 〈u,Lu〉 is nv(L|
X

(u)
c

) = Mv + Kv. We will prove that

nu(L|
X

(u)
c

) = nv(L|
X

(u)
c

).

We assume that (Mv + Kv) > Mu and show that this is false. The case (Mv + Kv) <
Mu can be treated similarly. Consider a function gu(x) given by

gu(x) =
Kv∑
k=1

akv−
k (x) +

Mv∑
m=1

cmvm(x) + u0 + u+(x). (6.1)

The eigenfunctions v−
k (x) and vm(x) can be decomposed over the basis of Su:

v−
k (x) =

Mu∑
j=1

αkjuj(x) + u0k(x) + u+
k (x), (6.2)

vm(x) =
Mu∑
j=1

γmjuj(x) + u0m(x) + u+
m(x). (6.3)

Therefore, the function gu(x) is decomposed as

gu(x) =
Mu∑
j=1

(Kv∑
k=1

αkjak +
Mv∑

m=1

γmjcm

)
uj(x)

+
(

u0(x) +
Kv∑
k=1

aku0k(x) +
Mv∑

m=1

cmu0m(x)
)

+
(

u+(x) +
Kv∑
k=1

aku+
k (x) +

Mv∑
m=1

cmu+
m(x)

)
. (6.4)

Consider a particular case gu(x) = 0. Since the set Su is complete, then
Kv∑
k=1

αkjak +
Mv∑

m=1

γmjcm = 0, j = 1, . . . , Mu,

u0(x) +
Kv∑
k=1

aku0k(x) +
Mv∑

m=1

cmu0m(x) = 0,

u+(x) +
Kv∑
k=1

aku+
k (x) +

Mv∑
m=1

cmu+
m(x) = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.5)
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The linear homogeneous system (6.5) is under-determined, such that at least (Mv +
Kv −Mu) unknowns are arbitrary. Therefore, there exists a non-zero solution of (6.5)
such that a non-zero vector su(x) is defined by (6.1) with gu(x) = 0:

su(x) =
Kv∑
k=1

akv−
k (x) +

Mv∑
m=1

cmvm(x) = −u0(x) − u+(x).

Therefore, the quadratic form 〈su,Lsu〉 can be bounded in two contradictory ways:

〈su,Lsu〉 = −
Kv∑
k=1

2(l2Rk + l2Ik)
(√

l2Rk + l2Ik + lRk

)
|ak|2 +

Mv∑
m=1

lm|cm|2 < 0,

〈su,Lsu〉 = 〈u+,Lu+〉 > 0.

The contradiction is resolved if and only if (Mv + Kv) = Mu, when

nu(L|
X

(u)
c

) = nv(L|
X

(u)
c

).

�

Corollary 6.2. Let Ncomp be the number of complex eigenvalues in the problem
(5.1). Let n(L0|X(u)

c
) and n(L1|X(u)

c
) be the numbers of negative eigenvalues in the

problems (4.1) and (4.2). Then

Ncomp � min(n(L0|X(u)
c

), n(L1|X(u)
c

))

and there exist (n(L1|X(u)
c

) − Ncomp) eigenvectors um(x) in problem(5.1) such
that 〈um,L1um〉 < 0 and (n(L0|X(u)

c
) − Ncomp) eigenvectors um(x) such that

〈um,L−1
0 um〉 < 0.

Proposition 6.1 generalizes Sylvester’s inertia theorem for finite-dimensional oper-
ators (Gelfand 1961). Using this result, we prove theorems 3.8 and 3.9, which define
sharp bounds on the number of negative and complex eigenvalues of the problem
(5.1) from the numbers of negative eigenvalues of L1 and L0 in X

(u)
c (R).

Proof of theorem 3.8. It follows from corollary 6.2 that

n(L1|X(u)
c

) = Ncomp + #<0(γmlm), (6.6)

n(L0|X(u)
c

) = Ncomp + #<0(lm), (6.7)

where #<0(lm) is the number of negative values of lm. Taking the sum of (6.6) and
(6.7), we find that

n(L1|X(u)
c

)+n(L0|X(u)
c

) = 2Ncomp+#<0(γmlm)+#<0(lm) = 2Ncomp+2N−
imag+Nreal.

By theorem 3.6, the latter identity gives the closure relation (3.1). �

Proof of theorem 3.9. Taking the difference of (6.6) and (6.7), we find that

|n(L1|X(u)
c

) − n(L0|X(u)
c

)| = |#<0(γmlm) − #<0(lm)| � Nreal � Nunst,

which are the lower bounds (3.2) and (3.3). The upper bound in (3.2) is a corollary
of theorem 3.8. The bound (3.4) is given by corollary 6.2. �
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Remark 6.3. The constrained problems (4.1) and (4.2) have a common set of
eigenfunctions if and only if operators L1 and L0 commute. Assume that this is true.
Let λ = ξm be an eigenvalue of (4.1) and λ = ηm be an eigenvalue of (4.2), with the
same eigenvector um(x). There exists an eigenvalue γ = γm of the problem (5.1),
such that

γm = ηmξm = ηm
〈um,L0um〉
〈um,um〉 = ηm

〈um,um〉
〈um,L−1

0 um〉
. (6.8)

This formula is used in Pelinovsky & Kivshar (2000) to approximate λ2 = −γm from
the given solution of the constrained problem (4.2) in the case when L0 is positive
definite in X

(u)
c (R). Since the operators L1 and L0 do not commute for any Φ �= 0,

the approximation formula (6.8) does not give an exact relation between γm and ηm.

7. Proof of proposition 5.8

We introduce wave functions of the spectral problem (2.14), similarly to analysis in
Buslaev & Perelman (1993) for N = 1. Since operators L0 and L1 in (2.12) and (2.13)
are diagonal differential operators with exponentially decaying matrix potentials,
there exist 2N branches of the continuous spectrum, located symmetrically at

σcon(A) =
⋃

1�n�N

{λ ∈ iR : | Im(λ)| � βn}. (7.1)

Using a transformation, λ �→ iΩ, u �→ u, w �→ iw, we rewrite the problem (2.14) as

L1u = Ωw, L0w = Ωu. (7.2)

We use the order
β1 � β2 � · · · � βN (7.3)

and denote the number of end points βn to the left of a given value Ω by KΩ,
KΩ � N . Let ΩE = {β1, . . . , βN}. We introduce a set of continuous parameters kn ∈
R, n = 1, . . . , N , where kn parametrizes the nth positive branch of the continuous
spectrum:

Ω = βn + dnk2
n, n = 1, . . . , N, (7.4)

such that

kn = kn(Ω) =
(

Ω − βn

dn

)1/2

. (7.5)

Since the point Ω = βn is a branch point in a two-sheet Riemann surface, we fix the
argument of Ω by considering the sheet with kn > 0 on Ω > βn. The set of wave
functions u±

n (Ω) ≡ u±
n (x; k(Ω)) is defined for Ω �= ΩE , according to the asymptotic

values at infinity:

u±
n (Ω) → ene±iknx as x → ±∞, kn > 0, (7.6)

where en is the nth unit vector in C
N . The set of scattering coefficients is defined

from asymptotic values of u±
n (k) at the other infinities:

u−
n (Ω) →

KΩ∑
l=1

el[an,l(Ω)e−iklx + bn,l(Ω)eiklx] as x → +∞,

u+
n (Ω) →

KΩ∑
l=1

el[An,l(Ω)eiklx + Bn,l(Ω)e−iklx] as x → −∞,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(7.7)
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where kl > 0, l = 1, . . . , KΩ, Ω �= ΩE . It follows from the system (7.2) that the
components w±

n (Ω) have the same asymptotic representation (7.6), (7.7) for Ω > βn.

Definition 7.1. When the eigenvector of (7.2) with Ω � β1 is exponentially decay-
ing as |x| → ∞, Ω is called an embedded eigenvalue of σemb(A). When the eigen-
vector of (7.2) with Ω � β1 is exponentially decaying at one infinity and bounded
at the other infinity, Ω is called a semi-eigenvalue of σcon(A). When the set of wave
functions

{u−
n (Ω)}KΩ

n=1, KΩ � N

is linearly dependent on the set of wave functions

{u+
n (Ω)}KΩ

n=1,

Ω is called a resonance of σcon(A).

According to assumption 2.14(i), we assume that no semi-eigenvalues of σcon(A)
nor embedded eigenvalues of σemb(A) exist for Ω � β1.

The existence of wave functions was shown in Buslaev & Perelman (1993) for
N = 1, where all fundamental solutions of the linear system (7.2) were considered
with Volterra integral equations, including exponentially decreasing and increasing
solutions. Exponentially decreasing terms are neglected in the asymptotic represen-
tations (7.6), (7.7). The existence of the wave functions u

(m)
± (Ω) follows from the

following lemma.

Lemma 7.2. Let assumption 2.14(i) be satisfied. The wave functions u±
n (Ω),

n = 1, . . . , N exist and have unique asymptotic representations (7.6), (7.7), where
coefficients an,l(Ω), bn,l(Ω) are all bounded for any Ω > βn, Ω �= ΩE .

Proof . For Ω > βn, besides a set of 2KΩ oscillatory functions, KΩ � N , there
exist sets of 2N − KΩ exponentially decaying and 2N − KΩ exponentially growing
solutions at each infinity x → ±∞. When Ω �= ΩE , all functions are uniquely defined
by standard theorems on solutions of linear differential equations with exponentially
decaying coefficients (Coddington & Levinson 1955). In order to define u±

n (Ω), we
construct a linear combination of 2N − KΩ exponentially decaying functions at x →
±∞ with the oscillatory function ene±iknx and uniquely define the coefficients of the
linear combination from 2N − KΩ conditions that exponentially growing functions
are removed in the limit x → ∓∞. If semi-eigenvalues and embedded eigenvalues
do not exist for Ω > βn, the non-homogeneous linear system for the coefficients of
the linear combination always has a unique solution. Therefore, the wave functions
u±

n (Ω) are uniquely specified by the asymptotic representations (7.6), (7.7) for any
Ω > βn, Ω �= ΩE and the coefficients an,l(Ω), bn,l(Ω), l = 1, . . . , KΩ are all bounded.

�

We define a ‘scalar’ Wronskian between two solutions of the system (7.2) with
Ω = Ω1 and Ω = Ω2 by

W [u(1),u(2)] =
N∑

n=1

dn(u(1)
n u(2)′

n − u(1)′
n u(2)

n + w(1)
n w(2)′

n − w(1)′
n w(2)

n ), (7.8)
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such that
d
dx

W [u(1),u(2)] = (Ω1 − Ω2)
N∑

n=1

(u(1)
n w(2)

n + w(1)
n u(2)

n ). (7.9)

If Ω1 = Ω2, then W [u(1),u(2)] is constant in x ∈ R. Using asymptotic values (7.6),
(7.7) for W [u−

m(Ω),u+
n (Ω)] and W [ū−

m(Ω),u+
n (Ω)], we derive the linear relations

between the scattering coefficients:

An,m(Ω) =
kndn

kmdm
am,n(Ω), Bn,m(Ω) = − kndn

kmdm
b̄m,n(Ω). (7.10)

Using asymptotic values (7.6), (7.7) for W [ū−
m(Ω),u−

n (Ω)] and W [ū+
m(Ω),u+

n (Ω)],
we derive the quadratic relations between the scattering coefficients:

kndnδm,n =
KΩ∑
l=1

kldl[ām,l(Ω)an,l(Ω) − b̄m,l(Ω)bn,l(Ω)], (7.11)

1
kndn

δm,n =
KΩ∑
l=1

1
kldl

[āl,m(Ω)al,n(Ω) − b̄l,m(Ω)bl,n(Ω)]. (7.12)

We use the scalar Wronskians (7.8) to study the behaviour of wave functions at the
end points and to derive the orthogonality relations between the wave functions.

Lemma 7.3. No resonances may occur for any Ω � β1, Ω �= ΩE .

Proof . By definition 7.1, Ω is a resonance, if there exists a non-zero eigenvector
u(x) such that

u(x) =
KΩ∑
n=1

c−
n u−

n (Ω) =
KΩ∑
n=1

c+
n u+

n (Ω). (7.13)

Computing W [ū,u] in the limits x → ±∞, we have

KΩ∑
n=1

dnkn(|c−
n |2 + |c+

n |2) = 0. (7.14)

When Ω �= ΩE , all kn > 0, such that all c±
n = 0. Therefore, no eigenvector u(x) exists

for Ω �= ΩE . �

We define the symplectic inner product as

J [u(1),u(2)] =
1

2πi
〈u(1),J u(2)〉 =

1
2π

∫ ∞

−∞

N∑
n=1

(ū(1)
n w(2)

n + w̄(1)
n u(2)

n ) dx. (7.15)

The Dirac function δ(k) has the properties

δ(k) =
1
π

lim
L→∞

eikL

ik
(7.16)

and |α|δ(αk) = δ(k), α �= 0. Using standard computations of the symplectic inner
products (7.15), we derive the orthogonality relations between wave functions u±

n (Ω),
n = 1, . . . , N .
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Lemma 7.4. Let assumption 2.14(i) be satisfied. The set of wave functions
{u±

n (Ω)}N
n=1 satisfies the orthogonality relations for Ω �= ΩE :

J [u−
m(Ω),u−

n (Ω′)] = αm,n(Ω)δ(Ω − Ω′), (7.17)

J [u+
m(Ω),u+

n (Ω′)] = βm,n(Ω)δ(Ω − Ω′), (7.18)

J [u−
m(Ω),u+

n (Ω′)] = 0, (7.19)

where

αm,n(Ω) = 4
KΩ∑
l=1

kldlām,l(Ω)an,l(Ω), βm,n(Ω) = 4
KΩ∑
l=1

1
kldl

āl,m(Ω)al,n(Ω).

(7.20)

Proof . We integrate the Wronskian relation (7.9) as

J [u−
m(Ω),u−

n (Ω′)] =
1
2π

lim
x→∞

W [u−
m(Ω),u−

n (Ω′)]
Ω − Ω′ − 1

2π
lim

x→−∞

W [u−
m(Ω),u−

n (Ω′)]
Ω − Ω′ .

(7.21)
The second term in (7.21) is computed with the use of (7.4), (7.6) and (7.16) as
δm,nδ(kn − k′

n). The first term in (7.21) is computed with the use of (7.4), (7.7) and
(7.16) as

KΩ∑
l=1

(ām,lan,l + b̄m,lbn,l)δ(kl − k′
l) +

KΩ∑
l=1

(ām,lbn,l + b̄m,lan,l)δ(kl + k′
l),

where we have suppressed the arguments of an,l(Ω) and bn,l(Ω). Since kl > 0 and
k′

l > 0 in the representation (7.7), we understand that δ(kl + k′
l) = 0 and

δ(kl − k′
l) = 2kldlδ(Ω − Ω′).

Using (7.11), we derive (7.17). The other relations (7.18) and (7.19) are derived
similarly, with the use of (7.10) and (7.12). �

Lemma 7.5. The coefficient matrices

[αm,n(Ω)]1�m,n�KΩ
and [βm,n(Ω)]1�m,n�KΩ

are strictly positive for Ω �= ΩE .

Proof . We consider a quadratic form in C
KΩ :

KΩ∑
m=1

KΩ∑
n=1

x̄mαn,m(Ω)xn = 4
KΩ∑
l=1

kldl

∣∣∣∣
KΩ∑
n=1

an,l(Ω)xn

∣∣∣∣
2

� 0. (7.22)

Since all kl > 0, l = 1, . . . , KΩ for Ω �= ΩE , the equality would mean that the deter-
minant of the matrix [am,n(Ω)]1�m,n�KΩ

is zero, which contradicts lemma 7.3.
Therefore, the quadratic form in (7.22) is strictly positive for Ω �= ΩE . Similar com-
putations hold for the matrix [βm,n(Ω)]1�m,n�KΩ

. �
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We define the normalized set of wave functions en(Ω), such that

en(Ω) ≡ e+
n (Ω) =

1√
kndnβn,n

u+
n (Ω), kn > 0,

en(Ω) ≡ e−
n (Ω) =

√
kndn

αn,n
u−

n (Ω), kn < 0.

It follows from (7.11), (7.12) and (7.20) at m = n that αn,n(Ω) > 0 and βn,n(Ω) > 0.
By lemma 7.4, the wave functions {en(Ω)}N

n=1 satisfy the orthogonality relations

J [em(Ω), en(Ω′)] = ρm,n(Ω)δ(Ω − Ω′), kn ∈ R, (7.23)

where

ρm,n(Ω) ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ+
m,n(Ω) =

βm,n√
kmkndmdnβm,mβn,n

, kn > 0,

ρ−
m,n(Ω) =

√
kmkndmdn

αm,mαn,n
αm,n, kn < 0.

(7.24)

By lemma 7.5, the matrix [ρm,n(Ω)]1�m,n�KΩ
is positive for any Ω ∈ σcon(A).

We define the projection operator

S : X(u)
c (R) �→ Y (u)

c (A),

according to the standard formula (Buslaev & Perelman 1993)

∀u ∈ X(u)
c (R), ∃u+ ∈ Y (u)

c (A) : u+ = Su =
N∑

n=1

p.v.
∫ ∞

−∞
ûn(Ω)en(Ω) dkn,

(7.25)

where ‘p.v.’ stands for the principal-value integral to exclude possible singularity at
kn = 0 in the case when Ω = βn is a resonance of σcon(A). Coefficients ûn(Ω) in the
projection formula (7.25) are uniquely defined by the orthogonality relations (7.23),
since the matrix [ρm,n(Ω)]1�m,n�KΩ

is positive definite for any Ω ∈ σcon(A). Using
(7.4), we can rewrite (7.25) in the form

u+(x) =
N∑

n=1

p.v.
∫ ∞

βn

dΩ

2kndn
(û+

n (Ω)e+
n (Ω) + û−

n (Ω)e−
n (Ω)), kn > 0. (7.26)

With this construction, we finally prove proposition 5.8.

Proof of proposition 5.8. Using (7.2) and (7.15), we find that

ρm,n(Ω)δ(Ω − Ω′) = J [em(Ω), en(Ω′)]

=
〈em(Ω),L1en(Ω′)〉

2πΩ′ +
〈L1em(Ω), en(Ω′)〉

2πΩ
. (7.27)

Integrating by parts and using quadratic relations (7.11), (7.12) for asymptotic rep-
resentations (7.6), (7.7), we confirm that

〈L1em(Ω), en(Ω′)〉 = 〈em(Ω),L1en(Ω′)〉. (7.28)
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As a result, we have the simultaneous orthogonality relations

〈em(Ω),L1en(Ω′)〉 = πΩρm,n(Ω)δ(Ω − Ω′),

〈em(Ω),L−1
0 en(Ω′)〉 =

π

Ω
ρm,n(Ω)δ(Ω − Ω′).

⎫⎬
⎭ (7.29)

A simple calculation of the quadratic form 〈u+,L1u
+〉 for u+ ∈ Y

(u)
c (A) with the

use of the spectral representation (7.26) and the orthogonality relations (7.29) leads
to the formula

〈u+,L1u
+〉

= p.v.
∫ ∞

β1

( KΩ∑
m=1

KΩ∑
n=1

ρ+
m,n(Ω)ˆ̄u+

m(Ω)û+
n (Ω) + ρ−

m,n(Ω)ˆ̄u−
m(Ω)û−

n (Ω)
4kmkndmdn

)
πΩ dΩ.

(7.30)

By lemma 7.5, we have 〈u+,L1u
+〉 > 0, and therefore, 〈u+,L−1

0 u+〉 > 0. �

8. Symmetry-breaking stability analysis

Stability analysis based on simultaneous block-diagonalization of two linear operators
can be applied to other Hamiltonian dynamical systems. We show here that similar
analysis is applied also to symmetry-breaking instabilities of stationary solutions of
coupled NLS equations.

Symmetry-breaking instabilities may occur when the stationary solutions in (z, x)
are perturbed in another spatial dimension, say in y (Kivshar et al. 2000). The system
of coupled NLS equations (1.1) in three spatial dimensions (z, x, y) takes the form

i
∂ψn

∂z
+ dn

(
∂2ψn

∂x2 +
∂2ψn

∂y2

)
+ fn(|ψ1|2, . . . , |ψN |2)ψn = 0, n = 1, . . . , N. (8.1)

We assume the same conditions on fn and dn as apply below (1.1). Linearization of
the stationary solutions (2.1) is defined by the expansion

ψn(z, x, y) = [Φn(x) + Un(z, x, y) + iWn(z, x, y)]eiβnz, (8.2)

where (Un, Wn)T ∈ R
2 are perturbation functions. Separating the variables (z, x, y)

as
U = u(x)eλz+ipy, W = w(x)eλz+ipy,

we arrive at the linear eigenvalue problem,

(L1 + p2D)u = −λw, (L0 + p2D)w = λu, (8.3)

where (u,w)T ∈ R
2N , p ∈ R, and D is a diagonal matrix of (d1, . . . , dN ). Eigenvalues

λ and eigenvectors (u,w)T of the linearized problem (8.3) depend on parameter p.

Lemma 8.1. There exist exactly n(L1,0) negative eigenvalues λ of the problem

L1,0u = λDu, u ∈ L2(R), λ < 0. (8.4)

Proof . Since D is positive definite, all eigenvalues λ in (8.4) are real. By proposi-
tion 6.1, the negative index of quadratic forms 〈u,L1,0u〉 in Hilbert space L2(R) is
invariant in two diagonal representations, one with respect to 〈un,un〉 and the other
one with respect to 〈un,Dun〉 > 0. �
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We define negative eigenvalues λ of the problem (8.4) for L1 as λ = −{Λ2
1,n}n(L1)

n=1
and for L0 as λ = −{Λ2

0,n}n(L0)
n=1 . We split the domain p2 ∈ R+ into sub-domains:

Dn1,n0 = {p2 ∈ R+ : Λ2
1,n1

< p2 < Λ2
1,(n1+1), Λ

2
0,n0

< p2 < Λ2
0,(n0+1)}, (8.5)

where 0 � n1 � n(L1), 0 � n0 � n(L0), such that

Λ2
1,0 = Λ2

0,0 ≡ 0 and Λ2
1,(n(L1)+1) = Λ2

0,(n(L0)+1) ≡ ∞.

Lemma 8.2. In the domain Dn1,n0 , there are exactly (n(L1)−n1) negative eigen-
values of the problem

(L1 + p2D)u = λu, u ∈ L2(R), λ < 0, (8.6)

and exactly (n(L0) − n0) negative eigenvalues of the problem:

(L0 + p2D)u = λu, u ∈ L2(R), λ < 0. (8.7)

Proof . The result follows from continuity of eigenvalues λ of the uncoupled prob-
lems (8.6) and (8.7) with respect to parameter p2 in the domain 0 < p2 < ∞. Each
negative eigenvalue λ = λ(p2) of operator (L1,0 + p2D) is an increasing function of
p2 if D is positive definite, since

λ′(p2) =
〈u,u〉

〈u,Du〉 > 0. (8.8)

When p2 increases, eigenvalues λ(p2) pass through the zero value at the boundaries
between domains Dn1,n0 in (8.5), and the number of negative eigenvalues of (8.6),
(8.7) reduces according to the multiplicity of eigenvalues λ = −Λ2

1,n1
and λ = −Λ2

0,n0

in (8.4). �

Proposition 8.3. Let assumption 2.14(i)–(ii) be satisfied for the problem (8.3) in
the domain Dn1,n0 . The linearized problem (8.3) has Nunst = Nreal + 2Ncomp unsta-
ble eigenvalues λ = λ(p) with Re(λ) > 0, such that

(i) |n(L1) − n(L0) − n1 + n0| � Nunst � (n(L1) + n(L0) − n1 − n0), (8.9)
(ii) Nreal � |n(L1) − n(L0) − n1 + n0|, (8.10)
(iii) Ncomp � min(n(L0) − n0, n(L1) − n1). (8.11)

Proof . The linearization problem (8.3) can be rewritten in the form of a diago-
nalization problem,

(L1 + p2D)u = γ(L0 + p2D)−1u, u ∈ L2(R), (8.12)

where γ = −λ2. If p2 > 0 and p2 �= Λ2
0,n, n = 1, . . . , n(L0), the operator (L0 + p2D)

is invertible in L2(R). By lemma 8.2, we have n(L1 + p2D) = n(L1) − n1 and
n(L0 + p2D) = n(L0) − n0 in the domain Dn1,n0 . Proposition 8.3 is then equivalent
to theorem 3.9. �

Proposition 8.4. Let assumption 2.14 be satisfied for the problem (2.14). Let
Nunst be the number of unstable eigenvalues in the problem (2.14). There exists
p2

∗ > 0 such that the linearized problem (8.3) has exactly N̂unst unstable eigenvalues
in the domain 0 < p2 < p2

∗, where N̂unst = N unst + p(U). The new p(U) unstable
eigenvalues λ are all real and positive.
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Proof . By lemma 2.16, the linearized problem (2.14) has N +1 double zero eigen-
values in L2(R). The symmetry-breaking perturbation with p2 > 0 split these double
eigenvalues into pairs of real or imaginary eigenvalues λ(p) of the linearized prob-
lem (8.3). We show that p(U) double eigenvalues split into pairs of real eigenvalues
λ. Expanding solutions of (8.3) into power series of p, we have the following pertur-
bation series expansions:

u = pλ1

N∑
n=1

cn
∂Φ

∂βn
+ O(p3),

w =
N∑

n=1

cnΦn(x)en + p2w2(x) + O(p4),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(8.13)

where λ = pλ1 + O(p3). The function w2(x) satisfies the non-homogeneous linear
problem

L0w2 = λ2
1

N∑
n=1

cn
∂Φ

∂βn
−

N∑
n=1

cndnΦn(x)en. (8.14)

Using the Fredholm alternative theorem, we find that c = (c1, . . . , cN )T satisfies the
generalized eigenvalue problem,

λ2
1Uc = 2DQsc, (8.15)

where Qs is a diagonal matrix of (Q1s, . . . , Qns)T and U is the Hessian matrix (2.7).
Since DQs is positive-definite, Sylvester’s inertia theorem suggests that the linear
system (8.15) has exactly p(U) positive eigenvalues and n(U) negative eigenvalues
λ2

1. Therefore, positive eigenvalues of U are related to new unstable (real and positive)
eigenvalues λ = λ(p) in the linearization problem (8.3) for sufficiently small values
of p2 > 0, in addition to Nunst unstable eigenvalues λ(p) existing in the limit p2 → 0
with Re(λ) > 0. �

Remark 8.5. Proposition 8.4 agrees with proposition 8.3 for n1 = 0 and n0 = 0.
We also notice that the (N + 1)th double zero eigenvalue with the eigenvector
(Φ′(x),0N )T always splits into a pair of imaginary eigenvalues for p2 > 0. This prop-
erty is due to the Galileo invariance (1.7), since the translational symmetry (1.6)
does not change the index p(UH).

The author thanks G. Perelman for collaboration on the results of § 7.

References

Buslaev, V. S. & Perelman, G. S. 1993 Scattering for the nonlinear Schrödinger equation: states
close to a soliton. St Petersburg Math. J. 4, 1111–1142.

Coddington, E. A. & Levinson, N. 1955 Theory of ordinary differential equations. Malabar, FL:
Robert E. Krieger Publishing Company.

Comech, A. & Pelinovsky, D. 2003 Pure nonlinear instability of standing waves with minimal
energy. Commun. Pure Appl. Math. 56, 1565–1607.

Gelfand, I. M. 1961 Lectures on linear algebra. New York: Dover.
Grillakis, M. 1988 Linearized instability for nonlinear Schrödinger and Klein–Gordon equations.

Commun. Pure Appl. Math. 41, 747–774.

Proc. R. Soc. A (2005)



812 D. E. Pelinovsky

Grillakis, M. 1990 Analysis of the linearization around a critical point of an infinite dimensional
Hamiltonian system. Commun. Pure Appl. Math. 43, 299–333.

Grillakis, M., Shatah, J. & Strauss, W. 1987 Stability theory of solitary waves in the presence
of symmetry. I. J. Funct. Analysis 74, 160–197.

Grillakis, M., Shatah, J. & Strauss, W. 1990 Stability theory of solitary waves in the presence
of symmetry. II. J. Funct. Analysis 94, 308–348.

Hislop, P. D. & Sigal, I. M. 1996 Introduction to spectral theory with applications to Schrödinger
operators. Springer.

Jones, C. K. R. T. 1988a An instability mechanism for radially symmetric standing waves of a
nonlinear Schrödinger equation. J. Diff. Eqns 71, 34–62.

Jones, C. K. R. T. 1988b Instability of standing waves for nonlinear Schrödinger-type equations.
Ergod. Theory Dynam. Syst. 8, 119–138.

Kivshar, Yu. S. & Pelinovsky, D. E. 2000 Self-focusing and transverse instabilities of solitary
waves. Phys. Rep. 331, 117–195.

Maddocks, J. H. 1985 Restricted quadratic forms and their application to bifurcation and sta-
bility in constrained variational principles. SIAM J. Math. Analysis 16, 47–68.

Maddocks, J. H. 1988 Restricted quadratic forms, inertia theorems and the Schur complement.
Linear Alg. Applic. 108, 1–36.

Pelinovsky, D. E. & Kivshar, Yu. S. 2000 Stability criterion for multicomponent solitary waves.
Phys. Rev. E 62, 8668–8676.

Pelinovsky, D. E. & Yang, J. 2002 A normal form for nonlinear resonance of embedded solitons.
Proc. R. Soc. A 458, 1469–1497.

Reed, M. & Simon, B. 1978 Methods of modern mathematical physics. IV. Analysis of operators.
Academic.

Shatah, J. & Strauss, W. 1985 Instability of nonlinear bound states. Commun. Math. Phys. 100,
173–190.

Weinstein, M. I. 1986 Liapunov stability of ground states of nonlinear dispersive evolution
equations. Commun. Pure Appl. Math. 39, 51–68.

Proc. R. Soc. A (2005)


