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Abstract. Using a variational approximation we study discrete solitons of a

nonlinear Schrödinger lattice with a cubic-quintic nonlinearity. Using an ansatz
with six parameters we are able to approximate bifurcations of asymmetric

solutions connecting site-centered and bond-centered solutions and resulting

in the exchange of their stability. We show that the numerical and variational
approximations are quite close for solitons of small powers.

1. Introduction. The variational approximation (VA) has long been used as a
semi-analytic technique to approximate solitary wave solutions of nonlinear evo-
lution equations with an underlying Hamiltonian structure [13]. There have been
a number of papers exploring the VA with four parameters as a relevant approx-
imation of localized modes in discrete nonlinear Schrödinger (DNLS) equations
[6, 14, 19]. Kaup [10] extended the variational approximation with six parameters
that allowed him to construct not only site-centered solutions (also called on-site
solitons) from [14] but also the bond-centered solutions (solitons centered at a mid-
point between two adjacent sites also known as inter-site solitons).

Site-centered and bond-centered solitons were recently considered in the context
of the DNLS equations with competing cubic focusing and quintic defocusing non-
linearities both in the space of one [3] and two [4] lattice dimensions. It was found
that the two branches exchange their stability while continued with respect to the
underlying parameters. A salient feature of this stability exchange is that the two
branches of site-centered and bond-centered solitions do not intersect directly but
are connected by an intermediate branch of asymmetric solitons. It was argued in
[4] that the discrete solitons have enhanced mobility near the regimes of stability
inversion. These properties were originally discovered in the DNLS equations with
a saturable nonlinearity both in the space of one [8] and two [22] dimensions as
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well as for the DNLS equations with on-site and next-site cubic nonlinearities in
the space of one dimension [18]. It was recently shown for the same model in the
space of two dimensions [17] that stability inversion and asymmetric solutions may
not lead to enhanced mobility of discrete solitons if the bifurcation points of the
solution branches are widely separated in the parameter space.

Exchange of stability between site-centered and bond-centered solutions was re-
cently computed numerically in a discrete bistable Allen–Cahn equation [21]. A
similar snaking behavior was also found in the continuous Swift-Hohenberg equa-
tion [1, 12]. It seems the role a higher order dispersion plays in the Swift-Hohenberg
equation is replaced by discreteness in the cubic-quintic DNLS equation.

It is the purpose of this work to apply Kaup’s variational method with six pa-
rameters from [10] to explain bifurcations of asymmetric solutions and stability
exchange of site-centered and bond-centered discrete solitons in the context of the
one-dimensional cubic-quintic DNLS equation. In this sense, our work is a comple-
ment to the previous paper [3] where discrete solitons were constructed numerically
using a dynamical reduction. Dark solitons and staggered solutions of the cubic-
quintic DNLS equation were recently studied numerically in Refs. [15] and [16]
respectively.

We consider a discrete nonlinear Schrödinger equation with a cubic-quintic non-
linearity in the form,

i∂tψn + C(ψn+1 + ψn−1 − 2ψn) +B|ψn|2ψn −Q|ψn|4ψn = 0, n ∈ Z, (1)

where ψn(t) : R+ → C and (C,B,Q) are real-valued parameters. Nonlinear
Schrödinger lattices have proved to be relevant models in a variety of contexts (see
reviews in [7, 11]), including the description of optical pulses in one-dimensional
waveguide arrays [5]. In this application, the quantity |ψn|2 represents the intensity
of the electric field of waveguide n, C > 0 represents coupling strength between
adjacent waveguides and (B,Q) measure the nonlinearity strength. A large portion
of the literature is dedicated to Eq. (1) with Q = 0, which would correspond to
a medium with a Kerr nonlinearity. Recent experimental results [2, 9, 23] have
shown that the nonlinear response of some materials is better fit with an additional
competing quintic nonlinearity, i.e. B,Q > 0. This lends relevance to studying the
cubic-quintic DNLS equation in the form (1).

Thanks to the scaling of t and ψn, one can normalize two parameters out of C,
B, and Q. In what follows, we consider the normalization with B = 2 and Q = 1 to
be consistent with previous works on the cubic-quintic DNLS equation [3, 4]. Our
numerical illustrations are computed for the value C = 0.1.

The cubic-quintic DNLS equation (1) has two conserved quantities, namely the
power,

M =
∑
n∈Z
|ψn|2, (2)

and the Hamiltonian,

H =
∑
n∈Z

C
(
ψ∗nψn+1 + ψnψ

∗
n+1 − 2|ψn|2

)
+
B

2
|ψn|4 −

Q

3
|ψn|6. (3)

In particular, we note the balance equation

i∂t|ψn|2 = C(Jn − Jn−1), n ∈ Z, (4)
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where Jn is a discrete flux given by

Jn = ψ∗n+1ψn − ψn+1ψ
∗
n, n ∈ Z.

Steady-state solutions have the form ψn = une
−iµt, n ∈ Z, where µ ∈ R and

un ∈ R are found from the stationary DNLS equation,

µun + C(un+1 + un−1 − 2un) +Bu3
n −Qu5

n = 0, n ∈ Z. (5)

We seek localized solutions of the stationary DNLS equation (5) which in turn cor-
respond to discrete solitons. We shall show that all steady-state localized solutions
of the cubic-quintic DNLS equation (1) in one dimension are real-valued module a
multiplication by eiθ for an arbitrary θ ∈ R. Indeed, the balance equation (4) for
the steady-state solutions gives

Jn = J = const, n ∈ Z.

If the steady-state solution is also localized, then |un| → 0 as |n| → ∞, which gives
J = 0. Therefore, either un = 0 for some n ∈ Z and un+1 = −un−1 follows from
(5), or

un+1

un
=
u∗n+1

u∗n
⇒ 2 arg(un+1) = 2 arg(un) (mod 2π).

Consequently, if un0
∈ R for at least one n0 ∈ Z, then un ∈ R for all n ∈ Z.

Spectral stability of the steady-state solutions is studied with the linearization
ansatz,

ψn(t) =
(
un + (vn + iwn)eλt + (v∗n + iw∗n)eλ

∗t
)
e−iµt, n ∈ Z,

which leads to the spectral problem,{
−µvn − C(vn+1 + vn−1 − 2vn)− 3Bu2

nvn + 5Qu4
nvn = −λwn,

−µwn − C(wn+1 + wn−1 − 2wn)−Bu2
nwn +Qu4

nwn = λvn,
n ∈ Z. (6)

We are looking for nonzero solutions of the linearized system in L2(Z,C2) called
eigenvectors. The steady-state solution is called unstable if there exists at least one
eigenvector for which Re(λ) > 0. Otherwise, the solution is called spectrally stable.

Steady-state solutions are considered in Section 2. Spectral stability of these
solutions is studied in Section 3. For both problems, we compare results of the
variational approximations and the direct numerical approximations.

2. Variational approximations of the steady-state solutions. Solutions of
the DNLS equation (1) correspond to critical points of the Lagrangian,

L =
∑
n∈Z

i

2
(ψ∗n∂tψn − ψn∂tψ∗n)+C

(
ψ∗nψn+1 + ψnψ

∗
n+1 − 2|ψn|2

)
+
B

2
|ψn|4−

Q

3
|ψn|6.

(7)
To find approximate solutions for discrete solitons, we pose a trial function in the
form,

ψn = Aeiφne−η|n−n0|, φn = α+ k(n− n0) +
β

2
(n− n0)2, (8)
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where each of the six parameters are dependent on t. Substituting Eq. (8) into the
Lagrangian (7) and evaluating the sums yields the effective Lagrangian,

Leff = −A2

(
dα

dt
− k

2

dχ

dt

)
S0 −A2

(
dk

dt
− β

2

dχ

dt

)
S1 −

A2

2

dβ

dt
S2

+CA2
(
eikSβ + e−ikS∗β − 2S0

)
+
B

2
A4S4 −

Q

3
A6S6, (9)

where χ = 2n0 − 1 and,

S0(η, χ) =
coshχη

sinh η
,

S1(η, χ) =
cosh η sinhχη

2 sinh2 η
+
χ

2
S0,

S2(η, χ) =

(
2

sinh2 η
+

1

4

)
S0 −

χ

2

cosh η sinhχη

sinh2 η
− χ2

4
S0,

S4(η, χ) = S0(2η, χ),

S6(η, χ) = S0(3η, χ),

Sβ(η, χ, β) = e−ηe−
i
2βχ

(
1 +

e−ηχ

eiβeη − e−η
+

eηχ

e−iβeη − e−η

)
.

Since the center n0 of the ansatz (8) can be arbitrarily chosen on [0, 1] module
the discrete group of translations in n ∈ Z, we shall consider χ on [−1, 1] (this
restriction was used already in the derivation of (9)). The solution with χ = 0 is
centered between lattice sites and hence is called bond-centered. The solution with
χ = ±1 is centered on a lattice site and hence is called site-centered. Solutions for
χ ∈ (−1, 0) ∪ (0, 1) are called asymmetric.

According to the variational principle, the effective Lagrangian Leff achieves crit-
ical values at the Euler-Lagrange equations,

∂Leff

∂pj
− d

dt

[
∂Leff

∂ṗj

]
= 0, (10)

where pj represents a parameter of ansatz (8). Varying α yields the conservation
law,

A2S0 = M, (11)

which corresponds to the dynamical invariant (2) of the power. Varying A yields,

dα

dt
=

dχ

dt

k

2
− dk

dt

S1

S0
+
β

2

S1

S0

dχ

dt
− 1

2

dβ

dt

S2

S0
+
C

S0
(eikSβ + e−ikS∗β − 2S0)

+BM
S4

S2
0

−QM2 S6

S3
0

. (12)

Before writing the remaining equations, it will be more convenient to make use of
the fact that we seek steady-state solutions. This corresponds to

β = k =
dχ

dt
=

dη

dt
= 0 and

dα

dt
= −µ, (13)

where µ is the parameter of the steady-state solution. With this assumption, the
equations corresponding to variation of k and β are identically satisfied. Varying χ
and η and making use of Eq. (12) leads to the following two equations respectively,

A2η sinh ηχ

sinh η cosh ηχ

(
A42Q cosh η cosh ηχ

4 cosh2 η − 1
−A2 + Ce−η sinh 2η

)
= 0, (14)
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Figure 1. Solutions of Eqs. (14) and (15) for C = 0.1, B = 2,
and Q = 1. All branches are not aborted arbitrary but terminate
at respective bifurcation points.

and,

−Ce−η
(

1 +
cosh ηχ− cosh η

sinh η
+
χ sinh ηχ

cosh ηχ

)
+

BA2χ sinh ηχ

2 sinh 2η cosh ηχ

+
BA2 cosh 2ηχ

2 sinh2 2η
−QA4

(
χ sinh ηχ

sinh 3η
+

cosh η cosh 3ηχ

sinh2 3η

)
= 0. (15)

Note these equations with Q = 0 correspond to those in Ref. [10]. When χ = 0
(bond-centered solutions), Eq. (14) is identically satisfied and Eq. (15) becomes,

−Ce−η(1 + e−η) sinh2 2η

sinh η
+
BA2

2
− QA4 cosh η sinh2 2η

sinh2 3η
= 0, (16)

which is easily solved for A2, giving an existence condition in terms of the parameter
η. There exists exactly two bond-centered solutions (denoted by B1 and B2) for
η ∈ (0, ηcr), which disappear as a result of the saddle-node bifurcation at η = ηcr.
See Fig. 1, where solutions of Eqs. (14) and (15) are plotted for C = 0.1, B = 2,
and Q = 1 with ηcr ≈ 1.56. We note, for larger C steady-state solutions become
smoother (they approach the continuous counterpart) and so the ansatz (8), which
is based on an exponential cusp, becomes irrelevant.

For χ 6= 0, the term in parenthesis of Eq. (14) can be used as condition for A2,
which can then be substituted into (15) yielding a root finding problem in (η, χ)
parameter space. We find exactly three pairs of solutions for C = 0.1, B = 2,
and Q = 1, which are denoted by S1,S2, and A1 in Fig. 1. Branches (S1, S2) and
(S2, A1) are connected by means of the saddle-node bifurcations. Branch S1 arises
from χ = 0 as a result of the supercritical pitchfork bifurcation, while branch A1

arises from χ = 0 as a result of the subcritical pitchfork bifurcation.
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The solution branches S1 and S2 approach χ = 1 rapidly, so that they correspond
to the site-centered solitons, for which χ must be identically 1. The solution branch
A1 is a true asymmetric solution that connects the bond-centered and site-centered
solitons. Only one branch S1 of site-centered solutions and only one branch B1 of
bond-centered solutions exist in the cubic case Q = 0, where these two branches
extend for any η > 0.

To test the validity of the variational approximations we compare them against
direct numerical solutions of the stationary DNLS equation (5). The “numerically
exact” solutions are obtained using a Newton method with the VA solutions as
initial seeds. The profiles of the discrete solitons that are obtained via the VA and
the corresponding numerical solutions are shown in Fig. 2.
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Figure 2. Plot of numerical (solid lines) and variational (markers)
solutions for C = 0.1, B = 2, Q = 1. Top: Short bond-centered
(left) and site-centered (right) solutions. Bottom: A taller bond-
centered (left) and site-centered (right) solution. The asymmetric
solution (middle) is an intermediate between the two symmetric
profiles. The labels A1, B1, B2, S1, and S2 correspond to those in
Fig. 1. The solution B1 is unstable, while other solutions are stable.

It is more instructive for comparison to plot the solution branches in the (µ,M)
plane, where M is defined in Eq. (11) and µ = −dαdt , see Fig. 3. The predicted
stability is also depicted (see Sec. 3 for details on stability computations).

Besides the five solutions predicted within the variational approximation, there
exists additional branches S3, S4, B3, A2 of solutions of Eq. (5) that appear on
Fig. 3. See Fig. 4 for profiles of these “wide” solutions. The pattern of Fig. 3
suggests existence of an infinite number of additional branches of discrete solitons
for large power M with a characteristic snaking behavior similar to the one observed
in Ref. [21].

The bifurcations shown in Fig. 3 look as if the asymmetric solutions connect
exactly at the turning points of bond-centered or site-centered solutions. This is
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Figure 3. Plot of the power M of the VA solutions (thin lines)
and numerical solutions (thick lines). Stable branches are repre-
sented by solid lines and unstable branches by dashed lines. There
are two principle branches, one corresponding to site-centered so-
lutions (labeled Sj , j = 1..4) and one for bond-centered solutions
(labeled Bj , j = 1..3). The two principle branches are connected
via asymmetric solutions (labeled Aj , j = 1, 2) at points of stabil-
ity change. Only the branches S1, S2, A1, B1, and B2, are captured
by the VA. Differences between the VA and numerical solutions
are more visible in the zooms labeled ‘a’, ‘b’ and ‘c’. The branch
labeled B̃3 corresponds to the VA that fails to capture B3.

not the case. Rather, there exists a pair of saddle-node and pitchfork bifurcations
and the stability exchange occurs at the pitchfork bifurcation where the asymmetric
solutions emanate. Interestingly, the VA is able to accurately capture this subtle
bifurcation scenario. In Fig. 5 a plot of such a bifurcation pair is shown. This
particular pair represents a saddle-node bifurcation of a short (B1) and tall (B2)
bond-centered solution and a pitchfork of two asymmetric solutions (A1) and the
short bond-centered solution (B1). The agreement between the variational and
numerical approximations is impressive. The stability is also correctly predicted.

We point out minor discrepancies between the variational approximations and
the numerical results in the zooms of Fig. 3. Zoom (a) shows where the VA solution

B̃3 departs from the corresponding numerical solution B3. This is expected as the
ansatz (8) is only valid for “narrow” solutions, i.e. those that have at most two ini-
tially excited sites. Zoom (b) shows that the asymmetric solution A1 is connected
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Figure 4. Examples of numerical solutions shown in Fig. 3 that
the VA did not capture. The failure of the VA is due to the wide
nature of the solutions. Parameter values are C = 0.1, B = 2,
and Q = 1. The solutions B3, A2, and S3 are unstable, while the
solution S4 is stable.

to the site-centered solution S2 (opposed to S3) and is underestimated. This bifur-
cation, which involves the site-centered solution, is not captured as well as the one
described previously for the bond-centered solution. This fact is already suggested
in Figure 1 which shows that a site-centered profile is never truly represented since
χ ∈ (0, 1). The wider short site-centered solution S3 is not captured at all by the
VA (as expected). Finally, zoom (c) shows that the VA falsely predicts collision
of the bond-centered B1 and site-centered S1 solutions for a non-zero value of M ,
similar to the cubic case discussed by Kaup in [10].

We note that the pattern of stable and unstable branches on Fig. 3 illustrates
that it is incorrect to blindly use the so-called Vakhitov-Kolokolov criterion for the
stability predictions from the slope of M versus µ. A full spectral stability analysis
needs to be developed from the study of distribution of eigenvalues of the linearized
operators, similarly to the analysis in [20]. Because of this feature, both branches
S1 and S2 with opposite slopes of M versus µ appear to be spectrally stable.

3. Variational approximations of spectral stability. In order to determine
stability within the VA we return to the variational equations (10) but this time
without the assumption (13).

Let ~x = (β, χ, η, k)T represent the four parameters of ansatz (8) after Eqs. (11)
and (12) are used. To perform a linear stability analysis we substitute,

~x = ~x0 + ε~yeλt, λ ∈ C,

into the four variational equations, where the steady-state solution is defined by
~x0 = (0, χ0, η0, 0)T and (χ0, η0) satisfy Eqs. (14) and (15). Keeping only the terms
linear in ε leads to the generalized eigenvalue problem,

λA~y = B~y, (17)
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Figure 5. Plot of numerical (lines) and variational (markers) ap-
proximations of power M versus µ for C = 0.1, B = 2, Q = 1 in a
parameter region near a pitchfork bifurcation. Stable solutions of
the VA are indicated by circles and unstable solutions by squares.

where the entries of the 4× 4 matrices A and B are given by,

a11 = 0, a21 = 0,

a12 =
M

2
+M

∂

∂χ

[
S1

S0

]
, a22 =

M

2

(
S1

S0
+

∂

∂χ

[
S2

S0

])
,

a13 = M
∂

∂η

[
S1

S0

]
, a23 =

M

2

∂

∂η

[
S2

S0

]
,

a14 = 0, a24 = 0,

a31 =
M

2S0

(
∂S0

∂χ

S2

S0
− ∂S2

∂χ
− S1

)
, a41 =

M

2S0

(
∂S0

∂η

S2

S0
− ∂S2

∂η

)
,

a32 = 0, a42 = 0,

a33 = 0, a43 = 0,

a34 =
M

S0

(
∂S0

∂χ

S1

S0
− ∂S1

∂χ

)
− M

2
, a44 =

M

S0

(
∂S0

∂η

S1

S0
− ∂S1

∂η

)
,
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and,

b11 =
CM

S0

(
sinh ηχ

sinh2 η
− χe−η(1 + S0)

)
, b21 =

−CM
S0

(
∂2Sβ
∂β2

+
∂2S∗β
∂β2

)
,

b12 = 0, b22 = 0,

b13 = 0, b23 = 0,

b14 =
2CM

S0
e−η(1 + S0), b24 =

CM

S0

(
sinh ηχ

sinh2 η
− χe−η(1 + S0)

)
,

b31 = 0, b41 = 0,

b32 = − ∂

∂χ

[
∂L

∂χ
+
∂S0

∂χ
P

]
, b42 = − ∂

∂χ

[
∂L

∂η
+
∂S0

∂η
P

]
,

b33 = − ∂

∂η

[
∂L

∂χ
+
∂S0

∂χ
P

]
, b43 = − ∂

∂η

[
∂L

∂η
+
∂S0

∂η
P

]
,

b34 = 0, b44 = 0.

Here we have defined,

L =
CM

S0

(
Sβ + S∗β − 2S0

)
+
BM2

2S2
0

S4 −
QM3

3S3
0

S6,

P =
−CM
S2

0

(
Sβ + S∗β − 2S0

)
− BM2

S3
0

S4 +
QM3

S4
0

S6,

and each entry is evaluated at the fixed point ~x0. For the form of the perturba-
tion chosen, an eigenvalue with Re(λ) > 0 indicates instability of the steady-state
solution ~x0.

Since A and B are real-valued matrices, both λ and λ∗ are eigenvalues. Since
A and B has a clear block structure, if λ is an eigenvalue with the eigenvector ~y,
then −λ is an eigenvalue with the eigenvector S~y, where S = diag(1,−1,−1, 1).
Therefore, eigenvalues of (17) occur as pairs of real or imaginary eigenvalues or as
quartets of complex eigenvalues. A typical example of eigenvalues of (17) is shown
on the left panel of Fig. 6 for the unstable solution B1 with a pair of real and a
pair of imaginary eigenvalues.
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Figure 7. Top: plot of eigenvalues for the VA solutions (left)
and numerical solutions (right) at C = 0.1, B = 2, and Q = 1.
Site-centered branches are plotted as dashed-dot lines and bond-
centered branches as dashed lines. The asymmetric solution is
shown as a solid line. The thick solid black line shows the bound-
ary of the continuous spectral band in the full problem. Bottom:
zooms of the top panels near λ2 ≈ 0.

The stability of the VA solutions corresponding to Fig. 3 was computed from
eigenvalues of the generalized problem (17). The spectrum for each of the variational
solutions shown in Fig. 3 is plotted in the left panels of Fig. 7. Only the bond-
centered solution B1 has a branch that is predicted to be unstable. The bottom
left panel of Fig. 7 is a zoom of small eigenvalues in the top left panel. Where the
asymmetric solution A1 meets the bond-centered solutions B1 and B2 corresponds
to stability exchange, whereas the connection to the site-centered solution S2 occurs
at λ2 < 0 and hence no stability change takes place. Note that each branch of VA
solutions has exactly two pairs of real or imaginary eigenvalues of the generalized
problem (17).

A linear stability analysis of the “numerically exact” solutions was also carried
out from the spectral stability problem (6) using the procedure described in Ref. [3].
The numerical approximation of the spectrum for the unstable bond-centered solu-
tion B1 is shown on the right panel of Fig. 6. Note that there is always a double
zero eigenvalue in the stability problem (6) which is related to the gauge symme-
try. This double zero eigenvalue corresponds to the eigenvector (vn, wn) = (0, un)
and the generalized eigenvector (vn, wn) = (∂µun, 0) of system (6). This double
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zero eigenvalue is captured by the variational approximation and it results in the
conservation law (11) and the variational equation (12). On the other hand, the
VA gives two pairs of eigenvalues and only the real pair persists in the numerical
approximation.

Isolated, non-zero eigenvalues for solutions B1, B2, S2, S3, and A1 are shown
in the right panels of Fig. 7. We note that no isolated, non-zero eigenvalues of
S1 exist. The overall “look” of the top panels of Fig. 7 are quite similar, but more
importantly, the stability is correctly predicted. Note that the right panels of Fig. 7
contains fewer eigenvalues than the left panels of Fig. 7 because some of the purely
imaginary eigenvalues of the VA solutions approximate the continuous spectrum of
the numerical solutions. An interesting difference is seen in the bottom right panel
of Fig. 7. In the full problem, the eigenvalue pair for the asymmetric solution A1

vanishes when A1 intersects with the site-centered solution S2.
In conclusion, we have extended the results of Ref. [10] to show that not only

does the VA faithfully represent the fundamental localized modes, but is also able
to correctly predict the corresponding stability for small coupling constant C and
power M . We showed this in the context of the cubic-quintic DNLS equation,
which exhibits a family of discrete solitons, five of which were accurately captured
by the variational approximation. It would be interesting to derive the variational
equations in the context of time-dependent perturbations, although, the resulting
equations would be far more complex and may undermine the utility of the method.
It would also be relevant to extend this analysis to the higher dimensional cubic-
quintic DNLS equation.
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