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We study bifurcations of eigenvalues from the endpoints of the essential spectrum
in the linearized nonlinear Schrédinger problem in three dimensions. We show that
a resonance and an eigenvalue of positive energy at the endpoint may bifurcate
only to a real eigenvalue of positive energy, while an eigenvalue of negative energy
at the endpoint may also bifurcate to complex eigenvalue20@ American In-
stitute of Physics[DOI: 10.1063/1.1901345

I. INTRODUCTION
We consider the nonlinear Schrodind®iLS) equation in three dimensions,

== A+ U+ F(yP)y, (1.0

where(x,t) e R3X R and e C. For suitable function&(x) andF(]¢{?), the NLS equatior{1.1)
possesses special solutions,

y=dp(x)e”, >0, (1.2)
where ¢(x) is an exponentially decreasing solution of the elliptic problem,
~Ap+wp+UXp+F($)p=0, (1.3
such that¢:R3— R and ¢ e C*. Linearization of the nonlinear Schrodinger equatiart) with
the ansatz,
U= ($(0) + ()™ + o))", (1.4
leads to the spectral problem,
L=z, (1.5
where=(¢, 6)" and the linear operatof on L2(R3— (?) takes the formC=o3H, where
1 0 -A+w+f(X X
U3:<0 —1)' H:( g(x) " —A+gz(ulf(x)>’ (10

and

f() =UX) +F(¢?) + F' (¢, g(x) =F'(¢*) 4.

We assume that)(x) e C* is exponentially decreasing arifle C*,F(0)=0, such thatf,g: R3
— R are exponentially decaying™-functions.

We denote the point spectrum @f as o,(£) and the essential spectrum 6fas oo(£). We
have shown in Cuccagret al. (2009 that the spectrum of is associated to the sign of the energy
functional defined irHY(R3— C?),
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h= (s Hip). 1.7

In particular, an eigenvalue is of positiveespectively, negatiyeenergy ifh>0 (respectivelyh

< 0). We showed in Cuccagret al. (2005 that the nonsingular part of,(£) has always positive
energy. We also proved that an embedded eigenwabigositive energyh> 0 disappears under

a generic perturbation in the context of operafomwhile one of negative enerdy<0 bifurcates

into isolated complex eigenvalues of(£). The latter result generalizes an older work by Gril-
lakis (1990, while the former one is new and consistent with the theory of embedded eigenvalues
for standard Schrodinger operators.

In this paper we apply a generic perturbationtin the case when the points + w, that are
thresholds ofry(£), are either eigenvalues or resonances of rank one. We show how the resonance
or eigenvalue can either disappear in a different sheet of the Riemann surface associated to the
resolvent ofC or move away from the essential spectrum becoming an isolated real eigenvalue, or
a pair of isolated complex eigenvalues. Furthermore we study the dependence of this singularity
on the perturbation, obtaining an analogue of the similar work by Klaus and Sirf@3®) on
standard Schrodinger operators. We note that the resonance and eigenvalues at the endpoints are
typically eliminated by hypothesis in the analysis of the NLS equatiof) and the linearized
NLS problem(1.5 [Cuccagna2001), Perelman(2004), Schlag(2004]

One application of our result is the analysis of the NLS equatb) in the case when
operatorHy=-A+U(x) supports ;< --- <-uy Negative eigenvalues and when the threshold 0
is either a resonance or an eigenvalue. It is well kngisai and Yau(2002] that the NLS
equation(1.1) admits then nonlinear standing wave solutions of f¢in®?) with » close tou,, for
any preassigned and these standing wave solutions are small. Their stability properties depend
crucially on the spectral properties of the relagavhich turns out to be a small perturbation of
o3(Ho+w) by the smallness of the standing wave. In the case=df, the discrete spectrum af
is close to that ofr;(Hp+ w), in particular has at least\2elements with the point 0 of multiplicity
2. Our paper can be used to track the threshold singularity of opefatmder perturbation.

Another possible application occurs when we add a small nonlinear perturle@B@n/?) ¢ to
the main equatioril.l). Under appropriate conditions, the ground state can be shown to depend
smoothly one. Now, if for e=0 and a given value ab operatorL has resonances or eigenvalues
at the thresholds, one can ask what happens to these singularities for mea@bylhe present
paper gives a tool for analysis, avoiding details of specific applications.

For earlier work on “edge bifurcations,” which is the name for bifurcations of resonances from
the endpoints, see Kapitula and Sandstg@©002, (2004] where the main tool is the Evans
function. Since the Evans function seems better suited to one-dimens$iddjaproblems, our
present work is based on theory by Jensen and K&®839 for scalar Schrodinger operators,
applied here to the linearized NLS probleih.5). Notice that our work is more general than
Kapitula and Sandstedé2002, (2004)] since it allows also eigenvalues at the endpoints and it
does not depend on whether the solutigfx) is a ground state. Furthermore we answer to a
specific questiofisee Corollary 5.4 in Kapitulat al. (2004)] by showing that it is impossible for
a resonant pole to become an unstdlslemplex eigenvalue.

Our paper is structured as follows. The formalism of operator resolvent near the endpoints is
exposed in Sec. Il. Bifurcations of a simple resonance and a simple eigenvalue from the endpoint
are described in Secs. Il and 1V, respectively. Section V gives the proof of Lemma 4.7.

Il. OPERATOR RESOLVENT NEAR THE ENDPOINTS

Using standard Pauli matrices and o3, we write £ explicitly as

L=(-A+w+f(X)os+igX)oy, (2.2)

such thato;Lo3=L". We also decompose the operatbinto the unbounded differential paf,
and bounded potential paW(x) as L=Ly+V(x), where Ly=(-A+w)oz and V(x)=f(X)o3
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+ig(x)o,. We assume that(x) is continuous, exponentially decaying matrix-valued function, such
that

V0| <ce™, OxeR® 1<ij<2, (2.2)

for somea>0,C>0. In these notations, the spectral probléhb) is rewritten as

(Lo= == V(X (2.3

We use the weighteHl] and L2 spaces defined as
Hi={f:(0-A)"f e LF, (2.4)
L2={f:(1 +|x»)¥?f e L?}. (2.5

We also use the standard Fourier transforni4n

f(p) = ff(x)eipxdx, f(x)= Jf(p)e‘ipxdp. (2.6)
R3 R3

(271_)3/2 (27T)3/2

We denote the operator resolventaéz) =(£-2)"* andRy(2)=(Ly—2)7%, such that

R(@) = (1 +Ro(2V) Ro(2). (2.7)

The domain of the essential spectrum(£) is located atD.=(-%,-w]U[w,*), such that the
pointsz=+*w are endpoints 0b(L).

Let us consider bifurcations from the endporstw, since bifurcations from the other end-
pointz=-w are obtained from the symmetry of the probléB). Whenz ¢ D, but|z- | is small,
we introduce the parametrization,

z=w-{ Re{>0, (2.8
and consider the kernel &,(0) =Rq(w-?),Re{>0 in the explicit form

(x| 0
__ o3 |F®
RO(g)_47r|x—y|{ 0 e—\zw—azx—w} 29
When {— 0, the resolvenRy(¢) has the Taylor series expansionfH;*,H2),s>2,
Ro(0) =Ro= (R + "Ry~ {*Ry + O({"), Re(>0, (2.10
where
1 0 1110
g3
= J— , R=— s 2.1
Ro 477|x—y|{0 e'»ZwX'V] ! 477[0 o] (213
x-y| 0
- 03 ~\20|x-y| _1 [1 O} _ 2
R,= . Rs= . 2.1
2“8x| 0 £ — 5% 2aml0 o)XY (2.12
V2w

If the function ¢4(x) solves the probleni2.3) for z=w, the componentg;(x) and ¢,(x) satisfy the
equations
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Ay =T + g, (2.13
(A= 2w) i =gty + Tifs,. (2.149
Define
Co= f (fifr + Qi) AX. (2.15
RS

The bounded linear operatdf+R,V) is defined inLES,s>%. When it has a kernel, theC,|
<o for the functiony(x). The following two cases are differeri) Cy# 0 and(ii) C;=0. The
first case is referred to as the resonance and the second case is referred to as the eigenvalue of the
linearized NLS problen{2.3).
Since (fyy+gy,) H§,S>O and f(x),g(x) decay exponentially, it follows froni2.14 that
() decays exponentially too, such thate HZ,s>0. WhenCy+# 0, y4(x) decays algebraically
as 1/x|, such thaty, e H_S,s>%. When C,=0,y4(x) decays more rapidly as [X?, such that

e H_g,s> —%, including the energy spadﬂ%c L2 We summarize that

Co#0, Kerl+RyV)eH, s>32, (2.1

=

Co=0, Kerl+RyV)eHY, s>1. (2.17)

-5

In either case, we study the kernel of the adjoint operatofI&s'Ry) and the generalized kernel
Ng( +RoV)=U/_;Ker(I +RyV)" in the following two lemmas.

Lemma 2.1: Let ¢reKer(I+RyV), e Hfs,s>%. Then ¢=VospeKer(l+V'Ry), @
e H',s>2, such that Vo is an injection ofKer(1+RoV) to Ker(1+V'Ry).

Proof: It follows from direct computations fogs# O that

(I + V'RV aap= V' (1 + RV ) aaihp =V o5l + RV)¢h =0,
such thatp=V a3 € Ker(1+V'Ry) and ¢ € H;',s>3. We show thatg# 0. SinceV' a3=a3V,
then ¢=03Vp=0 implies thatV=0 and (Ly-w) =0, or equivalently Ay, =0 and(A-2w) i,
=0. However, ifyre H? s>%, then the latter equations imply thg&=0, which is impossibldl

—g1

Lemma 2.2: The generalized kerngj(N-RyV) in HL, s> % coincides withKer(l +RyV).

-1

Proof: Let e Ker(I+RyV). The generalized kerneMy(l+R,V) is bigger than the kernel
Ker(l+R,V) iff there exists a solution of the derivative equation,
(I+RV =9, e H, s>3. (2.18
Then,

(Vo3¢ = (1 + R\V) 1,V a3 = (b1, V (I + RV ) oath) = (1, V ar3(1 + RV) ) = 0,

such that(y, o5Vi) =—(ifr, 03(Lo— w) ) =0. Sinceos(Ly— w)=—A+w—wo; and ¢+ 0, the qua-
dratic form (¢, 05V is nonzero forgre Hfs,s>%, such that no solution;(x) exists in the
problem(2.18). [ |

Since geometric and algebraic dimensions of the kernél-aR,V) coincide inHis,s> % we
introduce a natural splitting,

HL = Ker(l + RyV) @ [Ker(l + V'Ry)]*, (2.19

H.' = [Ker(l + RyV)]* @ Ker(l + V'Ry), (2.20

where L is defined in terms of the pairing &%, andH_*. We denoteS, as the projection oH’,
to Ker(I+RyV), associated to the splittin@.19, andS, as the dual projection in the dual space
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H_', associated to the splitting.20. In what follows, we assume that the dimension of (Ker
+RyV) is one. The two cases i2.16) and(2.17) are considered separately in Secs. Il and IV.

Ill. BIFURCATION OF A SIMPLE RESONANCE

Here we assume that Ke# ROV)QHl, such thatz=w is a resonance of (L) but not an
eigenvalue. It is clear froni2.13 in the case ofC,# 0 that there is only one eigenvectg«x)
which decays as 14| and belongs ttb-lfs,s> % Therefore, the resonanceztw is always simple,
such that the dimension of K@rR,V) in H}s,s>% is one. SinceCy# 0, we normalize the

eigenvectony e Ker(l +R,V) by the condition

f , (fyn + gy)dx = Va, (3.1
R

such that

=—e, €= .
1 N 1 171 o
By Lemma 2.2, we havéy,V o) # 0, such that the spectral projection, associated with the
splitting (2.19), is

_ < !V* 0-3‘11’>
S0 oy

Following the analysis of Jensen and Kdfi®79, we study the Taylor series expansions(bf
+Ry({)V) nearz=w, or equivalently/=0.
Lemma 3.1: LetS=Z-S,. The following statements are true

(i) Operator S(I +RyV)S is invertible inB(SHES,SHfS) with the inverse denoted by.

(i)  Operator SpV' o3R\VSy=S,V' RV, is invertible in B(SoH2,, SgHLY) with the inverse
¢<1¢>

Proof. To prove(i), we notice that the splitting if2.19 and(2.20 is invariant for(l +RyV),
such thatS(I1+RyV)S is the restriction of(l+RyV) on [Ker(I+V'Ry)]*. Since it has an empty
kernel andR,V is compact, the statemefi} follows from the Fredholm alternative theorem.

To prove (i), we denote the dual oy as ¢ € S;H;'CKer(1+V'Ry), such that(y, ¢p)=1.
ThenSy=¢(-,) and

(3.2

* x 1 x ok 1
SoV Ri\VSpih= =5,V &, = —=dp(e,Vih) = ¢,
\1’477 \'477

where the last equality is due to normalizatil). ThereforeﬁBV*RlVSO: &(-,¢), which has
the inverseyx- ). [ |

Lemma 3.2: The following expansion is validH*,,H2) for s>§ near {=0:

(4 Ry(OV) == - Vaggh) + £+ O(), Rel>0. (3.3

Proof. Let

X=SH @ SHL =Hl, Y=SHX ® SH*

-

and
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S 0 S 0
B= 1 y C= 1, .
0 328, 0 28V o3

If Su=0, thenu e SgHZ, andSyV' o5 is injective by Lemma 2.1 and definition &%, As a result,
B:X— HES is an isomorphism, whil€: HESHJ) is injective. LetA=C(1+Ry({)V)B. Then,

S +RyV)S

o +0(¢).
0 - Sov 0'3R1VSO :| (g)

A=C(+RV)B - {CRVB+0O({?) = {

If A is invertible, B is surjective, and’ is injective, then, by Lemma 3.12 of Jensen and Kato
(1979, we have

(I +Ry(OV)t=BA™C,

such that the expansid8.3) holds by the Neumann expansion argument. |
Using (2.7), (2.10, and(3.3), we have the following result.
Corollary 3.3: The following expansion is valid (H;*,H2) for s> 2 near {=0:

R(D) =Y ,o3p) + O(1), Rel>0. (3.4
In order to work inL? rather than in a weighted spat:és,s>%, we use the Birman-Schwinger
formulation of the spectral problei2.3) for V=B"A [Cuccagnaet al. (2005];
(1+Qy(2)W=0, Quy2=ARy2)B", ze C\D,, (3.5

where

W=-Ay, p=R\(2B'W. (3.6

It is clear from(2.9) that Qy({) = Qo(w—2?), initially defined for ReZ>0, admits an analytical
extension in an open set aroutid0 with values inB3(L?,H?), such thatQ,=Q(0) is well defined.
Moreover, for any positive integer, the mapys— —Ads is an isomorphism,

Ker(l + RV)" C L2+ Ker(1 + Q)" C L?, s> 2, (3.7

such that the inverse map ¥+~ R,B"W. By Lemma 2.2, there exists dh+Qo)-invariant split-
ting,

L2=Ker(l + Qp) @ [Ker(l + Qp)]*. (3.8

We denoteP, by the projection ol? on Ker(l +Q,) andPB by the dual projection.

With the use of Corollary 3.3, we consider the family of operatfys £+¢eV,, where the
perturbation potentiaV/;(x) satisfies the same assumption as the pote¥tgl, while the unper-
turbed operatol has a simple resonance. LB4(2)=(£,-2)* and defineQ(z):AlR(z)B’; and
0,(2=AR1(2)B}=(1+€Q(2)7*Q(2), whereV,=B;A;. We can always factoriz¥, so thatA,
=A. It follows from (2.7) with A;=A that

Q(2) = (I + ARo(2)B) "AR(2)B] = (I + Qo(2)) *AR(2)B].

We again use parametrizati¢®.8) and denoteQ({) = Q(w-{?),Re>0. Since(I+Qy(£))™* can
be extended meromorphically from Re-0 to Re<0, thenQ(¢) is a meromorphic function of
£ e C. Similarly, Q,(¢) is also a meromorphic function dfe C.
The main results of this section are formulated in the following two propositions.
Proposition 3.4: Lete be a small positive parameter. {f, Vyo5) <0, then op(L4) includes
a real eigenvalue (&), z(e) < w, such that

2(e)=w- 62<1/1,V*10'3¢>2 +0(). (3.9
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If (sf,Vi056)>0, then op(£4) does not include an eigenvalue in the neighborhood=obzIn
both cases, resonance at @ disappears at+ 0.
Proof. It follows from Corollary 3.3 that

Q(¢) = LAY Brasih) + Q(0),

whereQ.(¢) is bounded for smallZ]. Then for Ref>0, we have

Qu(Q) =[1 + e (1 + €Qc() ™ *AY(- Brogyh) (1 + Q) Q(0), (3.10

which can be extended meromorphically from Re0 to Re{=<0. By Fredholm theorem, the first
factor on the right-hand side 68.10 has singularities af={(¢e), where(e) is the solution of the
linear equation,

{+ el V103h) — XQu(0)A, Byosth) + O(%) = 0. (3.1)

By implicit function theorem, there is a unique solutién{(e) for small ¢, such that

{(e) == h,Vioah) + 0(D). (3.12

The map= \T—z transforms the domaiP={ze C:z«¢ [w, )} into the first sheet of the Riemann
surfaceD,;={{ e C:Re >0}, which is connected with the second shé&at={; e C:Re(<0}.
When the root 0f3.11) belongs toD;, the corresponding poirte D is the eigenvalue of ;, at
least for smalle, since the singularities 0©,(z)=AR,(2)B; coincide with the singularities of
R1(2). When the root 0f3.11) belongs tdD,, the corresponding poirztbelongs to the compliment
of the closure ofD in the Riemann surface, which continuPsacrossz e [w,). As a result, it
does not belong to the closure B such that it is not an eigenvalue. |

Proposition 3.5: Ife>0 and (i, V o34) <0, the new eigenvalue(@) with the corresponding
eigenvectonf(x) has the positive energy norfi.7), such that

(Y HY) >0, Oe>0. (3.13

Proof: Using (3.5), we look for a solution of the problem:

(1 + ARy({(€)) (B + eB)))(W + W ) =0,
whereW =-Ays and \T'E e [Ker(1+Qp)]*. Projecting the equation diKer(l+Qg)]* with operator
Pp, We have the problem,

F(W,,€) = Pyl + ARy({(6))(B" + €B) W+ ePHARy({(€)B1W + PoAlRy({(€)) — RolB"W =0,
whereF(0,0=0 and

(9F * *
——(0,0 = Po(l + Qo)
oW,
SinceP}(1+Qy) is an isomorphism ifiker(l +Qg) ]+, the functiom, is a smooth function oé, by
implicit function theorem. Therefore, we define
e=Ro({())(B" + eB)(W + W ).

Since Ro(£(e)) € B(L2,H2) and (B"+eB})(W+W,) e L2,5>1 are continuous ire at e=0, we
conclude that
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lim () =hx), P.el?, s>3.

e—0

It follows from the systent2.13 and(2.14) in the cas€2.16) that ¢, ¢ L2(R) and i, € L2(R). By
Fatou lemma, we have the limit

lim ap, ) = ollgallP2— wllgF2= +o0.

By continuity, the inequality3.13 holds fore>0. |

IV. BIFURCATION OF A SIMPLE EIGENVALUE

Here we assume that Kg#RoV) CHJ, such thatz=w is an eigenvalue ofr,(L). Let ¢
e Ker(£-w)CL? and we assume that dim K&r—w)=1. Let P, be the spectral projection i’
onto KefL - w), such that

<' 10—3‘/’)
(,038)

Po=4 (4.1)

It is proved in Cuccagnat al. (2009, Sec. Il that a simple eigenvalue has non zero en€tgy
such that i, o34) # 0. SinceCy=0 in (2.15), it is clear thatR;V¢=0. Furthermore, we have the
following result.

Lemma 4.1: Letu,v be two functions in IS:F,s>§, such that Ru=R,v=0 and (e;,u)
=(e,,v)=0, wheree,;=(1,0)". Then

(Rou,v) = = (Ryu,RyVv). (4.2

Proof: The proof is given with a direct computation

1 1 0
2,2 2
Rouv) =lim CXR(D) - RoJuwy=lim e ol T TC T . |oe
{—0 {—0
O -
p2+2w—§2 p2+ 2w
1
E 0
=- 1 0,V | == (Rou,Rov),
0 [ —
(P* + 20)?

where(i(p) is the Fourier transform afi(x), defined by(2.6). [ |

We apply the splitting ons,s>—%, defined by(2.19, with projectionS, to Ker(l +RyV),
such thatS=7Z-S,,.
Lemma 4.2: The following statements are true:

(i) PV Ry03VPy=—~PoasPy and SV o3RVSy=-S03S,.

(i)  OperatorSyasSy is invertible in B(SoHL,, SgHZY), with the inversePoos.

1

Proof: To prove(i), we note that3VPou andVPgv for anyu,v e HZ, s> —% satisfy assump-

tions of Lemma 4.1 and, therefore,
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(Ryo3VPou, VPoV) = = (RyoraVPou, RoVPoV) = = (5PgU, PoV) = = (PyosPou, V).

The second part dfi) follows from the relationsP,Sy=S, and SyPy=S.
To proveii), let ¢ e SyHZ* C Ker(I+V'Ry) be the dual ofiy, such that s, ¢)=1. Therefore,

So= (. #), So=(. W), Seo3So= @, dX o3,

such that
* - < 1¢>
(SqoaSo) ™= =Pyos.
09390 '/JW 003
|
Lemma 4.3: The following expansion is validf#H>,H2,) for s>2 near {=0:
(1 +Ry(OV) 1= = 2PV + I YPVRVPV + O(1), Rel> 0. (4.3

Proof: The proof is similar to that of Lemma 3.2. Let

X=SH, @ SHL =Hl, Y=SHL ® SH:*

-

5o S 0 .- S 0
lo 7Sy T U0 SV |

If Su=0, thenu e Ker(1+R,V) andV o3 is injective in Kefl +V'Ry) by Lemma 2.1. As a resullt,
B:X— Xis surjective, while&C: X— ) is injective. LetA=C(l +Ry({)V)B. Using the Taylor series
expansion(2.10), we have

and

A=Ag- LA+ 08D,
where
PREELE 0 [srwvs 0
o 0 SV aRVS, T T 0 SV oaRVS |
By Neumann expansions, we havie*= Ay + (A A1 A +0(£?), such that
e[ 0 KoSRVSK, 0
- 0 - (880'380)_1 0 (8:)0'380)_158V* 0'3R3VSO(880'380)_1

where Ky=(S(1+RyV)S)™L. Since(l+Ry({)V) 1=BAIC, the expansiort4.3) holds. [
Using (2.7), (2.10, and(4.3), as well asPyVR,=-P, and PVR;=0, we have the following
result.
Corollary 4.4: The following expansion is valid Eﬁ(H;l,Hfs) for s>g near {=0:

R({) = %Py— L YPoVRVP,+ O(1), Re> 0. (4.4)

Similar to Sec. lll, we use Corollary 4.4 and consider the family of operafgrs( +€V;(x),
where the perturbation potentisl}(x) satisfies the same assumption as the pote¥tial, while
the unperturbed operatof has a simple eigenvalue. L&,(2)=(£,;-2)" and defineQ(2)
=AR(2)B; and Q;(2)=AR,(2)B;=(1+€Q(2))*Q(z), where V;=BJA. As in Sec. llI, functions
Q(¢) andQ4(¢) can be meromorphically extended from Re 0 to Re{<0. The main result of
this section is formulated in the following proposition.

Proposition 4.5: Lete be a small positive parameter and ¥R;Vip, V' a3) # 0. Then

(i) eigenvalue at zw disappears ag# 0.
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(i) Let (,038)<0. Then o,(L,) near z=w includes one real eigenvalue(g<w if
(Vo3>0 and two complex eigenvaluegge) if (i, V o31) <0. Asymptotic approxi-
mations of the eigenvalueg$ez and z ,(€) are given by

A=+ L PV1TD ‘@Y;‘:;‘i” L o) (4.5
and
Rz, €)= 0+ e LT o ) 4.6

(03¢

s [ Vi) RV o) Viosth)
Im(z, o(€)) = £ € - s +0(éd). (4.7)

(i) Let(a,03¢6)>0. Thenoy(L,) near z=w includes one real eigenvaluée < w, given by
(4.5), if (i, V03 <0 and no eigenvalues i,V a5 >0.

The proof of Proposition is based on the following elementary result.
Lemma 4.6: Consider a quadratic equatjon

- elF(e,0) + €G(€,0) = 0, (4.9)

where Fe, ) and Qe,{) are analytic ine and ¢ at the point(0, 0), such that G0,0) # 0 and
JIF(0,9) _ 9G(0,0)

o 4

Then, for smalle, the quadratic equatiori4.8) has exactly two solution, ,(€), such that|Z;(e)
~jo(€)|=0(¥?), where{jo(€),j=1, 2, are solutions of the quadratic equation

=0. (4.9
=0

2% - €F(0,0 + €G(0,0) = 0. (4.10

Proof: Let u=¢€Y? and substitute/=ué. Introducing another parametar we rewrite the
guadratic equatioé.8) in the form,

&~ pEF(N? N ud) + G\ p?, A ué) = 0. (4.11)

The case\n=1 gives(4.8), while the case. =0 gives(4.10. SinceG(0, 0) # 0 by assumption, there
exist two analytical solutions of4.11), by the implicit function theorem, which are defined for
small x>0 and\ [0, 1]. Since

1
5(1,M)—§(0.M)=f NEN, w)dN,
0
we apply implicit differentiation 0f4.11) and find that

[2& = WF(Nu? N ) = NuPEF (NP N ) + Aud,GONp? N ) 10yé = pPEF (N A d)
= WoEIF (NP Npé) + pP0,GNu? N ) + pnéd,G\u? Aud) =0,

whered; andd, are derivatives in the first and second arguments. Under constf4i@itswe have

aé=0(u?), such thaf(1,u) - £(0,m)|=O(u). |
Proof of Proposition 4.5it follows from Corollary 4.4 that

Q({) = L ?APyB; — ' APVRVPB; + Qu({), (4.12

whereQ.(¢) is bounded for smalf. As a result, for R&>0, we have
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Qu(Q) =[1 + €l + €Q(0) L ?APoB, — ' APNVRVP BT ™M1 + €Q.(0)) (0,

which can be extended meromorphically for Re0. Singularities 0fQ,({) near{=0 correspond
to zeros of

B; -, RVP,B; - Vo
det[§2+ el + ch(Z))‘l(Aq"( ; ; U:f;f) - <fp ;3 s 3@)]

The determinant equation can be written as the quadratic equdt®nwhereF (e, ) andG(e, {)
are defined for Ré>0 as

(RVYV a3dh) , . -
F(e)= le + €Qu(0) A, a5, (4.13
1 *
G(e ) = s ¢><Bl(| +€Q(0)) A, o), (4.14
and they can be analytically continued to £e0. It is clear from(4.13 and(4.14) that
(RaVah, V' o), V1038h) A
F(0,0) = , G0O0,)=—F"""—,
0.0 e 0= o)

such that the conditiof4.9) is satisfied. By Lemma 4.6, there exist two solutiong48) in the
O(€¥?)-neighborhood of solutions of4.10, when (,V,o54) #0. Solutions of(4.10 are ex-
panded as

AvA Vo Vo
Luole) = 24 <‘</’¢,;‘:;‘§’> +§<R3V‘” \2 %iﬁ;ﬁv o). (419

When(¢,v’;a3zp>/<zp,a3¢><0, there is a unique real eigenvalue of operdigiin the neighbor-
hood of z=w, such thatz=w-¢2,+0(e¥?), which results in(4.5. The other solution/_(e)
corresponds to Re<0 and, by arguments in the proof of Proposition 3.4, it does not correspond
to an eigenvalue of operatd;.

When (i, V o34 [ (if, o516) >0, we have to consider the(€) term of the asymptotic expan-
sion (4.15. Due to the constraint,=0 in (2.15, we have

3
« 1
RV V ot == 15 21, fyr + gy < 0. (4.19
J:

Since(RyViy, V' o) # 0, then(R;Vap, V' ozh) < 0. Therefore, it follows from(4.15 that

,V*O'
Im Zuo(e) = £ €24 —<l<p¢,;3;l§,> +0(¥?),

€ RV o) (i Vyoth)
2 <¢7 0-3¢>2

In the cas€ s, o5h) >0 and{w,V,036) >0, we have Re.,<0, such that no eigenvalues 6f
exist in the neighborhood of=w. In the case(y,o346)<0 and (z/;,V*1(r31/;)<0, we have
Re.o>0, such that two complex eigenvalues®f exist in the neighborhood af=w, with the
asymptotic approximationgt.6) and (4.7). |
A more special result occurs in the case WKkBgV s, V' o3)=0, which includes spherically

Rel.q(e) = +0(?).
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symmetric potentiaV(x) with spherically symmetric eigenvectaf(x), see(4.16). In order to
study this special case, we need to extend the theory of wave operators fronf1R&f and
Cuccagnat al. (2005. Following Cuccagnat al. (2009, we consider a decomposition bf into
the L-invariant Jordan blocks:

2= 3 Ny(L-2) & X(L), xc(c):[ D Ng(c*—z)]{ 4.17)

Ze a'p(ﬁ) zZe O'p(ﬁ)

and, equivalently,

2= S NyL -2 @ X(L), XL :[ D Ng(ﬁ—z)]l, 4.18
Ze O'p(,C) Ze a'p(L')

where ap(ﬁ):op(ﬁ*) and Ng(ﬁ—z):ugflKer(ﬁ—z)”. The invariant splittingg4.17) and (4.18

hold in the assumption that,(£) N o(£) is a union of simple eigenvalues, such thytL-2)

=Ker(L-2) for ze D.. The action of £ in X.(L) is given by the scattering theory of wave

operators Katq1966, which is based on the following existence result.

Lemma 4.7: Let &) and B(x) be exponentially decaying potentials ang(£) N oe(£) be a
union of simple eigenvalues, which includes the endpoimt®a without resonance. Let
(RyVap, V' a5y =0. There exist isomorphisms WP X (£) and Z X,(£)— L2, which are inverse
of each other, defined as follows

+oo

* . 1 . * -
Oue L? Ov e XJ(£"),(Wuv)=(u,v)+ lim o (A(Lo-N-ie)"u,B(L" =\ +ie) w)dh,

e—0t €T J -

(4.19

and

1 +00
Ou e X(£), Dv e L2(Zu,v) = (u,0) + lim o] (AL-A- ie)'u,B(Lo— N +ie)v)d\.

"
e—0 -

(4.20

We prove this result in Sec. V. Using Lemma 4.7, we consider bifurcation of the simple eigenvalue
in the special case wheiR;Vis, V' o34)=0.

Proposition 4.8: Lete be a small positive parameter aq@;Vap, V' o346)=0. Then, Proposi-
tion 4.5 holds, but the asymptotic expansidii?) is modified as follows

272|4h ()% (Vi)
[ = + 2 o), 4.2
M@= oty N (gogpy O “.23

Where;Zf=Z7?CV1¢ and fﬂ(p) is the Fourier transform ofp(x).
Proof: We use the splittingé4.17) and(4.18 and define operatd?, as the projection of2 on
X(L). Itis clear from(4.12) that

Q) =ATZ-PYRB = { }APZR@)B*ﬁAPCR(oB’i-
ze u'p([,)\ %)

In the special caséR;Vip,V o36)=0, the quadratic equatiof.8) hasF(e,)=0 and

G(€,0) = G(0,¢) + €,G(0,0) + O(€)),

where
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and

(BIQUOAY, 039 __ (T=PoROVah Viosh)
<lp1 0-3¢> <lﬂ,0’31ﬁ> '

The termd,G(0,¢) consists of the contribution from all eigenvaluesgf(£) different fromz
=w and from the contribution fronX.(£). The first contribution can be estimated as follows:

alG(Olg) ==

Im > (PRVigpVios) = O().

Ze (rp(C)\{w}

This estimate is based on the expansion for real-vaMgd) and y(x) [see Cuccagnat al.

(2005],
> { }<7> R@VyhViosh) = 2 (z-2) P, V1V o) + > [(2=2) P V1V o5ih)
Ze o'p(,C)\ ® E\h E‘C
+ (Z_?j)_l<Pz_jV1'r[’iV*0'3¢>]- (4.22

Since P, a3 is self-adjoint forz; € R, the factor(P,V 4,V o33) is real. Then, the first term in
(4.22 has the imaginary part of order(ltnz) or O({?) for z=w—{?. Similarly, the operator
(Rez-z)~ p J03+(Rez—zJ 1P—o3 is self-adjoint forz e C, such that the second term (#4.22
has the imaginary part of order([m 2) or O(Z?). The second contribution i#,G(0,/) can be
estimated by using wave operators, which satisfy the following idenfiescagnaet al. (2005 ]:

Poos= 03P, Wos=05Z, Zoz=03W, ZL=LZ. (4.23

SinceP Ve X (L), there exista~/;e L2, such thatPcvlz/z:WT/z. As a result, we have

(PREV1 V10390 = (REOV18, 0Wih) = (ZROV 1, 058) = (Ro(&) Y, 053h)
Since(ROsz, a3~://) and(erjr,a;zp) are real valued, we finally have
(Ruh,o5th)
<¢| 0-3¢>

The quadratic equatiof.8) is now read as follows

Im ,G(0,) = Im ¢+ O(&?). (4.24

2+ eG(e,l)=0. (4.25

In the caseG(0,0) >0, we have from Lemma 4.6 that

[ V3
Im ¢y o(€) = + €2 <‘<p¢';:i'>b> +0(¥?),

in addition, by expansior(4.24), we have from(4.25 that 2 Re/ Im {=—¢€*Im £d,9,G(0,0)
+0(€3, €27?), such that

E_2<R1’l~p,0'3’(-/’l> +O(65/2).

REGAIY o

Direct computations fron2.11) show that
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1

(Rodh, o) = E( fﬂjfl dx) ( fﬂjfl dx) =2lis(0)* =0,

Whereszl(p) is the Fourier transform of;(x), defined by(2.6). Again, we have Ré; () >0 in
the casd i, o5¢) <0 andy;(0) # 0, such that two complex eigenvalues®f exist in the neigh-

borhood ofz=w, with the asymptotic approximatiorig.6) and (4.21). |
V. PROOF OF LEMMA 4.7

According to Kato(1966, Lemma 4.7 is valid if we can prove that there existsO such that
Oe+# 0, the following bounds are true:

JZ IALo—ie=N P dh < cJuf?, uel? (5.1)
fi IB(Lo—ie=N)uPdh < cJul’, uel? (5.2
Ji IB(C —ie- N uPd < dlul>, Due X(£), (5.3
fw IALL =ie=N)"Pdy < cul2, Due XJL). (5.9

The bound45.1) and(5.2) are proved in Corollary to Theorem XII1.25 in Reed and Siniba78.
We prove the boundb.4), while the bound5.3) can be proved similarly. Following Cuccagat
al. (2005, we write

AL-27v=(+Q)2)A(Ly-27 v, Ve X(L), (5.5

where Q((2) is continuation 0fQy(2) from Imz>0 to Imz=0. The operatorl +Q;(2)™* is
uniformly bounded inz away from the eigenvalues af,(£). It has pole singularities at the
eigenvalues obr,(L), which were considered in Cuccagetal. (2009, Lemma 4.3. The endpoint
eigenvaluez=+w were excluded from Cuccagm al. (2005. Here we shall consider the eigen-
valuez=w. We need to show thak(£-2)"*v hasL?-norm which is uniformly bounded ie>0,

for Imz=€ and Rez= w. Nearz=w, we have the following expansion in the space of operators
L2512

(1 + QL) L= wi_ZAPOB* +O(),

Due to the boundés.1) and(5.2), we only need to studiw—2z) AP VRy(2)Vv, for v e X (L) near
z=w. We use the relation

(VRV,a3¢h) = =(v,034) =0, [V e X(L).

As a result,

 (VRo@V.o3th) o (VIRo(2) ~Rolv.o39h) _ (VRRo(DV,031h)
—z (poh)  w-z  (powh) (Yo3)

_ (Ro(2)v,03¢p)

T (o)

1
——PoVR(2)v=
w—17Z w
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We need to show thatRy(2)v,os) is in Hardy spaceH? for Im z>0, which is true if (x)
belong to the space of Rollnick potentials,

f | ()| (x|
pdp x-yP?
It is clear from (2.14) that ¢»(x) decays exponentially aj|— . Since Cy=0 in (2.15 and

(%, fn+9y)=0,j=1, 2, 3 in(4.19, it follows from (2.13 that ¢4(x) decays algebraically as
|X|~3. As a result, the eigenvecta#(x) satisfies the conditio(6.6).

dxdy < o, (5.6)
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