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We study bifurcations of eigenvalues from the endpoints of the essential spectrum
in the linearized nonlinear Schrödinger problem in three dimensions. We show that
a resonance and an eigenvalue of positive energy at the endpoint may bifurcate
only to a real eigenvalue of positive energy, while an eigenvalue of negative energy
at the endpoint may also bifurcate to complex eigenvalues. ©2005 American In-
stitute of Physics.fDOI: 10.1063/1.1901345g

I. INTRODUCTION

We consider the nonlinear SchrödingersNLSd equation in three dimensions,

ict = − Dc + Usxdc + Fsucu2dc, s1.1d

wheresx,tdPR33R andcPC. For suitable functionsUsxd andFsucu2d, the NLS equations1.1d
possesses special solutions,

c = fsxdeivt, v . 0, s1.2d

wherefsxd is an exponentially decreasing solution of the elliptic problem,

− Df + vf + Usxdf + Fsf2df = 0, s1.3d

such thatf :R3→R and fPC`. Linearization of the nonlinear Schrödinger equations1.1d with
the ansatz,

c = sfsxd + wsxdeizt + ūsxde−iz̄tdeivt, s1.4d

leads to the spectral problem,

Lc = zc, s1.5d

wherec=sw ,udT and the linear operatorL on L2sR3°C2d takes the formL=s3H, where

s3 = S1 0

0 − 1
D, H = S− D + v + fsxd gsxd

gsxd − D + v + fsxd
D , s1.6d

and

fsxd = Usxd + Fsf2d + F8sf2df2, gsxd = F8sf2df2.

We assume thatUsxdPC` is exponentially decreasing andFPC` ,Fs0d=0, such thatf ,g:R3

→R are exponentially decayingC`-functions.
We denote the point spectrum ofL as spsLd and the essential spectrum ofL as sesLd. We

have shown in Cuccagnaet al. s2005d that the spectrum ofL is associated to the sign of the energy
functional defined inH1sR3°C2d,
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h = kc,Hcl. s1.7d

In particular, an eigenvalue is of positivesrespectively, negatived energy ifh.0 srespectively,h
,0d. We showed in Cuccagnaet al. s2005d that the nonsingular part ofsesLd has always positive
energy. We also proved that an embedded eigenvaluez of positive energyh.0 disappears under
a generic perturbation in the context of operatorL, while one of negative energyh,0 bifurcates
into isolated complex eigenvalues ofspsLd. The latter result generalizes an older work by Gril-
lakis s1990d, while the former one is new and consistent with the theory of embedded eigenvalues
for standard Schrödinger operators.

In this paper we apply a generic perturbation toL in the case when the pointsz= ±v, that are
thresholds ofsesLd, are either eigenvalues or resonances of rank one. We show how the resonance
or eigenvalue can either disappear in a different sheet of the Riemann surface associated to the
resolvent ofL or move away from the essential spectrum becoming an isolated real eigenvalue, or
a pair of isolated complex eigenvalues. Furthermore we study the dependence of this singularity
on the perturbation, obtaining an analogue of the similar work by Klaus and Simons1980d on
standard Schrödinger operators. We note that the resonance and eigenvalues at the endpoints are
typically eliminated by hypothesis in the analysis of the NLS equations1.1d and the linearized
NLS problems1.5d fCuccagnas2001d, Perelmans2004d, Schlags2004dg

One application of our result is the analysis of the NLS equations1.1d in the case when
operatorH0=−D+Usxd supports −m1, ¯ ,−mN negative eigenvalues and when the threshold 0
is either a resonance or an eigenvalue. It is well knownfTsai and Yaus2002dg that the NLS
equations1.1d admits then nonlinear standing wave solutions of forms1.2d with v close tomn for
any preassignedn and these standing wave solutions are small. Their stability properties depend
crucially on the spectral properties of the relatedL which turns out to be a small perturbation of
s3sH0+vd by the smallness of the standing wave. In the case ofn=1, the discrete spectrum ofL
is close to that ofs3sH0+vd, in particular has at least 2N elements with the point 0 of multiplicity
2. Our paper can be used to track the threshold singularity of operatorL under perturbation.

Another possible application occurs when we add a small nonlinear perturbationedFsucu2dc to
the main equations1.1d. Under appropriate conditions, the ground state can be shown to depend
smoothly one. Now, if for e=0 and a given value ofv operatorL has resonances or eigenvalues
at the thresholds, one can ask what happens to these singularities for nearbyeÞ0. The present
paper gives a tool for analysis, avoiding details of specific applications.

For earlier work on “edge bifurcations,” which is the name for bifurcations of resonances from
the endpoints, see Kapitula and Sandstedefs2002d, s2004dg where the main tool is the Evans
function. Since the Evans function seems better suited to one-dimensionals1Dd problems, our
present work is based on theory by Jensen and Katos1979d for scalar Schrödinger operators,
applied here to the linearized NLS problems1.5d. Notice that our work is more general than
Kapitula and Sandstedefs2002d, s2004dg since it allows also eigenvalues at the endpoints and it
does not depend on whether the solutionfsxd is a ground state. Furthermore we answer to a
specific questionfsee Corollary 5.4 in Kapitulaet al. s2004dg by showing that it is impossible for
a resonant pole to become an unstablescomplexd eigenvalue.

Our paper is structured as follows. The formalism of operator resolvent near the endpoints is
exposed in Sec. II. Bifurcations of a simple resonance and a simple eigenvalue from the endpoint
are described in Secs. III and IV, respectively. Section V gives the proof of Lemma 4.7.

II. OPERATOR RESOLVENT NEAR THE ENDPOINTS

Using standard Pauli matricess2 ands3, we writeL explicitly as

L = s− D + v + fsxdds3 + igsxds2, s2.1d

such thats3Ls3=L* . We also decompose the operatorL into the unbounded differential partL0

and bounded potential partVsxd as L=L0+Vsxd, where L0=s−D+vds3 and Vsxd= fsxds3
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+ igsxds2. We assume thatVsxd is continuous, exponentially decaying matrix-valued function, such
that

uVi,jsxdu ø Ce−auxu, ∀ x P R3, 1 ø i, j ø 2, s2.2d

for somea.0,C.0. In these notations, the spectral problems1.5d is rewritten as

sL0 − zdc = − Vsxdc. s2.3d

We use the weightedHs
t andLs

2 spaces defined as

Hs
t = h f:sv − Ddr/2f P Ls

2j , s2.4d

Ls
2 = h f:s1 + uxu2ds/2f P L2j . s2.5d

We also use the standard Fourier transform inL2,

fspd =
1

s2pd3/2E
R3

fsxdeipx dx, fsxd =
1

s2pd3/2E
R3

fspde−ipx dp. s2.6d

We denote the operator resolvent asRszd=sL−zd−1 andR0szd=sL0−zd−1, such that

Rszd = sI + R0szdVd−1R0szd. s2.7d

The domain of the essential spectrumsesLd is located atDe=s−` ,−vgø fv ,`d, such that the
pointsz= ±v are endpoints ofsesLd.

Let us consider bifurcations from the endpointz=v, since bifurcations from the other end-
point z=−v are obtained from the symmetry of the problems2.3d. Whenz¹De but uz−vu is small,
we introduce the parametrization,

z= v − z2, Rez . 0, s2.8d

and consider the kernel ofR0szd;R0sv−z2d ,Rez.0 in the explicit form

R0szd =
s3

4pux − yuFe−zux−yu 0

0 e−Î2v−z2ux−yu G . s2.9d

Whenz→0, the resolventR0szd has the Taylor series expansion inBsHs
−1,H−s

1 d ,s.
3
2,

R0szd = R0 − zR1 + z2R2 − z3R3 + Osz4d, Rez . 0, s2.10d

where

R0 =
s3

4pux − yuF1 0

0 e−Î2vux−yu G, R1 =
1

4p
F1 0

0 0
G , s2.11d

R2 =
s3

8p3ux − yu 0

0
e−Î2vux−yu

Î2v
4, R3 =

1

24p
F1 0

0 0
Gux − yu2. s2.12d

If the functioncsxd solves the problems2.3d for z=v, the componentsc1sxd andc2sxd satisfy the
equations

053520-3 Bifurcations from the endpoints J. Math. Phys. 46, 053520 ~2005!

Downloaded 17 Oct 2005 to 130.113.105.64. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



Dc1 = fc1 + gc2, s2.13d

sD − 2vdc2 = gc1 + fc2. s2.14d

Define

C0 =E
R3

sfc1 + gc2ddx. s2.15d

The bounded linear operatorsI +R0Vd is defined inL−s
2 ,s.

1
2. When it has a kernel, thenuC0u

,` for the functioncsxd. The following two cases are different:sid C0Þ0 andsii d C0=0. The
first case is referred to as the resonance and the second case is referred to as the eigenvalue of the
linearized NLS problems2.3d.

Since sfc1+gc2dPHs
2,s.0 and fsxd ,gsxd decay exponentially, it follows froms2.14d that

c2sxd decays exponentially too, such thatc2PHs
2,s.0. WhenC0Þ0,c1sxd decays algebraically

as 1/uxu, such thatc1PH−s,s.
1
2. When C0=0,c1sxd decays more rapidly as 1/uxu2, such that

c1PH−s,s.−1
2, including the energy spaceH0

1,L2. We summarize that

C0 Þ 0, KersI + R0Vd P H−s
1 , s.

1
2 , s2.16d

C0 = 0, KersI + R0Vd P H−s
1 , s.

1
2 . s2.17d

In either case, we study the kernel of the adjoint operator KersI +V*R0d and the generalized kernel
NgsI +R0Vd=øn=1

` KersI +R0Vdn in the following two lemmas.
Lemma 2.1: Let cPKersI +R0Vd ,cPH−s

1 ,s.
1
2. Then, f=V*s3cPKersI +V*R0d ,f

PHs
−1,s.

1
2, such that V*s3 is an injection ofKersI +R0Vd to KersI +V*R0d.

Proof: It follows from direct computations forcÞ0 that

sI + V*R0dV*s3c = V*sI + R0V
*ds3c = V*s3sI + R0Vdc = 0,

such thatf=V*s3cPKersI +V*R0d and fPHs
−1,s.

1
2. We show thatfÞ0. SinceV*s3=s3V,

thenf=s3Vc=0 implies thatVc=0 and sL0−vdc=0, or equivalently,Dc1=0 andsD−2vdc2

=0. However, ifcPH−s
1 ,s.

1
2, then the latter equations imply thatc=0, which is impossible.j

Lemma 2.2: The generalized kernel NgsI +R0Vd in H−s
1 ,s.

1
2, coincides withKersI +R0Vd.

Proof: Let cPKersI +R0Vd. The generalized kernelNgsI +R0Vd is bigger than the kernel
KersI +R0Vd iff there exists a solution of the derivative equation,

sI + R0Vdc1 = c, c1 P H−s
1 , s.

1
2 . s2.18d

Then,

kc,V*s3cl = ksI + R0Vdc1,V
*s3cl = kc1,V

*sI + R0V
*ds3cl = kc1,V

*s3sI + R0Vdcl = 0,

such thatkc ,s3Vcl=−kc ,s3sL0−vdcl=0. Sinces3sL0−vd=−D+v−vs3 and cÞ0, the qua-
dratic form kc ,s3Vcl is nonzero forcPH−s

1 ,s.
1
2, such that no solutionc1sxd exists in the

problems2.18d. j

Since geometric and algebraic dimensions of the kernel ofsI +R0Vd coincide inH−s
1 ,s.

1
2, we

introduce a natural splitting,

H−s
1 = KersI + R0Vd % fKersI + V*R0dg', s2.19d

Hs
−1 = fKersI + R0Vdg'

% KersI + V*R0d, s2.20d

where' is defined in terms of the pairing ofH−s
1 andHs

−1. We denoteS0 as the projection ofH−s
1

to KersI +R0Vd, associated to the splittings2.19d, andS0
* as the dual projection in the dual space
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Hs
−1, associated to the splittings2.20d. In what follows, we assume that the dimension of KersI

+R0Vd is one. The two cases ins2.16d and s2.17d are considered separately in Secs. III and IV.

III. BIFURCATION OF A SIMPLE RESONANCE

Here we assume that KersI +R0Vd�H0
1, such thatz=v is a resonance ofsesLd but not an

eigenvalue. It is clear froms2.13d in the case ofC0Þ0 that there is only one eigenvectorcsxd
which decays as 1/uxu and belongs toH−s

1 ,s.
1
2. Therefore, the resonance atz=v is always simple,

such that the dimension of KersI +R0Vd in H−s
1 ,s.

1
2 is one. SinceC0Þ0, we normalize the

eigenvectorcPKersI +R0Vd by the condition

E
R3

sfc1 + gc2ddx = Î4p, s3.1d

such that

R1Vc =
1

Î4p
e1, e1 = F1

0
G .

By Lemma 2.2, we havekc ,V*s3clÞ0, such that the spectral projection, associated with the
splitting s2.19d, is

S0 = c
k·,V*s3cl
kc,V*s3cl

. s3.2d

Following the analysis of Jensen and Katos1979d, we study the Taylor series expansions ofsI
+R0szdVd nearz=v, or equivalentlyz=0.

Lemma 3.1: LetS=I−S0. The following statements are true:

sid OperatorSsI +R0VdS is invertible inBsSH−s
1 ,SH−s

1 d with the inverse denoted byK.
sii d Operator S0

*V*s3R1VS0=S0
*V*R1VS0 is invertible in BsS0H−s

1 ,S0
*Hs

−1d with the inverse
ck· ,cl.

Proof: To provesid, we notice that the splitting ins2.19d ands2.20d is invariant forsI +R0Vd,
such thatSsI +R0VdS is the restriction ofsI +R0Vd on fKersI +V*R0dg'. Since it has an empty
kernel andR0V is compact, the statementsid follows from the Fredholm alternative theorem.

To prove sii d, we denote the dual ofc as fPS0
*Hs

−1#KersI +V*R0d, such thatkc ,fl=1.
ThenS0

* =fk· ,cl and

S0
*V*R1VS0c =

1
Î4p

S0
*V*e1 =

1
Î4p

fke1,Vcl = f,

where the last equality is due to normalizations3.1d. Therefore,S0
*V*R1VS0=fk· ,fl, which has

the inverseck· ,cl. j

Lemma 3.2: The following expansion is valid inBsH−s
1 ,H−s

1 d for s.
5
2 near z=0:

sI + R0szdVd−1 = − z−1ck·,V*s3cl + K + Oszd, Rez . 0. s3.3d

Proof: Let

X = SH−s
1

% S0H−s
1 = H−s

1 , Y = SH−s
1

% S0
*Hs

−1

and
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B =FS 0

0 z−1
2S0

G, C =FS 0

0 z−1
2S0

*V*s3
G .

If Su=0, thenuPS0H−s
1 andS0

*V*s3 is injective by Lemma 2.1 and definition ofS0
* . As a result,

B :X°H−s
1 is an isomorphism, whileC :H−s

1 °Y is injective. LetA;CsI +R0szdVdB. Then,

A = CsI + R0VdB − zCR1VB + Osz2d = FSsI + R0VdS 0

0 − S0
*V*s3R1VS0

G + Oszd.

If A is invertible,B is surjective, andC is injective, then, by Lemma 3.12 of Jensen and Kato
s1979d, we have

sI + R0szdVd−1 = BA−1C,

such that the expansions3.3d holds by the Neumann expansion argument. j

Using s2.7d, s2.10d, ands3.3d, we have the following result.
Corollary 3.3: The following expansion is valid inBsHs

−1,H−s
1 d for s.

5
2 near z=0:

Rszd = z−1ck·,s3cl + Os1d, Rez . 0. s3.4d

In order to work inL2 rather than in a weighted spaceL−s
2 ,s.

1
2, we use the Birman–Schwinger

formulation of the spectral problems2.3d for V=B*A fCuccagnaet al. s2005dg;

sI + Q0szddC = 0, Q0szd = AR0szdB* , zP C \ De, s3.5d

where

C = − Ac, c = R0szdB*C. s3.6d

It is clear from s2.9d that Q0szd;Q0sv−z2d, initially defined for Rez.0, admits an analytical
extension in an open set aroundz=0 with values inBsL2,H2d, such thatQ0=Qs0d is well defined.
Moreover, for any positive integern, the mapc°−Ac is an isomorphism,

KersI + R0Vdn , L−s
2 ° KersI + Q0dn , L2, s.

1
2 , s3.7d

such that the inverse map isC°R0B
*C. By Lemma 2.2, there exists ansI +Q0d-invariant split-

ting,

L2 = KersI + Q0d % fKersI + Q0
*dg'. s3.8d

We denoteP0 by the projection ofL2 on KersI +Q0d andP0
* by the dual projection.

With the use of Corollary 3.3, we consider the family of operatorsL1=L+eV1, where the
perturbation potentialV1sxd satisfies the same assumption as the potentialVsxd, while the unper-
turbed operatorL has a simple resonance. LetR1szd=sL1−zd−1 and defineQszd=A1RszdB1

* and
Q1szd=A1R1szdB1

* =sI +eQszdd−1Qszd, whereV1=B1
*A1. We can always factorizeV1 so thatA1

=A. It follows from s2.7d with A1=A that

Qszd = sI + AR0szdB1
*d−1AR0szdB1

* = sI + Q0szdd−1AR0szdB1
* .

We again use parametrizations2.8d and denoteQszd;Qsv−z2d ,Rez.0. SincesI +Q0szdd−1 can
be extended meromorphically from Rez.0 to Rezø0, thenQszd is a meromorphic function of
zPC. Similarly, Q1szd is also a meromorphic function ofzPC.

The main results of this section are formulated in the following two propositions.
Proposition 3.4: Lete be a small positive parameter. Ifkc ,V1

*s3cl,0, thenspsL1d includes
a real eigenvalue zsed ,zsed,v, such that

zsed = v − e2kc,V1
*s3cl2 + ose2d. s3.9d
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If kc ,V1
*s3cl.0, then spsL1d does not include an eigenvalue in the neighborhood of z=v. In

both cases, resonance at z=v disappears ateÞ0.
Proof: It follows from Corollary 3.3 that

Qszd = z−1Ack·,B1s3cl + Qcszd,

whereQcszd is bounded for smalluzu. Then for Rez.0, we have

Q1szd = fI + ez−1sI + eQcszdd−1Ack·,B1s3clg−1sI + eQcszdd−1Qszd, s3.10d

which can be extended meromorphically from Rez.0 to Rezø0. By Fredholm theorem, the first
factor on the right-hand side ofs3.10d has singularities atz=zsed, wherezsed is the solution of the
linear equation,

z + ekc,V1
*s3cl − e2kQcs0dAc,B1s3cl + Ose3d = 0. s3.11d

By implicit function theorem, there is a unique solutionz=zsed for small e, such that

zsed = − ekc,V1
*s3cl + 0se2d. s3.12d

The mapz=Îv−z transforms the domainD=hzPC :z¹ fv ,`dj into the first sheet of the Riemann
surfaceD1=hzPC :Rez.0j, which is connected with the second sheetD2=hzPC :Rez,0j.
When the root ofs3.11d belongs toD1, the corresponding pointzPD is the eigenvalue ofL1, at
least for smalle, since the singularities ofQ1szd=AR1szdB1

* coincide with the singularities of
R1szd. When the root ofs3.11d belongs toD2, the corresponding pointz belongs to the compliment
of the closure ofD in the Riemann surface, which continuesD acrosszP fv ,`d. As a result, it
does not belong to the closure ofD, such that it is not an eigenvalue. j

Proposition 3.5: Ife.0 and kc ,V1
*s3cl,0, the new eigenvalue zsed with the corresponding

eigenvectorcesxd has the positive energy norms1.7d, such that

kce,Hcel . 0, ∀ e . 0. s3.13d

Proof: Using s3.5d, we look for a solution of the problem:

sI + AR0szseddsB* + eB1
*ddsC + C̃ed = 0,

whereC=−Ac andC̃eP fKersI +Q0
*dg'. Projecting the equation onfKersI +Q0

*dg' with operator
P0

* , we have the problem,

FsC̃e,ed = P0
*sI + AR0szseddsB* + eB1

*ddC̃e + eP0
*AR0szseddB1

*C + P0
*AfR0szsedd − R0gB*C = 0,

whereFs0,0d=0 and

]F

]C̃e

s0,0d = P0
*sI + Q0

*d.

SinceP0
*sI +Q0

*d is an isomorphism infKersI +Q0
*dg', the functionC̃e is a smooth function ofe, by

implicit function theorem. Therefore, we define

ce = R0szseddsB* + eB1
*dsC + C̃ed.

Since R0szseddPBsLs
2,H−s

2 d and sB* +eB1
*dsC+C̃edPLs

2,s.
1
2 are continuous ine at e=0, we

conclude that
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lim
e→0+

cesxd = csxd, ce P L−s
2 , s.

1
2 .

It follows from the systems2.13d ands2.14d in the cases2.16d thatc1¹L2sRd andc2PL2sRd. By
Fatou lemma, we have the limit

lim
e→0

kce,Hcel = vic1iL2
2 − vic2iL2

2 = + `.

By continuity, the inequalitys3.13d holds fore.0. j

IV. BIFURCATION OF A SIMPLE EIGENVALUE

Here we assume that KersI +R0Vd#H0
1, such thatz=v is an eigenvalue ofspsLd. Let c

PKersL−vd,L2 and we assume that dim KersL−vd=1. Let P0 be the spectral projection inL2

onto KersL−vd, such that

P0 = c
k·,s3cl
kc,s3cl

. s4.1d

It is proved in Cuccagnaet al. s2005d, Sec. III that a simple eigenvalue has non zero energys1.7d
such thatkc ,s3clÞ0. SinceC0=0 in s2.15d, it is clear thatR1Vc=0. Furthermore, we have the
following result.

Lemma 4.1: Letu ,v be two functions in Hs
−1,s.

5
2, such that R1u=R1v=0 and ke1,ul

=ke1,vl=0, wheree1=s1,0dT. Then,

kR2u,vl = − kR0u,R0vl. s4.2d

Proof: The proof is given with a direct computation

kR2u,vl = lim
z→0

z−2kfR0szd − R0gu,vl = lim
z→0

z−27s33
1

p2 + z2 −
1

p2 0

0
1

p2 + 2v − z2 −
1

p2 + 2v
4û,v̂8

= −73
1

p4 0

0
1

sp2 + 2vd2
4û,v̂8 = − kR0u,R0vl,

whereûspd is the Fourier transform ofusxd, defined bys2.6d. j

We apply the splitting ofH−s
1 ,s.−1

2, defined bys2.19d, with projectionS0 to KersI +R0Vd,
such thatS=I−S0.

Lemma 4.2: The following statements are true:

sid P0
*V*R2s3VP0=−P0

*s3P0 and S0
*V*s3R2VS0=−S0

*s3S0.
sii d OperatorS0

*s3S0 is invertible inBsS0H−s
1 ,S0

*Hs
−1d, with the inverseP0s3.

Proof: To provesid, we note thats3VP0u andVP0v for anyu ,vPH−s
1 ,s.−1

2 satisfy assump-
tions of Lemma 4.1 and, therefore,
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kR2s3VP0u,VP0vl = − kR0s3VP0u,R0VP0vl = − ks3P0u,P0vl = − kP0
*s3P0u,vl.

The second part ofsid follows from the relationsP0S0=S0 andS0
*P0

* =S0
* .

To provesii d, let fPS0
*Hs

−1#KersI +V*R0d be the dual ofc, such thatkc ,fl=1. Therefore,

S0 = ck·,fl, S0
* = fk·,cl, S0

*s3S0 = fk·,flkc,s3cl,

such that

sS0
*s3S0d−1 = c

k·,cl
kc,s3cl

= P0s3.

j

Lemma 4.3: The following expansion is valid inBsH−s
1 ,H−s

1 d for s.
5
2 near z=0:

sI + R0szdVd−1 = − z−2P0V + z−1P0VR3VP0V + Os1d, Rez . 0. s4.3d

Proof: The proof is similar to that of Lemma 3.2. Let

X = SH−s
1

% S0H−s
1 = H−s

1 , Y = SH−s
1

% S0
*Hs

−1

and

B = FS 0

0 z−1S0
G, C = FS 0

0 z−1S0
*V*s3

G .

If Su=0, thenuPKersI +R0Vd andV*s3 is injective in KersI +V*R0d by Lemma 2.1. As a result,
B :X°X is surjective, whileC :X°Y is injective. LetA;CsI +R0szdVdB. Using the Taylor series
expansions2.10d, we have

A = A0 − zA1 + Osz2d,

where

A0 = FSsI + R0VdS 0

0 S0
*V*s3R2VS0

G, A1 = FSR1VS 0

0 S0
*V*s3R3VS0

G .

By Neumann expansions, we haveA−1=A0
−1+zA0

−1A1A0
−1+Osz2d, such that

A−1 = FK0 0

0 − sS0
*s3S0d−1G + zFK0SR1VSK0 0

0 sS0
*s3S0d−1S0

*V*s3R3VS0sS0
*s3S0d−1G + Osz2d,

whereK0=sSsI +R0VdSd−1. SincesI +R0szdVd−1=BA−1C, the expansions4.3d holds. j

Using s2.7d, s2.10d, and s4.3d, as well asP0VR0=−P0 andPVR1=0, we have the following
result.

Corollary 4.4: The following expansion is valid inBsHs
−1,H−s

1 d for s.
5
2 near z=0:

Rszd = z−2P0 − z−1P0VR3VP0 + Os1d, Rez . 0. s4.4d

Similar to Sec. III, we use Corollary 4.4 and consider the family of operatorsL1=L+eV1sxd,
where the perturbation potentialV1sxd satisfies the same assumption as the potentialVsxd, while
the unperturbed operatorL has a simple eigenvalue. LetR1szd=sL1−zd−1 and defineQszd
=ARszdB1

* and Q1szd=AR1szdB1
* =sI +eQszdd−1Qszd, where V1=B1

*A. As in Sec. III, functions
Qszd andQ1szd can be meromorphically extended from Rez.0 to Rezø0. The main result of
this section is formulated in the following proposition.

Proposition 4.5: Lete be a small positive parameter and letkR3Vc ,V*s3clÞ0. Then,

sid eigenvalue at z=v disappears aseÞ0.
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sii d Let kc ,s3cl,0. Then spsL1d near z=v includes one real eigenvalue zsed,v if
kc ,V1

*s3cl.0 and two complex eigenvalues z1,2sed if kc ,V1
*s3cl,0. Asymptotic approxi-

mations of the eigenvalues zsed and z1,2sed are given by

zsed = v + e
kc,V1

*s3cl
kc,s3cl

+ Ose3/2d s4.5d

and

Resz1,2sedd = v + e
kc,V1

*s3cl
kc,s3cl

+ Ose2d, s4.6d

Imsz1,2sedd = ± e3/2Îkc,V1
*s3cl

kc,s3cl
kR3Vc,V*s3clkc,V1

*s3cl
kc,s3cl2 + Ose2d. s4.7d

siii d Let kc ,s3cl.0. ThenspsL1d near z=v includes one real eigenvalue zsed,v, given by
s4.5d, if kc ,V1

*s3cl,0 and no eigenvalues ifkc ,V1
*s3cl.0.

The proof of Proposition is based on the following elementary result.
Lemma 4.6: Consider a quadratic equation,

z2 − ezFse,zd + eGse,zd = 0, s4.8d

where Fse ,zd and Gse ,zd are analytic ine and z at the points0, 0d, such that Gs0,0dÞ0 and

U ]Fs0,zd
]z

U
z=0

= U ]Gs0,zd
]z

U
z=0

= 0. s4.9d

Then, for smalle, the quadratic equations4.8d has exactly two solutionsz1,2sed, such thatuz jsed
−z j0sedu=Ose3/2d, wherez j0sed , j =1, 2, are solutions of the quadratic equation

z2 − ezFs0,0d + eGs0,0d = 0. s4.10d

Proof: Let m=e1/2 and substitutez=mj. Introducing another parameterl, we rewrite the
quadratic equations4.8d in the form,

j2 − mjFslm2,lmjd + Gslm2,lmjd = 0. s4.11d

The casel=1 givess4.8d, while the casel=0 givess4.10d. SinceGs0,0dÞ0 by assumption, there
exist two analytical solutions ofs4.11d, by the implicit function theorem, which are defined for
small m.0 andlP f0,1g. Since

js1,md − js0,md =E
0

1

]ljsl,mddl,

we apply implicit differentiation ofs4.11d and find that

f2j − mFslm2,lmjd − lm2j]2Fslm2,lmjd + lm]2Gslm2,lmjdg]lj − m3j]1Fslm2,lmjd

− m2j2]2Fslm2,lmjd + m2]1Gslm2,lmjd + mj]2Gslm2,lmjd = 0,

where]1 and]2 are derivatives in the first and second arguments. Under constraintss4.9d, we have
]lj=Osm2d, such thatuzs1,md−zs0,mdu=Osm3d. j

Proof of Proposition 4.5:It follows from Corollary 4.4 that

Qszd = z−2AP0B1
* − z−1AP0VR3VP0B1

* + Qcszd, s4.12d

whereQcszd is bounded for smallz. As a result, for Rez.0, we have

053520-10 S. Cuccagna and D. Pelinovsky J. Math. Phys. 46, 053520 ~2005!

Downloaded 17 Oct 2005 to 130.113.105.64. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



Q1szd = fI + esI + eQcszdd−1fz−2AP0B1
* − z−1AP0VR3VP0B1

*gg−1sI + eQcszdd−1Qszd,

which can be extended meromorphically for Rezø0. Singularities ofQ1szd nearz=0 correspond
to zeros of

detFz2 + esI + eQcszdd−1SAc
kB1

* · ,s3cl
kc,s3cl

− zAc
kR3VP0B1

* · ,V*s3cl
kc,s3cl

DG .

The determinant equation can be written as the quadratic equations4.8d, whereFse ,zd andGse ,zd
are defined for Rez.0 as

Fse,zd =
kR3Vc,V*s3cl

kc,s3cl2 kB1
*sI + eQcszdd−1Ac,s3cl, s4.13d

Gse,zd =
1

kc,s3cl
kB1

*sI + eQcszdd−1Ac,s3cl, s4.14d

and they can be analytically continued to Rezø0. It is clear froms4.13d and s4.14d that

Fs0,zd =
kR3Vc,V*s3clkc,V1

*s3cl
kc,s3cl2 , Gs0,zd =

kc,V1
*s3cl

kc,s3cl
,

such that the conditions4.9d is satisfied. By Lemma 4.6, there exist two solutions ofs4.8d in the
Ose3/2d-neighborhood of solutions ofs4.10d, when kc ,V1

*s3clÞ0. Solutions ofs4.10d are ex-
panded as

z±0sed = ± e1/2Î−
kc,V1

*s3cl
kc,s3cl

+
e

2

kR3Vc,V*s3clkc,V*s3cl
kc,s3cl2 + Ose3/2d. s4.15d

Whenkc ,V1
*s3cl / kc ,s3cl,0, there is a unique real eigenvalue of operatorL1 in the neighbor-

hood of z=v, such thatz=v−z+0
2 +Ose3/2d, which results ins4.5d. The other solutionz−0sed

corresponds to Rez,0 and, by arguments in the proof of Proposition 3.4, it does not correspond
to an eigenvalue of operatorL1.

Whenkc ,V1
*s3cl / kc ,s3cl.0, we have to consider the Osed term of the asymptotic expan-

sion s4.15d. Due to the constraintC0=0 in s2.15d, we have

kR3Vc,V*s3cl = −
1

12p
o
j=1

3

usxj, fc1 + gc2du2 ø 0. s4.16d

SincekR3Vc ,V*s3clÞ0, thenkR3Vc ,V*s3cl,0. Therefore, it follows froms4.15d that

Im z±0sed = ± e1/2Îkc,V1
*s3cl

kc,s3cl
+ Ose3/2d,

Rez±0sed =
e

2

kR3Vc,V*s3clkc,V1
*s3cl

kc,s3cl2 + Ose3/2d.

In the casekc ,s3cl.0 andkc ,V1
*s3cl.0, we have Rez±0,0, such that no eigenvalues ofL1

exist in the neighborhood ofz=v. In the casekc ,s3cl,0 and kc ,V1
*s3cl,0, we have

Rez±0.0, such that two complex eigenvalues ofL1 exist in the neighborhood ofz=v, with the
asymptotic approximationss4.6d and s4.7d. j

A more special result occurs in the case whenkR3Vc ,V*s3cl=0, which includes spherically

053520-11 Bifurcations from the endpoints J. Math. Phys. 46, 053520 ~2005!

Downloaded 17 Oct 2005 to 130.113.105.64. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



symmetric potentialVsxd with spherically symmetric eigenvectorcsxd, sees4.16d. In order to
study this special case, we need to extend the theory of wave operators from Katos1966d and
Cuccagnaet al. s2005d. Following Cuccagnaet al. s2005d, we consider a decomposition ofL2 into
the L-invariant Jordan blocks:

L2 = o
zPspsLd

NgsL − zd % XcsLd, XcsLd = F o
zPspsLd

NgsL* − zdG'
, s4.17d

and, equivalently,

L2 = o
zPspsLd

NgsL* − zd % XcsL*d, XcsL*d = F o
zPspsLd

NgsL − zdG'
, s4.18d

wherespsLd=spsL*d and NgsL−zd=øn=1
+` KersL−zdn. The invariant splittingss4.17d and s4.18d

hold in the assumption thatspsLdùsesLd is a union of simple eigenvalues, such thatNgsL−zd
=KersL−zd for zPDe. The action ofL in XcsLd is given by the scattering theory of wave
operators Katos1966d, which is based on the following existence result.

Lemma 4.7: Let Asxd and Bsxd be exponentially decaying potentials andspsLdùsesLd be a
union of simple eigenvalues, which includes the endpoints z= ±v without resonance. Let
kR3Vc ,V*s3cl=0. There exist isomorphisms W:L2°XcsLd and Z:XcsLd°L2, which are inverse
of each other, defined as follows:

∀u P L2, ∀ v P XcsL*d,kWu,vl = ku,vl + lim
e→0+

1

2pi
E

−`

+`

kAsL0 − l − ied−1u,BsL* − l + ied−1vldl,

s4.19d

and

∀u P XcsLd, ∀ v P L2,kZu,vl = ku,vl + lim
e→0+

1

2pi
E

−`

+`

kAsL − l − ied−1u,BsL0 − l + ied−1vldl.

s4.20d

We prove this result in Sec. V. Using Lemma 4.7, we consider bifurcation of the simple eigenvalue
in the special case whenkR3Vc ,V*s3cl=0.

Proposition 4.8: Lete be a small positive parameter andkR3Vc ,V*s3cl=0. Then, Proposi-
tion 4.5 holds, but the asymptotic expansions4.7d is modified as follows:

Imsz1,2sedd = ± e5/22p2uĉ1s0du2

kc,s3cl
Îkc,V1

*s3cl
kc,s3cl

+ Ose3d, s4.21d

wherec̃=ZPcV1c and ĉspd is the Fourier transform ofc̃sxd.
Proof: We use the splittingss4.17d ands4.18d and define operatorPc as the projection ofL2 on

XcsLd. It is clear froms4.12d that

Qcszd = AsI − P0dRszdB1
* = o

zPspsLd\hvj
APzRszdB1

* + APcRszdB1
* .

In the special casekR3Vc ,V*s3cl=0, the quadratic equations4.8d hasFse ,zd=0 and

Gse,zd = Gs0,zd + e]1Gs0,zd + Ose2d,

where
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Gs0,zd =
kc,V1

*s3cl
kc,s3cl

,

and

]1Gs0,zd = −
kB1

*QcszdAc,s3cl
kc,s3cl

= −
ksI − P0dRszdV1c,V1

*s3cl
kc,s3cl

.

The term]1Gs0,zd consists of the contribution from all eigenvalues ofspsLd different from z
=v and from the contribution fromXcsLd. The first contribution can be estimated as follows:

Im o
zPspsLd\hvj

kPzRszdV1c,V1
*s3cl = Osz2d.

This estimate is based on the expansion for real-valuedV1sxd and csxd fsee Cuccagnaet al.
s2005dg,

o
zPspsLd\hvj

kPzRszdV1c,V1
*s3cl = o

zjPR
sz− zjd−1kPzj

V1c,V*s3cl + o
zjPC

fsz− zjd−1kPzj
V1c,V*s3cl

+ sz− z̄jd−1kPz̄j
V1c,V*s3clg. s4.22d

SincePzj
s3 is self-adjoint forzj PR, the factorkPzj

V1c ,V*s3cl is real. Then, the first term in
s4.22d has the imaginary part of order OsIm zd or Osz2d for z=v−z2. Similarly, the operator
sRez−zjd−1Pzj

s3+sRez− z̄jd−1Pz̄j
s3 is self-adjoint forzj PC, such that the second term ins4.22d

has the imaginary part of order OsIm zd or Osz2d. The second contribution in]1Gs0,zd can be
estimated by using wave operators, which satisfy the following identitiesfCuccagnaet al. s2005dg:

Pc
*s3 = s3Pc, W*s3 = s3Z, Z*s3 = s3W, ZL = L0Z. s4.23d

SincePcV1cPXcsLd, there existsc̃PL2, such thatPcV1c=Wc̃. As a result, we have

kPcRszdV1c,V1
*s3cl = kRszdV1c,s3Wc̃l = kZRszdV1c,s3c̃l = kR0szdc̃,s3c̃l.

SincekR0c̃ ,s3c̃l and kR1c̃ ,s3c̃l are real valued, we finally have

Im ]1Gs0,zd =
kR1c̃,s3c̃l
kc,s3cl

Im z + Osz2d. s4.24d

The quadratic equations4.8d is now read as follows

z2 + eGse,zd = 0. s4.25d

In the caseGs0,0d.0, we have from Lemma 4.6 that

Im z1,2sed = ± e1/2Îkc,V1
*s3cl

kc,s3cl
+ Ose3/2d,

in addition, by expansions4.24d, we have froms4.25d that 2 Rez Im z=−e2 Im z]1]2Gs0,0d
+Ose3,e2z2d, such that

Rez1,2sed = −
e2

2

kR1c̃,s3c̃l
kc,s3cl

+ Ose5/2d.

Direct computations froms2.11d show that
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kR1c̃,s3c̃l =
1

4p
SE

R3
c̃1 dxDSE

R3
c̃1

* dxD = 2p2uĉ1s0du2 ù 0,

whereĉ1spd is the Fourier transform ofc1sxd, defined bys2.6d. Again, we have Rez1,2sed.0 in

the casekc ,s3cl,0 andĉ1s0dÞ0, such that two complex eigenvalues ofL1 exist in the neigh-
borhood ofz=v, with the asymptotic approximationss4.6d and s4.21d. j

V. PROOF OF LEMMA 4.7

According to Katos1966d, Lemma 4.7 is valid if we can prove that there existsc.0 such that
∀eÞ0, the following bounds are true:

E
−`

`

iAsL0 − ie − ld−1ui2 dl ø ciui2, u P L2, s5.1d

E
−`

`

iBsL0 − ie − ld−1ui2 dl ø ciui2, u P L2, s5.2d

E
−`

`

iBsL* − ie − ld−1ui2 dl ø ciui2, ∀ u P XcsL*d, s5.3d

E
−`

`

iAsL − ie − ld−1ui2 dl ø ciui2, ∀ u P XcsLd. s5.4d

The boundss5.1d ands5.2d are proved in Corollary to Theorem XIII.25 in Reed and Simons1978d.
We prove the bounds5.4d, while the bounds5.3d can be proved similarly. Following Cuccagnaet
al. s2005d, we write

AsL − zd−1v = sI + Q0
+szdd−1AsL0 − zd−1v, v P XcsLd, s5.5d

where Q0
+szd is continuation ofQ0szd from Im z.0 to Imzù0. The operatorsI +Q0

+szdd−1 is
uniformly bounded inz away from the eigenvalues ofspsLd. It has pole singularities at the
eigenvalues ofspsLd, which were considered in Cuccagnaet al. s2005d, Lemma 4.3. The endpoint
eigenvaluesz= ±v were excluded from Cuccagnaet al. s2005d. Here we shall consider the eigen-
valuez=v. We need to show thatAsL−zd−1v hasL2-norm which is uniformly bounded ine.0,
for Im z=e and Rez<v. Nearz=v, we have the following expansion in the space of operators
L2→L2:

sI + Q0
+szdd−1 =

1

v − z
AP0B

* + Os1d.

Due to the boundss5.1d ands5.2d, we only need to studysv−zd−1AP0VR0szdv, for vPXcsLd near
z=v. We use the relation

kVR0v,s3cl = − kv,s3cl = 0, ∀ v P XcsLd.

As a result,

1

v − z
P0VR0szdv =

c

v − z

kVR0szdv,s3cl
kc,s3cl

=
c

v − z

kVuR0szd − R0uv,s3cl
kc,s3cl

= − c
kVR0R0szdv,s3cl

kc,s3cl

= c
kR0szdv,s3cl

kc,s3cl
.
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We need to show thatkR0szdv ,s3cl is in Hardy spaceH2 for Im z.0, which is true ifcsxd
belong to the space of Rollnick potentials,

E
R
E

R

ucsxduucsxdu
ux − yu2

dxdy , `. s5.6d

It is clear from s2.14d that c2sxd decays exponentially asuxu→`. Since C0=0 in s2.15d and
sxj , fc1+gc2d=0,j =1, 2, 3 in s4.16d, it follows from s2.13d that c1sxd decays algebraically as
uxu−3. As a result, the eigenvectorcsxd satisfies the conditions5.6d.
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